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1 Introduction

Here are a collection of ideas for modeling multivariate distributions that are not
normal. The motivation was to be able to model star-shaped distributions, but the
approach allows more general contours. We are developing R code that allows one
to work with these classes of distributions: specifying general shapes, computing
densities, simulating and fitting data. A deliberate goal in this process is to have
methods and programs that work in arbitrary dimension d > 2.

2 Generalized spherical/homothetic distributions

Fernandez et al. (1995) construct multivariate distributions from a contour C (a
simple closed curve/surface in R?) that is specified by a contour function ¢ : S —
[0, 00):

C ={c(s)s : s €S}

Figure 1 shows an example. Here S = {s € R? : |x| = 1} is the unit sphere. We
assume that c(s) is a continuous function.
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Figure 1: A contour C and contour function c(s).

Let g : [0,00) — [0, 00) be a nonnegative function and define

f(x) = {g () >0 (1)
9(0) x| =0

Under integrability conditions discussed below, this will give a probability density
function on RY, and the level sets of such a distribution are scalar multiples of C.
Such distributions are called homothetic. We will call ¢(-) the contour function
and g(-) the radial function of the distribution.

Our approach differs a bit from Ferndndez et al. (1995) because we take the

contour function ¢(+) as the basic object, whereas they take v(x) := |x|/c(x/|x]).
By construction, v is homogeneous: v(ax) = |a|v(x). If ¢(s) = 1, then C is
the unit sphere and v(x) = |x/|, so the resulting classes of distributions are the

spherical/isotropic distributions. If v(+) is convex, then v(-) is a norm and C is the
unit ball in that norm, hence the name v-spherical distributions. When v(-) is not
convex, v(x) does not give a norm, so C is not a unit ball, but we will still call the
resulting distributions v-spherical.

Other references: Arnold et al. (2008), Ferreira and Steel (2005), Kamiya et al.
(2008), Rattihalli and Basugade (2009), Rattihalli and Patil (2010), and Balkema
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and Nolde (2010).

2.1 Conditions that guarantee a density function

For (1) to be a proper density, it is required that (see Ferndndez et al. (1995), eq.
(4) and (5))
kil = /cd(s)ds € (0,00) (2)
S
and

/ rtg(r)dr = ke.
0

To satisfy the integrability condition above, the set {s € S : ¢(s) = 0} must have
surface area measure 0. In the implementation described below, we will assume
c(-) is continuous and S and that ¢(s) > ¢, > 0. This guarantees (2) is finite,
though evaluating it may be difficult, especially in higher dimensions.

The polar coordinates version of (2) is k; ' := [, ¢*(£(0))]J(8)]d6 € (0, c0),
where 0 = (60y,...,0;1) € © := (—7/2,7/2)472 x JO, 2m), t(0) = (sinfy,
cos 0y sinfsy, . . ., (H;l;i cos ;) sinf, 1), and J(0) = [[; cos?'="; is the Ja-
cobian of the polar transform.

Given any univariate pdf /(-), the function g(r) = ker'=@h(r) is a valid radial
function.

2.2 Stochastic representation/simulation

X<y7Z,

where Y > 0 given by g and Z is uniformly distributed on the contour C. Can
approximate this in R? where the contour is specified by a curve. Not clear how
to do this in d > 3.

To sample from the manifold Diaconis et al. (2012), Saucan et al. (2007).

Or, using Balkema and Nolde (2010),

XLy+*z*,

where Y* > 0 given by g and Z* is uniformly distributed on the unit disk D =
{x € R?: v(x) < 1}. An advantage of this is that it is straightforward, though
possibly inefficient, to simulate from D by generating a uniform vector on a rect-
angle that contains the ball D and rejecting if v(x) > 1.



2.3 Specification of the contour function

For modeling purposes, we want a flexible family of functions that can be used
in a variety of problems. In particular, we want to be able to model star-shaped
contours that arise in munitions fragment patterns. To be able to include the dis-
tributions discussed by the authors cited above, we allow contour functions of the
form

1

N )
S er(s)

where ¢; > 0, ¢; > 0, and r;(-) and/or r*(-) are one of the cases discussed below.

c(s) = Zcﬂ“j(s) +

1. ¢(s) = 1, which makes C the Euclidean ball.

2. ¢(s) = c(s|u,0) is a cone with peak 1 at center € S and height 0 at
the base given by the circle {x € S : p-x = cosf}. It is assumed that
0] < m/2.

3. ¢(s) = c(s|p,0) = exp(—t(s)?/(20?)) is a Gaussian bump centered at
location p € S and “standard deviation” ¢ > 0. Here ¢(s) is the distance
between p and the projection of s € S linearly onto the plane tangent to S

at L.
4. T*(S) = HSpr(Rd)’p > 0.

5. 7*(s) = ||As||w@m), p > 0, A an (m x d) matrix. This allows a generalized
p-norm. If A is d x d and orthogonal, then the resulting contour will be a
rotation of the standard unit ball in /7. If A is d x d and not orthogonal, then
the contour will be sheared. If m > d, it will give the /¥ norm on R™ of As.

6. 7*(s) = (sT As)/2, where A is a positive definite (d x d) matrix. Then the
level curves of the distribution are ellipses.

Sums of the first three types allow us to describe star shaped contours, see
Figure 2. Inverses of sums of the last two types allow us to consider contours that
are familiar unit balls, or generalized unit balls, or sums of such shapes. Combi-
nations allow more general shapes, e.g. Figure 1 is mix of one term of type 4 with
p = 1.6 and two bumps of type 3, one at angle 7 /4 and one at angle 7.

We will always assume that ¢(s) is continuous and bounded away from 0, say
c(s) > ¢o > 0. The particular forms of types 2 and 3 are to guarantee continuity.
The strict positivity is automatic for several of the classes of contour functions
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Figure 2: A star shaped region using one term of type 1 and 8 terms of type 2.
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Figure 3: A three dimensional star-shaped region with one term of type 1 and 30
terms of type 2.



considered below, and can always be guaranteed by including an isotropic term
with a small coefficient.
Other possible functions can be defined. One possible approach to define more

general functions on spheres is to use splines on spheres as described by Ferreira
and Steel (2005), see Wahba (1981) and Taijeron et al. (1994).

2.4 Estimation for generalized spherical models

Separate into two parts: (1) determining the radial g(-) and (2) determining the
contour C.

Pick g(-).

Pick a class of models, e.g. the number and types of terms allowable in (1).
Then one can use (1) to compute the density f(x) and therefore the likelihood.
One can numerically maximize the likelihood. For star shaped regions, can allow
one term of type 1 (to guarantee ¢(-) > 0) and m terms of type 2 to determine
the best location and scale parameters. Can vary m and use AIC to select optimal
number of cones.

3 Stable distributions

Multivariate stable with discrete spectral measures. Can simulate using Modarres

and Nolan (1994), can compute bivariate pdf using Nolan and Rajput (1995).
The contours of these distributions are star shaped far away from the origin,

but round out near the origin. They can be supported on a cone or the whole space.

4 Multivariate extreme value distributions

Multivariate Fréchet with discrete spectral measures. Deheuvels (1983), Einmahl
et al. (2011), Fougeres et al. (2013). These distributions are supported on the
postive orthant, contours are star shaped.



5 Linear combinations of independent terms

LetZ = (Zy,...,Zy,)" be a vector of i.i.d. terms and let A be a (d x m) matrix
of numbers and define the d dimensional r. vector

X = AZ.

In general, d < m. When the Z; are stable, X is multivariate stable with a discrete
spectral measure. These distributions have If each Z; is infinitely divisible (i.d.),
then the vector Z is i.d. and therefore X is i.d. This means that we can define an

i.d. process X; := AZ,; and try to model the time evolution of the distribution.
For example, the Z; could be i.i.d. I'(«, 1), then Z; and X; would be gamma
processes.

Likely to be unrealistic in practice, as the model continues to propagate out,
whereas in real life, fragments would stop. Perhaps scale a;X;, with a; — 0 as
t — oo to halt propagation.

When other Z; terms are used, we get a new class of multivariate distributions.
When the Z; terms are heavy tailed, will get star-shaped regions.

6 Questions
1. 2-dim. vs 3-dim (or higher?)
. Static vs. dynamic model?

. unobstructed vs. contained/limited dispersion

. How much data is there?

2

3

4. what do we want to do: simulate, compute pdf, cdf, fit data?
5

6. Goal: provide a few tools vs in depth modeling and analysis?
7

. Use of max stable fields for penetrating armor
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