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Abstract— While neurons in the brain are individually quite
slow, collectively they can recognize concrete objects as well as
abstract concepts very quickly. Motivated by this puzzling fact
we propose biologically plausible algorithms that are capable
of quickly recognizing similar graph structures. Graphs are
combinatorial constructions and pose serious challenges to
similarity testing. In this paper we use the transient behavior of
random walk over graphs to compare their spectral resolution.
We collect data from intrinsically parallel random walks to
form a graph response function as an effective measure of
graph similarity. Our algorithm could be a solution to the long
standing mystery of content addressability in the brain.

I. MOTIVATIONS

This era faces the challenge of understanding human
intelligence and while its full understanding may take a bit
more time, there is growing evidence that it is now feasible
to develop brain-like concept-abstraction algorithms using
current knowledge in neuroscience, mathematics, computer
science and, in particular, in spatial-time signal conversion.

Human intelligence is believed to be based on neuronal
network representations of objects and concepts. In [13]
it was suggested that such networks can be abstracted as
weighted graphs with random walks modeling the effect of
neuronal spiking. In doing so we hope to model the funda-
mental mechanisms of concept abstraction, a cornerstone of
high intelligence.

Concept abstraction is the process of searching for com-
mon features from a collection of instances. If graphs are
the mathematical representations of instances, it follows that
efficient graph similarity testing algorithms are at the core
of abstraction. The random walk algorithms discussed in
this paper generate a single time function to summarize the
features of a graph and then use this function to access
similar graphs over a fabric of random connections.

While significant research has been devoted to graph
similarity finding algorithms, none has seized on the fact
that humans and many other animals recognize visual objects
quickly [28], [13]. Such immediate recognition is a result
of the tremendous pressures that survival of the fittest has
imposed over millions of years of evolution. For example,
the fish brain is capable of quickly recognizing the identity
of other fish, either as predator or prey, despite the variability
in visual orientation. Humans recognize familiar faces imme-
diately, with very little effort. However, we have difficulty
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in reconstructing faces from memory in the absence of the
visual stimulus. If facial features can be encoded onto a graph
(via the graph connectivity structure and edge weights), it
follows that our brain can then represent a highly-abstracted
facsimile of the face as a graph. This model can provide
important guidance in developing general concept abstraction
algorithms since Nature repeats successful mechanisms.

The above discussion suggests the following constraints
for plausible graph structure access algorithms:
• Quick recognition of objects despite slow neuron re-

sponses;
• Most neurons have multiple inputs (dendrite branches)

with only one output (axon);
• Slight rotation, stretching, or siding of an image does

not alter recognition;
• The brain consumes very little energy performing tasks

comparing to the current computer algorithms;
• The spatial/temporal signal conversion mechanisms

should be plausible for emerging from randomness.
We believe quickness is the key to meeting all the above.

In fact it is a hunch that the brain ability of quick recognition
and sudden illumination [9] may have a deep connection to
the small-time asymptotic results in the theory of diffusion
on manifolds that led to the thoughts in the current paper
[12], [13]. Consequently our algorithms differ from the other
existing algorithms in several important aspects:
• We view the random walk over the representation graph

as a dynamic system and we use the initial response to
distinguish graphs;

• In our algorithms the earlier the random walk data
come in the more important they are, enabling an early
decision that achieves the quickness of recognition;

• Our algorithms are intrinsically rotational invariant and
robust against other small variations;

• Our algorithms are trivially parallel in that they execute
the same simple operations on every edge of the graph
and the results collected from all the edges are simply
added together to give the final output.

In short, our algorithms use the transient response of
a graph to the initial distribution of random walkers to
characterize the graph structure. This is analogous to the
transient response description of linear dynamic systems. For
large and complex graphs the intrinsic parallelism as well
as the transient behavior comparison enable fast similarity
testing. Since the motion modes of the random walk and their
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strength are governed by the spectral resolution (the eigenval-
ues and the eigenvectors) of the graphs [26], it is meaningful
to use a similarity criterion based on the spectral resolution.
A simple example is the similarity testing of graphs that
represent independently generated images of white noise.
These random graphs have similar spectra resolutions, and
are visually similar despite their independence.

Random walk over complex graphs is analogous to diffu-
sions on manifolds in some aspects [22], [1]. The latter has
a rich history. Although subtleties always exist, many results
in continuous random walks have similar counterparts in
general graphs. Some continuous analogies of random walk
on a complex graph are useful for us to gain insights into the
fundamental nature of the problem. For example one could
approximate the behavior of a two dimensional planar graph
by a real positive function f(x, y) in a bounded domain
in R2 and use the function to approximate the denseness
of the connectivity in a neighborhood. This allows us to
use effective similarity testing methods for functions f(x, y)
and g(x, y) in the context of graph structure comparison. A
well-known method to carry out spatial function similarity
testing is the Radon transform widely used in computer
tomography(CT). In CT one collects the integrals of the func-
tions along straight lines and applies the Radon transform
to reconstruct the original function. If f(x, y) and g(x, y)
differ, the line integral data would tell the differences. Radon
transform does not reduce the data amount in the case of
exact reconstruction. However for practical purposes a small
portion of the line integral data would suffice to recognize
the significance of the difference. We now try to develop a
similar algorithm for complex graphs.

Integrating f(x, y) along a straight line does not have
a direct analogue for a graph. However we can think that
the normalized f(x, y) values represent an annihilation field
of random walk particles. One can run random walk paths
through the domain and collect the transient behavior of the
random walks, hoping such transient behavior data would
contain enough information about the field f(x, y). In the
case of graphs such random walks are discrete walks over the
graphs and the transient behavior of the random walks could
reveal enough graph structure information for similarity
testing purposes. In the continuous random walk scenario,
the Feynman-Kac formula for the diffusion type partial dif-
ferential equations tells us that random walk paths specified
by certain stochastic differential equations can be used to
find the solution of the corresponding partial differential
equations (PDEs). The eigen structure information of the
PDE operators on the one hand governs the motion modes
and their strength of the random walks and on the other
hand is closely related to the geometric information of the
domain and the field. In the next section we briefly review
an intuitive picture of the Feynman-Kac formula to help us
thinking of the analogue of the Radon transform.

It should be noted here that even though the analogue
between graphs and continuous domains is very useful, there
is a critical advantage of using graphs to represent concrete
images as well as abstract concepts. The advantage lies in

the fact that even just a few links between subgraphs allow
random walk to travel from one to another. This provides
the capability of automatically testing the similarity for
subgraphs lying in different places (for example different
regions of the brain). In fact, our graph similarity testing
algorithms provide a plausible mechanism for a graph to
find a similar graph as a counterpart or as an extension, in
the spirit of content addressable memory. It has long been
postulated that human memory is largely content addressable
[3], [23]. However the concrete mechanism for content
addressability in the brain remains a mystery. Assuming
concepts in the brain are represented by the connectivity
structure of weighted graphs, we propose an algorithmic
approach for content addressable memory in the brain. The
cognitive scientist, author of the book “How the mind works”
[24] Steven Pinker referred to our proposal as a “graph
structure addressable” scheme in a discussion, which we use.

II. ANALOGIES IN CONTINUOUS RANDOM WALK AND
SYSTEM TRANSIENT ANALYSIS

A major inspiration of our development is the connection
between the quickness of recognition in the brain and the
small-time asymptotics results of diffusion on manifolds
[12], [13]. Consider a closed domain in a 2D Euclidean space
denoted as D with its smooth boundary ∂D. Suppose we
have an annihilation field V (x) on this domain and we would
like to run a diffusion like random walk over the domain and
collect the dynamic movement statistics in order to figure
out the geometric features of V (x). This task is not much
different from the computer tomography scenario mentioned
before, except that instead of using the straight lines like in
the Radon transform case we try to use the zigzag random
walk paths. Feynman’s path integral approach provides a
hint. Suppose that the random walks started from x ∈ D at
time t. The quantity of the random walker (or the diffusive
stuff) at (x, t) is denoted as u(x, t). We want to know if the
dynamics of u(x, t) would tell us about the shape of the field
V (x). More specifically, suppose that D ⊂ Rd is a smoothly
bounded domain and that u(x, t) solves the initial-boundary
value problem

ut =
1

2
∆u− V (x)u, x ∈ D, t > 0 (1)

u(x, 0) = f(x), x ∈ D (2)
u(x, t) = 0, x ∈ ∂D, t > 0. (3)

The Feynman-Kac representation of the solution is

u(x, t) = E[f(Xx
t )Iγx>t exp(−

∫ t

0

V (Xx
s )ds)] (4)

where Xx
t = x + Wt and γx is the first time Xx

t hits the
boundary.

Intuitively the formula can be understood as follows. First
assume that V (x) = 0. Although f(x) is the initial “stuff” to
be diffused along the paths generated by Xx

t = x+Wt, it can
also be viewed as the terminal stuff (at time t) to be diffused
backwards in time. In other words the paths generated by
the Wiener process Wt establish a path fabric in the domain
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using continuous zigzag paths. The random walking stuff
can be seen as moving on this path fabric either forward in
time or backward in time. The weights of the paths remain
the same regardless of whether the random walk is forward
or backward in time. Thus when the diffusive stuff started
at time t reaches position x at time 0, the expected arrival
stuff E[f(Xx

t )Iγx>t] gives the solution u(x, t). The partial
differential equation above can be subjected to the spectral
decomposition that leads to the method of obtaining the
spectral resolution information of the domain, as mentioned
before. In fact people have studied the heat content function,
defined as g(t) =

∫
D
u(x, t)dx, for obtaining the relevant

information about the domain in, e.g., [27], [22], [26]. When
V (x) 6= 0 one uses Duhamel’s principle for the superposition
over time and the above thought carries over.

The above formula suggests several possibilities for graph
similarity testing algorithms. We can either let V (x) = 0 and
use the formula u(x, t) = E[f(x + Wt)Iγx>t] to suggest a
pure diffusion over graph with the initial data reflecting the
graph connectivity, or to use V (x) to model the connectivity
of the graph, or to combine both the initial condition and the
potential function to model the graph connectivity. We will
discuss some concrete algorithms in later sections.

Complex graphs are computationally demanding for brute
force type of comparisons but practical graph similarity
testing algorithm needs to be very fast. Can quickness be
achieved via zigzag random walk paths? The “small-time
asymptotics” results in [27], [22], [26] suggest that this
is possible. Historically the small-time asymtpotics about
diffusion was considered by the famous mathematician Mark
Kac. He gave a lecture in 1965 and subsequently a paper in
1966 with the same colorful title “Can one hear the shape of a
drum?” [18]. The key observation in Mark Kac’s paper is that
for smoothly bounded domains in 2 dimensional Euclidean
space, heat diffusion from Dirac delta sources could be used
to evaluate important geometric parameters of the domain
“immediately”. More precisely Kac considered the following
diffusion equation on a closed domain D ⊂ E2 with a
smooth boundary ∂D:

∂ρ(y, x, t)

∂t
=

1

2

∂2ρ(y, x, t)

∂y2
. (5)

The initial condition is ρ(y, x, 0) = δ(y − x) and the
boundary condition is ρ(y, t) = 0 for y ∈ ∂D.

His small-time asymptotic expression (∼) for the heat
kernel is
∞∑
k=1

e−λkt ∼ ‖D‖
2πt

− L

4

1√
2πt

+
1

6
(1− r) as t→ 0

where λk, k = 1, 2, · · · the eigenvalues of the diffusion
operator, ‖D‖ the area of the domain, L the length of the
boundary ∂D and r the number of smooth holes inside
the domain. If we know any finite segment, in particular
a small early segment of the time function

∑∞
k=1 e

−λkt then
theoretically we can determine ‖D‖, L, r and possibly other
geometric parameters of the domain. We emphasize that this

expression says that not only we can “hear” some impor-
tant shape parameters of the drumhead, we can hear them
“immediately”. The practical implications of this immediacy
have not been investigated much.

The fact that the system structural information can be
obtained “immediately” via a scalar function is actually a
familiar one in control and systems theory. Consider a linear
time invariant system

ẋ = Ax +Bu (6)

where x ∈ Rn is the state vector and u ∈ Rm is the control
input vector. For the initial condition response (u(t) = 0) we
have (assuming that the eigenvalues of A are all distinct)

x(t) = v1e
λ1t + v2e

λ2t + · · ·+ vneλnt (7)

where λi is the i-th eigenvalue of the system matrix A and
vi is the corresponding eigenvector. The initial condition
response for

x(0) = α1v1 + α2v2 · · ·+ αnvn (8)

is

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · ·+ αne
λntvn. (9)

If we let the system output be a scalar y(t) = cx(t) with
c = [1, 1, · · · , 1] then we have

y(t) = α1e
λ1tcv1 + α2e

λ2tcv2 + · · ·+ αne
λntcvn. (10)

In principle one can recover all the eigenvalues and the
coefficients αicvi from a small segment of the y(t). In partic-
ular one can use an early segment for this purpose, leading
to a quick identification of the critical system parameters
including the motion modes and their strengthes. This is
analogous to the above diffusion scenario. In both cases the
relations between the dual descriptions in frequency domain
and time domain of a dynamic system plays the critical role.
In the diffusion case the spatial structure of the potential
function or the shape of a domain can be represented in the
Fourier decomposition. Such frequency domain description
of the “system” is converted to a time function description
for the purpose of real-time similarity testing. More generally
we consider an m-dimensional Riemannian manifold (M, g)
and the associated Dirichlet Laplace-Beltrami operator −∆M

acting in L2(M,dx), where dx is the volume measure on M
induced by the metric g. Let u : M × [0,∞) → R be the
unique solution of

∂u

∂t
= ∆Mu, t > 0, (11)

with the initial condition

u(x, 0) = 1 (12)

and the boundary condition

u(x, t) = 0, x ∈ ∂M, t > 0. (13)

Using the spectral resolution {λk, φk} of ∆M , where φk
denotes the eigenfunction corresponding to the eigenvalue
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λk with λ1 < λ2 < · · · , the Dirichlet heat kernel for M can
be written as

p(x, y, t) =

∞∑
k=1

e−λktφk(x)φk(y) (14)

and the heat content in the domain is

h(t) =

∫
M

u(x, t)dx =

∫
M

∫
M

p(x, y, t)dydx

=

∞∑
k=1

e−tλk

(∫
M

φk(x)dx

)2

. (15)

It is worth noting that
∫
M
φk(x)dx =

∫
M
φk(x)u(x, 0)dx is

the Fourier coefficient of the initial condition u(x, 0) = 1
in the coordinate system {φ1, φ2, · · · }. In other words the
domain’s Fourier coefficients are carried by the exponential
motion modes in the heat content to represent the shape
information. Due to the unitary property of the Fourier
transform the heat content coefficients are robust against
small variations in the initial distribution. The graph analogy
of this is important for our algorithms to be plausible.

In general if the operator involved in the diffusion type
of equations has distinct real eigenvalues, the time function
h(t) =

∫
D
u(x, t)dx) is an exponential sum of the form∑n

i=1 αie
−λit. Thus, in principle, one can extract the in-

formation about the parameters αi, λi, i = 1, · · · , n from a
small initial segment of h(t). However it is worth noting
that [10], [26] give examples where “isoheat” (namely h(t)
are the same) does not imply isospetral (the eigenvalues are
the same). These examples involve unusual constructions and
should not concern us for our purposes.

The reason we say “in principle” or “theoretically” is that
the noise in the h(t) estimates would seriously affect the
numerical comparisons. However when applied to random
walk on complex graphs one can execute many independent
walks simultaneously and the law of large numbers will help
to battle the noise. More importantly, similarity testing is
often asking only for a best match, and not the exact values of
the time function. The large deviation principle ensures that
the “order ranking” converges exponentially fast compared
to the inverse square root convergence of the function values
asserted by the central limit theorem [15], [11].

We now turn to the description of a graph similarity testing
algorithm that resembles the continuous situation where an
uniform initial condition and a potential function or a metric
are used.

III. A GRAPH SIMILARITY TESTING ALGORITHM

Our graph is denoted as G(V,E,W ) where V is the set
of the graph vertex with |V | = n = N2, E is the set of the
edges and W is the set of the weights on the edges. In general
the weights may not be symmetrical. We now consider the
graph G = (V,E,W ) with a nonempty set of boundary
vertexes VB ⊂ V . The adjacency matrix of the graph G is
denoted as A = [wv,u] with wvu being the weight of the edge
from vertexes u to v. The degree matrix is D = diag [du]
with du =

∑
v wvu. If we let a discrete time random walker

to start from a vertex u and move to vertex v with probability
wvu/du then the movements can be described by a Markov
chain

Pk+1 = MPk (16)

with M = AD−1. The boundary vertexes are corresponding
to the absorbing states of the Markov chain.

Since our graph G is supposed to reflect realistic neuronal
networks (at a high level) rather than a pure mathematical
construction, we assume that the eigenvalues of the matrix
M are distinct and write

M = ΦΛΦ−1 (17)

where Λ is a diagonal matrix with the eigenvalues of M as
the diagonal entries. In fact we can write the above equation
in the following “spectral decomposition”:

M =

n∑
k=1

λkφkψ
T
k . (18)

Here λk is the k-th smallest eigenvalue of M , φk and ψTk are
the corresponding column and row eigenvector, respectively.
Note that M may not be symmetric and the eigens may have
complex conjugate pairs.

Suppose our random walk starts with a uniform initial
condition, namely

p0 = [1/n, 1/n, ..., 1/n]T , (19)

the probability vector for the Markov chain evolves as

pi+1 = Mpi = · · · = M i+1p0 (20)

where the first element of pi+1 is the sum of the first row
of M i+1/n.

We call the function

gi+1 = [r1, · · · , rn]pi+1 (21)

the graph response (function) (grf) with

ru =

{
1 if u ∈ V/VB
0 if u ∈ VB

. (22)

In other words [r1, · · · , rn] is a vector with its components
indicating whether the corresponding graph vertex belongs
to the boundary vertex set VB . The importance of the graph
response is due to

gi+1 =
∑
u∈V,v∈V

∑n
k=1 λ

i+1
k φk(u)ψTk (v)

=
∑n
k=1 αkλ

i+1
k

(23)

where αk =
∑
u∈V,v∈V φk(u)ψTk (v) with φk(u) and ψTk (v)

denote the corresponding eigenvector component. As can be
seen if one has enough number of the function gi values
then in principle one can recover the spectral parameters
αk, λk, k = 1, · · · , n which describe the dynamics of the
random walk and reflect the spectral structure of the graph.
We emphasize that the values of the function gi can be
estimated from a simulation of the Markov chain with M =
AD−1. However such simulation is not efficient numerically.
Firstly, at each time step of the simulation some vertexes may
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emit a large numbers of walkers. Secondly the function gi
might drop very quickly in i before we harvest enough gi
values with sufficient accuracy. The well-known lazy walk
scheme is suitable here for dealing with both issues.

The random walk that governed by the following transition
matrix is called a lazy walk on graph:

ML = (1− δ)I + δM = (1− δ)I + δAD−1. (24)

If we execute the lazy walk N steps in [0, t) with the step
size δ = t/N then we have

MN
L = [I − t

N
(D −A)D−1]N . (25)

One can see that MN
L would converge to a meaningful

limit. The spectrum for the Markov chains M and ML

determines each other for a given step size δ. Since AD−1

is diagnolizable, so is I − δLD−1 and there exists an
nonsingular matrix ΦL such that

MN
L = ΦLΛNL Φ−1

L . (26)

In fact ΦL = Φ and Λ and ΛL are uniquely related:

ΛL = [(1− δ)I + δΛ] = [I − δ(I − Λ)]. (27)

Furthermore (26) can be written as

MN
L =

N∑
i=0

λiL,kφkψ
T
k (28)

and we can base our similarity testing on the graph response
for the lazy walk

gL,i+1 =

n∑
k=1

αkλ
i+1
L,k . (29)

The algorithm is to collect all the transitions of the random
walkers from one vertex to another for all the vertex pairs
in a Markov chain simulation. In other words our algorithm
provides a Monte Carlo estimate of the graph response. Since
each random walker walks independently, we are benefitting
from the law of large numbers in terms of the estimates
variance when the number of the graph vertexes is large.
We note that our algorithm is trivially parallel. We also
note that due to STDP the networks in the brain are mostly
directional. However they can be modeled by asymmetric
weighted graphs with very small weights on some edges. The
eigens are likely to be in complex conjugate pairs, resulting
in decayed oscillatory grfs. In fact the decayed oscillatory
grfs would have more discriminative power than the purely
decayed ones. A rotationally asymmetric connection scheme
would be needed to take advantage of this.

The above basic algorithm can have the following gen-
eralization that might be of interest in neuroscience and
psychology on issues involving attentions. Suppose we would
like to emphasize more the traffic from a heavily connected
vertex to a less connected vertex. Here the connectivity of
a vertex v is described by the total edge weight dv. It is
reasonable to insert a multiplicative factor (dv/du)η, η > 0
for the traffic from v to u. We call this factor the “ridge

factor” since its purpose is to emphasize the connections
from heavily connected regions to the less connected ones.
In the matrix notations this insertion is amount to change
the i-th step graph response expression from gi = rM ip0

to gi = rD−ηM iDηp0. The choice of η provides a tuning
mechanism for classification since in some cases the traffic
from the highly connected vertex to the lighter ones is
indicative of the graph feature, such as in the case of
identifying a sketch of a person with a photo.

IV. THE IMPACT OF THE BOUNDARY SETTING

For a Markov chain M with mij = Prob(j → i) with
some absorbing states we can renumber the states such that
the transient states come first. Then the transition matrix can
be written as the following block matrix:

M =

[
A 0
B I

]
.

The graph vertexes corresponding to the columns of I are
absorbing nodes. In other words the random walkers arrive
at one of these nodes will not move any more. On the other
hand a random walker started from nodes corresponding to
the columns of A, for example j, could move to either a
non-absorbing node i by the transition probability aij or an
absorbing node k by the transition probability bkj . However
once the random walker arrives at an absorbing node it goes
to itself with probability one.

The selection of the boundary nodes can be seen as the
selection of the columns with self loops for the corresponding
states. It can be seen that for a very large matrix such choices
would not affect the spectral decomposition much. Specifi-
cally the eigenvalue interlacing theorems [14] promises that
a few link changes would not affect the spectra of complex
graphs much.

Absorbing nodes or boundary nodes are important for
the graph response functions to pick up the transients that
reflect the graph structure. One should select such nodes
away from the center of the activities. For example if there
are several densely connected clusters in the graph then the
absorbing nodes should not be too close to them since the
traveling paths of the random walkers should cover these
clusters as much as possible. The choice of the absorbing
nodes may affect the eigenvectors and thus the αks. A good
practical choice in image processing tasks would be to use
the frames of the images for absorbing nodes when the image
is mapped to a graph. On the other hand the neuronal network
formed in the brain for objects or concepts might have natural
boundaries when components form neuronal cliques.

V. SIMILARITY TESTING USING DERIVATIVE OF THE
GRAPH RESPONSE FUNCTION

While it is easy to normalize the graph response functions
for different graphs for value comparisons on computers, it
is quite implausible in biological systems such as the brain
to have quantities that are exactly the same. The derivative
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of the graph response function can be used instead. Since

g(t) =

N∑
k=1

αke
−λkt (30)

we have

g′(t) =

N∑
k=1

−λkαke−λkt. (31)

In the derivative expressions we see that the impact of the
fast modes are emphasized more. These fast modes represent
the most important initial flows. For example in image
processing they represent the flow on the edge of contrast
where the graph vertexes have heavier weights. In fact we
postulate that these fast modes also play more important
roles in comparing abstract concepts represented by neuronal
networks. We also note that derivative comparison allows
graphs with different sizes to be tested as similar. This is
important for a smaller graph to test similar with a much
larger graph in the context of graph structure addressable
memory. The smaller graph could serve as the “address”
and the large ones as the “content”. The content graph could
have much more connections to other graphs than the address
graph. However we note comparing derivatives demands
more accuracy. The arguments at the end of section II is
important in this context. Moreover we also note that errors
in memory access do happen, especially in the brain.

VI. RANDOM NETWORK AS SIMILARITY TESTING FABRIC

In order to test for the similarity, the graph response
functions or derivatives need to be synchronized in time. This
is not an issue for sequential comparison on computers. How-
ever, in the brain, such synchronization poses a challenge for
neuronal circuits.

A plausible mechanism is to carry out such a comparison
over a large, randomly connected network via spike-time
dependent plasticity (STDP) [21], [2], [8]. STDP adjusts the
strength of connections between neurons in the brain. With
STDP, repeated presynaptic spike arrival a few milliseconds
before postsynaptic action potentials leads in many synapse
types to long-term potentiation (LTP) of the synapses, where-
as repeated spike arrival after postsynaptic spikes leads
to long-term depression (LTD) of the same synapse. We
refer to these two parts as the casual and anti-causal parts,
respectively. We suggest that the graph similarity testing
occurs in a path fabric made of a huge number of random
connections. Here the path fabric refers to the paths between
nodes in the random network. The times it takes a spike
to travel down any such path are randomly distributed and
cover many different time durations. Graphs to be tested
for similarity send spikes with variable bursts, modulated by
their respective grfs or derivatives, along many of the paths
in the network. Two or more similar graphs would be able
to meet at a place where the synchronization occurs. Once
synchronized, similar grfs or derivatives would strengthen the
connection because the spikes from one graph would arrive
just ahead of the ones from the other graph most of the time,
and the STDP causal part will be in action. Different grfs or

derivatives would have spikes from one graph ahead of the
other some of the time and behind at other times, resulting
in a weak or no connection.

This mechanism assumes only the random path fabric and
STDP. It provides possible explanations for some important
phenomena in the brain at an algorithmic level. The random
fabric for similarity testing allows the brain to check the
similarity of the graph representing the incoming signal with
thousands of stored graphs (presumably in the subconscious)
in parallel. The strongest similarity found would connect the
incoming graph with the stored counterparts and generate
stronger spikes. These spikes would pass the threshold of the
subconscious and break into the conscious level. The possi-
bility of comparing many pairs of graphs in parallel demands
a quick similarity testing algorithm, such as the ones outlined
in this paper. Memory system with such parallel similarity
finding can be referred to as graph structure addressable
memory. We want to note that our proposed mechanism
allows the process of similarity finding and consolidation
to be constantly active in subconscious while consuming
little energy, thanks to the fact that only the small initial
segments of the grf or derivative need to be compared. On
the other hand, the similarity consolidation should diminish
when there is enough dissimilarity between subgraphs. We
hypothesize that such subgraphs form the basic units of
concepts that one may refer to as “conceplets”. Similarity
consolidation in subconscious could also happen for highly
abstract concepts with the same mechanism, resulting into
neuron cliques such as the ones discussed in [19].

To elaborate on using our algorithm for memory searching,
we outline a plausible framework of the memory process in
the brain. When the brain consolidates a piece of memory,
henceforth referred to as a “record” (which is loosely similar
to the concept used in [23]), the brain constructs graphs for
the components of the record. These component graphs are
connected due to the simultaneity of the components’ occur-
rences. Random walks of neuron spikes generate a grf (or
derivative, henceforth omitted) for each component graphs
and the summed grf elicits random graphs that generate
similar grf. The latter is retained as the “head” (again loosely
similar to the concept in [23]) of the record. During a recall
demanded by either external or inside stimulations the head
graph would generate its grf and search for similar graphs.
The synchronization of the grfs in such a search is provided
by the random networks in the brain. We emphasize that
such searching is parallel in the sense that one head graph
grf could be compared with thousands of record graphs
simultaneously over the brain random network. When the
matched record graph is found, the head and the record
graphs generate spike streams strong enough to break into
the conscious level of the brain. Sometimes some record
graph components might not be reached during the initial
search, a plausible explanation for a scenario such as when
one finds a memory on the “tip of the tongue,” but cannot
fully recall it. In the context of our grf matching scheme,
during this “tip of the tongue” scenario, the brain searches
for a component graph in certain areas and tries to join it
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into generating the summed grf of the waiting parts of the
record. Again, such trial and error processes carried out in
parallel for many possible component graphs in the area.
The specification of the searched area is usually very clearly
demanded by the conscious thought. Finally we would note
that in this framework the memory hierarchy is formed by
the connection strength.

VII. CONNECTIONS TO RELATED TOPICS

A. Diffusion on manifolds and graphs

The line of works with heat diffusion over manifolds
and graphs [18], [27], [5], [7], [22], [6], [10] revealed the
beautiful connections between the random walk dynamics
and the geometry of its environment. In particular the small-
time series expansion coefficients of the heat content have
been shown to contain more geometric information about
the domain than the eigenvalues alone in many cases. These
studies use diffusion or random walk as a mathematical
bridge between the theories of differential operators and
geometry. In contrast we take the usage of random walk more
seriously and literally, and propose a framework in which the
random walk of neuronal spikes IS the mechanism for graph
structure addressable memory in the brain. The algorithms
can also be implemented on computers to build brain-like
concept abstraction capabilities.

B. Scale space theory in image processing

When using random walk to gather information of the
graph structure it is also important to know which kinds of
random walks are suitable in the sense that the pattern of
the random walk should not introduce new structural features
into the signal. Previous research on scale space theory has
clarified this issue. In the area of image processing it has been
noted by Linderberg and others [20] that real world objects
are composed of different structures at different spacial
scales. As such it is important to generate representations
at different spacial scales from the signals that originated
from real world objects. Under a set of assumptions called
the scale-space axioms that include linearity, shift invariance,
semi-group structure, non-enhancement of local extreme,
scale invariance and rotational invariance, it can be shown
that the Gaussian kernel is the unique smoothing kernel that
fits the bill. Equivalently the scale-space elements can be
defined as the diffusion equation

∂

∂t
L(x, y; t) =

1

2
∆L(x, y; t) (32)

with the initial condition L(x, y; 0) = f(x, y) the given
image. This is consistent with the random walk scheme in our
proposed graph similarity testing algorithm. The adjustment
of the ridge factor is related to a position dependent diffusion
coefficients D(x), whose impact to the scale space theory is
under investigation.

C. Fokker-Planck operator

There are also interesting connections to the Fokker-
Planck equation which could also serve as a continuous ana-
logue for random walk over graphs. Fokker-Planck equation

describes the “heat density” ρ(t, x) diffusion under a drifting
potential U(x), x ∈ Ω with Ω a smoothly bounded domain.
The equation is

∂ρ(t, x)

∂t
= 〈∇, ρ(t, x)∇U(x) +∇ρ(t, x)〉 (33)

with a Dirichlet condition for a smooth boundary ∂Ω. The
corresponding sample path equation,dx = −∇U(x)+

√
2dw,

describes a continuous random walk in the domain. Under
suitable conditions the classical gauge transformation enables
us to write out the eigendecompostion for the solution of (33)
as [25]

ρ(t, x) =

∞∑
i=0

aie
−λitφi(x) (34)

where λi, φi are the i-th eigen pairs for the Fokker-Planck
operator in (33). An analogous “graph response (function)”
g(t) would be

g(t) =

∫
Ω

ρ(x)dx =

∞∑
i=0

e−λit

∫
Ω

aiφi(x)dx =

∞∑
i=0

γie
−λit

(35)
which can be used to describe the eigen structural informa-
tion of the domain.

We note that sometimes one can relate the drifting force
and the diffusion term coefficients so that the Fokker-Planck
operator becomes a pure diffusion operator in a Riemannian
manifold with a metric calculated from the above terms
[4]. This suggests that the graph connectivity analogue in
continuous random walks can either be the potential function
or the Riemannian metric with possibly different insights.

D. Dynamic system identification

The topic of recovering the shape of a domain from
the Laplacian eigenvalues belongs to the spectral inversion
problem and has a long history. In fact Kac [18] briefly
reviewed this history. It is interesting for us in systems and
control to note that originally Hendrik Lorentz formulated the
problem as a wave problem in 1910. The issue concerned the
formation of standing electromagnetic waves in an enclosure
with a perfectly reflecting surface. The conjecture was that
for a 2D domain (a membrane) the number of Laplacian
eigenvalues less than λ would approach ‖D‖λ/2π when
λ → ∞ which was proved by Herman Weyl. In the 1960s
Mark Kac treated the problem using diffusion theory, making
use of the fact that both waves and diffusions are the acting
of the same Laplacian operator. While in the wave approach
the steady state behavior was the focus of analysis, in the
diffusion approach of Kac the subject was the transient
behavior of the diffused “stuff”. In control engineering there
are two main approaches to system identification for a linear
time invariant system, namely either to use the sinusoidal
input to obtain steady state frequency domain data, or to use
a step input or the initial condition for transient time domain
data. The latter is less practical in engineering practices due
to the noise. However as we discussed earlier it turns out
that the time domain transient method becomes quite useful
in the identification of a shape or a graph. The drawback of
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the transient behavior method can be effectively overcome
with the parallel execution of the random walk algorithm on
many paths of the domain or the graph.

It seems that much can be learned from the connections
between the graph similarity testing algorithms and dynamic
system identification. In particular, one notices that the heat
diffusion equation on a graph is a linear system, where the
graph Laplacian plays the role of the system dynamics matrix
A in ẋ = Ax + Bu. Indeed we used the heat diffusion
∂ht/∂t = −Lnht to collect the initial condition response.
It also helps us to think about how an external input signal
could affect activity in the brain. We emphasize that this
discussion is based on a linear system model. In fact we
would like to suggest that, at the level of algorithmic memory
addressing, a linear dynamic system might be easier to code
in DNA for robust reproduction than a nonlinear dynamic
system. That said, nonlinear dynamics might dominate in
other levels.

VIII. CONCLUSIONS

The line of mathematical works on the relation between
diffusion and geometry pioneered by Mark Kac [18] enlight-
ened our search for possible mechanisms of fast recognition
with slow neurons. The line of neuroscience works headed
by V.S. Ramachandran on cross wiring for different types
of stimuli motivated the idea of using weighted graph as
universal representations in the brain [17]. Combining these
two thoughts we propose an algorithmic mechanism for
(similar) content addressable memory. The main ingredients
include (1) Quickness is the key to such a memory mecha-
nism; (2) Random walk dynamics summarize graph structure
into a time function; (3) Random connection fabric enables
time signal synchronization; (4) Similarity order ranking
converges very fast with noisy estimates; (5) Similarity
testing for many graphs in parallel is trivially feasible.

The topic of testing the similarity of heavily asymmetric
weighted graphs that represent the causality among two or
more “static” concept graphs is not discussed in this paper.
However the principle mechanism summarized above should
be applicable to provide a structure access scheme for such
graphs as well. The ability to find similarity in abstract
relations could help explain the intriguing “analogical re-
minding” phenomenon and other related brain behaviors that
are trademarks of high intelligence [16]. More importantly,
it may help empower computers with such capabilities.
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