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Abstract: Similarity testing for complex graphs has applications in a wide range of problems in network science, computer
vision, artificial intelligence and neuroscience, and other engineering areas. Graphs are combinatorial structures and similarity
testing poses serious challenges to computation feasibility. In this paper we propose to develop an algorithm analogues to
linear system identification based on the transient behavior of the initial condition responses. We propose to collect data from
intrinsically parallel random walks to form a graph response function as an effective measure of graph similarity.
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1 Introduction

Complex graphs can be used to represent many real world
signals such as images, networks, texts, audio pieces and
even abstract concepts in the brain. Therefore how to check
if two or more such complex graphs are similar is of signif-
icance in many areas of engineering and sciences. In this
paper we develop an algorithm for complex graph similarity
testing. Our algorithm is motivated by the theory of diffusion
on manifolds and graphs, is very fast, and is trivially paral-
lel. Our algorithm uses the transient response of a graph to
the initial distribution of random walkers to characterize the
graph structure. This is analogous to the transient response
description of linear dynamic systems.

Graph similarity has been an active research area, various
definitions of graph similarity have been proposed (see [7]
and references therein). Our definition is different from all
previous works in that it is stemmed out from neuroscience
motivations. We propose that to compare two complex neu-
ronal networks featured by their connectivity structures the
algorithm should be based on random walks that models
the neuronal spike motions. Since the random walk mo-
tion modes are governed by the spectral parameters of the
graphs, it is meaningful to define a similarity criterion using
their eigen structure information.

Random walk over complex graphs is analogues to diffu-
sions on manifolds in some aspects. The latter has a rich
history and some important results there motivated our algo-
rithm development. Although the approximations between
the random walks on continuous manifold and on discrete
graph can only be made precise when the graphs are grid-
like, many results in continuous cases have similar counter-
parts in general graphs. In the following we try to view a
complex graph with a continuous analogue and try to gain
insights into the nature of the problem. For example one
could approximate the behavior of a two dimensional pla-
nar graph by a real positive function f(x, y) in a bounded
domain in R2 and use the values of this function to approx-
imate the denseness of the connectivity in a neighborhood.
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Then one can try to develop methods that can effectively test
the similarity of two functions f(x, y) and g(x, y). A well-
known method to carry out such testing is the Radon trans-
form widely used in computer tomography(CT). In CT one
collects the integrals of the test function along straight lines
over the domain and apply Radon transform to reconstruct
the original function. For similarity testing this is effective
since if f(x, y) and g(x, y) differ significantly the line inte-
gral data would tell the differences. Now the question is that
if we can develop a similar algorithm for complex graphs.

Integration of f(x, y) along a straight line does not seem
to have a direct analogue for a graph. However we can
think that the normalized f(x, y) values represent annihila-
tion probability (field) of random walk particles. One can
run random walk paths through the domain and collect the
transient behavior of the random walks, hoping such tran-
sient behavior data would contain enough information about
the function f(x, y). In the case of graphs such random walk
could be discrete walk over the graph and the transient be-
havior of the random walks could reveal enough graph struc-
ture information for similarity testing purpose. In the contin-
uous domain scenario the Feynman-Kac formula for the dif-
fusion type partial differential equations tells us that random
walk paths specified by certain stochastic differential equa-
tions can be used to find the solution of the corresponding
partial differential equations (PDEs). The spectra informa-
tion of the operators of the PDEs on the one hand governs
the motion modes of the random walks, on the other hand
is closely related to the geometric information of the do-
main and the field. In the next section we briefly review the
Feynman-Kac formula with an emphasis on the intuitive pic-
ture that allows us to think of the analogue with the Radon
transform mentioned above.

2 Motivation from continuous random walk and
system transient analysis

Consider a smoothly closed domain in a 2D Euclidean
space denoted as D with its smooth boundary ∂D. Sup-
pose we have an annihilation field V (x) on this domain and
we would like to run a diffusion like random walk over the
domain and collect the dynamic movement statistics in or-
der to figure out the geometric features of V (x). This task
is not much different from the computer tomography sce-



nario we mentioned before, except that instead of using the
straight lines like in the Radon transform case we try to use
the zigzag random walk paths. Would the random walk paths
work? Feynman’s path integral approach could be applied
here to give a hint. Suppose the random walks started from
x ∈ D at time t. The quantity of the random walker (now it
is a positive real number so we call it the diffusive stuff) at
(x, t) is denoted as u(x, t). We want to know if the dynam-
ics of u(x, t) would tell us about the annihilation field V (x).
More specifically, suppose thatD ⊂ Rd is a smooth bounded
domain and that u(x, t) solves the initial value problem

ut =
1

2
∆u− V (x)u, x ∈ D, t > 0 (1)

u(x, 0) = f(x), x ∈ D (2)
u(x, t) = 0, x ∈ ∂D, t > 0. (3)

The Feynman-Kac representation of the solution is

u(x, t) = E[f(Xx
t )Iγx>t exp(−

∫ t

0

V (Xx
s )ds)] (4)

where Xx
t = x + Wt and γx is the first time Xx

t hits the
boundary.

Intuitive understanding of the path integral is a motivat-
ing source for our approach as we mentioned. We now dis-
cuss briefly the intuition of this formula. First assume that
V (x) = 0. Although f(x) is the initial “stuff” to be diffused
along the paths generated by Xx

t = x + Wt, it can also be
viewed as the terminal stuff to be diffused backwards in time.
In other words the paths generated by the Wiener processWt

establish a path fabric in the domain using continuous paths.
The random walking stuff can be seen as moving on this
continuous path fabric either forward in time or backward in
time. The weight of the paths remain the same regardless
of whether the random walk is forward or backward in time.
Thus when the random walking stuff reaches position x at
time 0, the expected arrival stuff E[f(Xx

t )Iγx>t] gives the
solution u(x, t). The partial differential equation above can
be subject to spectral decomposition that leads to the method
of obtaining the spectral information of the domain, as we
mentioned before. In fact people have studied the heat con-
tent function, defined as g(t) =

∫
D
u(x, t)dx, for obtaining

the relevant information about V (x) in, e.g., [10, 11].
The above formula provides several possibilities for graph

similarity testing algorithms. We can either let V (x) = 0
and use the formula u(x, t) = E[f(x + Wt)Iγx>t] to sug-
gest a pure diffusion over graph with initial data to reflect the
graph connectivity information, or to use V (x) to model the
connectivity of the graph, or to combine both the initial con-
dition and the potential function to model the graph connec-
tivity. We will discuss some concrete computer algorithms
in later sections.

Practical graph similarity testing algorithm needs to be
very fast since complex graphs are computationally demand-
ing for brute force type of comparisons. Can quickness
be achieved via zigzag random walk paths? The so-called
”small time asymptotics” results in [10, 11] provides enlight-
enment.

Some historical remarks are in order here. The famous
mathematician Mark Kac gave a lecture in 1965 and subse-
quently a paper in 1966 with the same colorful title “Can

one hear the shape of a drum?” [6]. The key observation
in Mark Kac’s paper is that for smoothly bounded domains
in 2 dimensional Euclidean space, heat diffusion from Dirac
delta sources could be used to evaluate important geomet-
ric parameters of the domain “immediately”. More precisely
Kac considered the following diffusion equation on a closed
domain D ⊂ E2 with a smooth boundary ∂D:

∂ρ(y, x, t)

∂t
=

1

2

∂2ρ(y, x, t)

∂y2
. (5)

The initial condition is ρ(y, x, 0) = δ(y−x) and the bound-
ary condition is ρ(y, t) = 0 for y ∈ ∂D.

His result is:
∞∑
k=1

e−λkt ∼ ‖D‖
2πt

− L

4

1√
2πt

+
1

6
(1− r) as t→ 0

with λk, k = 1, 2, · · · the eigenvalues of the diffusion oper-
ator, ‖D‖ the area of the domain, L the length of the bound-
ary ∂D and r the number of smooth holes inside the domain.
This is referred to as a small time asymptotic expression (∼).
If we know any finite segment, in particular a small early
segment, of the time function

∑∞
k=1 e

−λkt then we can de-
termine ‖D‖, L, r and possibly other geometric parameters
of the domain. We emphasize that this expression says that
not only we can “hear” some important shape parameters of
the “drum”, we can hear them “immediately”, whose practi-
cal implications have not been investigated much.

The fact that system structural information can be ob-
tained “immediately” via a scalar function is actually a fa-
miliar one in control and systems theory. Consider a linear
time invariant system

ẋ = Ax +Bu (6)

where x ∈ Rn is the state vector and u ∈ Rm is the control
input vector. For the initial condition response (u(t) = 0)
we have (assuming that the eigenvalues of A are all distinct)

x(t) = v1e
λ1t + v2e

λ2t + · · ·+ vneλnt (7)

where λi is the i-th eigenvalue of the system matrix A and
vi is the corresponding eigenvector. The initial condition
response for

x(0) = α1v1 + α2v2 · · ·+ αnvn (8)

is

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · ·+ αne
λntvn. (9)

If we let the system output be a scalar y(t) = cx(t) then we
have

y(t) = α1e
λ1tcv1 + α2e

λ2tcv2 + · · ·+ αne
λntcvn. (10)

In principle one can recover all the eigenvalues and the coef-
ficients α1cv1 from a small segment of the y(t). In particular
one can use an early segment for this purpose, leading to a
quick identification of the critical system parameters. This
is analogous to the above diffusion scenario. In fact in the
separation of variable solution to the diffusion type of par-
tial differential equations the “time eigenvalues” and “spatial



eigenvalues” are the same. Since the high frequency eigen-
vectors are not sensitive to the boundary conditions, the high
frequency time components of

∫
D
u(x, t)dx alone would re-

veal worthy information about the high spatial frequency be-
havior of the function V (x).

Of course this method is not practical due to the observa-
tion noise. However when applied to random walk on com-
plex graphs one can execute many independent walks simul-
taneously and the law of large numbers will help to battle the
noises.

Under the assumption that the operator involved in the dif-
fusion type of equations has distinct real eigenvalues the time
function

∫
D
u(x, t)dx = g(t) is an exponential sum of the

form
∑n
i=1 αie

−λit. Thus in principle one can extract the
information about the parameters αi, λi, i = 1, · · · , n from
a small initial segment of g(t).

We now turn to the description of a graph similarity testing
algorithm that resembles the continuous situation where an
uniform initial condition and a potential function are used.

3 A fast graph similarity testing algorithm

Our graph is denoted as G(V,E,W ) where V is the set
of the graph vertex with |V | = n = N2, E is the set of the
edges andW is the set of the weights on the edges. Each ver-
tex is representing a pixel in the image Π. We now consider
the graph G = (V,E,W ) with a nonempty set of boundary
vertexes. The adjacency matrix of the graph G is denoted as
A = [wv,u] with wv,u being the weight of the edge between
the vertexes u and v. The degree matrix is D = diag [du]
with du =

∑
v wvu. If we let a discrete time random walker

to start from a vertex u and move to vertex v with probability
wvu/du then the movements can be described by a Markov
chain

Pk+1 = MPk (11)

with
M = AD−1. (12)

We call this random walk on graph the “natural” random
walk and M the “walk matrix”. The boundary vertexes are
corresponding to the absorbing states of the Markov chain.

Since our graph G is supposed to reflect realistic neuronal
networks (at a high level) rather than a pure mathematical
construction, we can assume that the eigenvalues of the ma-
trix M are distinct from each other. Under such assumptions
we know M is diagnolizable so we can write

M = ΦΛΦ−1 (13)

where Λ is a diagonal matrix with the eigenvalues of M as
the diagonal entries. In fact we can write the above equation
in the following “spectral decomposition” way:

M =

n∑
k=1

λkφkψ
T
k . (14)

Here λk is the k-th smallest eigenvalue of M , φk is the cor-
responding column eigenvector and ψTk is the correspond-
ing row eigenvector. Note that since our matrix M is not
symmetric, the eigenvalues and the eigenvectors might have
complex conjugate pairs.

Suppose our random walk starts with a uniform initial
condition, namely

p0 = [1/n, 1/n, ..., 1/n]T , (15)

the probability vector for the Markov chain evolves as

pi+1 = Mpi = · · · = M i+1p0 (16)

where the first element of pi+1 is the sum of the first row of
M i+1/n.

We now introduce a key concept in our algorithm devel-
opment. We call the function

gi+1 = [r1, · · · , rn]pi+1 (17)

the graph response (function) with

ru =

{
1 if u ∈ V/VB
0 if u ∈ VB

. (18)

In other words
r = [r1, · · · , rn]T (19)

is a vector with its elements indicating whether the corre-
sponding graph vertex belongs to the boundary vertex set
VB . The importance of graph response is due to

gi+1 =
∑
u∈V,v∈V

∑n
k=1 λ

i+1
k φk(u)ψTk (v)

=
∑n
k=1 λ

i+1
k

∑
u∈V,v∈V φk(u)ψTk (v)

=
∑n
k=1 αkλ

i+1
k

(20)

where αk =
∑
u∈V,v∈V φk(u)ψTk (v) and φL,k(u) and

ψTL,k(v) )denote the vector components corresponding to
vertex u and v, respectively. As can be seen if one has
enough values of the function gi then in principle one can
recover the spectral parameters αk, λk, k = 1, · · · , n which
describe the dynamics of the random walk and thus reflect
the spectral structure of the graph. We emphasize that the
values of the function gi can be estimated from a simulation
of the Markov chain withM = AD−1. However such simu-
lation is not efficient numerically. Firstly, at each time step of
the simulation some vertexes may need to emit a large num-
bers of walkers. Secondly the functiongi might drop very
quickly in i before we harvest enough gi values with suffi-
cient accuracy. The well-known lazy walk scheme is suitable
here for dealing with both issues.

The random walk that governed by the following transi-
tion matrix is called a lazy walk on graph:

ML = (1− δ)I + δM = (1− δ)I + δAD−1. (21)

If we execute the lazy walk N steps in [0, t) with the step
size δ = t/N then we have

MN
L = [(1− δ)I + δAD−1]N

= [I − δ(I −AD−1)]N

= [I − t

N
(D −A)D−1]N . (22)

One can see that MN
L would converge to a meaningful limit.

For now we illustrate that the spectrum for the Markov
chains M and ML determines each other for a given step



size δ. Since AD−1 is diagnolizable, so is I − δLD−1 and
there exists an nonsingular matrix ΦL (in fact ΦL = Φ but
we keep the notion ΦL as a reminder) such that

MN
L = ΦLΛNL Φ−1

L . (23)

In fact

ML = [(1− δ)I + δM ]

= [(1− δ)I + δΦΛΦ−1]

= Φ[(1− δ)I + δΛ]Φ−1. (24)

It can be seen that Λ and ΛL are uniquely related:

ΛL = [(1− δ)I + δΛ] = [I − δ(I − Λ)]. (25)

Furthermore (23) can be written as

MN
L =

N∑
i=0

λiL,kφL,kψ
T
L,k (26)

where ψL,k and ψTL,k are the column and row eigenvectors
corresponding to eigenvalue λL,k for the matrix ML. It is
clear that the information about {αk, k = 1, 2, · · · } in (20)
can be read out from (26) and we have the graph response
for the lazy walk gL,i+1 as

gL,i+1 =
∑n
k=1 λ

i+1
k

∑
u∈V,v∈V φL,k(u)ψTL,k(v)

=
∑n
k=1 αL,kλ

i+1
L,k .

(27)
The algorithm is to collect all the transitions of the random
walkers from one vertex to another for all the vertex pairs in a
Markov chain simulation. In other words our algorithm pro-
vides a Monte Carlo estimate of the graph response. Since
each random walker walks independently in the algorithm,
they each produce a sample of an independent random vari-
able in the algorithm. As such the graph response estimate
is simply the summation of all the random variable samples
generated. When the number of the graph vertexes where
random walkers are emitted is large then we are benefitting
from the law of large numbers in terms of the variance of
the Monte Carlo estimates of the graph response since we
“normalize” the result by dividing the summation by the to-
tal number of the walkers emitted from all the vertexes. We
note that our algorithm could run efficiently on parallel pro-
cessors. We would also like to point out that when all the
λk, k = 1, · · · , n are real then the graph response function
is monotonic in time. This provide a possibility of dividing
the graph into multiple sub-graphs and calculate the graph
response function for each sub-graph. When the interactions
of the heat flow between sub-graphs are taking into consid-
eration the sum of the graph response functions of the sub-
graphs will be the graph response function for the original
total graph. Such division could be useful for graph similar-
ity testing at different resolution scales.

4 Ridge factor considerations

The above basic algorithm can have the following general-
ized formation which is shown to improve the classification
performance in experiments and also point to some interest-
ing conjectures in neuroscience.

Suppose we would like to emphasize more the traffic from
a heavily connected vertex to a less connected vertex. Here
the connectivity of a vertex v is described by the total edge
weight dv. It is reasonable to insert a multiplicative factor
(dv/du)η, η > 0 for the traffic from v to u. We call this fac-
tor the “ridge factor” since its purpose is to emphasize the
connections from heavily connected regions to the less con-
nected ones. In the matrix notations this insertion is amount
to change the i step graph response expression from

gi = rM ip0 (28)

to
gi = rD−ηM iDηp0. (29)

Since the degree matrix D is closely related to the transi-
tion matrix M = AD−1, at a first glance it seems that by
inserting such factors we are changing the eigenvalues that
govern the motion modes of the random walkers. But this is
not true. Note that in multiple step transitions D−η and Dη

cancels each other so our algorithm simply collect the traffic
as before in (27) and then insert the factor (dv/du)η only
once:

g′L,i+1

=
∑n
k=1 λ

i+1
k

∑
u,v∈V φL,k(u)ψTL,k(v)

(
dv
du

)η
=

∑n
k=1 α

′
L,kλ

i+1
L,k

(30)
where g′ and α′ denotes the graph response function and the
α coefficients for the corresponding quantities in (27). The
choice of η provides a tuning mechanism for classification
since in some cases the traffic from the highly connected ver-
tex to the lighter ones is very indicative of the image feature,
such as in the case of identifying a photo and a sketch of a
person.

The algorithm is scalable in the sense that at every step of
the algorithm one updates each edge in the graph and that
the computation effort increases linearly in the number of
edges. Since the algorithm at each edge is the same and very
simple, it is naturally suitable for parallel execution. In fact
one of the motivating factor in our development is to have
such parallel scheme that is more plausible in the brain than
many other computer oriented algorithms.

5 Connections to related works

5.1 Scale space theory in image processing
When uses random walk to gather information of the

graph structure it is also important to know which kinds of
random walks are suitable in the sense that a random walk
should not introduce new structural features into the signal.
Previous research on scale space theory has clarified this is-
sue. In the area of image processing it has been noted by Lin-
derberg and others [9] that real world objects are composed
of different structures at different spacial scales. As such
it is important to generate representations at different spa-
cial scales from the signals that originated from real world
objects. Under a set of assumptions called the scale-space
axioms that include linearity, shift invariance, semi-group
structure, non-enhancement of local extreme, scale invari-
ance and rotational invariance, it can be shown that the Gaus-
sian kernel is the unique smoothing kernel that fits the bill.



Equivalently the scale-space elements can be defined as the
diffusion equation

∂

∂t
L(x, y; t) =

1

2
∇2L(x, y; t) (31)

with the initial condition L(x, y; 0) = f(x, y) the given im-
age. This is consistent with the random walk scheme in our
proposed graph similarity testing algorithm. The adjust of
ridge factor seems to be related to a position dependent diffu-
sion coefficients D(x). The impact to the scale space theory
is under investigation.

5.2 Diffusion on graphs
There is an important connection to the line of works with

heat diffusion over manifolds and graphs [2–4, 6, 10, 11].
It has a rich history and motivated our current research in
quick recognition. To illustrate the connections to this line
of works we tentatively assume that the adjacent matrix A
is symmetric as in [2]. We denote the normalized graph
Laplacian of G as Ln = D−

1
2LD−

1
2 where L = D − A

is the graph Laplacian. Now consider the heat flow matrix
ht = [ht(u, v)] defined by

∂ht
∂t

= −Lnht (32)

with a non-empty set of boundary nodes which absorb all
arriving heat. Initially the heat strength at every non bound-
ary node is set to 1. In other words we have an heat e−tLn

working with a Dirichlet boundary condition and an uniform
initial condition.

Since Ln is a symmetric matrix we have the spectral rep-
resentation of the solution for the above heat equation over
graph:

ht =

n∑
i=1

e−λitϕiϕ
T
i (33)

with λ1 ≤ λ2 ≤ · · · ≤ λn the eigenvalues of Ln and ϕi, i =
1, · · · , n the corresponding eigenvectors. The component
form of the expression is

ht(u, v) =

n∑
i=1

e−λitϕi(u)ϕi(v) (34)

and the heat content is the sum of the heat flows between all
pairs of the nodes:

Q(t) =
∑
v∈V

∑
u∈V

ht(u, v). (35)

It is possible to calculate some leading coefficients in the
series expansion of Q(t) at t = 0 [11]. These coefficients
have been shown to reveal more geometric information about
the domain than the eigenvalues alone, and motivated our
current study of using random walks in a Monte-Carlo style
computation for graph similarity testing.

We note that in [1] an asymmetric heat kernel is used in a
quite different way.

5.3 Fokker-Planck operator
There are also interesting connections to the Fokker-

Planck equation which could also serve as a continuous ana-
logue for random walk over graphs. Fokker-Planck equation

describes the “heat density” ρ(t, x) diffusion under a drifting
potential U(x), x ∈ Ω with Ω a smoothly bounded domain.
The equation is

∂ρ(t, x)

∂t
= 〈∇, ρ(t, x)∇U(x) +∇ρ(t, x)〉 (36)

with a Dirichlet condition for a smooth boundary ∂Ω. The
corresponding sample path equation is

dx = −∇U(x) +
√

2dw (37)

which describes a continuous random walk in the domain.
Under suitable conditions the classical gauge transformation
enables us to write out the eigendecompostion for the solu-
tion of (36) as [12]

ρ(t, x) =

∞∑
i=0

aie
−λitφi(x) (38)

where λi, φi are the i-th eigen pairs for the Fokker-Planck
operator in (36). An analogue “graph response (function)”
g(t) would be

g(t) =

∫
Ω

ρ(x)dx =

∞∑
i=0

e−λit

∫
Ω

aiφi(x)dx =

∞∑
i=0

γie
−λit

(39)
which can be used to describe the eigen structural informa-
tion of the domain.

We note that under very special circumstances like in [8]
one can relate the drifting force and the diffusion term coef-
ficients so that the Fokker-Planck operator becomes a pure
diffusion operator in a Riemannian manifold with a metric
calculated from the above terms. This suggests that the graph
connectivity analogue in continuous random walks can ei-
ther be the potential function or the Riemannian metric.

5.4 Dynamic system identification
The topic of recovering the shape of a domain from the

Laplacian eigenvalues belongs to the spectral inversion prob-
lem and has a long history. In fact Kac [6] briefly reviewed
this history. It is interesting for us in systems and control to
note that originally Hendrik Lorentz formulated the problem
as a wave problem in 1910. The issue concerned the forma-
tion of standing electromagnetic waves in an enclosure with
a perfectly reflecting surface. The conjecture was that for
a 2D domain (a membrane) the number of Laplacian eigen-
values less than λ would approach ‖D‖λ/2π when λ → ∞
which was proved by Herman Weyl. In the 1960s Mark Kac
treated the problem using diffusion theory, making use of
the fact that both waves and diffusions are the acting of the
same Laplacian operator. While in the wave approach the
steady state behavior was the focus of analysis, in the diffu-
sion approach of Kac the subject was the transient behavior
of the diffused “stuff”. In control engineering there are two
main approaches to system identification for a linear time in-
variant system, namely either to use the sinusoidal input to
obtain steady state frequency domain data, or to use a step
input or the initial condition for transient time domain data.
The latter is less practical in engineering practices due to the
noises. However as we discussed earlier it turns out that the
time domain transient method becomes quite useful in the



identification of a shape or a graph. The drawback of the
transient behavior method can be effectively overcome with
the parallel execution of the random walk algorithm on many
paths of the domain or the graph.

It seems that much can be learned from the connections
between the graph similarity testing algorithms and dynamic
system identification. In particular, one notices that the heat
diffusion equation on graph is a linear system with the graph
Laplacian plays the role of the system dynamics matrix A in
ẋ = Ax+Bu. Indeed we used the heat diffusion ∂ht/∂t =
−Lnht for collecting the initial condition response. We can
also think of adding an excitation signal as input and discuss
what kind of input is better.

6 The impact of the boundary setting

For a Markov chain M with mij = Prob(j → i) with
some absorbing states we can renumber the states such that
the transient states come first and to write the transition ma-
trix as the following block matrix:

M =

[
A 0
B I

]
.

The graph vertexes corresponding to the columns of I are
absorbing nodes. In other words the random walkers arrived
at one of these nodes will be stuck and not moving any more.
On the other hand a random walker start from nodes corre-
sponding to the columns of A say j could move to either a
non-absorbing node i by the transition probability aij or an
absorbing node k by the transition probability bkj . However
once the random walker arrives at an absorbing node it goes
to itself with probability one.

The selection of the boundary nodes in the above algo-
rithm can be seen as the selection of the columns with self
loops for the corresponding states. It can be seen that for a
very large matrix such choices would not affect the spectral
decomposition much. Specifically the eigenvalue interlac-
ing theorems [5] promises that a few link changes would not
affect the spectra of complex graphs much.

Absorbing nodes or boundary nodes are important for the
graph response functions to pick up the transients that re-
flect the graph structure. One should select such nodes away
from the center of the activities. For example if there are
several densely connected clusters in the graph then the ab-
sorbing nodes should not be too close to them since the trav-
eling paths of the random walkers should cover these clus-
ters as much as possible. The choice of the absorbing nodes
may not affect the eigenvalues which depends on the relative
weights of nodes but may affect the eigenvectors and thus
the αks. A good practical choice in image processing tasks
would be to use the frames of the images for absorbing nodes
when the image is turned into a graph.

7 Conclusion

One of the magic that our brain does is to recognize fa-
miliar objects very quickly. It is a natural consequence of
evolution necessity but the engineering mechanism remain
a mystery. On the other hand, we in control theory have
always understood that an early segment of the initial con-
dition response of a linear time-invariant dynamic system
(LTI) is sufficient for the system matrix identification, al-
though it is not a suitable engineering practice due to the

noise in the data measurement. Since the brain consists of
billions of neurons and synapses, it is possible that a kind of
law of large numbers effect could be in action to sufficiently
reduce the effect of the noises. Motivated by such thought
we develop an algorithm that can quickly test the similarity
of very large graphs, and it is intrinsically “embarrassingly”
parallel.
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