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Truncated fractional moments of stable laws 

John P. Nolan1 

American University 

Abstract 

Expressions are given for the truncated fractional moments EXp of a general + 
stable law. These involve families of special functions that arose out of the 
study of multivariate stable densities and probabilities. As a particular case, an 
expression is given for E(X − a)+ when α > 1. 
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1. Introduction 

A univariate stable r.v. Z with index α, skewness β, scale γ, and location δ 
has characteristic function 

φ(u) = φ(u|α, β, γ, δ) = E exp(iuZ) = exp(−γ [|u| + iβη(u, α)] + iuδ), (1) 

where 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, δ ∈ R and 

tribution. 

moments EXp 
+ = E(X 

η(u, α) = 

In the notation of Samorodnitsky and Taqqu (1994), this is a S 
We will use the notation X ∼ S (α, β, γ, δ; 1) (the “;1” is used to 

distinguish between this parameterization and a continuous one used below). 
The purpose of this paper is to derive expressions for truncated fractional 

1

� 
−(sign u) tan(πα/2)|u| α =6 1 
(2/π) u ln |u| α = 1. 

(γ, β, δ) dis-

{X�0})
p for general stable laws. To do this, defne the 

functions for real x and d 

gd(x|α, β) = 

 
 

 

Z 1 
d−1 −rcos(xr + βη(r, α)) r e dr 0 < d < ∞ 

0Z 1 
d−1 −r[cos(xr + βη(r, α)) − 1] r e dr −2 min(1, α) < d ≤ 0 

0 
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 
 

Z 1 
d−1 −rsin(xr + βη(r, α)) r e dr − min(1, α) < d < ∞ 

Z01gd(x|α, β) 

The functions gd(·|α, β) and 

e =  d−1 −r[sin(xr + βη(r, α)) − xr] r e dr α > 1, −α < d ≤ −1. 
0 

gd(·|α, β), for integer subscripts d 
were introduced in Abdul-Hamid and Nolan (1998). (The notation was slightly 
di� erent there: a factor of (2π)−d was included in the defnition and g ,d(x, β) 
was used instead of gd(x|α, β), while q ,1(x, β) was used instead of eg1(x|α, β).) 

The expressions for EXp will involve the functions g−p(·|α, β) and ge−p(·|α, β), + 
i.e. negative values fractional values of the subscript d. Before proving that re-
sult, we show that the functions gd(·|α, β) and egd(·|α, β) have multiple uses. 
For a standardized univariate stable law, Fourier inversion of the characteristic 
function shows that the d.f. and density are given by 

1 
F (x|α, β) − F (0|α, β) = (ge0(x|α, β) − ge0(0|α, β)) (2) 

π 
1 

f(x|α, β) = g1(x|α, β). 
π 

e 

We note that there are explicit formulas for F (0|α, β) when α 6= 1. 
The gd(·|α, β) functions are used in a similar way to give d-dimensional stable 

densities, see Theorem 1 of Abdul-Hamid and Nolan (1998) (note that there is a 
sign mistake in that formula when α = 1), and Nolan (2017) uses both gd(·|α, β) 
and ged(·|α, β) to give an expression for multivariate stable probabilities. 

Another use of these functions is in conditional expectation of X2 given 
X1 = x when (X1, X2) are jointly stable with zero shift and spectral measure 
�. In general, the conditional expectation is a complicated non-linear function; 
here it is restated in terms of these functions. If α > 1 or (α ≤ 1 and (5.2.4) 
in Samorodnitsky and Taqqu (1994) holds), then Theorems 5.2.2 and 5.2.3 in 
Samorodnitsky and Taqqu (1994) show that the conditional expectation exists 
for x in the support of X1 and is given by 

= 1, 2, 3, . . . 

e 

� 
 

E(X2|X1 = x) = 

1 − (x/γ1)ge1(x/γ1|α, β1) 
c1x + c2 α 6= 1 

g1(x/γ1|α, β1)/γ1 
g1((x − µ1)/γ1 − (2β1/π) ln γ1|1, β1) 

� 

x − µ1 
c0 + c1 + c2 α = 1, β1 6= 0 

γ1 g1(x/γ1|1, β1) 
x − µ1 

c0 + c1 
 

γ1 
(1 − ln γ1)g1((x − µ1)/γ1|1, 0) + h1((x − µ1)/γ1|1, 0) 

� � 

+c2 α = 1, β1 = 0, 
g1(x/γ1|1, 0) 

where β1 and γ1 are the skewness and scale parameters of X1, and the constants 
and function h1(·|1, 0) are given by 

Z 
2 

c0 = − s2 ln |s1| �(ds)
π S 

2 
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c1 = 

c2 = 

 
 

 
 
 

 

κ1 + β1 tan
2(πα/2)κ2 

α 6= 1 
γ1 (1 + β1

2 tan2(πα/2)) 
κ2/β1 α = 1, β1 =6 0 
κ1 α = 1, β1 = 0 

tan(πα/2)(κ2 − β1κ1) 
α 6= 1 

γ1 (1 + β1
2 tan2(πα/2)) 

(κ2 − β1κ1)/β1 α = 1, β1 =6 0 
−2κ2/π α = 1, β1 = 0 

�R 
< −1> �(ds) α 6= 1s2sS 1R Rκ1 = [X2, X1] = <0> s2s �(ds) = s2 sign(s1) �(ds) α = 1

S 1 SZ 
κ2 = s2|s1| −1 �(ds) 

µ1 = 

S 

2 
− 

Z 

π SZ 1 

s1 ln |s1| �(ds) 

h(x|1, 0) = cos(xr)(log r)e −rdr. 
0 

In the terms above, S is the unit circle and [X2, X1] is the α−covariation. Note 
that if � is symmetric, then c0 = κ2 = β1 = µ1 = 0, so c2 = 0 and 

[X2, X1]
E(X2|X1 = x) = x 

γ1 

is linear. 

2. Truncated moments EX
p 
+ 

The main result of this paper is the following expression for the fractional 
truncated moment of a stable r.v. 

Theorem 1. Let X ∼ S (α, β, γ, δ; 1) with any 0 < α < 2 and any −1 ≤ β ≤ 1 
and set � 

e 

δ/γ α =6 1 
δ� = 

δ/γ + (2/π)β log γ α = 1. 

For p < α, defne mp(α, β, γ, δ) = EX+ 
p . 

(a) When p = 0, 

1 1 
g0(−δ�|α, β). 0(α, β, γ, δ) = P (X > 0) = −m 

2 π 

When 0 < p < min(1, α), 
��� 

�(p + 1) �(1 − p/α) 
mp(α, β, γ, δ) = γp sin ( ˇp ) − g−p(−δ�|α, β)

π 2 p i 
− cos ( ˇp )ge−p(−δ�|α, β) .

2 
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When p = 1 < α < 2, 
� � 

mp(α, β, γ, δ) = γ
δ� 

+ 
1 
(�(1 − 1/α) − g−1(−δ�|α, β)) . 

2 π 

When 1 < p < α < 2, 
� � � 

�(p + 1) �(1 − p/α) 
mp(α, β, γ, δ) = γp sin ( ˇp 

2 ) − g−p(−δ�|α, β)
π p � �� 

δ� 
+ cos ( ˇp ) �((1 − p)/α) − ge−p(−δ�|α, β) .

2 α 

(b) EXp = E(−X)p = mp(α, −β, γ, −δ).− + 

Proof (a) To simplify calculations, frst assume γ = 1; the adjustment for R 1
γ =6 1 is discussed below. When p = 0, EX0 = 1 f(x)dx = P (X > 0), and + 0 
(2) and eg0(x|α, β) → π/2 as x → ∞ gives the value in terms of ge0(·|α, β). 
When 0 < p < min(1, α), Corollary 2 of Pinelis (2011) with k = ℓ = 0 shows 

Z 1�(p + 1) φ(u) − 1 
EXp = ℜ du. (3) + π (iu)p+1 

0 

First assume α =6 1 and set ζ = ζ(α, β) = −β tan ˇ 

2 and restricting to u > 0, 

�h i �φ(u) − 1 −u (1+i�)+i�u − 1 −i(ˇ/2)p −p−1 = e (−i)e u 
(iu)p+1 

� � � � 
−u −i(ˇ/2)p −p−1 = −i e [cos(δu − ζu ) + i sin(δu − ζu )] − 1 e u 

�h � �i � 
−u −u −p−1 = e sin(δu − ζu ) − i e cos(δu − ζu ) − 1 [cos ( ˇp ) − i sin ( ˇp )] u

2 2 

And therefore 

h � �i φ(u) − 1 −u −u −p−1ℜ = 
2 )e sin(δu − ζu 

2 ) e cos(δu − ζu ) − 1 ucos ( ˇp ) − sin ( ˇp 

(iu)p+1 

−p−1 −u = cos ( ˇp 

2 ) sin(δu − ζu )u e � � 
−p−1 −u −u −p−1− sin ( ˇp ) [cos(δu − ζu ) − 1] u e + (e − 1)u

2 

Integrating this from 0 to ∞, substituting t = u in the last term to get 

�(p + 1) 
EXp = [− cos ( ˇp )ge−p(−δ|α, β) − sin ( ˇp ) {g−p(−δ|α, β) − �(1 − p/α)/p}] .+ 2 2π 

Next consider 0 < p < α = 1. Use (3) again, so we need to simplify 

�h i �φ(u) − 1 −u(1+i �(u,1))+i�u − 1 −i(ˇ/2)p −p−1 = e (−i)e u 
(iu)p+1 

4 
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� �� � 
−i(ˇ/2)p −p−1 = −i e −u [cos(δu − βη(u, 1)) + i sin(δu − βη(u, 1))] − 1 e u 

�� � �� 
= e −u sin(δu − βη(u, 1)) − i e −u cos(δu − βη(u, 1)) − 1 

−p−1× [cos ( ˇp ) − i sin ( ˇp )]) u
2 2 

hφ(u) − 1 
ℜ = cos ( ˇp )e −u sin(δu − βη(u, 1)) 

(iu)p+1 2 

� � i 
− sin ( ˇp 

2 ) e −u(cos(δu − βη(u, 1)) − 1) + (e u − 1) u −p−1 . 

Integrating from 0 to ∞ yields 

�(p + 1) 
EX+ 

p = 
π 2 g−p(−δ|1, β) − sin ( ˇp 

2 (−δ|1, β) − �(1 − p)/p}] .[− cos ( ˇp )e ) {g−p 

When p = 1 < α < 2, EX exists and is equal to δ. Using Corollary 2 of 
Pinelis (2011) with k = 1, ℓ = 0 shows 

Z 1 Z 11 �(2) φ(u) − 1 δ 1 φ(u) − 1 
EX+ = EX + ℜ du = + ℜ du. 

2 π (iu)p+1 2 π (iu)p+1 
0 0 

The integrand is the same as above, with cos ( ˇp ) 
2 = 1, so 

2 = 0 and sin ( ˇp ) 

δ 1 
EX+ = − [g−1(−δ|α, β) − �(1 − 1/α)] . 

2 π 

When 1 < p < α < 2, Corollary 2 of Pinelis (2011) with k = ℓ = 1 shows 

Z 1�(p + 1) φ(u) − 1 − iuEX 
EXp = ℜ du, (4) + π (iu)p+1 

0 

Since α > 1, EX exists and is equal to δ. As above, for u > 0, 

�h i �φ(u) − 1 − iuδ −u (1+i�u −i(ˇ/2)p −p−1 = e )+i�u − 1 − iδu (−i)e u 
(iu)p+1 

� � � � 
−u −i(ˇ/2)p −p−1 = −i e [cos(δu − ζu ) + i sin(δu − ζu )] − 1 − iδu e u 

h� � � �i 
−u −u = e sin(δu − ζu ) − δu − i e cos(δu − ζu ) − 1 

−p−1× [cos ( ˇp ) − i sin ( ˇp )] u
2 2 

And therefore 

h � �φ(u) − 1 − iuδ −uℜ = cos ( ˇp ) e sin(δu − ζu ) − δu 
(iu)p+1 2 

� �i 
−u −p−1− sin ( ˇp ) e cos(δu − ζu ) − 1 u

2 

� � 
−p−1 −u −u −p= cos ( ˇp [sin(δu − ζu e + δ(e − 1)u

2 ) ) − δu]u 
� � 

−p−1 −u −u −p−1− sin ( ˇp 

2 ) [cos(δu − ζu ) − 1] u e + (e − 1)u 

5 
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Plugging this into (4) and integrating yields 

n�(p + 1) 
EXp = cos ( ˇp ) [−e (−δ|α, β)) + (δ/α)(�((1 − p)/α)] + 2 g−p

π o 
+ sin ( ˇp ) [−g−p2 (−δ|α, β) + �(1 − p/α)/p] 

d
Now consider γ 6= 1. If X ∼ S (α, β, γ, δ; 1), then X=γY , where Y ∼ 

S (α, β, 1, δ�; 1), so EXp = γpEY+ 
p . In symbols, + 

mp(α, β, γ, δ) = γpmp(α, β, 1, δ�). 

(b) This follows from −X ∼ S (α, −β, γ, −δ; 1). ✷ 

When −1 < p < 0, we conjecture that 

�(p + 1) 
mp(α, β, γ, δ) = γp [− sin ( ˇp )g−p(−δ�|α, β) − cos ( ˇp )eg−p(−δ�|α, β)] . 

π 2 2 

3. Related results 

There are several corollaries to the preceding result. First, taking p = 1 in 
the previous result shows the following. 

Corollary 2. If X ∼ S (α, β, γ, δ; 1) with α > 1, −1 ≤ β ≤ 1, a ∈ R 
� � � � �� 

δ − a γ 1 δ − a 
E(X − a)+ = + � 1 − − g−1 α, β . 

2 π α γ 

Combining parts (a) and (b) of Theorem 1 yields. 

Corollary 3. If X ∼ S (α, β, γ, δ; 1) with 0 < α < 2, −1 ≤ β ≤ 1, −1 ≤ p < α. 
� � 

2�(p + 1) δ��(1 − p/α)
E|X |p = γp 

2 ) (−δ�|α, β)sin ( ˇp 

{p>0} − g−p1

π p� � 
2�(p + 1) δ��((1 − p)/α)

EX<p> = γp cos ( ˇp ) {p>1} − ge−p(−δ�|α, β) .1

π 2 α 

Proof E|X |p = EX− 
p +EXp = mp(α, β, γ, δ)+mp(α, −β, γ, −δ) and EX<p> = + 

mp(α, β, γ, δ) − mp(α, −β, γ, −δ). Use Theorem 1 and the refection property: 
gd(−x|α, β) = gd(x|α, −β). Note that as p → 0, E|X |p → E 1 = 1 and 
EX<p> → −(2/π)ge0(δ�|α, β) = P (X > 0) − P (X < 0) = 1 − 2F (0). Also 
as p → 1, EX<p> → δ. ✷ 

In the strictly stable case, the expressions for EXp can be simplifed using + 
closed form expressions for gd(0|α, β) and ged(0|α, β) when α =6 1. To state the 
result, set � 

α−1 arctan (β tan ˇ ) α 6= 1
θ0 = θ0(α, β) = 2 

π/2 α = 1. 

6 
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Lemma 4. When α 6= 1, 
 
 (cos αθ0)d/� cos(d θ0)�(1 + d/α)/d d > 0 

gd(0|α, β) = (ln(cos αθ0))/α d = 0� � 
(cos αθ0)

d/� cos(d θ0) − 1 �(1 + d/α)/d −α < d < 0 
� 
−(cos αθ0)

d/� sin(d θ0)�(1 + d/α)/d d ∈ (−α, 0) ∪ (0, ∞)e =gd(0|α, β) 
−θ0 d = 0. 

Proof Substitute u = r in the expressions for gd(0|α, β) and ged(0|α, β). Then 
use respectively the integrals 3.944.6, 3.948.2, 3.945.1, 3.944.5, and 3.948.1 pg. 
492-493 of Gradshteyn and Ryzhik (2000). (Note that some of these formulas 
have mistyped exponents.) Finally, when α 6= 1, αθ0 = − arctan ζ, and for the 
allowable values of α and θ0, 

cos αθ0 = | cos αθ0| = (1 + tan2 αθ0)
−1/2 = (1 + ζ2)−1/2 . 

✷ 

The following is a di� erent proof of Theorem 2.6.3 of Zolotarev (1986). 

Corollary 5. Let X be strictly stable, e.g. X ∼ S (α, β, γ, 0; 1) with α 6= 1 or 
(α = 1 and β = 0) and 0 < p < α. 
(a) The fractional moment of the positive part of X is 

γp �(1 − p/α) sin p(π/2 + θ0)
EXp = .+ (cos αθ0)p/� �(1 − p) sin(pπ) 

(b) The fractional moment of the negative part of X is EXp = E(−X)+ 
p , which − 

can be obtained from the right hand side above by replacing θ0 with −θ0. 

When p = 1, the product �(1 − p) sin(πp) in the denominator above is inter-
preted as the limiting value as p → 1, which is π. 

Proof Note that when X is strictly stable, δ� = 0. First assume 0 < p < 
min(1, α) and substitute Lemma 4 into this case of Theorem 1 

� � � 
γp�(p + 1) �(1 − p/α) � � �(1 − p/α)

EXp = sin(πp/2) − (cos αθ0)
−p/� cos(−pθ0) − 1+ π p −p� 

�(1 − p/α)
− cos(πp/2)(− cos(αθ0)−p/� sin(−pθ0) 

−p 

γp�(p + 1)�(1 − p/α) 
= [sin(πp/2) cos(pθ0) + cos(πp/2) sin(pθ0]

πp(cos αθ0)p/� 

γp�(p + 1)�(1 − p/α) 
= sin(πp/2 + pθ0)

πp(cos αθ0)p/� 

7 



� � � �
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Using the identity �(p + 1) = πp/(�(1 − p) sin pπ) gives the result. 
When p = 1 < α, again using the appropriate part of Theorem 1 shows 

� � �� � �1 �(1 − 1/α)
EX+ = γ 0 + �(1 − 1/α) − (cos αθ0)

−1/� cos(−θ0) − 1 
π −1 

h iγ�(1 − 1/α) 
= cos αθ0)

−1/� cos(θ0) . 
π 

When 1 < p < α, using Theorem 1 and δ� = 0, 
� � � 

γp�(p + 1) �(1 − p/α) � � �(1 − p/α)
EXp = sin(πp/2) − (cos αθ0)

−p/� cos(−pθ0) − 1+ π p −p�� � �(1 − p/α)
+ cos(πp/2) 0 − cos(αθ0)−p/� sin(−pθ0) ,

−p 

and the rest is like the frst case. ✷ 

The standard parameterization used above is discontinuous in the parame-
ters near α = 1, and it is not a scale-location family when α = 1. To avoid this, 
a continuous parameterization that is a scale-location family can be used. We 
will say X ∼ S (α, β, γ, δ; 0) if it has characteristic function 

� � � � � 
−γ |u| 1 + iβ(tan ˇ 

2
)(sign u)(|γu|1− − 1) + iδu α 6= 1exp 

E exp(iuX) = 
exp (−γ|u| [1 + iβ(2/π)(sign u) log(γ|u|)] + iδu) α = 1. 

A stable r. v. X can be expressed in both the 0-parameterization and the 1-
parameterization, in which case the index α, the skewness β and the scale γ are 
the same. The only di� erence is in the location parameter: if X is simultane-
ously S (α, β, γ, δ0; 0) and S (α, β, γ, δ1; 1), then the shift parameters are related 
by � 

δ1 = 
δ0 − βγ tan ˇ 

2
α 6= 1 

δ0 − (2/π)βγ log γ α = 1. 

Therefore, if X ∼ S (α, β, γ, δ0; 0), 
� 

EXp = 
m 

+ 

p(α, β, γ, δ0 − βγ tan ˇ 

2
) α =6 1 

mp(α, β, γ, δ0 − (2/π)βγ log γ) α = 1. 

This quantity is continuous in all parameters. 
For the above expressions for EXp to be of practical use, one must be able + 

to evaluate gd(·|α, β) and egd(·|α, β). When d is a nonnegative integer, Nolan 
(2017) gives Zolotarev type integral expressions for these functions. However, 
this is not helpful here, where negative, non-integer values of d are needed. 
We have written a short R program to numerically evaluate the defning in-
tegrals for gd(·|α, β) and egd(·|α, β). A single evaluation takes less than 0.0002 
seconds on a modern desktop. This faster than numerically evaluating EXp = +R 1 

xpf(x|α, β, γ, δ)dx, because the latter requires many numerical calculations 0 
of the density f(x|α, β, γ, δ). 

8 
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