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Abstract—Traditional compressive sensing (CS) primarily as-
sumes light-tailed models for the underlying signal and/or noise 
statistics. Nevertheless, this assumption is not met in the case 
of highly impulsive environments, where non-Gaussian infnite 
variance processes arise for the signal and/or noise components. 
This drives the traditional sparse reconstruction methods to 
failure, since they are incapable of suppressing the effects of 
heavy-tailed sampling noise. In the companion paper (Part 
I), we proposed a robust nonlinear sampling operator, which 
mitigates the effects of impulsive observation noise by employing 
a generalized alpha-stable matched flter for the generation of 
random measurements. The family of symmetric alpha-stable 
(SαS) distributions, as a powerful tool for modeling heavy-tailed 
behaviors, is also adopted in this paper to design a robust sparse 
reconstruction algorithm from noisy random measurements. 
Specifcally, a novel greedy reconstruction method is developed, 
which achieves increased robustness to impulsive sampling noise 
by solving a minimum dispersion (MD) optimization problem 
based on fractional lower-order moments. The MD criterion 
emerges naturally in the case of additive sampling noise modeled 
by SαS distributions, as an effective measure of the spread of 
reconstruction errors around zero, due to the lack of second-
order moments. The experimental evaluation demonstrates the 
improved reconstruction performance of the proposed algorithm 
when compared against state-of-the-art CS techniques for a broad 
range of impulsive environments. 

Index Terms—Compressive sensing, sparse recovery, symmet-
ric alpha-stable distributions, heavy-tailed statistics, fractional 
lower-order moments, minimum dispersion criterion. 

I. INTRODUCTION 

USING the concept of transform coding, compressive 
sensing (CS) enables a potentially large reduction in 

the sampling and computation costs for capturing signals that 
have a sparse or compressible representation. Furthermore, CS 
is characterized by an intrinsic denoising mechanism, which 
suppresses the non-sparse contributions due to noise. This 
is extremely important in practical applications, where an 
observed signal and/or its corresponding set of compressive 
measurements are typically corrupted by noise. 
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In order to suppress the noise impact, which deteriorates 
the accurate reconstruction of the original signal from a 
reduced set of compressive measurements, a broad range 
of noise-aware sparse reconstruction algorithms have been 
developed. These include: greedy pursuit [1], [2], convex re-
laxation [3], [4], [5], Bayesian formulation [6], [7], nonconvex 
optimization [8], [9], [10] and brute force [11]. Each method 
has its own advantages and limitations. For instance, greedy 
pursuits and convex optimization are computationally more 
tractable and yield provably correct reconstructions under 
well-determined conditions. However, apart from sparsity, they 
are not able to account for any prior statistical information 
about the signal and noise, which could be used to improve the 
reconstruction accuracy. On the other hand, Bayesian methods 
and nonconvex optimization are typically based on rigorous 
principles, but often they do not provide theoretical guarantees. 
Finally, brute force approaches are algorithmically solid, but 
their practical use is restricted to small-scale problems. 

The majority of previous CS reconstruction methods is 
primarily based on light-tailed, fnite-variance assumptions for 
the underlying statistics of the signal and/or noise generating 
processes. Despite the analytical tractability and practical 
appeal, these assumptions may yield a dramatic degradation of 
the reconstruction quality when we operate in highly impulsive 
environments, which give rise to heavy-tailed processes with 
infnite variance. To alleviate the effects of gross errors that 
mask the information conveyed by the compressive mea-
surements, recent state-of-the-art methods rely on algebraic-
tailed models, in particular, on the Cauchy and generalized 
Cauchy (GCD) distributions, to design robust reconstruction 
methods [12], [13]. 

On the other hand, alpha-stable distributions [14] have 
been proven very powerful in accurately modeling impulsive 
phenomena. However, their intractability due to the lack of 
closed-form expressions for the density functions of all except 
for a few stable distributions (Gaussian, Cauchy and Lévy) has 
prevented their exploitation in the framework of compressive 
sensing. To address this problem, whilst also revealing the 
advantages of alpha-stable models in designing effcient CS 
systems, this paper and its companion paper (Part I) [15] 
propose an integrated framework for robust nonlinear sampling 
under heavy-tailed observation noise (Part I) and robust sparse 
signal reconstruction under heavy-tailed sampling noise, by 
modeling the noise statistics via symmetric alpha-stable (SαS) 
distributions. To the best of our knowledge, this is the frst 
thorough study that bridges the felds of CS and SαS models 
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for the design of a complete CS system. We emphasize 
that the methodologies proposed herein (for sparse signal 
reconstruction) and the companion paper (for compressive 
sampling) can be used either independently of each other, 
or together to form an integrated CS system with increased 
robustness to heavy-tailed infnite-variance noise. 

A. Motivation 

In practical CS acquisition systems, the generated compres-
sive measurements are typically corrupted by sampling noise. 
The presence of large-amplitude noise in the measurement 
domain degrades dramatically the reconstruction accuracy of 
traditional CS techniques based on ` 1 or ` 2 norms. The 
problem becomes even more challenging when we operate 
in impulsive environments, where the corrupting sampling 
noise can be of infnite variance. This causes conventional 
sparse reconstruction algorithms to fail in recovering a close 
approximation of the original signal. 

The problem of accurate sparse signal reconstruction from 
random measurements corrupted by gross sampling errors has 
been previously addressed in the context of error correction 
coding [16] and incomplete measurements [17], [18]. The 
main limitation of these approaches is that their reconstruction 
performance relies on the sparsity of the error term, which is 
a condition that may not be met often in practice. 

Recently, the problem of robust sparse signal reconstruction 
from random measurements corrupted by impulsive sam-
pling noise has been addressed effciently by employing the 
Lorentzian norm either as an objective function or as a con-
straint. In particular, in [12], [19] the true sparse signal is re-
constructed by solving an ` 0-regularized least logarithmic de-
viation problem. The logarithmic deviation is defned in terms 
of the Lorentzian norm, which does not over-penalize large 
deviations, and is therefore more robust than the commonly 
used ` 1 and ` 2 norms for the suppression of impulsive noise. 
A similar approach is proposed in [13], where a nonconvex 
optimization problem is solved to reconstruct the sparse signal 
by minimizing the ` 1 norm subject to a nonlinear constraint 
based on the Lorentzian norm. The use of the Lorentzian 
norm in these papers is further justifed by the existence of 
logarithmic moments for heavy-tailed distributions, since the 
second-order moments are infnite or even undefned for such 
distributions. 

Despite the enhanced reconstruction quality of the above 
methods in the presence of heavy-tailed additive sampling 
noise, the specifc use of Cauchy [12], [19] or GCD dis-
tributions [13] can be restrictive in capturing more generic 
non-Gaussian heavy-tailed behaviors of the sampling noise. 
Motivated by this limitation, frst we model the statistics of 
highly impulsive sampling noise, with possibly infnite vari-
ance, by members of the SαS family. Then, we propose a novel 
greedy sparse reconstruction algorithm, which minimizes the 
dispersion of the random measurements’ error. As it will be-
come clear in the subsequent analysis, the minimum dispersion 
(MD) criterion arises naturally as a measure of the spread of 
estimation errors around zero for random variables modeled 
by SαS distributions, as is the case with the infnite variance 

sampling noise adopted in this study. Most importantly, we 
show that the MD criterion is equivalent to a minimum ` p 

estimation error criterion, which simplifes the design of our 
proposed sparse reconstruction algorithm. Nevertheless, we 
emphasize that, without loss of generality, the subsequent anal-
ysis considers a conventional linear sampling operator for the 
generation of random measurements. However, our proposed 
reconstruction algorithm is generic and can be combined with 
any sampling operator (e.g. the nonlinear operator proposed 
in the companion paper [15]). 

B. Main Contributions 
The major contribution of this paper is twofold: i) we 

propose a novel iterative greedy algorithm that combines the 
characteristics of a gradient-descent approach with a statistical 
optimization criterion, namely, the minimum dispersion (MD) 
criterion, which is equivalent to minimizing the fractional 
lower-order moments (FLOMs) of reconstruction errors. The 
FLOMs measure the ` p (p < 2) distance between the recon-
structed and the true sparse signal; ii) we provide theoretical 
guarantees for the convergence of the algorithm and an upper 
bound of the ` 2 norm of the reconstruction error, along with 
rules of thumb for setting the key parameters that control the 
performance of the proposed algorithm. 

Furthermore, the use of ` p distance metrics with p < 2, 
which arise naturally when SαS models are coupled with a 
minimum dispersion rule, provides an additional degree of 
freedom (i.e., the value of p) yielding increased robustness 
against gross sampling errors. The proposed reconstruction 
algorithm resembles an orthogonal matching pursuit (OMP) 
approach in the sense that, at each step, it selects the mea-
surement basis vector which is most correlated with the 
current residuals. However, the key difference between our 
algorithm and an OMP-based approach is that this correlation 
is expressed in terms of FLOMs, thus it adapts perfectly to 
non-Gaussian, heavy-tailed processes with infnite variance. At 
each iteration, one or several elements of the sparse signal are 
reconstructed, therefore, as the algorithm progresses, a refned 
estimate of its nonzero elements is obtained by removing the 
contribution of previously estimated elements. 

C. Paper Organization 
The rest of the paper is organized as follows: Section II 

introduces the minimum dispersion as a proper optimization 
criterion for heavy-tailed, infnite variance sampling noise 
modeled by SαS distributions, and shows its equivalence 
with a minimum ` p estimation error criterion. Section III 
analyzes the design and implementation of our proposed 
iterative greedy algorithm for sparse signal reconstruction. 
Furthermore, it provides theoretical proofs for the convergence 
of the algorithm, along with an upper bound of the ` 2 norm 
of the reconstruction error. An experimental evaluation of the 
reconstruction accuracy of our proposed algorithm is presented 
in Section IV for a variety of impulsive environments, where 
its performance is compared against state-of-the-art sparse 
reconstruction methods tailored to impulsive sampling noise. 
Finally, Section V concludes and gives directions for future 
work. 
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D. Notation 

In the following, scalars are denoted by lower-case letters 
(e.g. x), column vectors by lower-case boldface letters (e.g. x), 
and matrices by upper-case boldface letters (e.g. X). Sets are 
represented by calligraphic letters (e.g. S), while |S| denotes 
their cardinality. The ith column of a matrix X is denoted 
by xi, whereas xj indicates the jth element of a vector 
x. Si denotes a subset of set S , while XS designates the 
submatrix formed by the columns {xi | i ∈ S}, whose indices 
belong to S . Similarly, xS denotes the subvector formed by 
the elements {xj | j ∈ S}, whose indices belong to S . 

T ∗ (t)Finally, we use x̂, x , x , and x to denote the estimate 
(reconstruction), transpose, optimal solution, and value at tth 
iteration of a vector x, respectively. Similar notations are used 
for the matrices. 

II. SPARSE RECONSTRUCTION AND MINIMUM 
DISPERSION CRITERION 

TLet x = [x1, x2, . . . , xN ] ∈ RN be a real discrete-time 
signal. In the general case, we assume that x can be sparsifed 

×Nover a (possibly overcomplete) transform basis Ψ ∈ RN 0 

with N 0 ≥ N , such that α = Ψx ∈ RN 0 is an s-sparse 
vector of transform coeffcients. Ψ and ΨT denote the analysis 
(direct) and synthesis (inverse) transforms, respectively. 

For convenience, a linear sampling operator is employed 
for the generation of a reduced set of compressive measure-
ments. Nevertheless, we emphasize again that our proposed 
reconstruction method can be equally combined with nonlinear 
sampling operators, such as those proposed in [12], [13] or in 
the companion paper [15]. 

Given a random measurement matrix Φ ∈ RM×N (M < 
N ), which satisfes all the necessary and suffcient conditions 
for accurate sparse reconstruction, the generic noisy sampling 
model adopted in the subsequent analysis is as follows, 

y = ΦΨTα0 + n , (1) 

∈ RN 0where α0 is the true sparse signal to be recovered, 
y ∈ RM is a vector of M noisy random measurements, and 
n ∈ RM is the additive sampling noise. By setting A = ΦΨT , 
various well-established approaches for recovering the sparse 
signal solve a constrained optimization problem of the form, 

α∈RN 0 

min ky − Aαkp 
α∈RN0 

s.t. kαkq ≤ s , (2) 

or a regularized optimization problem, 

min (ky − Aαkp + τ kαkq) , (3) 

with 0 < q ≤ 1, p ∈ {2, ∞} or denoting the Lorentzian 
norm1, s being the sparsity level and τ a regularization 
parameter that balances the infuence of the data fdelity term 
and the sparsity-inducing term on the optimal solution. Having 
obtained an estimate of the optimal sparse coeffcients vector 
α∗ 

0, the original signal is given by x̂0 = ΨTα∗ 
0. 

�PN 
�1/p

1The ` p norm of a vector is defned by kxkp = |xj |p forj=1 
0 < p ≤ 2 (` p is a quasi-norm for 0 < p < 1), whilst the Lorentzian normPN 2is defned by kxkLL2 = log(1 + x ).j=1 j 

At the core of our proposed sparse reconstruction algorithm 
is the use of SαS distributions for modeling the statistics 
of impulsive sampling noise. In particular, we assume that 
the additive noise n ∼ fαn (γn, 0) is a random variable 
that follows a univariate SαS distribution with characteristic 
exponent αn ∈ (0, 2], dispersion γn > 0 and zero location 
parameter (ref. Section II-B in the companion paper [15]). 
Moreover, the smaller the αn, the heavier the tails of the noise 
density function. 

Due to their algebraic tails, SαS distributions lack fnite 
second-order moments. Instead, all moments of order p less 
than α do exist and are called the fractional lower-order 
moments (FLOMs). In particular, the FLOMs of a SαS random 
variable X ∼ fα(γX , 0) are given by [14] 

pE {|X|p} = (Cp,α · γX ) , 0 < p < α , (4) 

where � � � � � � 
2p+1Γ p+1 

2 α α(Cp,α)
p 
= √ � Γ �− p 

= �Γ 1�− p 

. 
− p πα π Γ cos p Γ(1 − p)2 2 

(5) 
In addition, (4) yields the following expression for the disper-
sion of X in terms of the FLOMs, 

1/p
γX = (E {|X|p}) C−1 , (6)p,α 

which will be employed to quantify the spread of gross noise 
samples around zero. 

Furthermore, due to the lack of fnite variance for alpha-
stable distributed data, the traditional minimum mean squared 
error (MMSE) criterion cannot be used as a measure of the 
reconstruction quality to be optimized. Instead, we employ 
the minimum dispersion (MD) criterion in our optimization 
problem, since the dispersion of alpha-stable random variables 
is fnite and gives a good measure of the spread of estimation 
errors around zero. Most importantly, our proposed reconstruc-
tion method belongs to the class of ` p-based nonlinear, non-
convex relaxation techniques. Specifcally, ` p (quasi-)norms 
(0 < p < 2), and subsequently the use of a least ` p estimation 
error criterion, emerge naturally in the case of infnite variance 
sampling noise modeled as a SαS random variable. Indeed, as 
we deduce from (6), an ` p (quasi-)norm based approximation 
of the dispersion of X can be obtained by replacing the FLOM, 
E{|X|p}, with a discrete fnite sum, 

NX1 1
E{|X|p} ≈ |xj |p = kxkp . (7)pN N 

j=1 

ˆLet X denote an estimate of the random variable X and 
E = X − X̂ be the estimation error. Then, the minimum 
dispersion criterion can be viewed as a minimum ` p estimation 
error criterion. Clearly, from (6) and (7) we deduce that 
minimizing the dispersion of the error, γE , is equivalent to 
minimizing the ` p (quasi-)norm of the associated error vector 
e ∈ RN , which is considered as a realization of E. 

1) Estimation of p: Notice that the selection of an appro-
priate value for the p parameter in the above expressions is 
a critical step. Most importantly, the optimal p depends on 
the noise characteristic exponent, αn, which is estimated from 
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the noisy compressive measurements. A method for choosing Let Φ be a valid random measurement matrix with rows √ 
the optimal p as a function of α has been proposed in [20], of norm λ, which satisfes the restricted isometry property 
which is based on minimizing the standard deviation of a (RIP) of order s with constant (RIC) δs, 2and σn denote 
FLOM-based covariation estimator2. Other authors suggest the the variance of the sampling noise. When the measurements 
optimal p should be lower but as close as possible to the value are corrupted by Gaussian sampling noise, the following 
of α, if α can be inferred. However, the later approach entails inequality holds for the MSE of the oracle estimator [22], 
the divergence of the pth FLOM as p → α, since Cp,α in (4) � 
goes to infnity. On the other hand, the former approach yields E kx0 − x̂k22 

2σ·s n≥ , (8)
1 + δsan almost linear relation between α and the optimal value of 

where E{·} denotes the expected value of a random variable. 
From (8) it becomes obvious that traditional sparse re-

construction methods are ineffcient when the random mea-
surements are corrupted by heavy-tailed noise. Indeed, the 
expected reconstruction error for the oracle estimator can be 

2very large when σn is large, or even infnite, as is the case of 

p, and specifcally p . α/2. In addition, if p < α/2 the 
FLOM estimator has a fnite variance, which is desirable [21]. 
In the following, the optimal value of p is set as a function of 
α by linearly interpolating the entries of the lookup Table I, 
generated by minimizing the standard deviation of a FLOM-
based covariation estimator. 

heavy-tailed infnite-variance noise. 
TABLE I Fig. 1 illustrates the incapability of traditional CS recon-

OPTIMAL p PARAMETER AS A FUNCTION OF THE CHARACTERISTIC struction methods to address the case of impulsive sampling 
EXPONENT α. noise. To this end, we consider a sparse vector α0 of length 

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
popt 0.52 0.56 0.58 0.61 0.64 0.69 0.72 0.76 0.81 0.88 0.98 

N = 1024 with s = 21 randomly chosen nonzero elements 
drawn from the standard Cauchy distribution, as shown in 
Fig. 1a. The original signal, shown in Fig. 1b, is given by 
x0 = ΨTα0, where ΨT is the N × N discrete cosine 

III. ROBUST SPARSE RECONSTRUCTION ALGORITHM 

In this section, we propose a novel iterative greedy recon-
struction algorithm, which suppresses effciently the effects of 
heavy-tailed, infnite variance sampling noise, whilst achieving 
increased robustness to a broader range of impulsive noise 
behaviors, from linear (i.e., Gaussian) to extremely impulsive 
sampling noise. First, we demonstrate the ineffciency of 
traditional sparse reconstruction methods to deal with im-
pulsive sampling noise. Then, we analyze the design and 
implementation of our proposed algorithm, which solves an 
` 0-constrained `pp optimization problem. 

For convenience, yet without loss of generality, we assume 
that the original signal x0 is sparse in the canonical basis Ψ = 
I, thus x0 = α0. It will be mentioned explicitly whenever the 
original signal is assumed to be sparse in a different transform 
basis, that is, when Ψ 6= I. 

A. Effects of Heavy-Tailed Sampling Noise on Reconstruction 
Accuracy 

When traditional sparse reconstruction methods are applied 
on linear random measurements, the oracle estimator achieves 
the best reconstruction performance, without any prior knowl-
edge about the distribution of the original sparse signal. 
Nevertheless, the oracle estimator has perfect knowledge of 
the support of x0, that is, the set T ⊂ {1, 2, . . . , N} of 
indices of the s nonzero elements of x0. Then, by assuming 
power-limited sampling noise, an estimate of the sparse signal 
is obtained by taking the least-squares projection onto the 
subspace spanned by the columns of Φ (or A in the generic 
case when Ψ 6= I) with indices in T . 

2Covariances do not exist in the family of SαS random variables due to 
their infnite variance. Instead, a quantity called covariation, which plays an 
analogous role for SαS random variables to the one played by covariance for 
Gaussian random variables has been proposed [14]. 

transform (DCT) matrix. In Fig. 1c, a set of M = 256 linear 
measurements, y0 = Φx0, is shown for the noiseless case, 
with Φ ∈ R256×1024 whose entries are i.i.d. standard Gaussian 
samples and its columns are normalized to unit ` 2 norm. 
Then, a single outlier of amplitude η = 10 is added to a 
randomly chosen measurement, as shown in Fig. 1d. Figs. 1e-
1f show the corresponding sparse vectors α0 reconstructed 
from y0 and y, respectively, using the NESTA algorithm3, 
which is a fast and robust frst-order method that solves Basis 
Pursuit (BP) problems. Clearly, NESTA achieves a perfect 
reconstruction performance given the noiseless measurements, 
yielding a signal-to-error ratio (SER) of 178.24 dB. However, 
the algorithm fails when the measurements are corrupted by 
impulsive sampling noise, resulting in a SER of 2.81 dB. The 
SER (in dB) is defned by PN ! 

2 
j=1 xj

SER(x, x̂) = 10 log10 PN . (9) 
xj )2 

j=1(xj − ˆ 

B. ` 0-Constrained Dispersion Minimization 

In the following, we aim at designing a robust sparse recon-
struction algorithm, expressed as an operator R : RM 7−→ RN , 
which reconstructs accurately the true sparse signal x0 from 
a highly reduced set of noisy linear measurements y. This 
algorithm must be robust, especially when we operate in highly 
impulsive environments, in the sense that small perturbations 
to the noiseless measurements should yield small perturba-
tions in the reconstructed signal, even when a portion of the 
measurements is corrupted by large-amplitude noise. 

Our proposed approach relies on the use of a least ` p 

estimation error criterion (0 < p < 2), which is equivalent 
to a minimum dispersion criterion (ref. Section II) for SαS-
distributed sampling noise. Furthermore, the presence of the 

3NESTA toolbox: http://statweb.stanford.edu/∼candes/nesta/nesta.html. 

http://statweb.stanford.edu/�candes/nesta/nesta.html
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 1. Reconstruction of an impulsive signal when the random linear 
measurements are corrupted by a single outlier. NESTA algorithm is used to 
solve a BP problem. (a) True sparse vector; (b) original DCT synthesized 
signal; (c) noiseless linear measurements; (d) noisy linear measurements 
corrupted by a single outlier; (e) reconstructed sparse vector from noiseless 
measurements; (f) reconstructed sparse vector from noisy measurements. 

free parameter p in the ` p-based penalization of the residual 
increases the robustness against gross outliers, as opposed to 
the recently used Lorentzian norm. This is because, in contrast 
to the Lorentzian that is intrinsically related with a Cauchy 
model (fxed α = 1), in our method the value of p depends 
on the inherent impulsiveness of the noise as expressed by its 
estimated characteristic exponent. 

More specifcally, the original sparse signal x0 is recovered 
by minimizing the dispersion of the data fdelity term, con-
strained on the maximum number of nonzero elements of x0, 
that is, 

min γ y 
p 
−Φx s.t. kxk0 ≤ s , (10) 

x∈RN 

where γy−Φx is the dispersion of the data fdelity term, 
which is simply the difference between the original and the 
reproduced measurements. 

From (6) and (7), the above optimization problem is ex-
pressed in the following equivalent form,� � 

C−p 

min p,α ky − Φxkp s.t. kxk0 ≤ s . (11)p 
x∈RN M 

By noticing that for the feasible range of α (0 < α ≤ 2) and 
1 C−pp (0 < p < α) the constant p,α is always positive (seeM 

Appendix A), the original sparse signal x0 is reconstructed by 
solving an ` 0-constrained least `p optimization problem, p 

min ky − Φxkp s.t. kxk0 ≤ s . (12)p 
x∈RN 

The `p-based formulation arises naturally from the inherent p 
infnite variance statistics of the impulsive sampling noise, 
while it also adapts effectively to less demanding light-
tailed environments. Nevertheless, the numerical solution of 
the optimization problem in (12) can be extremely complex, 
even for moderate signal dimensions, due to the presence of 
the ` 0 constraint. Therefore, the design of a computationally 
tractable, yet very effcient, algorithm is imperative to solve 
the above nonconvex, combinatorial, sparse recovery problem. 

C. Gradient Projection Iterative Hard Thresholding 
In this section, we derive a suboptimal approach to 

solve (12) by employing a gradient projection (GP) formu-
lation combined with an iterative hard thresholding (IHT) 
algorithm. This approach does not require the computationally 
intense process of matrix inversion, while providing near-
optimal error guarantees [23]. 

More specifcally, let x(t) denote the estimated sparse so-
lution at tth iteration, and set the initial solution to the zero 
vector, x(0) = 0. Furthermore, we are given the measurements 
vector y and the measurement matrix Φ. Note that in the 
general case, where the original signal is not sparse by itself 
but can be sparsifed in an appropriate transform domain, 
the measurement matrix is replaced by A = ΦΨT and the 
solution corresponds to a sparse coeffcients vector α∗ (ref.0 
Section II). Then, at each iteration the algorithm computes 
the updated solution as follows,� � 

(t+1) (t) (t) (t)x = Hs x + µ g , (13) 

where Hs(x) denotes the hard thresholding operator, which 
sets all except for the largest (in magnitude) s elements of 
x to zero, µ(t) is a step size and g(t) is a search direction. 
Depending on the value of p, the `p-based objective functionp 
can be strictly convex (p ≥ 1), thus the search direction can 
be chosen naturally as the negative gradient (gradient descent), 
or it can be strictly concave (p < 1), and the search direction 
can be chosen as the positive gradient (gradient ascent), ( 

−rxky − Φxkp , for p ≥ 1(t) pg = (14) 
rxky − Φxkp , for p < 1 .p 

Notice that the hard thresholding operation may not yield a 
unique output. In this case, we select the s elements either at 
random or based on a predetermined ordering. 

After some algebraic manipulation, the gradient vector is 
given by � � 

rxky − Φxkp = −p ΦT W(t) y − Φx(t) , (15)p 

RM ×Mwhere W(t) ∈ is a diagonal matrix, whose main 
diagonal elements are as follows, 

1 
W

(t) 
= , i = 1, . . . ,M . (16)i,i |yi − φT 

i x
(t)|(2−p) 



  

���
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In fact, the gradient vector can be only approximated near zero, 
since the inherent absolute value is not differentiable at zero. 
To avoid numerical instabilities in the case of a denominator 
close to zero, a small damping factor κ > 0 is incorporated 
in (16) resulting in the following weights, 

1 
W

(t) 
= , i = 1, . . . ,M . (17)i,i � �1− p 

(yi − φT 
i x

(t))2 + κ 
2 

In the subsequent experimental evaluations we set κ = 10−3 . 
Notice also that the above weight matrix resembles the one 
computed when working in an iteratively reweighted least 
squares (IRLS) framework [24]. Furthermore, the inherent role 
of the weights is to suppress the effect of large errors by 
assigning a small weight when large deviations are estimated. 
In the special case of W(t) = I the above GP-based IHT 
method reduces to the conventional least squares IHT [23]. In 
the rest of the text, we will refer to our proposed algorithm 
for minimizing the error dispersion using a gradient projection 
hard thresholding approach as MD-IHT. 

D. Key Parameters Setting 

The effciency of our proposed MD-IHT algorithm is af-
fected by the accurate tuning of two key parameters, namely, 
the parameter p, which determines the `p objective functionp 
and depends on the noise characteristic exponent, and the step 
size µ(t). 

Concerning the value of p, as we have already mentioned 
in Section II, we adopt the almost linear relation p . α/2. 
Thus the problem is reduced to estimating accurately the 
noise characteristic exponent from the random measurements 
y. Following the approach suggested in [24], the method of 
log-cumulants is employed to estimate the SαS parameters by 
equating sample log-cumulants to their theoretical counterparts 
for a particular model and then solving the resulting system, 
much in the same way as in the classical method of moments. 
In particular, by applying the Mellin transform on a SαS 
density we get the following expression for its second-kind 
frst characteristic function, � � � � 

z 
2 αγz−12z Γ − z−1 

Φ(z) = √ � Γ � . (18)
− z−1α πΓ 2 

Notice that by setting z = p + 1 in Φ(z) we obtain the 
expression of the FLOMs of a SαS random variable, as defned 
in (4). By taking the limit as z → 1 of the frst and second 
derivatives of the log (Φ(z)), we derive the following results 
for the second-kind cumulants of a SαS model, 

α − 1
k̃1 = ψ(1) + log(γ)

α 
π2 α2 + 2 

k̃ 
2 = , (19)

12 α2 

where ψ(·) is the Digamma function. On the other hand, 
the frst two sample second-kind cumulants can be estimated 

empirically from the M measurements y as follows, 
MX1ˆ̃

k1 = log (|yi|)
M 

i=1 

M � 
ˆ X ˆ 

�21˜ ˜k2 = log (|yi|) − k1 . (20)
M 

i=1 

The estimation process simply involves solving (19) for α and 
ˆ˜ ˜ ˜γ by substituting k̃ 

1, k2 with their sample estimates kˆ 1, k2, 
respectively. 

Regarding the tuning of the step size, we notice that the 
convergence performance of the MD-IHT algorithm improves 
if an adaptive step size, µ(t), is employed to normalize the 
gradient update in (13). Specifcally, let S(t) be the support 
of x(t), and assume that the algorithm has identifed the true 

S(t)support of x0, that is, S(t+1) = = S . Then, we want to 
minimize ky − ΦS xS kp using a gradient projection algorithm p 
with updates 

(t+1) (t) (t) (t)
x = x + µ g . (21)S S S 

Optimality in estimating µ(t) is equivalent to fnding a step 
size which reduces maximally the `p objective function at each p 
iteration. This is a nontrivial task and, in general, there is no 
known closed form for an optimal step size. To address this 
issue, we update the step size at each iteration in a suboptimal 
way as follows, � � p

(t) (t) (t)
µ = arg min y − ΦS x + µgS S µ p� � p

(t) (t)
= arg min y − ΦS x − µΦS g . (22)S S µ p� � 

(t) (t)By setting u = y − ΦS x and v = ΦS g , weS S 

deduce that the estimation of a suboptimal step size µ(t) at the 
tth iteration is reduced to solving the following optimization 
problem, 

µ(t) = arg min Jp(µ) , arg min ku − µ vkp , (23)p
µ µ 

whose treatment depends on the value of p. Although p 
varies in the interval (0, 2) in our proposed framework, we 
examine the solution of (23) in the general case of p > 0 by 
distinguishing the following cases: 

i) p = 2: This is the simplest case, in which the optimal 
step size is given in closed form, corresponding to the 
typical least-squares (LS) minimizer, that is, 

Tv u 
µ(t) = arg min J2(µ) = . (24) 

µ vTv 

ii) p = 1: In this case, the minimizer of J1(µ) is obtained 
by solving a least absolute deviation (LAD) regression 
problem [25]. Specifcally, the optimal µ(t) is equal to 
the weighted median of the sample set {ri = ui }M withi=1 

M 
vi 

positive real weights {|vi|}i=1, hereafter denoted by � � 
M 

(t)µ = WMED |vi| � ri , (25) 
i=1 

where � denotes the replication operator. In the general 
case of positive real weights, the weighted median can 
be easily computed as follows [25]: 
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1(1) Calculate the threshold v% = 
PM |vi|.2 i=1 

(2) Sort all the samples in ascending order, 
r(1), . . . , r(M), with their corresponding 
concomitant weights |v[1]|, . . . , |v[M ]|. 

(3) Sum the concomitant weights starting from |v[1]|
and increasing the order. 

(4) The weighted median is the sample whosePj 
r(j) 

weight causes the inequality |v[i]| ≥ v% toi=1 
hold frst. 

iii) p > 1: In this regime, the minimization of Jp(µ) 
corresponds to solving an unconstrained convex optimiza-
tion problem. Furthermore, since the objective function, 
Jp(µ), is twice differentiable and strictly convex for all 
µ ∈ R, we solve (23) using a quasi-Newton method, 
which does not require the explicit computation of the 
frst- and second-order derivatives at each iteration. Most 
importantly, the strictly convex nature of Jp(µ) guaran-
tees convergence to the unique global minimum. 

iv) 0 < p < 1: For these values of p, the minimization 
of Jp(µ) corresponds to a nonconvex problem with 
several local minima. However, it is feasible to fnd a 
global minimizer by following a similar to the WMED 
approach described before. In particular, we frst defne 

ui }Mthe fractions {ri = i=1, which are then sorted in vi 

ascending order, r(1), . . . , r(M). Then, the optimization 
problem in (23) can be reformulated as follows, 

MX 
(t)µ = arg min Jp,ord(µ) , arg min |v[i]|p|µ−r(i)|p , 

µ µ 
i=1 

(26) 
where {|v[i]|}M denote the corresponding concomitanti=1 
weights. Doing so, the domain of the objective function 
Jp,ord(µ) is the union of M +1 adjacent intervals, namely, 
(−∞, r(1)], [r(1), r(2)], ..., [r(M−1), r(M )], [r(M ), +∞). 
The critical observation is that, in each interval, the sign 
of (µ − r(i)), for i = 1, . . . ,M , can be determined 
explicitly. For instance, if µ ∈ [r(m−1), r(m)] for some 
1 ≤ m ≤ M , then, the objective function becomes 

m−2 MX X 
Jp,ord(µ) = |v[i]|p(µ−r(i))p+ |v[i]|p(r(i)−µ)p . 

i=1 i=m−1 
(27) 

We notice that (µ − r(i))p and (r(i) − µ)p are all concave 
functions of µ since 0 < p < 1. Subsequently, Jp,ord(µ) 
is also concave as a nonnegative combination of concave 
functions. Specifcally, Jp,ord(µ) is piecewise concave in 
each interval, thus it attains its local minima among the 
boundary points {r(i)}M Finally, since Jp,ord(µ) →i=1. 
+∞ as µ → ±∞, we deduce that the global minimizer 
of (23) is given by n o 

µ(t) = min Jp,ord(r(i)) . (28)
i=1,...,M 

We note that the proposed rule for updating the step size, as 
given by (22), guarantees that the `p objective function in (12) p 
does not increase at each iteration. Indeed, the following 
proposition holds: 

(t+1) (t) (t)Proposition 1 Let x = x + µ(t)g be the updatedS S S 
sparse solution, where the step size µ(t) is updated via (22). 

S(t)Then, if S(t+1) = = S , the proposed step size update 
guarantees that 

ky − Φx(t+1)kp ≤ ky − Φx(t)kp . (29)p p 

Proof: From the optimality of µ(t) we deduce directly 
that � � p 

ky − Φx(t+1)kp (t) (t) ∗ (t) 
p = y − Φ x + µ g 

p� � p 
≤ y − Φ x(t) + 0 g(t) = ky − Φx(t)kp ,p 

p 

(t) ∗ 
where µ is the optimal step size at iteration t. 

(t+1) (t)If the support of x differs from the support of x 
estimated at the previous iteration, then the optimality of µ(t) 

may not be guaranteed. To alleviate this issue, a backtracking 
line search is typically used, that is, if 

ky − Φx(t+1)kp > ky − Φx(t)kp ,p p 

(t) (t) (t)then, µ is reduced geometrically, µ ← cµ · µ , where 
cµ ∈ (0, 1), until the objective function in (12) is reduced. 
Except if mentioned otherwise, in the subsequent evaluations 
we set the value of the common ratio equal to cµ = 0.5. 

Furthermore, in order to improve the convergence perfor-
mance of MD-IHT, a weighting scheme is employed in our im-
plementation, which assigns small weights to large deviations 
and large weights to small deviations, as they are computed 
in the previous iteration. Specifcally, the suboptimal step size� � 
(t) 

� 
W(t) 

�1/2 (t)
µ is calculated by setting u = y − ΦS xS� �1/2 

W(t)and v = ΦS g
(t) in (23). Doing so, we furtherS 

suppress the effect of those elements of x(t) that yield er-
roneous contributions to the measurements y, while enforcing 
the contribution of those elements which better agree with 
the measurements. We also emphasize that, in contrast to 
the previous reconstruction techniques, our proposed MD-
IHT algorithm does not assume any prior information for the 
sampling noise, such as the scale of its associated distribution. 

The algorithm terminates when either a maximum number 
of iterations, maxIterMDIHT, has been reached, or the relative 
change of the `p objective function is less than a prede-p 
termined threshold tolMDIHT. In our implementation we set 
maxIterMDIHT = 200 and tolMDIHT = 10−16 . Algorithm 1 
summarizes the steps of our MD-IHT sparse reconstruction 
method. 

In the following, we measure the reconstruction quality of 
the proposed MD-IHT algorithm for the noisy measurements 
model in (1) by comparing the original sparse signal x0 with 

∗the reconstructed sparse solution x0. Specifcally, Theorem 1 
below shows that the solution of (12) is an s-sparse signal 
with an ` 2 error that depends on the noise dispersion. This 
dependence on the noise’s pth FLOM, instead of its second-
order moment that is either infnite or may not exist, yields 
an increased robustness of MD-IHT to heavy-tailed sampling 
noise. 

Theorem 1 Let x0 ∈ RN with S = supp(x0) and |S| ≤ s. 
Assume Φ ∈ RM×N is a measurement matrix that satisfes a 
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Algorithm 1 The proposed MD-IHT sparse reconstruction 
algorithm 
Input: y, Φ, s, κ, cµ, maxIterMDIHT, tolMDIHT 

Initialize: 
SαS parameters: [αy , γy] = Mellinfit(y) (∗), p = αy − 0.0012 

(0)Solution: x = 0 
Residual: r(0) = y 

(0) 1Weights: W = , i = 1, . . . ,M (frompi,i �� � �1−2 2(0)
r +κi 

(17)) 
(0) = −p ΦT W(0)Gradient: g r(0) (from (14), (15)) 

(0)kpobjValold = kr p 

S(0) = ∅, relChange = 1016 , t = 0 
1: while (relChange > tolMDIHT or t < maxIterMDIHT) 

do 
2: Calculate step size µ(t) by solving (23) with � �1/2 

� 
(t) 
� 

W(t)u = y − ΦS(t) xS(t) and � �1/2 (t)
W(t)v = ΦS(t) gS(t) � � 

(t+1) (t) (t) (t)3: Update solution via (13): x = Hs x + µ g 
(t+1)

4: Update support S(t+1) = {j | x =6 0}j 
(t+1) (t+1)

5: Update residual r = y − ΦS(t+1) xS(t+1) 

(t+1)kp6: objValnew = kr p 
{Perform backtracking if necessary}
if S(t+1)7: 6= S(t) then 

8: while objValnew > objValold do 
(t) ← cµ 

(t)9: µ · µ 
10: Update solution via (13):� � 

(t+1) (t) (t) (t)x = Hs x + µ g 
(t+1)

11: Update support S(t+1) = {j | xj 6= 0}
(t+1) (t+1)

12: Update residual r = y − ΦS(t+1) xS(t+1) 

(t+1)kp13: objValnew = kr p 
14: end while 
15: end if 
16: relChange = |objValnew − objValold |/objValnew 

17: objValold = objValnew 

18: Update weights W(t+1) (from (17)) 
(t+1) −p ΦT W(t+1)19: Update gradient g = r(t+1) (from 

(14), (15)) 
20: t = t + 1 
21: end while 

∗ (t)Output: The original sparse signal x = x0 

(∗) Mellinfit(y) denotes the algorithm described in Section III-D 
for the estimation of the SαS model parameters from the noisy 
measurements y using the method of log-cumulants. 

Note: In the general case, the measurement operator Φ is replaced 
by A = ΦΨT . Then, MD-IHT estimates a sparse coeffcients vector 
α ∗ ∗ α ∗ 

0 and the original signal is obtained by x0 = ΨT 
0 . 

√ 
RIP of order 2s with 2s-RIC such that δ2s < 2 − 1. Then, 
for SαS sampling noise n ∈ RM with characteristic exponent 

∗αn and dispersion γn ≤ �, the solution of (12), x0, yields a 
bounded reconstruction error, as follows 

∗ kx0 − x0k2 ≤ C0 · Cp,αn · � , (30) 

where the constant C0 depends on δ2s, M and p, and Cp,αn is 
given by (5). 

Proof: Following a similar approach as in [26], we set 
∗ x = x0 + h, where h is a perturbation of the original sparse 0 

∗signal x0. Since x is a feasible point and the dispersion of0 
the error (i.e., the noise) is assumed to be bounded, γn ≤ �, 
it follows that 

kΦhk2 = kΦx ∗ 
0 − Φx0k2 = k(Φx ∗ 

0 − y) + (y − Φx0)k2| {z } | {z } 
u v 

(a) (b) 
≤ kuk2 + kvk2 ≤ kukp + kvkp ≤ 2knkp 

(c) 
≤ 2 · M1/p ) ≤ 2 · M1/p· (Cp,αn · γn · (Cp,αn · �) , (31) 

where (a) follows from the triangle inequality, (b) from the 
property that if 0 < p < q then kxkq ≤ kxkp (in our 
framework 0 < p < 2), and (c) is obtained by combining (4) 
and (7) for the SαS noise n. 

To complete the proof, we utilize an intermediate result 
shown in [26] (see proof of Theorem 1.2), which states that√ 
if δ2s < 2 − 1 then 

√ 
2 1 + δ2skhk2 ≤ √ kΦhk2 . (32)

(1 − δ2s − 2δ2s) 

By combining (31) with (32) we have 
√ 

4M1/p 1 + δ2skhk2 ≤ √ · (Cp,αn · �) , (33)
(1 − δ2s − 2δ2s) 

√ 
4M 1/p 1+δ2swhich is the desired result for C0 = √ . 
(1−δ2s− 2δ2s)

From (30) we deduce that as the noise dispersion γn → 0 
the reconstruction error approaches zero, whereas in the noise-
less case (� = 0) the reconstruction is perfect. 

IV. PERFORMANCE EVALUATION 

This section evaluates the effciency of our proposed MD-
IHT algorithm as a robust sparse reconstruction method under 
impulsive sampling noise. To this end, numerical experiments 
are performed with synthetic signals, along with a comparison 
against state-of-the-art sparse reconstruction methods tailored 
to impulsive noise. In particular, the following methods are 
used for comparisons, which recover the original sparse signal 
by solving either ` 2 or ` p (p ≤ 2) optimization problems: 
1) orthogonal matching pursuit (OMP) [1]4, 2) ` p-reweighted 
least squares (LpRLS) [27]5, and 3) Lorentzian iterative hard 
thresholding (LIHT) [28]. Appropriate parameters tuning is 
done for each algorithm according to the guidelines of the 
associated toolboxes, in order to achieve the optimal recon-
struction performance. 

The synthetic signals are generated using the following 
settings, unless stated otherwise: signal length N = 1024; 
cardinality of the sparse support s = |S| = d2% · Ne; the 
nonzero coeffcients are drawn from a Student’s-t distribution 
with one degree of freedom and their positions are chosen 

4MATLAB code available from https://goo.gl/VHvyJe. 
5MATLAB code available from https://sites.google.com/site/igorcarron2/ 

cscodes. 

https://sites.google.com/site/igorcarron2
https://goo.gl/VHvyJe
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uniformly at random from the index set {1, 2, . . . , N}; the 
DCT matrix is used as the sparsifying dictionary Ψ, that is, 
the measurement operator is given by A = ΦΨT; the mea-
surement matrix Φ has i.i.d. entries drawn from a Bernoulli 
distribution {−1, +1} with equal probability; the number of 
random projections (measurements) is set to M = d25% · Ne 
unless otherwise specifed. Furthermore, the results of each 
experiment are averaged over 500 Monte Carlo repetitions 
with different realizations of the sparse signals, the random 
measurement matrices, and the additive noise term. The re-
construction quality is measured in terms of the signal-to-error 
ratio (SER) (in dB) defned by (9). 

Next, the performance of our proposed MD-IHT algorithm 
is evaluated and compared against OMP, LpRLS, and LIHT. 
We emphasize again that appropriate tuning is done for the 
parameters of each algorithm according to the guidelines of 
the associated toolboxes, in order to achieve the optimal 
reconstruction performance. For each synthetic signal, a set 
of linear projections is constructed, which is then corrupted 
by additive sampling noise following a SαS distribution. For 
the OMP we assume that the noise tolerance � is known and 
used as a stopping criterion. 

First, we examine the performance of MD-IHT as a func-
tion of the noise strength. To this end, we vary the noise 
dispersion γn ∈ {0.001, 0.01, 0.1, 1}, whilst fxing the noise 
characteristic exponent αn ∈ {1, 1.5}. The choice of αn = 1 
(i.e., Cauchy distribution) is made for a fair comparison with 
LIHT which is derived from Cauchy statistics. The number 
of linear projections is set to M = d25% · Ne and the 
noise tolerance � = Mγ2 (for the OMP). Furthermore, alln 
the required SαS parameters in Algorithm 1 are estimated 
from the noisy measurements directly. Fig. 2 shows the 
reconstruction performance of each method, in terms of the 
achieved SER averaged over 500 Monte Carlo runs. As the 
noise strength increases, the reconstruction accuracy of all 
methods decreases, as expected. However, MD-IHT yields 
the highest accuracy among the four methods for the whole 
range of γn and for both the αn values. Especially in the 
Cauchy case (αn = 1), this reveals that our MD-IHT algorithm 
outperforms LIHT, which is tailored to Cauchy statistics, 
thus demonstrating an increased robustness of MD-IHT to a 
broader range of noise strength and impulsiveness. Indeed, 
in contrast to the LIHT whose performance is controlled by 
tuning only the scale parameter of the Lorentzian norm, the 
performance of MD-IHT depends on both the value of p in 
the `p optimization and the estimated dispersion from thep 
noisy measurements. Furthermore, OMP results in the worst 
reconstruction quality, illustrating the ineffciency of ` 2-based 
methods to suppress the presence of infnite variance sampling 
noise in the random measurements. 

As a second experiment, we evaluate the performance of 
MD-IHT as a function of the noise impulsiveness. To this 
end, we vary the noise characteristic exponent αn ∈ [0.8, 2], 
whilst fxing the noise dispersion γn ∈ {0.01, 0.1}. As before, 
the number of linear projections is set to M = d25% · Ne 
and the noise tolerance � = Mγ2 (for the OMP). Fig. 3n 
shows the reconstruction performance of each method, in 
terms of the achieved SER averaged over 500 Monte Carlo 

(a) (b) 

Fig. 2. Comparison of reconstruction error as a function of noise strength 
for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used corrupted 
by SαS sampling noise with αn ∈ {1, 1.5} and γn ∈ {0.001, 0.01, 0.1, 1}. 
Average SER is shown over 500 Monte Carlo runs. 

runs. As the noise impulsiveness decreases (i.e., αn → 2) the 
reconstruction accuracy of all methods increases, whilst they 
all result in a comparable average SER. As expected, the lower 
the noise dispersion (γn), the higher the reconstruction quality 
for the four methods. Furthermore, MD-IHT outperforms the 
other three methods over the whole range of αn and for 
both noise dispersion values. Interestingly, both the MD-IHT 
and the LIHT algorithms, which yield the same performance 
for Gaussian sampling noise, outperform clearly the least 
squares-based OMP method, which better adapts to light-tailed 
environments. 

(a) (b) 

Fig. 3. Comparison of reconstruction error as a function of noise impul-
siveness for MD-IHT, OMP, LpRLS, and LIHT. Linear projections are used 
corrupted by SαS sampling noise with αn ∈ [0.8, 2] and γn ∈ {0.01, 0.1}. 
Average SER is shown over 500 Monte Carlo runs. 

Finally, we examine the reconstruction performance of 
MD-IHT as the number of linear measurements, M , varies 
from 2s (i.e., twice the cardinality of the sparse support) 
to N/2, for a varying sampling noise impulsiveness with 
αn ∈ {0.8, 1.2, 1.6, 2}, and a fxed γn = 0.05. Fig. 4 
shows that MD-IHT starts yielding fair reconstructions of the 
original signals using only M ≈ 10% · N corrupted linear 
measurements. Most importantly, this observation holds even 
for heavily corrupted measurements (i.e., small αn values), 
which illustrates the robustness of MD-IHT in a broad range 
of impulsive environments. However, as the noise impulsive-
ness increases more measurements are required to achieve a 
satisfactory reconstruction quality. This is an expected result, 
which also resembles the conventional ` 2-based reconstruction 
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APPENDIX A 
PROOF OF POSITIVITY OF C−p 

p,α 

Given the defnition in (5), in order to prove the positivity 
of C−p in (11), it suffces to show thatp,α � � 

Γ 1 −� � p 
α > 0 . (34) 

2
π p Γ(1 − p)cos 

Indeed, the requirement for the existence of FLOMs induces 
that 0 < p < α ≤ 2. This, combined with our empirical rule 
for setting the optimal value of p as p . 2

α (ref. Section II), 
yields 0 < p < 1. Based on this, the sign of each term in (34) 
is as follows: � � 

α 1&α
p pi) p . ⇒ 1 − > 0 ⇒ Γ 1 − > 0� �2 2 αFig. 4. Average SER of MD-IHT as a function of the number of linear π 

2 p <
π πii) 0 < p < 1 ⇒ 0 < ⇒ 1 > cos > 0pmeasurements corrupted by SαS sampling noise with αn ∈ {0.8, 1.2, 1.6, 2} 2 2 

iii) 0 < p < 1 ⇒ 1 > 1 − p > 0 ⇒ Γ(1 − p) > 0and γn = 0.05. 

methods that require more measurements as the noise variance 
increases. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a robust method was proposed for the recon-
struction of sparse signals whose compressive measurements 
are corrupted by impulsive sampling noise. More specifcally, 
the heavy-tailed statistics of sampling noise with possibly 
infnite variance was modeled by means of SαS distribu-
tions. Subsequently, the effects of additive impulsive sampling 
noise were suppressed by designing a novel iterative hard 
thresholding method based on a minimum dispersion (MD) 
optimization criterion. This criterion emerges naturally in the 
case of additive sampling noise modeled by SαS distributions. 
The proposed MD-IHT algorithm demonstrated an increased 
robustness against gross outliers through a least ` p estimation 
error criterion, where p depends on the inherent impulsiveness 
of the noise. A reconstruction error bound was derived that 
depends on the noise strength, along with rules for tuning 
the key parameters, such as the value of p and the gradient 
descent step size, in order to guarantee convergence for a broad 
range of impulsive noise behaviors. Experimental evaluations 
revealed that MD-IHT outperforms signifcantly state-of-the-
art methods in the case of highly impulsive sampling noise, 
whilst resulting in a comparable performance in light-tailed 
environments. 

However, a theoretical framework for selecting the optimal 
values of the key parameters for the MD-IHT algorithm is 
still an open question. Furthermore, incorporating some prior 
knowledge about the unknown sparse support in the recon-
struction process typically improves the reconstruction quality. 
To address this issue, we will examine a modifcation of 
the MD-IHT algorithm for stable recovery from compressive 
measurements given a partially known support. 
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From i)-iii) we deduce that all the terms are positive, which 
proves that C−p 

p,α > 0 for 0 < α ≤ 2. 
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