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Abstract—In the feld of compressive sensing (CS), signal and 
noise models of fnite variance are well established due to their 
analytical tractability and practical appeal. Typically, sampling 
and reconstruction methods are designed by assuming light-tailed 
models for the underlying signal and/or noise statistics. However, 
when we operate in highly impulsive environments, non-Gaussian 
infnite variance generating processes appear naturally for the 
signal and/or noise components. Because of this, conventional 
linear sampling operators, coupled with traditional reconstruc-
tion methods, are ineffcient to accurately recover the original 
signal. To address these limitations, recent approaches adopted 
the use of algebraic-tailed statistical models, such as the Lévy and 
Cauchy distributions, to construct nonlinear sampling operators 
and robust reconstruction methods. However, the performance of 
these methods is degraded when the signal and/or noise statistics 
deviate signifcantly from the assumed model. To address this 
problem, this paper and the companion paper (Part II) propose 
an innovative CS framework exploiting the power of symmetric 
alpha-stable distributions in modeling highly impulsive signals. 
This paper introduces an effcient compressive sampling method 
that suppresses the effects of impulsive observation noise by 
designing a robust nonlinear sampling operator based on a gener-
alized alpha-stable matched flter. In the companion paper (Part 
II), a novel greedy algorithm is introduced for reconstructing 
sparse signals, which achieves increased robustness to impulsive 
sampling noise. The theoretical justifcation along with the 
experimental evaluation demonstrate the improved performance 
of the proposed framework when compared against state-of-the-
art CS techniques for a broad range of impulsive environments. 

Index Terms—Compressive sampling, nonlinear sampling, 
symmetric alpha-stable distributions, heavy-tailed statistics, frac-
tional lower-order moments, weighted stable matched flter. 

I. INTRODUCTION 

COMPRESSIVE sensing (CS) has recently been estab-
lished as an innovative signal acquisition and recon-

struction strategy, where additional structure of the signal is 
exploited to enable sampling rates far below what is dictated 
by the traditional Nyquist-Shannon sampling theorem. The 
structure which is primarily associated with CS is that of 
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signal sparsity in a transform domain, or, equivalently, over 
a sparsifying basis. For instance, at the core of most image 
compression algorithms is the fact that natural images are 
sparse, or close to sparse, over sparsifying bases, such as 
wavelets and cosines [1]. In such a scenario, CS acquisition 
is realized by taking linear projections of the signal onto a 
small set of vectors that are incoherent with the sparsity-
inducing basis [2], [3]. Given these projections, hereafter 
called measurements, the signal is recovered by searching 
for the sparsest representation in the transform basis, whilst 
simultaneously being consistent with the measurements. 

The random matrix that generates the undersampled linear 
measurements must satisfy specifc necessary and suffcient 
conditions (e.g. the null space property and the restricted 
isometry property for ` 1-norm minimization) to guarantee 
the successful recovery of sparse signals [4]. An appealing 
attribute of CS is that the seminal breakthrough was made by 
employing random vectors and randomly selected vectors from 
orthonormal matrices [2], [5]. Practical applications, however, 
often do not allow the use of totally random matrices, due to 
certain physical constraints on the measurement process. To 
overcome these limitations, structurally random measurement 
matrices were introduced enabling the construction of fast and 
effcient sensing matrices for practical CS [6]. 

Furthermore, in a real acquisition system, the signal of 
interest is always corrupted by noise. In this paper, we focus 
on the design of a robust nonlinear sampling operator, in 
order to suppress the effects of highly impulsive observation 
noise, while still being able to reconstruct the true sparse 
signal using a conventional sparse reconstruction algorithm. 
The accurate reconstruction of sparse signals whose random 
measurements are corrupted by heavy-tailed sampling noise 
of infnite variance is studied in the companion paper (Part 
II) [7]. 

A. Motivation 

Most of the well-established sparse reconstruction algo-
rithms provide bounded reconstruction error by assuming 
bounded or Gaussian noise, as well as light-tailed, fnite-
variance models for the underlying signal and/or noise statis-
tics, due to their analytical tractability and practical appeal. 
On the other hand, there is a remarkably wide range of 
practical applications, where information is recorded in highly 
impulsive environments, giving rise to non-Gaussian, heavy-
tailed processes for the representation of the associated signal 
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and/or corrupting noise. Examples of such applications can be 
found in underwater acoustics [8], sonar and radar [9], [10], 
medical imaging [11], and fnance [12], just to name a few. 

When we operate in impulsive environments, the true signal 
is often corrupted by heavy-tailed noise, which occurs in the 
form of big errors that mask the original information content 
of the signal. In the framework of CS, the presence of large-
amplitude noise samples degrades dramatically the generated 
linear random measurements, since the large errors are spread 
throughout the measurements due to the linear sampling 
process. The uniform spreading of large noise samples, which 
can be of infnite or very large variance in the case of im-
pulsive environments, over the random measurements, causes 
traditional CS reconstruction algorithms to fail in recovering 
a close approximation of the true sparse signal. 

Several recent CS techniques tackle the presence of im-
pulsive observation noise either in a completely distribution-
agnostic framework [13] or based on the theory of robust 
statistics [14] and nonlinear signal processing [15]. In contrast 
to the methods based on robust statistics, which are more 
generic, the main limitation of the distribution-agnostic ap-
proach is that it relies on noise of bounded variance, while the 
sparse signal is estimated based on a minimum mean squared 
error criterion, which is not valid for signals characterized by 
heavy-tailed statistics with infnite variance, due to the lack of 
second-order moments. 

More specifcally, the problem of suppressing the effects of 
impulsive observation noise is addressed in a robust statistical 
framework by employing heavy-tailed distributions coupled 
with maximum likelihood (ML) type estimators (also known 
as M-estimators) as data fdelity functions (ref. [16] for a 
thorough review). In [17], [18], the reduced set of com-
pressive measurements is constructed using Cauchy random 
projections, which are not severely degraded if the signal is 
corrupted by gross errors, and also they are more suitable in 
applications where ` 1-norm preservation is preferred in the 
low-dimensional measurements space. A similar approach is 
proposed in [19], where the generalized Cauchy distribution 
(GCD) family is employed to design a robust nonlinear 
measurement operator, based on the weighted myriad esti-
mator [15]. The generated compressive measurements yield 
an improved reconstruction performance against their linear 
projections counterparts when combined with traditional CS 
algorithms (e.g. orthogonal matching pursuit). The interest in 
Cauchy and GCD random projections mainly arises due to 
their closed-form expressions, and subsequently their compu-
tational tractability in modeling impulsive environments. 

Despite the improved performance of the above methods 
in compressively sampling signals recorded in impulsive en-
vironments and corrupted by gross errors, the specifc use 
of Laplace [20], Cauchy [17], or GCD distributions [19] 
can be restrictive in capturing more generic non-Gaussian, 
heavy-tailed behaviors. In particular, several studies have 
demonstrated the power of the alpha-stable distributions [21] 
family, and especially the subclass of symmetric alpha-stable 
(SαS) distributions, in accurately modeling impulsive signal 
and noise processes [22], [23], [24], [25]. Alpha-stable distri-
butions owe their importance in both theory and practice to 

the generalization of the central limit theorem to random vari-
ables without second-order moments, since the only possible 
nontrivial limit of normalized sums of independent identically 
distributed (i.i.d.) terms, possibly of infnite variance, follows 
an alpha-stable distribution. However, despite the effectiveness 
of alpha-stable models in describing a broad range of statistical 
behaviors, from linear (i.e., Gaussian) to extremely impulsive 
signals, the lack of closed-form expressions for the density 
functions of all except for a few stable distributions (Gaussian, 
Cauchy and Lévy), has been a major drawback to their 
extensive use by the signal processing community. 

B. Main Contributions 
The main contributions of this paper are twofold: i) we 

propose a robust nonlinear sampling operator, based on the 
weighted SαS matched flter (WSMF) [26]. Our generated 
WSMF compressive measurements exploit the rich class of 
symmetric alpha-stable distributions. This yields an increased 
robustness for a broader range of impulsive observation noise 
behaviors, when compared with the previous methods based on 
the Cauchy and GCD distributions; ii) we provide an explicit 
theoretical justifcation of the improved outlier rejection capa-
bility of WSMF measurements, as well as of their asymptotic 
behavior with respect to the key parameters that control the 
performance of a weighted SαS matched flter. 

C. Paper Organization 
The rest of the paper is organized as follows: in Section II, 

we review the noisy signal model adopted in this study, in 
conjunction with the main concepts of the SαS distributions 
family, which is a key ingredient of our proposed method. 
Section III frst points out the limitations of conventional 
linear compressive sampling in impulsive environments. Then, 
the weighted stable matched measurements are defned and 
their properties are proven, as a proper nonlinear sampling 
operator with increased robustness to impulsive observation 
noise. An experimental evaluation of the robustness of our 
proposed sampling operator is presented in Section IV for a 
variety of impulsive environments, using conventional sparse 
reconstruction algorithms. Finally, Section V summarizes the 
main outcomes and gives directions for future research. 

D. Notation 
In the following, we denote scalars with lower-case letters 

(e.g. x), column vectors with lower-case boldface letters (e.g. 
x), matrices with upper-case boldface letters (e.g. X), while 
calligraphic letters are used to denote sets (e.g. S). We use xi 

to represent the ith column of a matrix X, xj to designate the 
jth element of a vector x, and Si to indicate a subset of a set S , 
whose cardinality is denoted by |S|. By XS we designate the 
submatrix formed by the columns {xi | i ∈ S}, whose indices 
belong to the set S . Similarly, by xS we denote the subvector 
formed by the elements {xj | j ∈ S}, whose indices belong 
to S . In both cases, the order is preserved among the retained 

T ∗ (t)elements. Finally, x̂, x , x , and x denote the estimate 
(reconstruction), transpose, optimal solution, and value at tth 
iteration of a vector x, respectively. Similar notations are used 
for the matrices. 



3 SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESS., NOV. 2017 

II. COMPRESSIVE SAMPLING AND SαS DISTRIBUTIONS 

This section describes the typical compressive sampling 
process for signals corrupted by additive observation noise, 
along with the basics of SαS distributions, which are at the 
core of our proposed sampling operator. 

A. Compressive Sampling of Noisy Signals 
T RNLet x = [x1, x2, . . . , xN ] ∈ denote an observed 

discrete-time signal with real-valued elements. In the follow-
ing, we assume that x can be either s-sparse (s � N ) by itself, 
that is, |{j | xj 6= 0}| ≤ s, or sparse in some transform basis 
(a.k.a. dictionary) Ψ, such that α = Ψx, where α ∈ RN 0 

is 
the s-sparse vector of transform coeffcients. Notice that, in 
general, N 0 ≥ N , since Ψ can be overcomplete [1]. In the 
subsequent analysis, Ψ and ΨT denote the analysis (direct) 
and synthesis (inverse) transforms, respectively. 

In practice, the acquired signal is typically corrupted by ob-
servation noise, which is defned as a perturbation introduced 
to the true signal prior to its sampling. In the following, we 
adopt an additive model for the observation noise, that is, 

x = x0 + eo , (1) 

where x0 ∈ RN is the true noiseless signal and eo ∈ RN is 
the observation noise component. 

Let A : RN 7−→ RM with M < N denote a sampling 
operator that maps a vector of N elements to a lower-
dimensional vector of M measurements. The compressive 
sampling of x is expressed by y = A(x), where y ∈ RM is the 
vector of measurements. In this paper we address only the case 
of observation noise. The problem of suppressing the effects 
of sampling noise, corrupting the generated measurements, is 
the subject of the companion paper [7]. 

In conventional CS systems the sampling operator A(·) is a 
linear map. Considering the general case when the true signal 
is sparse in a transform basis Ψ, x0 = ΨTα0, the vector of 
measurements is constructed by taking linear projections onto 
the rows of a random matrix, � � 

y = Φ ΨTα0 + eo = ΦΨTα0 + n , (2) 

RM×Nwhere Φ ∈ is a random measurement matrix and 
n = Φeo ∈ RM is the projected noise. Φ must satisfy specifc 
conditions (e.g. the null space property and the restricted 
isometry property for ` 1-norm minimization, and incoherence1 

with ΨT) to guarantee the successful reconstruction of a sparse 
signal. The defnition of the restricted isometry property (RIP) 
and the restricted isometry constant (RIC) is as follows (ref. [4] 
for more details): 

Defnition 1 (s-RIC) The s-restricted isometry constant of Φ 
is defned as the smallest positive quantity δs, such that 

(1 − δs)kvk22 ≤ kΦvk22 ≤ (1 + δs)kvk2 (3)2 

holds ∀ v ∈ Ts, where Ts = {v ∈ RN | kvk0 ≤ s}. A matrix 
Φ is said to satisfy a RIP of order s if δs ∈ (0, 1). 

1Although incoherence among Φ and ΨT is a requirement for guaranteeing 
accurate sparse reconstruction [2], recent works have proven that for truly 
redundant dictionaries a no-incoherence restriction on the dictionary can still 
guarantee accurate sparse recovery [27]. 

By setting A = ΦΨT as the generic linear sampling oper-
ator, the true sparse coeffcients vector α0 can be recovered 
by solving an ` 1 − ̀  2 constrained optimization problem of the 
form, 

min kαk1 s.t. ky − Aαk2 ≤ ε , (4) 
α∈RN0 

where ε > 0 is a threshold depending on the noise level. Then, 
an estimate of the true signal is given by x̂0 = ΨTα0 

∗ . We 
emphasize again that the focus of this paper is to develop a 
novel robust nonlinear sampling operator, which suppresses 
the effects of highly impulsive observation noise, whereas 
it achieves superior reconstruction accuracy when combined 
with conventional sparse reconstruction algorithms. Several 
effcient optimization formulations have been proposed in the 
literature; for convenience and without loss of generality we 
consider the basis pursuit denoising (BPD) formulation in (4), 
which is solved effectively using, for instance, the orthogonal 
matching pursuit (OMP) algorithm [28]. 

B. SαS Modeling of Heavy-Tailed Statistics 

In this section, the family of univariate SαS distributions is 
introduced as a powerful tool for modeling heavy-tailed ran-
dom variables of infnite variance. The main reason preventing 
the widespread usage of the SαS family in signal modeling 
is that, in general, no closed-form expressions exist for most 
SαS density and distribution functions except for the Gaussian 
(α = 2) and the Cauchy (α = 1). Indeed, the probability 
density function of a general univariate SαS distribution is as 
follows [29], � � 

1 
fα(x; γ, δ) = q

γ 
x − δ 

; α 
γ 

, (5) 

where Z ∞1 α−tq(x; α) = cos(xt)e dt . 
π 0 

(6) 

In the above expressions, α ∈ (0, 2] is the characteristic 
exponent, γ > 0 is the dispersion, and δ ∈ R is the location 
parameter of the distribution. The characteristic exponent is a 
shape parameter, which controls the thickness of the tails of 
the density function. The smaller the α, the heavier the tails of 
the SαS density function. The dispersion parameter determines 
the spread of the distribution around its location parameter, as 
the standard deviation does for a Gaussian distribution. 

Unlike the Gaussian density, which has exponential tails, all 
other stable densities have tails following an algebraic rate of 

−αdecay, that is, Pr(X > x) ∼ Cf · x , as x →∞, where Cf 

is a constant depending on the model parameters. It follows 
that SαS random variables with small α values are highly 
impulsive. Hereafter, the notation X ∼ fα(γ, δ) denotes that a 
random variable X follows a SαS distribution with parameters 
α, γ, δ. In the special case where γ = 1 and δ = 0 the 
distribution is called standard SαS. Furthermore, it holds that, 
if X ∼ fα(γX , 0) and Y ∼ fα(γY , 0) are two independent 
jointly SαS (i.e., with equal characteristic exponents) random 
variables, then, 

cX + δ ∼ fα (|c|γX , δ) (c 6= 0) , (7)� � 
X + Y ∼ fα (γX

α + γY
α )
1/α 

, 0 . (8) 
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In the following, we assume that the noise statistics is 
modeled by a SαS distribution located at δ = 0. Nevertheless, 
the distribution’s location can be always shifted to zero via (7) 
by subtracting δ. In our implementation, the SαS model pa-
rameters (α, γ) are estimated from a discrete set {x1, . . . , xn}
of realizations of X using the consistent maximum likelihood 
(ML) method described in [30], which gives reliable estimates 
and provides the tightest possible confdence intervals. 

III. ROBUST NONLINEAR MEASUREMENT OPERATOR 

In this section, we propose a novel nonlinear sampling 
operator, which extends the state of the art by achieving in-
creased robustness against a broader range of impulsive noise 
behaviors, from linear (i.e., Gaussian) to extremely impulsive 
observation noise. First, we demonstrate the ineffciency of 
linear projections to deal with heavy-tailed observation noise. 
Then, we defne the weighted SαS matched measurements as a 
proper robust nonlinear sampling operator, which generalizes 
recently introduced nonlinear sampling methods. 

A. Effects of Heavy-Tailed Observation Noise on Reconstruc-
tion Accuracy 

When linear projections are used to generate the measure-
ments, in conjunction with traditional sparse reconstruction 
methods, the oracle estimator achieves the best reconstruction 
performance when no prior information about the distribution 
of the true sparse signal is known. The oracle estimator, 
though, has perfect knowledge of the support of x0 (or of 
α0 when Ψ =6 I), that is, the set T ⊂ {1, 2, . . . , N} of 
indices of the s nonzero elements of the sparse vector. Then, 
by assuming that the noise is power-limited, or has a fnite 
variance, an estimator of the sparse signal is constructed by 
taking the least-squares projection onto the subspace which is 
spanned by the columns of Φ (or of A in the generic case) 
with indices in T . 

In [31], the mean squared error (MSE) is derived for the 
oracle estimator in the case of Gaussian distributed noise. 
Specifcally, let Φ be a measurement matrix with rows of norm√ 
λ, which satisfes the RIP of order s with constant δs, and 

σ2 denotes the variance of the observation noise. When the 
oe 

shown in Fig. 1a. The original signal, shown in Fig. 1b, is 
given by x0 = ΨTα0, where ΨT is the N ×N discrete cosine 
transform (DCT) matrix. A vector y0 of M = 256 linear 
measurements is generated (Fig. 1c) by projecting x0 onto 
the rows of a matrix Φ ∈ R256×1024 whose entries are i.i.d. 
standard Gaussian samples and its columns are normalized to 
unit ` 2 norm. Then, a single outlier of amplitude η = 102 

is added to a randomly chosen element of x0 and a new 
vector y of M = 256 linear measurements is generated 
using the same matrix Φ (ref. Fig. 1d), with the outlier being 
spread through all the measurements. Figs. 1e-1f show the 
reconstruction of the true sparse vector α0 from y0 and y, 
respectively, using the NESTA algorithm2, which is a fast 
and robust frst-order method that solves Basis Pursuit (BP) 
problems. Clearly, NESTA recovers perfectly the true sparse 
vector, and subsequently the original signal x0, in the noiseless 
case, whereas it fails completely when even a single outlier 
corrupts the original signal. In particular, the reconstruction 
in the noiseless case yields a signal-to-error ratio (SER) of 
175.32 dB, and a SER of −12.09 dB in the noisy case, where 
the SER (in dB) is defned as !PN 2 

j=1 xj
SER(x, x̂) = 10 log10 PN . (10) 

j=1(xj − x̂j )2 

The problem of alleviating the effects of heavy-tailed obser-
vation noise in a CS-based signal acquisition system has been 
addressed recently in the framework of robust statistics [18], 
[19]. Specifcally, the algebraic-tailed Cauchy and generalized 
Cauchy (GCD) distributions were utilized to derive nonlinear 
measurement operators based on weighted myriad (WM) esti-
mators. These estimators achieve increased robustness against 
gross observation errors, whilst the generated random mea-
surements resemble the linear projections approach in the 
noiseless case. 

In the following, we propose a new nonlinear measurement 
operator, which includes the weighted myriad-based ones as 
a special case, whilst achieving increased robustness to a 
broader range of observation noise statistics, from Gaussian 
to extremely impulsive behaviors. To this end, we construct 
the compressive weighted SαS matched measurements as the 

e 

signal is corrupted by observation noise only, the MSE of the output of a weighted matched flter by utilizing the family 
oracle estimator is lower bounded by of SαS distributions, which generalizes the properties of the 

above models. Also notice that although a GCD-based analysis � s · λ · σ2 

kx0 − x̂k2 
2 

is carried out in [19], the sparse signal reconstruction reliesE (9)≥ o ,
1 + δs on weighted myriad measurements and ` 1 minimization with 

a Lorentzian-norm constraint, which are optimal in the special 
case of a standard Cauchy model. 

where E{·} denotes the expected value of a random variable. 
From (9) it is evident that linear projections do not constitute 

a satisfactory sampling operator when the original signal 
is corrupted by heavy-tailed observation noise. Indeed, the 

B. Stable Matched Filter expected reconstruction error for the oracle estimator can be 

o 
is very large, or even infnite, as is the Under the adverse conditions arising in impulsive environ-every large when σ2 

case of heavy-tailed noise. ments, the performance of linear adaptive flters, in terms 
Fig. 1 demonstrates the ineffciency of traditional ` 1 − ` 2 of suppressing the heavy-tailed noise effects, can deteriorate 

CS methods to recover impulsive signals corrupted by gross signifcantly. To address this problem, the use of generalized 
errors. More specifcally, we consider a sparse vector α0 of ML estimators, the so-called M-estimators, has demonstrated 
length N = 1024 with s = 21 randomly chosen nonzero 
elements drawn from the standard Cauchy distribution, as 2NESTA toolbox: http://statweb.stanford.edu/∼candes/nesta/nesta.html. 

http://statweb.stanford.edu/�candes/nesta/nesta.html
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 1. Reconstruction of an impulsive signal corrupted by a single outlier. 
NESTA algorithm is used to solve a BP problem. (a) True sparse vector; 
(b) original DCT synthesized signal; (c) linear measurements in the noiseless 
case; (d) linear measurements in the noisy case; (e) reconstructed sparse vector 
in the noiseless case; (f) reconstructed sparse vector in the case of an outlier. 

increased robustness to impulsive noise. Motivated by the suc-
cess of M-estimators, our proposed robust sampling operator 
is also developed in the framework of robust statistics. 

More specifcally, an M-estimator built on a SαS distri-
bution yields a robust nonlinear fltering technique, which is 

Toptimal for infnite variance noise. Let x = [x1, x2, . . . , xN ] 
be the sampled signal and ρ(x) = − log (fα(x; γ, 0)) be the 
negative of the log SαS density for x ∈ R, and defne the 
following cost function, 

N NX X 
Gα,γ (θ; x) = ρ(xj − θ) = − log (fα(xj − θ; γ, 0)) . 

j=1 j=1 
(11) 

Then, the unweighted SαS flter (USF) is defned as follows: 

Defnition 2 (Unweighted SαS flter) Given a vector of sam-
ples x = [x1, x2, . . . , xN ]

T and the cost function Gα,γ (θ; x), 
the unweighted SαS flter is defned as 

θ̂  
α,γ (x) , USF (α, γ; x) = arg min Gα,γ (θ; x) . (12)

θ 

Since ρ(x) is the negative of the log density, the minimum 
θ̂  
α,γ is exactly the M-estimator of location. Note that in the 

Gaussian case (α = 2), the minimum can be found explicitly 
and is simply the sample mean. However, in the general SαS 
case (0 < α < 2) the flters are nonlinear with no closed-form 
solution, and the minimum in (12) must be found numerically. 
We note that all the subsequent numerical calculations and 
optimizations involving SαS densities are performed using the 
STABLE toolbox3. 

A natural extension of the unweighted SαS flter is obtained 
by assigning weights to the samples in the ML location 
estimator. The weights refect the different levels of reliabil-
ity of the observed samples. More specifcally, consider the 

Tsamples vector x = [x1, x2, . . . , xN ] and a weight vector 
T 

w = [w1, w2, . . . , wN ] ∈ RN . A weighted modifcation of 
the cost function in (11) is defned as follows, 

NX 
Gα,γ (θ; w, x) = ρ(wj (xj − θ)) 

j=1 

NX 
= − log (fα(wj (xj − θ); γ, 0)) . (13) 

j=1 

Then, the weighted SαS matched flter (WSMF) is defned 
accordingly: 

Defnition 3 (Weighted SαS matched flter) Given a vector 
Tof samples x = [x1, x2, . . . , xN ] , a weight vector w = 

T
[w1, w2, . . . , wN ] , and the cost function Gα,γ (θ; w, x), the 
weighted SαS matched flter is defned as 

θ̂  
α,γ (w, x) , WSMF (α, γ; w, x) = arg min Gα,γ (θ; w, x) . 

θ 
(14) 

The WSMF output is the value of θ at the global minimum 
of the weighted cost function Gα,γ (θ; w, x). However, reliable 
and accurate algorithms are required for solving (14) due to the 
nonconvex behavior of the cost function. A computationally 
tractable approach for the numerical calculation of the WSMF 
output is described in [26], [32] and integrated in the STABLE 
toolbox, which is employed in our implementation. This 
approach relies on a global minimization scheme based on 
branch-and-bound to guarantee that the global minimum is 
found. We also note that it is possible to fnd sample sets 
for which the WSMF output is not unique. To protect the 
formalism of Defnition 3, we accept any solution to (14) as a 
valid calculation of the WSMF output. The degenerate case of 
getting more than one WSMF values has negligible probability 
for a large sample size. However, we may get more than one 
values at the output of a WSMF for small sample sizes. In 
this case, we choose one of them at random. Nevertheless, 
the global optimization scheme implemented in the STABLE 
toolbox guarantees convergence to the global minimum with 
high probability given a good initial guess. 

Most importantly, the weighted myriad flter (WMyF), 
which has been exploited in recent studies [17], [19] for 
the design of robust measurement operators, constitutes an 

3Robust Analysis Inc., STABLE toolbox version 5.3 (http://www. 
robustanalysis.com). 

https://robustanalysis.com
http://www
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approximation of the WSMF. As such, we expect that our 
proposed nonlinear sampling operator based on the WSMF 
will achieve a superior performance, in terms of increased 
robustness to heavy-tailed observation noise, when compared 
against its myriad-based counterparts. For completeness of 
presentation we also cite the defnition of the WMyF [19]: 

Defnition 4 (Weighted myriad flter) Given a vector of 
Tsamples x = [x1, x2, . . . , xN ] and a weight vector w = 

[w1, w2, . . . , wN ]
T, the weighted myriad flter is defned as 

θ̂  
k(w, x) , WMyF (k; w, x) 

NX � � 
2 

= arg min log k2 + |wj | (sign(wj )xj − θ) , (15)
θ 

j=1 

where k is the scale parameter of the (generalized) Cauchy 
distribution. Notice that, although (15) is the optimal ML 
estimate of location for the standard Cauchy distribution, it 
has been also used in the case of the GCD family. 

Fig. 2 compares the behavior of ρ(x), which is the main 
constituent component of the cost functions defned above, 
for the standard SαS model, ρ(x) = − log (fα(x; 1, 0)) with 
α ∈ {0.5, 1, 1.5, 1.9}, and the standard Gaussian distribution, 

2ρ(x) = x . In the standard SαS case, or equivalently, in the ` p 

case with p < 2, the curves indicate the nonconvex nature of 
ρ(x), which is opposed to the convex behavior of the Gaussian 
model, or equivalently, the squared ` 2 norm. Most importantly, 
this plot reveals that, in contrast to the Gaussian model, the 
cost functions based on ρ(x) with α < 2 downweight large 
deviations, thus yielding more robust flters in the presence 
of outliers. Furthermore, the zoomed inner plot illustrates 
that, as the characteristic exponent decreases, the function 
ρ(x) is more robust to outliers, since it increases much more 
slowly when |x| → ∞. This behavior also demonstrates the 
superiority of the SαS matched flter against the previous 
approaches based on the Cauchy distribution, in terms of better 
controlling the outlier rejection intensity through an additional 
degree of freedom (i.e., the parameter α) instead of relying 
only on the scale parameter. 

Fig. 2. Comparison of the ρ(x) = − log (fα(x; γ, 0)) function for the 
2standard SαS model (γ = 1) and the standard Gaussian case ρ(x) = x . 

C. Controlling the Behavior of the SαS Matched Filter 

The SαS matched flter enables a rich class of operating 
modes, which can be controlled by tuning the model param-
eters (α, γ). In particular, when we operate in light-tailed 
environments, where the noise statistics is close to a Gaussian, 
the optimal performance of the flter should be associated with 
the sample mean. On the other hand, for heavy-tailed noise, 
the flter should be resistant to large deviations, approximating 
the behavior of a mode-type estimator. 

In Fig. 3, we examine the trade-off between effciency in 
the light-tailed case and resistance to heavy-tailed observation 
noise, by tuning appropriately the values of (α, γ). To this end, 
we illustrate the behavior of the WSMF output, defned in (14), 
by varying the model parameters (α, γ), and compare against 
the performance of the WMyF, defned in (15), which depends 
on a single parameter k. For convenience, we refer to both γ 
and k as the scale parameter of the corresponding flter. Fig. 3a 
shows the histogram of a sample set, which is generated by 
nonuniformly drawing N = 64 random integers in the interval 
[−1, 10], with an estimated average of 4.94 and a mode at 
8. The values of the WSMF and WMyF are calculated for 
this sample set for varying α ∈ {0.8, 1.2, 1.6, 1.9} and scale 
parameter in [10−2 , 102], while setting all the weights wj , 
j = 1, . . . , N , equal to 1 (the WSMF is reduced to a USF in 
this case). Fig. 3b shows the value of each flter as a function 
of the scale parameter, for the various WSMFs and the WMyF. 
As it can be seen, as the scale parameter increases, the values 
of the flters tend asymptotically to the sample average, whilst 
as it decreases all the flters favor the mode 8, which indicates 
the location where samples are more likely to occur or cluster. 
The only difference among the flters concerns the regime of 
the scale parameter, where the flters switch between the mode-
mean modes. Specifcally, we observe that, as the WSMF 
tends to the Gaussian case (i.e., α → 2), the fat regime 
approximating the sample average covers a larger range of 
the scale parameter. 

The behavior of the stable and the myriad flters to the 
presence of additive observation noise is illustrated in Figs. 3c-
3d. In the frst case, the original sample set is corrupted by 
light-tailed noise with parameters (α = 1.99, γ = 1). As 
it can be seen, all the WSMFs and the WMyF present the 
same robustness against the near-Gaussian additive noise, with 
their behavior resembling the noiseless case (Fig. 3b). On the 
contrary, when the corrupting noise is drawn from a highly 
impulsive SαS distribution with parameters (α = 0.5, γ = 1), 
the behavior of the flters becomes very sensitive to large 
deviations. In particular, we observe that the WMyF output 
diverges from the sample average for large values of the scale 
parameter, which is also the case for the WSMF outputs with 
moderate and large values of α. However, in contrast to the 
WMyF, whose characteristic exponent is fxed to α = 1, the 
WSMF achieves increased robustness via the double tuning 
of α and γ. Indeed, as Fig. 3d demonstrates, the outlier 
rejection capability of the WSMF in the presence of gross 
noise samples can be enhanced by decreasing the value of α 
(see USF curve for α = 0.8), which is not possible for the 
myriad flter. On the other hand, for small values of the scale 
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parameter, the dispersion of the data is assumed to be small, 
and the corrupting noise samples are considered as outliers, 
not affecting signifcantly the output of the WSMF and WMyF. 

(a) (b) 

(c) (d) 

Fig. 3. Behavior of WSMF and WMyF flters as a function of the scale 
parameter and the characteristic exponent (for the WSMF) (weight vector 
is fxed to w = 1, thus WSMF = USF). (a) Histogram of original sample 
set; (b) output of flters applied on original set; (c) output of flters applied 
on original set corrupted by noise samples drawn from a SαS model with 
(α = 1.99, γ = 1); (d) output of flters applied on original set corrupted by 
noise samples drawn from a SαS model with (α = 0.5, γ = 1). 

D. WSMF Projections 

Given the additive model for the observation noise as 
described in (1), our objective is to design a robust sampling 
operator A : RN 7−→ RM , which maps a vector of N elements 
to a lower-dimensional vector of M measurements (M � N ). 
Such an operator must enable the accurate reconstruction of 
the acquired signal, while being resilient to the presence of 
gross errors when we operate in impulsive environments. 

Let x0 ∈ RN be the original noiseless signal, which is 
sparse in some basis Ψ (for simplicity we assume Ψ = I), 
and x = x0 + eo be the observed noisy signal. Furthermore, 
let φi ∈ RN , i = 1, . . . ,M , be the measurement kernels 

RM×Nthat form the measurement matrix Φ ∈ , that is, 
T

Φ = [φ1 φ2 · · · φM ] . In traditional CS, the ith measurement 
is generated as described in (2), that is, by taking the linear 
projection of x onto the ith row of Φ, yi = φi 

T x. 
In contrast to the conventional linear approach, our pro-

posed compressive sampling operator is defned in a non-
linear fashion. In particular, the ith measurement is given 
by yi = h(φi, x), where h : RN × RN 7−→ R denotes 
the nonlinear action of the ith measurement kernel on the 
signal. Subsequently, the overall nonlinear sampling operator 
is defned as 

y = AΦ(x) , [h(φ1, x), h(φ2, x), . . . , h(φM , x)] , (16) 

where the subscript in AΦ highlights the dependence of the 
operator on the measurement kernels. 

When heavy-tailed observation noise corrupts the signal of 
interest, our nonlinear sampling operator must satisfy two ba-
sic requirements, namely, i) AΦ(x) must preserve the informa-
tion content of the original signal x0 by suppressing the effects 
of large noise samples; ii) AΦ(x) should resemble the linear 
measurements as much as possible in the noiseless case, that 
is, y = AΦ(x) ≈ Φx0 when eo → 0. The second requirement 
enables the use of traditional sparse reconstruction algorithms 
for the recovery of x0 from the nonlinear measurements y. 

Given the problems arising in the presence of impulsive 
observation noise and the desired requirements of a robust 
sampling operator, we suggest the WSMF as a robust non-
linear sampling method. This is motivated by its increased 
robustness in a wide range of impulsive noise behaviors, 
from linear (i.e., Gaussian) to extremely impulsive observation 
noise, as well as by its asymptotic properties, which enable 
accurate reconstruction of the noise-free sparse signal using 
conventional CS reconstruction algorithms as if we operated 
in a light-tailed environment. 

Our proposed WSMF projections for the generation of 
compressive measurements are defned as follows: 

TDefnition 5 (WSMF projections) Let Φ = [φ1 · · · φM ] ∈ 
RM×N (M � N ) be a measurement matrix, whose ith row is 
the measurement kernel φT, and φi,j its (i, j)th element. Then, i 
the WSMF projections are defned as 

hα,γ (φi, x) , ci · WSMF (α, γ; φi, x) , (17) 

for i = 1, . . . ,M , where the weighted stable matched fl-
ter is defned in (14) and ci is an appropriate scaling factor 
used to adjust the magnitude of the measurements (e.g. ci =PN |φi,j |).j=1 

As mentioned above, a desirable property of a robust 
sampling operator is the downweighting of outliers, that is, 
gross errors have negligible infuence on the generated WSMF 
measurements. Indeed, the following property states the outlier 
rejection capability of our proposed WSMF projections. 

Property 1 (Outlier rejection of WSMF projections) Let 
γ < ∞, then 

lim hα,γ (φi, [x1, x2, . . . , xN ]) 
xN →±∞ 

= hα,γ (φi, [x1, x2, . . . , xN−1]) . (18) 

Proof: The above property results by combining (13), (14) 
and (17), and noticing that by adding a constant (see third 
equation below) to the objective function it does not affect the 
optimization, as follows: 

lim hα,γ (φi, [x1, x2, . . . , xN ]) 
xN →±∞ ! 

NX 
= lim arg min − log (fα(φi,j (xj − θ); γ, 0)) 

xN →±∞ θ 
j=1 

N−1X 
= lim arg min − log (fα(φi,j (xj − θ); γ, 0)) 

xN →±∞ θ 
j=1 
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! 
− log (fα(φi,N (xN − θ); γ, 0)) 

N −1X 
= lim arg min − log (fα(φi,j (xj − θ); γ, 0)) 

xN →±∞ θ 
j=1 ! 

− log (fα(φi,N (xN − θ); γ, 0)) + log (fα(φi,N xN ; γ, 0)) 

N −1X 
= lim arg min − log (fα(φi,j (xj − θ); γ, 0)) 

xN →±∞ θ � j=1 �! 
fα(φi,N (xN − θ); γ, 0)− log . (19)

fα(φi,N xN ; γ, 0) 

Evaluating the above limit is equivalent to fnding the limit 
of the second logarithmic term in (19). Due to the conti-
nuity of the logarithm for all x > 0, the lim and log can 
be interchanged yielding an indeterminate form 0/0, since 
fα(x; γ, 0) → 0 as x → ±∞. By applying L’Hospital’s rule 
and using the expansion of the frst derivative of a SαS density 
fα 
0 (x; γ, 0) as x → ±∞ [33], the previous indeterminate form 

is evaluated as follows: � � 
fα(φi,N (xN − θ); γ, 0)

lim log 
xN →±∞ fα(φi,N xN ; γ, 0)� � 

f 0 α(φi,N (xN − θ); γ, 0) 
= log lim 

xN →±∞ f 0 α(φi,N xN ; γ, 0)⎛ � ⎞�−αk−2 
1 P∞ φi,N (xN −θ) 

γ2π k=1 ck,α ⎜ γ ⎟ 
= log ⎝ lim � ⎠ 

xN →±∞ P∞ 
�−αk−2 

1 φi,N xN 

γ2π k=1 ck,α γ 

= log (1) = 0 , (20) � �Γ(αk+2) παk where ck,α = (−1)k sin . The last equalityk! 2 
follows from the fact that the terms of the fraction corre-
sponding to the same power are cancelled out as x → ±∞. 
Combining (19) and (20) yields 

lim hα,γ (φi, [x1, x2, . . . , xN ]) 
xN →±∞ ⎛ ⎞ 

N−1X 
= arg min ⎝− log (fα(φi,j (xj − θ); γ, 0))⎠ 

θ 
j=1 

= hα,γ (φi, [x1, x2, . . . , xN−1]) , (21) 

which completes the proof. 

E. Asymptotic Behavior of WSMF Projections and Parameter 
Setting 

Regarding the asymptotic behavior of our WSMF pro-
jections with respect to the characteristic exponent α, the 
following property holds as α approaches the critical points 
0, 1, and 2. 

Property 2 (Asymptotic behavior of WSMF projections 
with respect to α) Let γ < ∞, then the asymptotic behavior 

of the WSMF projections as α approaches the critical points 0, 
1, and 2, is as follows: 

lim hα,γ (φi, x) = h1,γ (φi, x) (22)
α→1 

lim hα,γ (φi, x) = h2,γ (φi, x) (23)
α→2 

lim hα,γ (φi, x) = ci · min {Gα,γ (xj ; φi, x)} , (24)
α→0 j=1,...,N 

where ci is a scaling factor as in Defnition 5. 

Proof: The frst two equalities result directly from the 
defnition of the WSMF projections, and specifcally from 
the smoothness of the cost function Gα,γ (θ; φi, x) and the 
continuity of ρ(x) = − log (fα(x; γ, 0)) with respect to α. 
On the other hand, as α → 0, the cost function is highly 
nonconvex with multiple local minima located exactly at the 
points xj , j = 1, . . . , N , that is, where φi,j (xj − θ) = 0. If 
some φi,j = 0, the corresponding term is ignored, since in this 
case ρ(φi,j (xj −θ)) = ρ(0) does not depend on θ. As a result, 
the overall minimum of the WSMF in (14), and subsequently 
the limit of hα,γ (φi, x) as α → 0, is attained among the points 
xj with φi,j 6= 0, namely, minj=1,...,N {Gα,γ (xj ; φi, x)}. 
This is exactly a selection flter. 

Apart from the outlier rejection property of WSMF pro-
jections (see Property 1), the second desirable property is 
that the nonlinear sampling operator, AΦ(x), should resemble 
the linear measurements as much as possible in the noiseless 
case. The following property states the asymptotic behavior of 
WSMF projections as γ →∞. 

Property 3 (Asymptotic behavior of WSMF projections 
with respect to γ) Fix α ∈ (0, 2]. In the limit as γ → ∞, 
the WSMF projections reduce to a linear projection onto the 
elementwise square of φi, that is, PN 

φ2 
j=1 i,j xj

lim hα,γ (φi, x) = ci · PN , (25)
γ→∞ φ2 

j=1 i,j 

where ci is a scaling factor as in Defnition 5. 

Proof: For a fxed α ∈ (0, 2], the function ρ(x) = 
− log (fα(x; γ, 0)) becomes convex on an increasingly larger 
interval as γ → ∞ [26]. Furthermore, the nonlinear score 

(x;γ,0)αfunction g(x) = ρ0(x) = − f
0 

is approximately linearfα(x;γ,0) 
on any bounded set |x| ≤ B. Specifcally, when α = 2 

x(Gaussian case) ρ(x) = 
2 

and g(x) = x, that is, the score2 
function is linear and the WSMF reduces to a linear flter. 
On the other hand, for α < 2 the function ρ(x) becomes 
fared and wider, yet nonconvex (ref. Fig. 2), whilst g(x) 
decreases to zero as |x| → ∞ (ref. Fig. 4a). The practical 
implication of this behavior is that the WSMF suppresses 
the signifcance of extreme values. Given that g(x) is smooth 
and infnitely differentiable, a linear approximation is obtained 
locally around x = 0 using Taylor’s theorem, that is, 

g(x) = g(0) + g 0(0)x + O(x 2) , (26) 

where O(x2) denotes the higher order terms. Focusing on 
expansions of the frst derivative of a SαS density function 
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as x → 0 it holds [33], � �∞ 2k+1 � �2k−1X1 Γ α x 
fα 
0 (x; γ, 0) = (−1)k . (27)

γ2πα (2k − 1)! γ 
k=1 

From (27) we get fα 
0 (0; γ, 0) = 0 and subsequently g(0) = 

− = 0. Regarding the frst derivative of the scorefα(0;γ,0)
function we have 

f 00 α (x; γ, 0)fα(x; γ, 0) − (fα 
0 (x; γ, 0))2 

g 0(x) = − . (28)
(fα(x; γ, 0))2 

(0;γ,0)αGiven that fα 
0 (0; γ, 0) = 0, we get g0(0) = − f 00 

. Afterfα (0;γ,0) 
Γ(3/α)some algebraic manipulation, this ratio equals g0(0) = .Γ(1/α)

Then, scaling by γ →∞ expands the scale of the score func-
tion, so the linear approximation (26) holds over increasingly 
larger intervals (ref. Fig. 4b). 

From the above, we deduce that the frst derivative of the 
weighted SαS cost function is given by 

NX 
G0 α,γ (θ; φi, x) = − φi,j ρ

0(φi,j (xj − θ)) 
j=1 

NX 
≈ − φi,j g 0(0) (φi,j (xj − θ)) 

j=1 ⎛ ⎞ 
N NX X 

= −g 0(0) ⎝ φ2 
i,j xj − θ φ2 

i,j 
⎠ . (29) 

j=1 j=1 

Setting G0 α,γ (θ; φi, x) = 0 and solving with respect to θ gives PN 
φ2 

j=1 i,j xj
θ̂  
α,γ (φi, x) = PN . (30) 

φ2 
j=1 i,j 

Combining (30) with (17) concludes the proof. 

(a) (b) 

α(x;γ,0)Fig. 4. Comparison of ρ0(x) = − 
f 0 

function with α ∈
fα(x;γ,0) 

{0.5, 1, 1.5, 2} for (a) the standard SαS model (γ = 1) and (b) a scaled 
SαS model (γ = 20). 

It is important to emphasize that calibrating the WSMF 
projections by appropriately setting the model parameters 
(α, γ) optimizes the shape of the weighted SαS cost function 
Gα,γ (θ; φi, x) for a given set of samples x and measurement 
kernels φi (i = 1, . . . ,M ), and subsequently the performance 
of the WSMF projections. However, determining the optimal 
(α, γ) – optimal in the sense that the WSMF projections sup-
press the effects of large noise samples, whilst they resemble 

linear measurements as much as possible in the noiseless case 
– from the corrupted signal x = x0 + eo is a nontrivial task. 

To address this issue, we introduce an iterative algorithm, 
which successively flters the noisy signal x and updates 
the SαS model parameters (α, γ) via ML estimation on the 
residual between the input noisy signal and its current fltered 
version. The fltering is performed using the weighted SαS 
matched flter of (14) in overlapping windows of length 
lwin = L and step size swin = 1, with weights w = 1 ∈ RL . 
The choice of an optimal flter order, L, is still an open 
question, but our experimental evaluation showed that a good 
trade-off between execution speed and estimation accuracy 
is obtained by setting L = 0.05 · N . The end extremes of 
the input signal are treated using constant padding, where the 
frst and the last sample are repeated at the beginning and at 
the end of the signal, respectively. The algorithm terminates 
when either a maximum number of iterations, maxIterfilt, 
is reached, or the relative change between consecutive SαS 
parameter estimates falls below a threshold tolfilt. In our 
implementation we set maxIterfilt = 10 and tolfilt = 0.001. 
The algorithm is summarized in Algorithm 1. 

Algorithm 1 Calibration of SαS parameters (α, γ) for WSMF 
projections 
Input: x, L, w ∈ RL , maxIterfilt, tolfilt 
Initialize: 
SαS parameters: [α(0), γ(0)] = mlfit(x) (∗) 

relChange = 1000·tolfilt, t = 0 
1: while (relChange > tolfilt or t < maxIterfilt) do 
2: pprev = [α

(t), γ(t)] 
3: Signal fltering: x(t) = stablesigfilt(x, w, L, α(t),f 

γ(t)) (∗∗) 

4: Update residual: r(t) = x − x(t) f 
(t))5: Update SαS parameters: [α(t+1), γ(t+1)] = mlfit(r 

6: pnew = [α
(t+1), γ(t+1)] 

7: relChange = kpnew − pprevk2/kpprevk2 

8: t = t + 1 
9: end while 

Output: The fnal SαS model parameters (α(t), γ(t)) 

(∗) mlfit(x) denotes a function that returns the ML estimates of 
the SαS model parameters for an input signal x. 

(∗∗) stablesigfilt(x, w, L, α, γ) denotes a function that imple-
ments the WSMF of (14) in overlapping rolling windows of 
length L and step size equal to 1 using the weights w. 

An interesting observation is that when the original signal 
x0 is sparse by itself and sparse impulsive noise is added 
directly, then the signal and noise become indistinguishable, 
except if the noise samples have signifcantly larger magnitude. 
However, in practice noise is added in the observation do-
main, which rarely coincides with the sparsity inducing basis. 
Furthermore, WSMF projections are more expensive to be 
generated in terms of computational complexity, since each 
projection is produced by solving an optimization problem. 
Thus, WSMF projections should be considered for compres-
sively sampling a signal when the sensing conditions are not 
ideal or when a robust sensing process is required. 
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IV. PERFORMANCE EVALUATION 

This section evaluates the effectiveness of WSMF projec-
tions as a robust compressive sampling technique in impulsive 
environments. To this end, numerical experiments are per-
formed with synthetic signals, along with a comparison against 
random linear projections and myriad measurements. 

For the generation of synthetic signals, the following set-
tings are employed unless stated otherwise: signal length N = 
1024; cardinality of the sparse support s = |S| = d2%·Ne; the 
nonzero coeffcients are drawn from a Student’s-t distribution 
with one degree of freedom and their positions are chosen 
uniformly at random from the index set {1, 2, . . . , N}; the 
DCT matrix is used as the sparsifying dictionary Ψ, that is, 
the linear measurement operator is given by A = ΦΨT; the 
measurement matrix Φ has i.i.d. entries drawn from a standard 
Gaussian distribution and its columns are normalized to unit 
` 2 norm; the number of random projections (measurements) is 
set to M = d25%·Ne unless otherwise specifed. Furthermore, 
the results of each experiment are averaged over 500 Monte 
Carlo repetitions with different realizations of the sparse 
signals, the random measurement matrices, and the additive 
observation noise component. The reconstruction quality is 
measured in terms of the signal-to-error ratio (SER) (in dB) 
defned by (10). In the subsequent experimental evaluation, 
the orthogonal matching pursuit (OMP) [28]4 is used with the 
prior assumption that the sparsity level s is known. 

First, we illustrate experimentally the outlier rejection ca-
pability of WSMF projections (Property 1). For this purpose, 
two impulses are added to the original signal at randomly 
chosen positions. The amplitude of the frst impulse is equal 
to 103 and of the second equals 102 . The true sparse sig-
nal is reconstructed using OMP for both linear and WSMF 
projections. The resulting SER is equal to −36.01 dB for the 
linear projections and 34.72 dB for the WSMF projections, 
where the flter parameters (α, γ) are estimated directly from 
the corrupted signal using Algorithm 1. Fig. 5 shows the true 
sparse signal, the associated linear and WSMF measurements, 
and the corresponding OMP reconstructions. 

Next, we address the more challenging case, where the 
original signal is corrupted by additive SαS observation noise. 
Specifcally, the noise characteristic exponent αn takes values 
in [0.8, 2], whilst its dispersion γn varies in {0.01, 0.05}. 
This gives a geometric power range between −21.25 dB and 
−12.38 dB. The geometric power (in dB) is a measure of 
strength for random variables with infnite variance, which is 
defned as � 

1 � 
−1αPg(α, γ) = 10 log10 γCg , (31) 

Cewhere Cg = e and Ce = 0.5772 . . . is the Euler constant. 
Fig. 6 compares the reconstruction performance of OMP 

when using WSMF projections against linear and myriad [19] 
projections for SαS observation noise with model parameters 
as mentioned above. Fig. 6a corresponds to a low-dispersion 
(or, equivalently, low geometric power) noise, while Fig. 6b 
demonstrates the performance in higher-dispersion (or, equiv-
alently, higher geometric power) noise conditions. In both 

4MATLAB code available from https://goo.gl/VHvyJe. 

(a) (b) 

(c) (d) 

Fig. 5. Outlier rejection capability of WSMF projections. (a) True sparse 
signal; (b) linear and WSMF measurements for the DCT synthesized signal 
corrupted by two impulses; (c) OMP reconstructed signal from WSMF 
projections; (d) OMP reconstructed signal from linear projections. 

cases, WSMF projections outperform signifcantly the myriad 
projections, especially as the noise characteristic exponent 
tends to 2, deviating signifcantly from the Cauchy distribution. 
This illustrates the increased robustness of WSMF measure-
ments to a broader range of noise behavior, due to increased 
adaptability to the underlying statistics of the observation 
noise. Concerning the linear projections, in highly impulsive 
environments (small αn values) they totally fail to give a reli-
able reconstruction of the true sparse signal, even for moderate 
noise dispersion values. On the other hand, they converge to, 
or even slightly exceed, the performance of WSMF projections 
when the noise statistics tends to the Gaussian (αn → 2) 
and the noise dispersion is small. In the higher-dispersion 
case, OMP yields a deteriorated reconstruction accuracy for 
all the three types of projections as αn decreases, nevertheless 
yielding an increased SER for the WSMF projections. This 
simulation also reveals the ineffciency of traditional CS recon-
struction algorithms to achieve even fair approximations of the 
true sparse signals when operating in highly impulsive noisy 
conditions. It is exactly this shortcoming that motivated our 
study in the companion paper (Part II) [7] towards developing 
a novel CS reconstruction algorithm, which better adapts 
to the underlying heavy-tailed statistics of signals that are 
compressively sampled in impulsive environments. 

Finally, we examine the performance of WSMF measure-
ments as their number, M , varies from 2s (i.e., twice the 
cardinality of the sparse support) to N/2, for a varying noise 
impulsiveness, αn ∈ {1, 1.5, 1.9}, and a fxed γn = 0.1. 
The OMP-based reconstruction using linear projections con-
taminated by near-Gaussian noise (αn = 1.9) is used as a 
benchmark. Fig. 7 shows the SER (in dB) averaged over 500 
Monte Carlo runs between the original noiseless signal and its 

https://goo.gl/VHvyJe
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(a) (b) 

Fig. 6. Comparison of WSMF projections with linear and myriad projections 
for SαS observation noise with αn ∈ [0.8, 2] and γn ∈ {0.01, 0.05}. 
Average SER is shown for OMP-based reconstruction over 500 Monte Carlo 
runs. 

OMP-based reconstructions, as a function of M , using WSMF, 
linear, and myriad measurements. First, we observe again the 
signifcantly improved reconstruction performance when using 
WSMF measurements against their myriad counterpart, which 
becomes more prominent as the noise statistics tends to a 
Gaussian. Moreover, although WSMF projections introduce 
nonlinear distortions to the generated measurements, however, 
their performance coincides with the benchmark in the near-
Gaussian case. This is in contrast to the myriad projections, 
which yield a signifcantly degraded performance. Another 
interesting remark is that WSMF projections are more effcient 
than myriad projections even for very small values of M . This 
reveals that, although the generation of WSMF measurements 
relies on the implicit estimation of (αn, γn), which may not 
be accurate for very small sample sizes, however, they still 
outperform the myriad case where αn is inherently fxed to 1. 
Finally, the results show that, as expected, more measurements 
are required to improve the reconstruction quality and com-
pensate for the increased impulsiveness when αn decreases, 
for all the three types of projections. 

Fig. 7. Comparison of WSMF projections with linear and myriad projections 
for SαS observation noise with αn ∈ {1, 1.5, 1.9} and γn = 0.1. Average 
SER is shown as a function of M for OMP-based reconstruction over 500 
Monte Carlo runs. 

V. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, a novel method was proposed for robust 
nonlinear compressive sampling of signals corrupted by heavy-
tailed, infnite variance observation noise. Specifcally, the 
noise statistics was modeled via SαS distributions. Subse-
quently, the weighted SαS matched flter (WSMF) projec-
tions were proposed as effcient nonlinear sampling operators, 
which suppress the effects of impulsive observation noise. 
The outlier rejection and asymptotic behavior properties of 
WSMF projections were proven theoretically, and guidelines 
were given for tuning appropriately their parameters to achieve 
improved adaptation to the underlying heavy-tailed statistics of 
the noise. Moreover, it was shown that WSMF measurements 
can be utilized with traditional sparse reconstruction methods 
outperforming linear projections, as well as the previously 
introduced myriad projections that are derived from Cauchy 
statistics. 

However, a theoretical framework for selecting the optimal 
values of the key parameters for the WSMF projections is 
still an open task. Furthermore, we are interested in extending 
the compressive sampling method proposed herein in the case 
of observation noise modeled by a general (skewed) alpha-
stable distribution. We expect that the incorporation of an 
additional free parameter (i.e., the skewness) will improve 
the adaptability of the nonlinear sampling operator to the 
underlying heavy-tailed statistics of infnite variance noise, 
thus further increasing its robustness against gross outliers. 

Our proposed CS framework for signals corrupted by impul-
sive noise is completed in the companion paper (Part II) [7], 
which addresses the case of heavy-tailed sampling noise. To 
this end, a novel iterative hard thresholding method is designed 
based on a minimum dispersion optimization criterion, which 
emerges naturally in the case of additive impulsive sampling 
noise modeled by SαS distributions. We emphasize that the 
methodologies presented herein (for compressive sampling) 
and the companion paper (for sparse signal reconstruction) 
can be used independently of each other, as well as together 
to form an integrated CS system. 
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