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Abstract—This paper addresses the problem of compressively 
sensing a set of temporally correlated sources, in order to 
achieve faithful sparse signal reconstruction from noisy multiple 
measurement vectors (MMV). To this end, a simple sensing 
mechanism is proposed, which does not require the restricted 
isometry property (RIP) to hold near the sparsity level, whilst it 
provides additional degrees of freedom to better capture and 
suppress the inherent sampling noise effects. In particular, a 
reduced set of MMVs is generated by projecting the source 
signals onto random vectors drawn from isotropic multivariate 
stable laws. Then, the correlated sparse signals are recovered 
from the random MMVs by means of a recently introduced 
sparse Bayesian learning algorithm. Experimental evaluations 
on synthetic data with varying number of sources, correlation 
values, and noise strengths, reveal the superiority of our proposed 
sensing mechanism, when compared against well-established 
RIP-based compressive sensing schemes. 

Index Terms—Compressive sensing, temporally correlated 
sources, isotropic multivariate stable laws, sparse Bayesian learn-
ing 

I. INTRODUCTION 

At the heart of compressive sensing (CS) is the key idea 
that the generation of random measurements can be used as 
an effcient sensing mechanism. The intrinsic randomness is 
critical not only in deducing important theoretical results, but 
also in achieving a better tradeoff between the sampling cost 
and the reconstruction accuracy of signals acquired in a broad 
range of practical applications. 

Given a signal x ∈ RN , the basic mathematical model for 
generating a reduced set of noisy random measurements is 

y = Φx + z , (1) 

where y ∈ RM is the measurement vector (M � N ), Φ ∈ 
RM ×N is a known measurement matrix whose rows are the 
sensing vectors, and z ∈ RM is an unknown sampling noise. 
The objective is to estimate x given y and Φ. For this, specifc 
theoretical upper bounds have been obtained for the maximum 

This work was partially funded by EONOS Investment Technologies, the 
European Union’s Horizon 2020 DEDALE project under grant agreement 
No. 665044, and by the contract W911NF-12-1-0385 from the U.S. Army 
Research Offce. 

University of Crete 
Heraklion, Greece 

tsakalid@ics.forth.gr 

sparsity level of x, i.e., the number of its nonzero elements, 
that guarantee perfect and unique reconstruction [1]. 

Motivated by several applications, such as multichannel 
electroencephalographic (EEG) signal processing [2], target 
localization [3], and direction-of-arrival (DOA) estimation [4], 
where a set of measurement vectors is available for each 
source, the basic CS model in (1) has been extended to the 
multiple measurement vectors (MMV) model [5], given by 

Y = ΦX + Z , (2) 
.where Y = [y1 · · · yL] ∈ RM×L is the matrix whose columns 

. are the L measurement vectors, X = [x1 · · · xL] ∈ RN×L is 
an unknown matrix to be recovered with each row representing 

. a source, and Z = [z1 · · · zL] ∈ RM×L is an unknown noise 
matrix. Although the conventional MMV model assumes that 
all the columns in X have identical support (i.e., the indexes 
of nonzero elements), however, in practice the sparsity profles 
may vary and the common sparsity assumption is valid for only 
a small number L of measurement vectors. 

Nevertheless, the source signals of interest often share some 
common structures in practice. Most of the MMV-based CS 
reconstruction algorithms exploit spatial dependencies [6], 
whereas the existence of temporal correlations among the 
sources has been recently accounted for in [7] to improve the 
reconstruction accuracy of a sparse source matrix X. In this 
paper we focus on the second case, specifcally, on the design 
of an effcient, yet simple, compressive sensing mechanism 
for generating MMVs from temporally correlated sources. As 
for the reconstruction, we employ the block sparse Bayesian 
learning framework proposed in [7], and particularly the 
fast T-MSBL algorithm1, which yields an improved recovery 
performance among existing algorithms for the MMV model. 

A key ingredient of any CS scheme is the careful selection 
of an appropriate measurement matrix Φ. The traditional way 
of addressing this issue is to rely on matrices that satisfy 
the restricted isometry property (RIP) [8], such as those with 
independent and identically distributed (i.i.d.) Gaussian or 

1MATLAB code: http://dsp.ucsd.edu/∼zhilin/TMSBL.html 
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Bernoulli entries. However, it is generally very diffcult to 
prove the RIP for generic matrices. To alleviate this issue, 
a RIPless theory of CS has been introduced in [9]. In par-
ticular, it was proven that if the sensing vectors are drawn 
independently at random from a probability distribution F 
that obeys a simple incoherence and isotropy properties, then 
we can faithfully recover approximately sparse signals from a 
minimal number of noisy measurements. 

Contrary to the conventional RIP-based selection of Φ, 
which guarantees universality with high probability, our pro-
posed sensing mechanism implies a non-universal stability. 
This means that, if we are given an arbitrary sparse (or 
approximately sparse) signal x and generate compressed mea-
surements using our proposed scheme, then the recovery of 
this fxed x will be accurate. 

Motivated by the RIPless framework and the effciency of 
alpha-stable laws [10] in modelling a broad range of impulsive 
phenomena, we propose a new sensing mechanism for gener-
ating MMVs from temporally correlated sources. Specifcally, 
the measurement vectors are generated by projecting the 
source matrix X onto sensing vectors drawn from an isotropic 
multivariate stable distribution. Doing so, we achieve an 
increased robustness against the presence of additive sampling 
noise, whilst better capturing the temporal correlations among 
the sources. An experimental evaluation on synthetic data 
with varying number of sources, correlation values, and noise 
strengths, demonstrates the effciency of our sensing scheme 
when compared with traditional RIP-based approaches. 

The rest of the paper is organized as follows: Section II 
briefy reviews the family of isotropic multivariate stable laws. 
In Section III, our proposed sensing mechanism is described in 
detail, whereas an experimental evaluation of its performance 
is carried out in Section IV. Finally, Section V summarizes 
the key messages and gives ideas for further extensions. 

II. ISOTROPIC MULTIVARIATE STABLE LAWS 

Stable distributions constitute a class of probability dis-
tributions that generalize the normal law, allowing heavy 
(algebraic) tails and skewness that make them attractive in 
modelling a broad range of statistical behaviors, from linear 
(i.e., Gaussian) to extremely impulsive ones. Although stable 
laws are characterized by many attractive theoretical prop-
erties, however, their use in practical applications has been 
restricted by the lack of closed-form expressions for stable 
densities and distribution functions. 

Focusing on multivariate stable distributions, apart from the 
lack of density functions in closed form, there is an additional 
diffculty in expressing the complexity of the dependence 
structures. Fortunately, these limitations have been alleviated 
signifcantly via the design and implementation of computa-
tionally tractable numerical algorithms for parameter estima-
tion and simulation of general multivariate stable densities and 
distribution functions [11]–[13]. 

To specify a multivariate stable distribution for a random 
vector x = [x1, x2, . . . , xN ]

T in N dimensions requires an 
index of stability α ∈ (0, 2], a fnite Borel measure Λ (a.k.a. 

the spectral measure of the distribution) on the unit sphere 
S = {s ∈ RN : ksk2 = 1} and a shift vector δ ∈ RN . 
The general case is beyond current computational capabilities, 
but several special cases, including isotropic (i.e., radially 
symmetric), elliptical, independent components, and discrete 
spectral measure, are computationally accessible. Motivated 
by the RIPless CS framework in [9], which requires the 
sensing vectors to be drawn from a distribution that satisfes 
an incoherence and isotropy properties, hereafter we exploit 
the isotropic multivariate stable family. 

In the isotropic case, the spectral measure is continuous and 
uniform, leading to radial symmetry for the distribution. The 
joint characteristic function of a random vector x following 
an isotropic multivariate stable law is as follows, 

TE{exp(iu x)} = exp(−γαkukα + iu Tδ) , (3)2 

where α ∈ (0, 2] is the characteristic exponent which controls 
the thickness of the tails of the density function (the smaller 
the α, the heavier the tails), γ > 0 is the dispersion parameter 
which determines the spread of the distribution around its 
location, and δ ∈ RN is a location parameter. Hereafter, the 
notation x ∼ Sα(γ, δ) denotes that a random vector x follows 
an isotropic multivariate stable distribution with parameters α, 
γ, δ. Without loss of generality, in the subsequent derivations 
we assume a symmetry around zero, i.e., δ = 0. 

Notice also that for α = 2 the distribution reduces to the 
multivariate normal case, which corresponds to independent 
components. However, this is not the case when α < 2. 
Especially in the case of correlated sources, we expect that the 
inherent dependency of isotropic multivariate stable sensing 
vectors will better capture the underlying correlation structure 
of the source signal ensemble. Furthermore, such sensing 
vectors are uniformly spread in all directions, as opposed, for 
instance, to the case of the commonly used Bernoulli matrix, 
whose entries are i.i.d. +1/−1 samples with equal probability. 
In the later case, the random directions of the sensing vectors 
are always in one of the fxed “diagonal directions” (e.g. in 
the 2-dimensional case, φ = [+1, +1] corresponds to the 
positive diagonal; φ = [+1, −1] corresponds to the −45◦ ray, 
etc.). The uniform coverage of the original signal space via 
sensing vectors drawn from a Sα(γ, δ) law guarantees that, 
with high probability, the matrix Φ is prevented from being 
rank defcient when suffciently many measurements are taken. 

The radial symmetry of isotropic multivariate stable sensing 
vectors allows us to characterize the joint distribution in terms 
of their amplitude rφ = kφk2. The amplitude distribution 
itself depends on the specifc characteristic exponent α and 
dispersion γ, which control the impulsiveness and spread of 
the stable density function. This double control on the behavior 
of our sensing vectors is a key aspect of our proposed sensing 
mechanism. More specifcally, it enables a better adaptation to 
the original signal subspace, subsequently achieving a more 
accurate discrimination and suppression of the contaminating 
noise. Fig. 1 illustrates the difference between 2-dimensional 
isotropic and i.i.d. multivariate stable distributions, for two 
distinct pairs of parameters, namely, (α, γ) = (1, 1) and 
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(α, γ) = (1.5, 0.5). Indeed, the isotropic case (Figs. 1a, 1c) 
yields a uniform coverage of the space, in contrast to the 
i.i.d. case (Figs. 1b, 1d). Also notice how α and γ affect 
the spread of the ball around the location (here δ = (0, 0)) 
in the isotropic case, which will be exploited by our sensing 
mechanism to increase the robustness of the generated random 
MMVs against the additive sampling noise. We note that all 
the subsequent numerical calculations involving multivariate 
stable densities are performed using the STABLE toolbox2. 

(a) (b) 

(c) (d) 

Fig. 1: Simulated isotropic and i.i.d. multivariate stable random 
samples for i) (α, γ) = (1, 1), ii) (α, γ) = (1.5, 0.5). 

III. ISOTROPIC STABLE SENSING OF TEMPORALLY 
CORRELATED SOURCES 

Given an ensemble X ∈ RN×L of temporally correlated 
sources, our goal is twofold: i) generate a set of measurement 

RM×Lvectors Y ∈ (M � N ) capable of encoding the 
temporal correlations, and ii) achieve increased robustness 
to the presence of additive sampling noise by appropriately 
discriminating the noise and original signal subspaces. 

To address these tasks, we propose a simple sensing mech-
anism by operating in a RIPless framework. More specif-
cally, the linear sampling model (2) is employed. However, 
instead of relying on the commonly used i.i.d. assumption 
for the elements of the measurement matrix, in our proposed 
approach the rows of Φ = [φ1 φ2 · · · φM ]

T ∈ RM ×N are 
drawn from an isotropic multivariate stable distribution, i.e., 
φ ∼ Sα(γ, 0), for m = 1, . . . ,M .m 

As mentioned in Section II, this choice of sensing vectors 
φ is motivated by two key characteristics, namely, i) them 
uniform spread of information across all the directions of the 

2Robust Analysis Inc., STABLE toolbox v.5.3 (www.robustanalysis.com). 

original N -dimensional space, and ii) the adaptation to the 
amplitude (strength) of the source signals, which allows us to 
better discriminate between the noise and signal subspaces. 

The uniform coverage of the original signal space is an 
intrinsic property of the isotropic multivariate stable family. 
Concerning the adaptation to the source signals strength, this 
is achieved by appropriately setting the parameters α and 
γ of the stable model, which subsequently affects the form 
of the projection ball (ref. Fig. 1). To this end, we need to 
quantify the impulsiveness and spread of each source signal 
(i.e., column of X). For this purpose, we assume that each 
signal xl, l = 1, . . . , L, is modelled by a symmetric univariate 
stable distribution with parameters (αl, γl). To mitigate the 
effects of zeros in the case of strictly sparse signals, as well 
as the small size effects (small N ), the stable parameters are 
estimated using the empirical characteristic function based 
method described in [14]. Specifcally, let γ̃ = γα in (3). 
Leaving the details to the interested reader, an estimate of the 
dispersion γ̃ is given by ! 

NX1 ixnγ̂̃ = − ln e . (4)
N 

n=1 

On the other hand, an estimate of the characteristic exponent 
α is obtained by solving the following equation,⎛ � �⎞PN1 iω0xnln N n=1 e 

α̂ = logω0 
⎝ � � ⎠ , (5)PN1ln n=1 e

ixn 
N 

where ω0 is the solution of the nonlinear equation γ̃̂ = 
(ln(2ω)/(ω2 − ω)) , with γ̂̃ given by (4). Finally, the dis-

ω0 

γ1/α̂persion in the parameterization (3) is calculated by γ̂ = ˆ̃ . 
In our proposed sensing method we implement the follow-

ing rules of thumb to estimate the parameters (α, γ) for the 
generation of the sensing vectors {φ m=1 ∼ Sα(γ, 0):}M 

m 
1) Estimation of α: For each column xl, l = 1, . . . , L, of X 
we estimate αl from (5). Then, the value of α is set to 

LX1 
α = αl . (6)

L 
l=1 

In order to avoid numerical instability when the above average 
is very small or close to 2, we bound α such that α = 0.5 for 
α < 0.5, and α = 1.95 for α ∈ (1.95, 2]. 
2) Estimation of γ: For each column xl, l = 1, . . . , L, of X 
we estimate the dispersion γ̂l. Then, the value of γ is set to 

LX1 
γ = cγ · γ̂l . (7)

L 
l=1 

The factor cγ > 0 controls the spread of the projection ball 
(ref. Fig. 1), and subsequently the capability to discriminate 
between the signal and noise subspaces. Our empirical results 
showed that by setting cγ such that γ ≈ 1 we achieve faithful 
reconstruction for a broad range of sparsity levels, correlation 
values, and signal-to-noise ratios (SNR). Nevertheless, the 
optimal selection of cγ is still an open question. 

Having estimated the model parameters according to (6) 
and (7), the sensing vectors {φm m=1 ∈ RN are drawn from}M 
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the corresponding Sα(γ, 0) distribution. Then, the rows of 
our proposed sensing matrix Φ consist of the M orthonor-
malized sensing vectors. The orthonormalization step aims at 
further simplifying the calculations involving the inverse of the 
measurement matrix during the reconstruction process. Given 
the generated Φ, the noisy random MMVs are produced by 
Y = ΦX + Z, where Z is assumed to be a sampling noise 
of bounded energy, i.e., kZkF ≤ � (with k · kF denoting the 
Frobenius matrix norm). 

Given Y and Φ the sparse matrix X is recovered using the 
T-MSBL algorithm [7]. T-MSBL frst transforms the MMV 
problem into a block single measurement vector problem, 

yv = Axv + zv , (8) 

where A = Φ ⊗ IL×L, yv = vec(YT) ∈ RML×1 , xv = 
vec(XT) ∈ RNL×1 , and zv = vec(ZT) ∈ RML×1 . In the 
previous expressions, ⊗ denotes the Kronecker product of 
two matrices, IL×L is the L × L identity matrix, and vec(B) 
denotes the vectorization of a matrix B formed by stacking 
its columns into a single column vector. Then, the original 
signal ensemble xv is given by the maximum a posteriori 
(MAP) estimate of a posterior probability p(xv|yv; Θ) via the 
Bayesian rule, where Θ is the set of all the hyperparameters. 
The hyperparameters, which are related to the parameters of a 
Gaussian approximation for the densities of the source signals 
and the Gaussian likelihood of the random measurements, are 
estimated from the data by marginalizing over xv and perform-
ing evidence maximization or Type-II maximum likelihood. 

Notice that although T-MSBL is based on a Gaussian as-
sumption for the statistics of the temporally correlated source 
signals, however, our proposed measurement matrix Φ is 
constructed by also accounting for the impulsiveness of the 
source signals, as expressed by their estimated characteristic 
exponents αl, l = 1, . . . , L. 

IV. EXPERIMENTAL EVALUATION 

In this section, we evaluate the effciency of the proposed 
sensing mechanism for compressively sampling an ensemble 
of temporally correlated synthetic signals. Specifcally, a set of 
representative test cases are presented that demonstrate the su-
periority of isotropic multivariate stable laws, in terms of better 
capturing the underlying signal subspace and dependence 
structure among the source signals, against well-established 
i.i.d. and multivariate generators of the measurement matrix 
Φ. In all the subsequent experiments, the results are averaged 
over 500 independent Monte Carlo runs. In each run, the signal 
length is fxed to N = 256, while the number of measurements 
varies, M = bδM · Nc, with δM ∈ [0.10, 0.50]. The source 
matrix X is randomly generated with S = bδS · Nc nonzero 
rows (i.e., sources), where δS ∈ [0.02, 0.15]. Each source is 
generated as an AR(1) process, with the AR coeffcient of the 
i-th source, denoted by βi, indicating its temporal correlation. 
In the following, we assume that all the sources have equal AR 
coeffcients, and compare fve different temporal correlation 
levels, β ∈ {−0.9, −0.5, 0, 0.5, 0.9}. In the general noisy 
case we consider herein, the ` 2 norm of each source was 

rescaled to be uniformly distributed between 0.5 and 2.5. 
Regarding the additive noise Z, it is drawn from a zero-mean 
homoscedastic Gaussian distribution with variance adjusted 

.to have a targeted SNR value, which is defned by SNR = 
20 log10(kΦXkF /kZkF ) (in dB). Several noise strengths are 
tested by varying SNR in [1, 25] dBs. Finally, the number of 
measurement vectors is fxed to L = 5. 

Our proposed measurement matrix, hereafter denoted by 
Φmvs is compared against the following commonly used 
measurement matrices: i) Φbnl: entries are i.i.d. Bernoulli 
random variables (+1/ − 1); ii) Φorth: orthonormal basis for 
the range of an N × M Gaussian matrix; iii) Φuse: columns 
are uniformly drawn from the surface of a unit hypersphere 
in RM−1 . The reconstruction accuracy is quantifed using two 
performance measures: i) the failure rate (FR), which indicates 
the percentage of failed Monte Carlo runs over the total runs. 
Since in the noisy case the recovery of X cannot be exact, a 
run is marked as a failure if the indexes of estimated sources 
with the S largest ` 2 norms differ from the true indexes; ii) 
the mean squared error (MSE), defned by kX̂ −Xk2 /kXkF 

2 ,F 
where X̂ is the estimated source matrix. 

As a frst illustration, we examine the effect of the number 
of active sources on the reconstruction accuracy. Specifcally, 
Fig. 2 shows the failure rate as a function of δS for two 
distinct correlation levels, β = −0.5 and β = 0.9, for a fxed 
δM = 0.35 and SNR = 10 dB. For this specifc setup, all 
the measurement matrices yield an almost perfect recovery 
as the size of the sparse supports decreases. Nevertheless, 
as the number of active sources increases, all matrices fail 
to recover the sparse supports. Notice that this failure is 
also related to the number of generated random measure-
ments for the given sparsity level. Indeed, as it is proven 
in [9], we can faithfully recover an S-sparse signal from 
about S log N random incoherent measurements, when the 
coherence parameter µ(F ) of the generating distribution F 
is at the order of O(1), which is the case for all the matrices 
Φ considered herein. As such, for S = b0.15 · 256c = 38 at 
least M = 38 · log 256 = 210 measurements are required to 
guarantee faithful reconstruction, which is much larger than 
the M = 89 measurements used in this example. Notably, 
our proposed Φmvs matrix demonstrates a robust performance 
against its competitors for the whole range of sparsity levels. 

As a second illustration, we explore the effect of temporal 
correlation β on the reconstruction accuracy. To this end, Fig. 3 
shows the FR (%) and MSE (%) as a function of β for the four 
measurement matrices, by fxing δS = 0.10, δM = 0.35, and 
SNR = 10 dB. As it can be seen, the higher the absolute 
correlation level is, the more diffcult it becomes to recover 
the sparse supports in this noisy scenario. An explanation for 
this behavior is that the sampling noise induces errors in the 
estimated sparse supports, which are spread out among the 
source signals because of the underlying temporal correlation. 
Nevertheless, sensing using our proposed Φmvs matrix yields 
the lowest failure rates and reconstruction errors over the 
whole range of correlation values, when compared against the 
other three measurement matrices. 



(a) (b) 

Fig. 2: Failure rate (%) as a function of the percentage of 
active sources δS (%), for the four measurement matrices and 
for two correlation levels (β = −0.5, β = 0.9). 

As a last experiment, we evaluate the reconstruction perfor-
mance in terms of the FR (%) as a function of the SNR, for two 
distinct correlation levels, β = −0.5 and β = 0.9, by fxing 
δS = 0.10 and δM = 0.35. Clearly, Φmvs, along with Φorth, 
recover the sparse supports with the highest accuracy, with 
the former matrix yielding a slightly improved performance 
for the whole range of SNR values and for both β values. 

(a) (b) 

Fig. 3: FR (%) and MSE (%) as a function of temporal 
correlation β, for the four measurement matrices (δS = 0.10, 
δM = 0.35, SNR = 10 dB). 

(a) (b) 

Fig. 4: Failure rate (%) as a function of SNR, for the 
four measurement matrices and for two correlation levels, 
β = −0.5, β = 0.9 (δS = 0.10, δM = 0.35). 

V. CONCLUSIONS 

This paper introduced a simple, yet effcient, sampling 
mechanism for the generation of compressed measurements 
from temporally correlated sources. The proposed approach 
adopted a RIPless assumption, with the only requirement being 
the satisfaction of two properties, namely, incoherence and 
isotropy. To this end, the proposed measurement matrix is 
generated by drawing vectors from an isotropic multivariate 
stable distribution, which is characterized by two parameters 
that control the shape and spread of the distribution. This 
double control of the projection ball yielded an increased 
robustness against the presence of additive sampling noise, 
as well as an improved discriminative capability between the 
signal and noise subspaces, thus resulting in a higher recon-
struction accuracy when compared against well-established 
measurement matrices. 

In this work, the isotropic multivariate stable family was 
considered, which assigns equal weights (i.e., dispersions) to 
all the sources (activated or not). However, we expect that the 
reconstruction accuracy can improve by incorporating some 
kind of side information regarding the sparse supports. This 
is equivalent to exploiting the more general class of elliptical 
multivariate stable laws for generating the sensing vectors, by 
assigning a distinct dispersion to each source according to the 
available prior information. 
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