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Abstract A distance based measure of dependence is proposed for stable distribu-
tions that completely characterizes independence for a bivariate stable distribution.
Properties of this measure are analyzed, and contrasted with the covariation and co-
difference. A sample analog of the measure is defined and demonstrated on simulated
and real data, including time series and distributions in the domain of attraction of a
stable law.
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1 Introduction

A d-dimensional random vector X = (X1, . . . , Xd) is said to be stable if for all
n = 2, 3, 4, . . ., there is a constant an > 0 and a vector bn ∈ R

d such that X1 +X2 +
· · · + Xn

d=anX + bn, where X1,X2,X3, . . . are i.i.d. copies of X.

The second author was supported by an agreement with Cornell University, Operations Research &
Information Engineering under W911NF-12-1-0385 from the Army Research Development and
Engineering Command.

� John P. Nolan
jpnolan@american.edu
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U.T. Alparslan, J.P. Nolan

A multivariate stable distribution is usually described by a spectral measure �,
a finite Borel measure on the unit sphere S = {s ∈ R

d : |s| = 1}, and a shift
vector δ ∈ R

d . There are multiple parameterizations of stable laws; we will use
two, which we call the 0-parameterization and the 1-parameterization. We will say
X ∼ S(α, �, δ; j), j = 0, 1 if its joint characteristic function is given by

φ(u) = E exp(i〈u,X〉) = exp

(
−

∫
S

ω (〈u, s〉|α; j) �(ds) + i〈u, δ〉
)

,

where

ω(t |α; j) =
⎧⎨
⎩

|t |α[1 + i sign (t)tan πα
2 (|t |1−α − 1)] α �= 1, j = 0

|t |α[1 − i sign (t)tan πα
2 ] α �= 1, j = 1

|t |[1 + i sign (t) 2
π
log |t |] α = 1, j = 0, 1.

The 1-parameterization is more commonly used, but because |tan(πα/2)| → ∞
as α → 1, the 1-parameterization is discontinuous in α. Since tan(πα/2)(|t |1−α −
1) → 2

π
log |t | as α → 1, the 0-parameterization is a continuous parameterization of

multivariate stable laws. If X ∼ S(α, �, δ0; 0) and X ∼ S(α, �, δ1; 1), then the shift
vectors are related by

δ1 =
{

δ0 − tan πα
2

∫
S
s�(ds) α �= 1

δ0 α = 1.

Another way of describing a multivariate stable law is by the use of linear pro-
jections. If X is a stable vector, then every one dimensional projection 〈u,X〉 =
u1X1 + u2X2 + · · · + udXd has a univariate stable distribution, with a constant
index of stability α and skewness β(u), scale γ (u) and shift δ(u) that depend on
the direction u, see Samorodnitsky and Taqqu (1994), Section 2.1. (The converse
is true if α ≥ 1; when α < 1 an extra condition is needed for the converse, see
the discussion after Lemma 4.1 of Nolan (2010).) We will call the functions β(·),
γ (·) and δ(·) the projection parameter functions. Since they uniquely determine all
one dimensional projections, they determine the joint distribution via the Cramér-
Wold device. In this case, we will parameterize X by these projection parameter
functions: X ∼ S(α, β(·), γ (·), δ(·); j), j = 0, 1. It is well known that γ (u) =(∫

S
|〈u, s〉|α�(ds)

)1/α in both parameterizations. One fact we will note here is that
these projection parameter functions have scaling properties, in particular γ (ru) =
rγ (u), so knowing them on the unit sphere determines them everywhere. For the
symmetric case, the joint characteristic function isE exp(i〈u,X〉) = exp(−γ α(u)) =
exp(−|u|αγ α(u/|u|)), so the values of γ (·) on S completely determines the joint
distribution.

In Nolan (2010), the projection parameter functions were used to measure the dis-
tance between two multivariate stable distributions. Here we will adapt that idea to
measure distance between a multivariate stable distribution and the stable law with
independent components. Specifically, let X = (X1, X2) be a bivariate α-stable ran-
dom vector. We assume that the components are normalized: γj = γ (ej ) = 1,
j = 1, 2, where ej is the j -th standard unit vector. Set γ⊥(u) = (|u1|α + |u2|α)1/α;
this is the scale function of any two-dimensional stable distribution having indepen-
dent components and unit scales. (The distribution can be symmetric or skewed, so
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A measure of dependence for stable distributions

there are multiple stable distributions that have this scale function. Specifying the
skewness β1 and β2 for each component uniquely determines the joint distribution.)
For any p ∈ [1, ∞], define a measure of independence by

ηp = ηp(X1, X2) = ∥∥γ α(u1, u2) − γ α⊥(u1, u2)
∥∥

Lp(S,du)
. (1)

Here du is surface area on S (unnormalized, with total mass 2π ). Figure 1 illustrates
the geometric idea behind ηp.

The following simple result is the motivation for this definition.

Proposition 1 Let X = (X1, X2) be an α−stable random vector with normalized
components, α ∈ (0, 2). Then X has independent components if and only if ηp = 0
for some (every) p ∈ [1, ∞].

Proof It is well-known that X has independent components if and only if the spectral
measure is concentrated on the 4 points where the axes intersect the unit circle, e.g.
Samorodnitsky and Taqqu (1994), Example 2.3.5. Let λj,+ be the spectral mass at ej

and λj,− be the spectral mass at −ej , j = 1, 2. Then

γ α(u) = |u1|α(λ1,+ + λ1,−) + |u2|α(λ2,+ + λ2,−).

Since γ (ej ) = γj = 1, we must have γ α
j = (λj,+ + λj,−) = 1, j = 1, 2. Thus

γ α(u1, u2) = |u1|α + |u2|α , and therefore ηp = 0 for all p. For the converse, the
scale function γ (·) is continuous, so the only way ηp can be 0 is if γ α(u1, u2) =
γ α⊥(u1, u2). The following argument shows that the spectral measure is concentrated
on {e1, −e1, e2, −e2}. Define �sym(A) = (�(A) + �(−A))/2. This is a symmetric
spectral measure with same scale function as �. By the uniqueness of the spectral
measure, this means the spectral measure �sym must be of the form (εe1 + ε−e1 +
εe2 + ε−e2)/2, the spectral measure of the symmetric stable r. vector with the above

0 π 2π

0
1

2

γα(θ)

γ⊥
α(θ)

Fig. 1 η1 is the area between the curves γ α(·) and γ α⊥(·). The vertical lines are discussed when the sample
estimator η̂p is defined below
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scale function. By the definition of �sym, the original � must also be concentrated
on ±ej , j = 1, 2. Thus X has independent components.

The idea of a distance based measure of dependence is not new. Hoeffding (1948)
and Blum et al. (1961) used distance measures based on empirical cumulative distri-
bution functions, while Csörgő (1985), Székely et al. (2007), and Székely and Rizzo
(2009) proposed similar measures based on empirical characteristic functions. In
Section 3 we will provide a performance comparison of Brownian distance covari-
ance of Székely and Rizzo (2009) and the measure proposed in this paper. The former
has slightly better power than the latter, however the measure being proposed here
has advantages in the stable distribution context. First, not only is ηp = 0 a char-
acterization of independence, but the magnitude of ηp provides a concrete measure
of closeness between the density of X and the independent density. (See Property
10 below for details.) Second, computing the exact (not sample) distance covariance
between a given stable distribution and the one with independent components is com-
plicated: it involves integrating over the whole plane the differences between two
complex valued characteristic functions. In contrast, the ηp proposed here is simpler:
evaluate the Lp distance between two real bounded functions on a bounded interval.
And third, the sample version of ηp discussed in Section 3 requires estimating the
scale function in several directions. If the hypothesis of independence is rejected, the
pattern in those scale estimates gives information about the type of dependence. For
example, if the estimated scale functions are roughly the same, this is evidence that
the joint distribution is close to isotropic, i.e. the actual spectral measure is closer to a
uniform measure than the discrete spectral measure concentrated on the points (1,0),
(0,1), (-1,0) and (0,-1).

Here we list several comments about ηp and its properties.

1. The p-norm in Eq. 1 is evaluated as an integral over the unit circle S, not all of
R
2. In polar coordinates,

ηp =
(
2

∫ π

0

∣∣γ α(cos θ, sin θ) − γ α⊥(cos θ, sin θ)
∣∣p dθ

)1/p

, (2)

where the interval of integration has been reduced by half using the fact that
γ (·) is π -periodic. Below we will use polar notation for the scale function on
the unit circle when it is more convenient: γ (θ) := γ (cos θ, sin θ). In particular,
γ α⊥(θ) = | cos θ |α + | sin θ |α).

2. α can be any value in (0, 2) and X can have symmetric or non-symmetric
components, and it can be centered or shifted.

3. ηp is symmetric: ηp(X1, X2) = ηp(X2, X1).
4. ηp ≥ 0 by definition, so as with other distance based measures of depen-

dence, there is no notion of positive or negative dependence. Some authors
have defined a signed measure of dependence, e.g. the signed covariation of
Garel and Kodia (2014), but there is an arbitrariness with the sign. While this
assignment may make sense in some cases, e.g. elliptically contoured stable, it
doesn’t seem to make sense in general. For example, a stable distribution that is
a rotation by π/4 of the bivariate independent component case has probability
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A measure of dependence for stable distributions

concentrated along both lines y = x and y = −x; we do not see a meaningful
way of assigning a sign to such dependence.

5. The definition makes sense in the Gaussian case: when α = 2, the scale function
for a bivariate Gaussian distribution with standardized marginals and correlation
ρ is γ 2(u) = 1+ 2ρu1u2 and γ 2⊥(u) = 1 on S. Then η

p
p = |2ρ|p ∫

S
|u1u2|pdu,

so ηp = kp|ρ|.
6. In the elliptically contoured/sub-Gaussian stable case with 0 < α < 2, and

shape matrix (1, ρ; ρ, 1), γ α(u) = (u21 + 2ρu1u2 + u22)
α/2, so

η
p
p = 2

∫ π

0

∣∣∣(1 + 2ρ cos θ sin θ)α/2 − (| cos θ |α + | sin θ |α)

∣∣∣p dθ.

This can be computed numerically, see Fig. 2 for a plot of η2 in the elliptical
case.

7. If the components of X are not standardized, then define

ηp(X1, X2) =
∥∥∥∥γ α

(
u1

γ1
,
u2

γ2

)
− γ α⊥(u1, u2)

∥∥∥∥
Lp(S,du)

.

γ (u1/γ1, u2/γ2) is the scale function of the scaled random vector Y =
(X1/γ1, X2/γ2). This normalizes the measure of independence.

8. A stable random vector X = (X1, . . . , Xd) has mutually independent com-
ponents if and only if all pairs are independent, e.g. Corollary 3.5.4 in
Samorodnitsky and Taqqu (1994). Hence the components of X are mutually
independent if and only if ηp(Xi, Xj ) = 0 for all i > j .

9. Since Lp(S, ds) is a finite measure space, Holder’s Inequality shows for
1 ≤ p ≤ ∞, η1 ≤ (2π)1+1/pηp. Also, Section 2 below shows |γ α(u) −
γ α⊥(u)| ≤ 2, so for any q > 1, ηq = (∫ |γ α(u) − γ α⊥(u)|q)1/q ≤(
2q−1

∫ |γ α(u) − γ α⊥(u)|)1/q = 21−1/qη
1/q
1 . Hence, ηp is small for some p

ρ
−1 0 1

0
1

2

α = 2

α = 1.6

α = 1.2

α = 0.8

α = 0.4

Fig. 2 Plot of η2 for α-stable elliptically contoured stable distribution with shape parameter ρ
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if and only if it is small for all q. We will focus on the case p = 2 below,
particularly in the sample analog η̂2.

10. ηp measures how far the scale function of X is from the scale function of a
stable random vector with independent components. When X is symmetric, not
only is ηp = 0 a characterization of independence, but more generally the size
of ηp is a measure of closeness between X and the independent case. Let f (·)
be the density of X and let f⊥(·) be the density of the independent components
case (both having normalized components), then Nolan (2010) shows

sup
x∈R2

|f (x) − f⊥(x)| ≤ kα‖γ (u) − γ⊥(u)‖1.

When α ∈ (0, 1], the right hand side can be bounded by ηp. To see this,
Section 2 shows γ (u) and γ⊥(u) are in a bounded interval [0, Rα]. For α in the
range (0,1] and s, t ∈ [0, Rα], |s − t | ≤ (R1−α

α /α)|sα − tα|, so

‖γ (u) − γ⊥(u)‖1 =
∫

|γ (u) − γ⊥(u)|ds

≤ cα

∫
|γ α(u) − γ α⊥(u)|ds = cαη1 ≤ c′

αηp.

When 1 < α ≤ 2, a similar result can be shown by modifying the arguments in
Nolan (2010). In the non-symmetric case, showing that the respective densities
f (x) and f⊥(x) are close requires an additional condition, i.e. that ‖β(u) −
β⊥(u)‖1 is also small.

11. The same idea can be used to compare the distribution given by γ α(·) to a
different model, other than the independent one, by replacing γ α⊥(·) with the
appropriate scale function. For example, using γ α

iso(·) = 1 in place of γ α⊥(·) in
Eq. 1 would measure distance from the isotropic distribution. Modification of
the sample measure η̂2 in Section 3 is straightforward.

The next section examines the scale function, the proposed measure η, and com-
pares with covariation and co-difference. In the third section, a sample analogue is
defined and demonstrated with simulated and real data with bivariate and multivari-
ate data, time series and a modification is given for vectors in the domain of attraction
of a stable law.

2 Properties of γ α(·), ηp, covariation, and co-difference

In multivariate extreme value theory, Pickands (1981) defined a function A(·) that
characterizes the joint distributon in a bivariate extreme value distribution. The
Pickands function is convex and satisfies the bound: max(t, 1 − t) ≤ A(t) ≤ 1,
0 ≤ t ≤ 1. Below we seek corresponding bounds for the stable scale function γ α(·),
and then explore previous measures of dependence for stable distributions.

Let X be a bivariate α-stable random vector with spectral measure � and scale
function γ (·). Throughout this section we assume thatX has normalized components:
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γ1 = γ2 = 1. As above, let γ (θ) = γ (cos θ, sin θ), θ ∈ [0, 2π ]. In polar coordinates,

γ α(θ) =
∫ 2π

0
|〈(cos θ, sin θ), (cosφ, sinφ)〉|α�(φ) =

∫ 2π

0
| cos(θ − φ)|α�(φ).

First, we seek envelope functions:

γ α
min(θ) := inf

γ
γ α(θ) and γ α

max(θ) := sup
γ

γ α(θ),

where the inf and sup are taken over all valid scale functions for a bivariate α−stable
random vector with normalized components. Proposition 2 gives an explicit formula
for γ α

max(θ) and Proposition 3 gives a candidate for γ α
min(θ); both depend only on α.

Proposition 2 For normalized components, we have 0 ≤ γ α(θ) ≤ γ α
max(θ), where

γ α
max(θ) =

{
(| cos θ | + | sin θ |)α 1 ≤ α < 2
| cos θ |α + | sin θ |α 0 < α < 1.

Proof Since the distribution has normalized components, γ (1, 0) = γ (0, 1) = 1.
The proof is easier using rectangular coordinates: write u ∈ S as (u1, u2) =
(cos θ, sin θ). When 0 < α ≤ 1,

γ α(u1, u2) =
∫
S

|u1s1 + u2s2|α�(ds)

≤
∫
S

|u1s1|α�(ds) +
∫
S

|u2s2|α�(ds)

= |u1|αγ α(1, 0) + |u2|αγ α(0, 1) = |u1|α + |u2|α = γ α⊥(u1, u2)

When α ≥ 1, using the triangle inequality,

γ (u1, u2) =
(∫

S

|u1s1 + u2s2|α�(ds)
)1/α

≤
(∫

S

|u1s1|α�(ds)
)1/α

+
(∫

S

|u2s2|α�(ds)
)1/α

= |u1|γ (1, 0) + |u2|γ (0, 1) = |u1| + |u2|
The expressions for γmax(·) are sharp. To see this, set

γ+(θ) = 21/2| cos(θ − π/4)|
γ−(θ) = 21/2| cos(θ − 3π/4)|

Note that γ+(·) corresponds to a bivariate stable distribution with exact positive
linear dependence (X2 = X1, spectral measure with mass of weight 2α/2 on the
diagonal) and γ−(·) corresponds to exact negative linear dependence (X2 = −X1,
mass of weight 2α/2 on the anti-diagonal). When α ≥ 1, | cos θ | + | sin θ | =
max(γ−(θ), γ+(θ)), so the upper bound is achieved by γ−(θ) in the first and third
quadrants and γ+(θ) in the second and fourth quadrants. When α ≤ 1, the upper
bound is achieved by the independent component case.
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We conjecture that a sharp lower bound γ α
min(θ) is given by

γ α∗ (θ) =
{
max(g(θ), g(π/2 − θ)) α < 1
min(γ α−(θ), γ α+(θ)) α ≥ 1,

where g(θ) = | cos θ |α (1 − | tan θ |α). The following result shows that γ α
min(·) is less

than or equal to γ α∗ (·).

Proposition 3 For normalized components, 0 ≤ γ α
min(θ) ≤ γ α∗ (θ).

Proof Consider the α < 1 case. First assume θ0 is in the interval (0, π/4).
For λ1 > 0, define θ1 = θ0 + π/2 and θ2 = arctan{[(1 − λ1| cos θ0|α)/

(1−λ1| sin θ0|α)]−1/α}, and λ2 = (1−λ1| cos θ0|α)/| sin θ2|α . When 0 < λ1 < λ∗ :=
1/| cos θ0|α , λ2 > 0, and calculation shows the bivariate stable distribution X having
the two point spectral measure with mass λj at θj has standardized components. For
large λ1, most of the mass is at θ1, which is perpendicular to θ0; the second point
mass is placed to get normalized components. The corresponding scale function is
γ α(φ) = | cos(φ−θ1)|αλ1+| cos(φ−θ2)|αλ2. So γ α(θ0) = 0·λ1+| cos(θ0−θ2)|αλ2.
As λ1 ↑ λ∗, more calculations show that γ α(θ0) ↓ gα(θ0). For θ0 in the interval
(π/4, π/2), the argument can be reflected to get the g(π/2− θ0) bound. For the rest
of the interval (π/2, 2π), the argument can be shifted from the first quadrant.

When α ≥ 1, γ α∗ (·) is achieved by γ α−(·) in the first and third quadrants, and by
γ α+(·) in the second and fourth quadrants.

For any scale function with normalized components, γ (θ) ≤ γmax(π/4) = 21/2

when 1 ≤ α ≤ 2, and γ (θ) ≤ γmax(π/4) = 21/α−1/2 when 0 < α ≤ 1. This latter
term is unbounded as α ↓ 0. However γ α(θ) ≤ 2 for all α and all θ ; this is why
we used the α-th power in the definition of ηp. Figure 3 shows the upper envelope
function γ α

max(·) and the proposed lower envelope γ α∗ (·).
Unlike the Pickands function, convexity is not necessary for γ α(·) to be a valid

scale function. γ α(·) must be of positive type, or equivalently, exp(−γ α(·)) must be
non-negative definite. We are not aware of any intrinsic characterization of a function
γ α(·) that guarantees this.

Since γ α(·) ≤ 2 for any scale function with normalized components, ηp is always
bounded by 4π , but this bound is not sharp. Numerical experiments lead us to con-
jecture that for any 0 < α ≤ 2, any p ≥ 1, and any normalized bivariate α-stable
distribution (X1, X2), 0 ≤ ηp(X1, X2) ≤ η∗

p, where

η∗
p = ∥∥γ α+(θ) − γ α⊥(θ)

∥∥
p

= ∥∥γ α−(θ) − γ α⊥(θ)
∥∥

p
.

In words, the farthest distributions away from independence are the exact linear
dependent cases. These values of η∗

p can be compute numerically.
We briefly compare ηp to covariation and co-difference. For α > 1, the first

equality below is the definition of covariation, and Example 2.7.3 in Samorodnitsky
and Taqqu (1994) shows the second equality:

[X1, X2]α =
∫
S

s1s
<α−1>

2 �(ds) = 1

α

∂γ α(u1, u2)

∂u1

∣∣∣∣
(u1=0,u2=1)

. (3)
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0 π 2π

0
1

2

α = 0.5

0 π 2π

0
1

2

α = 0.8

0 π 2π

0
1

2

α = 1.1

0 π 2π

0
1

2

α = 1.4

0 π 2π

0
1

2

α = 1.7

0 π 2π

0
1

2

α = 2

Fig. 3 Envelope functions γ α
max(θ) (top curves) and conjectured γ α

min(θ) (bottom curves) for different
α. For comparison to the independent case, γ α⊥(θ) is also shown as a dotted curve; when α ≤ 1, the
independent scale function is identical to the upper bound

Thus the covariation depends only on the behavior of γ α(·, ·) near the point (0, 1). If
X1 and X2 are independent, then [X1, X2]α = 0. The discussion below shows that
converse is false: there are many dependent distributions where [X1, X2]α = 0.

The co-difference is defined for symmetric α-stable vectors, and can be written as

τ = τ(X1, X2) = γ α(1, 0) + γ α(0, 1) − γ α(1, −1),

and is defined for any α ∈ (0, 2). It uses the values of the scale function at three
particular points. If X1 and X2 are independent, then τ = 0; when α ≤ 1, the
converse is also true, see Section 2.10 of Samorodnitsky and Taqqu (1994). When
α > 1, the converse is false, however if both τ(X1, X2) = 0 and τ(X1, −X2) = 0,
then X1 and X2 are independent, see Section 2 of Rosiński and Zak (1997). A direct
proof of this is straightforward: the condition τ(X1, X2) = 0 is equivalent to

∫
S

|s1|α�(ds) +
∫
S

|s1|α�(ds) =
∫
S

|s1 − s2|α�(ds),

and the condition τ(X1, −X2) = 0 is equivalent to
∫
S

|s1|α�(ds) +
∫
S

|s1|α�(ds) =
∫
S

|s1 + s2|α�(ds).

By Lemma 2.7.14 (2) in Samorodnitsky and Taqqu (1994), these two conditions
together are equivalent to s1s2 = 0 �-a.e., i.e. X1 and X2 are independent. As a
consequence, one can define τ 2(X1, X2)+τ 2(X1, −X2) as a measure that character-
izes dependence. However the sample analog of this has less power then the sample
analog of η2 proposed below.
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Chapter 2 of Samorodnitsky and Taqqu (1994) gives properties of covariation and
co-difference. Here we elaborate some on these properties, with attention to when
they can be zero. Let Qj be the open j -th quadrant, j = 1, 2, 3, 4.

For the covariation we restrict to α > 1. The integrand in Eq. 3 is zero precisely at
the “poles” (s1, s2) = (1, 0), (0, 1), (−1, 0), (0, −1), which is precisely the support
of any independent stable vector. So independence implies 0 covariation. But there
are many other ways this can happen. The integrand function above is strictly positive
on Q1 ∪Q3, and strictly negative on Q2 ∪Q4. Hence, if � is supported on Q1 ∪Q3,
[X1, X2]α > 0; if� is supported onQ2∪Q4, [X1, X2]α < 0. Furthermore, if support
� satisfies either condition, then normalizing the components of the corresponding
distribution also has support in the corresponding region. So, there are many distribu-
tions with positive covariation and many with negative covariation, even if we restrict
to normalized components. Furthermore, the integral definition shows that covaria-
tion is linear in the spectral measure: for c0, c1 ≥ 0, the covariation corresponding
to c0�0 + c1�1 is the sum of c0 times the covariation corresponding to �0 plus c1
times the covariation corresponding to �1. Thus if �0 has positive covariation and
�1 has negative covariation, setting cj = |covariation of �1−j | /(|covariation of
�0| + |covariation of �1|), c0�0 + c1�1 has covariation 0. Since this is a convex
combination, if �0 and �1 have normalized components, so does the sum. Hence,
there are many normalized dependent distributions with zero covariation, much like
in the case of ordinary correlation, where there are important classes of models in
which ρ = 0 does not imply independence.

We conclude the discussion of covariation by showing that the range of the covari-
ation is [-1,1] when (X1, X2) are jointly stable with unit scales. This follows by
combining (a) |[X1, X2]α| ≤ 1 by Property 2.8.4 of Samorodnitsky and Taqqu
(1994); (b) the bounds are achieved: straightforward calculation shows that exact pos-
itive dependence give covariation +1 and exact negative correlation gives covariation
-1; and (c) linearity of covariation in the spectral measure.

For the co-difference, any α ∈ (0, 2] is allowed. Scaling shows τ = γ α(1, 0) +
γ α(0, 1) − 2α/2γ α(1/

√
2, −1/

√
2), so it suffices to consider γ (·) on the unit circle.

Expressing the spectral measure in polar coordinates also gives a polar expression for
τ :

τ = γ α(0) + γ α(π/2) − 2α/2γ α(3π/4)

=
∫ 2π

0

[
| cosφ|α + | sinφ|α − 2α/2| cos(3π/4 − φ)|α

]
�(dφ). (4)

The integrand above is 0 at the “poles”, so independence implies 0 co-difference.
Some special cases are straightforward to compute. In the elliptical case, γellip(u) =
1 + 2ρu1u2, so τellip = 1 + 1 − (1 + 2ρ(−1)) = 2 − (2(1 − ρ))α/2. The range of
τellip is [2 − 2α, 2]; the lower bound is negative if and only if α > 1. In the isotropic
case, ρ = 0 and τ = 2 − 2α/2. For γ+(·), τ+ = 1 + 1 − 2α/2| cosπ/2|α = 2. This
achieves max. For γ−(·), τ− = 1 + 1 − 2α/22α/2| cos 0|α = 2 − 2α. This is positive
for α < 1, zero for α = 1, and negative for α > 1.

When α > 1, the integrand function in Eq. 4 is strictly positive in Q1 ∪ Q3
and strictly negative in Q2 ∪ Q4. So, as with the covariation above, any spectral
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measure concentrated in Q1∪Q3 has strictly positive co-difference, and any spectral
measure concentrated in Q2 ∪ Q4 has strictly negative co-difference. As above, if
� satisfies either of the conditions on the support, then normalizing the coordinates
gives a spectral measure with support that satisfies the same condition.

We can also follow the argument above for covariation of sums to co-difference.
Here we use notation τ� for the co-difference for (X1, X2) having spectral mea-
sure �. It is simple to see that for spectral measures �0 and �1 and non-negative
c0, c1, τc0�0+c1�1 = c0τ�0 + c1τ�1 . In particular, if τ�0 < 0, τ�1 > 0 and
cj = |τ�1−j

|/(|τ�0 | + |τ�1 |), then τc0�0+c1�1 = 0. This shows that for a fixed α,
the range of τ is an interval. Combined with the previous example, this gives many
examples with α > 1 where τ = 0, but X1 and X2 are dependent. If �0 and �1 have
unit scales, then so does the convex combination c0�0 + c1�1.

When α ≤ 1, the situation is different. In this case, the integrand in Eq. 4 is strictly
positive off the “poles”, so τ ≥ 0. The only way τ can be zero is therefore when the
components are independent.

Combining the results above, we have shown that for a fixed α, min(0, 2 − 2α) ≤
τ ≤ 2. For α ≥ 1, all values in this region can be achieved by an elliptical stable law
with some ρ. For α < 1, all values can be achieved with spectral measures the sum
of an independent and exact positive independence. Most values of τ can be achieved
by many different distributions.

3 Measuring dependence in a bivariate sample

3.1 Estimation of η and the significance level

In this section we consider the statistical problem of determining the independence
of the components of a bivariate stable law using a sample X1, . . . ,Xn of α-stable
vectors. We start by normalizing the data: estimate the parameters (̂αj , β̂j , γ̂j , δ̂j ) of
each component, j = 1, 2 using maximum likelihood as in Nolan (2001). Then use
a pooled estimate of α: set α̂ = (̂α1 + α̂2)/2. To avoid numerical problems around
α = 1, we will only consider the 0-parameterization in this section. Then normalize
the data Yi = ((Xi,1 − δ1)/γ1, (Xi,2 − δ2)/γ2), i = 1, . . . , n. Since MLE is used to
estimate α̂1 and α̂2, standard convergence results for maximum likelihood estimators
apply to α̂ and to γ̂j below.

We note that γ (−u) = γ (u), so as in Eq. 2 it suffices to restrict the θj ’s to be in
the interval [0, π ]. For a set of angles 0 ≤ θ1 < θ2 < · · · < θm ≤ π , define γ̂j =
γ̂ (cos θj , sin θj ) = scale of the projected data set 〈Yi , (cos θj , sin θj )〉, i = 1, . . . , n
and γ α̂⊥,j = | cos θj |̂α + | sin θj |̂α , j = 1, . . . , m. We will discuss the choice of grid
below.

A straightforward (unnormalized) sample approximation to η2(Y1, Y2) for the
normalized data set is

η̂22 = η̂22(m, n) =
m∑

j=1

(
γ̂ α̂
j − γ α̂⊥,j

)2
. (5)
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We propose using this as a test statistic to determine the independence of a bivariate
data set. The distribution of η̂2 can be approximated using simulation.

For a formal test of independence, the null hypothesis is H0: X has independent
components. We compute the sample measure of independence η̂2 and reject H0
if η̂2 > cε = cε(α, β1, β2, n, θ1, . . . , θm), where the ε is the desired significance
level. An R program to compute η̂2 and estimate cε has been written. The simu-
lation is straightforward: for a single sample, independent terms can be simulated
using the univariate simulation method of Chambers et al. (1976), and then the uni-
variate parameters (̂αj , β̂j , γ̂j , δ̂j ) can be estimated using maximum likelihood and
the sample can be normalized. Then η̂2 is computed using Eq. 5. Repeating this M

times gives a sample from the distribution of η̂2 under the null hypothesis; the (1−ε)

quantile of this is used for the critical value cε . The appendix gives an approximation
to the critical values that is accurate for most practical values of the parameters, e.g.
0.5 ≤ α ≤ 2, ε ≤ 0.3, n ≥ 100, 1 ≤ k ≤ 10.

We now discuss the choice of grid points θ1, . . . , θm. A uniform grid is not opti-
mal: because of the normalizing, γ̂ (u) = 1 at u ∈ {(1, 0), (0, 1), (−1, 0), (0, −1)} so
we get no information including those points in the grid. Furthermore, when angles
θj and θk are close, the corresponding directional scales are correlated. Figure 4
shows a plot of the covariance surface in one case. The discussion in Section 2 shows
that the maximum distance between γ (θ) and γ⊥(θ) can occur at the angles π/4 and
3π/4. A reasonable choice is to pick an integer k and then define θj = jπ/(2k + 2),
j = 1, . . . , k and θj+k = θj + π/2. This gives a grid of length m = 2k that is
uniformly spread on the interior of the first and second quadrant. The vertical lines
in Fig. 1 shows the k = 3 case. The choice of k is complicated for several rea-
sons. There is little information gained by getting close to the points (1,0), (0,1) and
(-1,0) where the scale is fixed at 1. As k increases, the estimators of γ̂j and γ̂i are

0 π

0
π

Fig. 4 Plot of the empirical covariance of γ α(·) for α = 1.5, β1 = β2 = 0. The plot was generated by
running M = 20000 simulations of sample size n = 1000 with independent components
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highly correlated. Unless n is very large, the variability in the estimators γ̂j will out-
weigh the information gained by adding more grid points. Simulations discussed in
the Appendix suggest k = 5 is a reasonable grid size for most practical applications.

Table 1 shows estimates of the power for detecting dependence for several types of
dependence. The isotropic column is when the data is radially symmetric, the third,
fourth and fifth columns are counterclockwise rotations of the independent spectral
measure by the stated angle, the last column shows exact linear positive dependence
(all the mass of the spectral measure on the diagonal line y = x). (The simulation
method for the isotropic case uses the representation X = A1/2Z, where A is a posi-
tive (α/2)-stable term and Z is N(0, I ), see section 2.5 of Samorodnitsky and Taqqu
(1994); the other cases can be simulated using Example 2.3.6 in Samorodnitsky and
Taqqu (1994).)

The isotropic case is a modest departure from independence, and the table shows
that to reliably detect this kind of dependence, sample sizes in the several hundreds
are required. The third column shows that when the spectral measure is concentrated
on the diagonal and anti-diagonal lines, η̂2 reliably detects dependence with sample
sizes on the order of 100 or more. As the rotation lessens, the corresponding distribu-
tion is closer and closer to independence, and larger samples are needed to reliably
detect dependence. The last column shows that quite small samples of size n = 25
are sufficient to detect dependence when the data is concentrated on the diagonal line.

Further simulations were performed to compare the power of η̂2 to the power of
the distance covariance of Székely et al. (2007) and the classical correlation based
test in the R package energy. Specifically, we examined what sample size is needed
to get an empirical power of 0.95 with a significance level of ε = 0.05 for the cases
considered in Table 1. Since the last column of that table is always 1, even for sam-
ples of size as small as n = 25, we exclude that from our analysis. Table 2 shows
the results. The first row is extracted from Table 1. For the other methods we ran
simulations for various values of n and interpolation was used to get the entries in
the table. For distance covariance, the same power can be achieved with a smaller
sample size, with the same pattern of increasing sample size when the distribution is
closer to independence. If Pearson, Spearman or Kendall correlation is used in the
correlation test, sample sizes of over 50000 are needed in all cases (our simulations

Table 1 Power of η̂2 for various types of dependence when α = 1.5, k = 5, and β1 = β2 = 0

Sample Independent Independent Independent Exact linear

size n Isotropic � π/4 � π/8 � π/16 dependence

25 0.191 0.322 0.243 0.213 1

50 0.223 0.624 0.381 0.183 1

100 0.344 0.918 0.644 0.214 1

200 0.636 0.998 0.937 0.440 1

300 0.874 1 0.997 0.627 1

400 0.960 1 1 0.791 1

500 0.989 1 1 0.893 1
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Table 2 Approximate sample size needed to achieve power 0.95 for η̂2, distance covariance, and cor-
relation test using different correlation measures. In all cases, ε = 0.05, α = 1.5, k = 5, and
β1 = β2 = 0

Independent Independent Independent

Test Isotropic � π/4 � π/8 � π/16

η̂2 400 150 225 600

Distance covariance 250 100 150 300

Correlation test > 50000 > 50000 > 50000 > 50000

went up to n = 50000 and none of these test reached the desired power). Clearly,
correlation tests have very low power for stable laws. If one is solely interested in
deciding whether components are independent or not, then the distance covariance
is more efficient and it has the advantage of not assuming joint stability. However,
there is still value to the proposed method. First, one should be wary of working with
small data sets when heavy tails are claimed, and with sample sizes in the several
hundreds, both the proposed method and distance covariance have high power. Sec-
ond, there are advantages discussed in the first section above: when independence is
rejected, the values of γ̂j give information about the actual distribution. The distance
covariance test does not provide any such information.

We now mention an alternative statistic. Since we are using maximum likelihood
estimation of the parameters, they are asymptotically normal. Using the delta method,
the γ̂ α̂

j are also asymptotically normal. We have been unable to derive an analytic
expression for � = �(α, β1, β2, θ1, . . . , θm) = [σi,j ]mi,j=1, the covariance matrix of

γ̂ α̂
j , j = 1, . . . , m. If an analytic form of this covariance was known, then a χ2 type

of statistic could be used:

η̂2�,2 = (γ̂ α̂ − γ α̂⊥)T �−1 (γ̂ α̂ − γ α̂⊥),

where γ̂ α̂ = (γ̂ α̂
1 , . . . , γ̂ α̂

m)T and γ α̂⊥ = (γ α̂
⊥,1, . . . , γ

α̂⊥,m)T . Under the null hypoth-
esis, this is the square of the Mahalanobis distance between the data and a stable
distribution with independent components, and has a χ2(m) sampling distribution.
This approach would have the advantage of using familiar tabulated critical values.

3.2 Application to financial data

Next we analyze some financial data. Closing price data on two pharmaceutical
stocks, Pfizer (symbol PFE) and Merck (MRK), was gathered for the five year time
period January 1, 2010 to December 31, 2014 resulting in 1257 prices. For each stock,
log returns were computed and stable parameters were estimated using maximum
likelihood for each company. For Pfizer, α̂ = 1.748, β̂ = 0.0000, γ̂ = 0.0070 and
δ̂ = 0.00585; for Merck, α̂ = 1.735, β̂ = −0.0852, γ̂ = 0.0070 and δ̂ = 0.000684.
The indices are close, so we used α = (1.748 + 1.735)/2 = 1.7415 and computed
the test statistic η̂2 = 1.3381. Simulations with 1256 independent stable terms shows
that this value is highly significant: the critical value for p = 0.01 is 0.241, so we
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reject the null hypothesis that the terms are independent. This is not surprising as
PFE and MRK are in the same sector. We repeated this procedure with PFE and Wal-
mart (WMT), which has a similar α and also reject independence at the p=0.01 level.
In fact, we computed η̂2 for every pair of stocks in the Dow Jones 30 index, and
all reject independence at this level. These results should be interpreted cautiously,
as estimates of α varied between 1.62 and 1.87 for different stocks and there were
C(30, 2) = 435 comparisons made.

3.3 Higher dimensions

For X = (X1, . . . , Xd), d > 2, we can apply this method to each pair of coordi-
nates and assess the d-dimensional data set. Specifically, for each pair of indices we
compute η2(i, j) = η2(Xi, Xj ). Recall from above that the d dimensional data set
is independent if and only if each pair of components is independent. Perhaps more
important is the view of the joint dependence structure in a multivariate data set given
by the η2 matrix.

One application of this idea is in dimension reduction. If the η matrix shows
obvious structure, e.g. blocks of dependence, then one can split the d dimensional
modeling problem into two or more lower dimensional problems. This is illustrated
in Fig. 5, which shows a greyscale plot of the pairwise values of η2 for a simulated
10 dimensional data set that is α = 1.3 stable. The first four coordinates of the
simulated vector are independent, the next three are from an elliptical stable distribu-
tion with shape matrix R = (1, 0.5, 0.25; 0.5, 1, 0.5; 0.25, 0.5, 1), and the last three
are from a discrete spectral measure with mass spread around the first octant. The
simulation method for the dependent elliptically contoured terms uses the represen-
tation X = A1/2Z, where A is a positive (α/2)-stable term and Z is N(0, R), see
section 2.5 of Samorodnitsky and Taqqu (1994). The dependent block with discrete
spectral measure is simulated using Example 2.3.6 in Samorodnitsky and Taqqu
(1994).

The blocks are independent of each other. The upper left plot shows the estimated
η̂2 matrix for a modest sample size of n = 150, where the dependence structure
is visible, but not yet sharp. In upper right plot, the sample size is increased to
n = 4000, and now the dependence structure is sharp. In the bottom left plot, the
coordinates are randomly permuted to hide the dependence structure. Finally, the
bottom right plot shows the reordered (from the permuted data) η̂2 matrix, with the
ordering coming from a clustering algorithm. (Specifically, we used the R func-
tion hclust(dist(·)) applied to the η̂2 matrix.) This approach may be useful in
applications to discover structure in a heavy tailed multivariate data set.

3.4 Application to times series

Given a univariate time series X1, X2, . . . , Xn with stable error terms, the above
definition of independence can be used to define an analogy of the autocorrelation
function (ACF). The approach is similar: compute the dependence measure η2,h for
lagged pairs (Xt+h, Xt ), t = 1, . . . , n − h. Plot η2,h as a function of h and show a
simulation derived threshold value as in the standard ACF plot.
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Ordered,  n= 150 Ordered, n= 4000

Random order, n= 4000 Reordered, n= 4000

Fig. 5 Plot of η̂2 for a simulated 10 dimensional data set with α = 1.3, and dependence structure as
described in the text

Figure 6 shows an example of this with simulated data. In this case, an AR(1)
process is simulated: Xt = (1/2)Xt−1 + Zt , where Zt are normalized i.i.d. symmet-
ric α-stable. The geometric decay of η̂2 is indicative of an AR model for the serial
dependence.

This method is applied to the financial returns of Merck stock that was examined
above. Figure 7 shows that there is no evidence for dependence among the lagged
values of the returns.

While generally the η plot and the ACF plot look similar, the latter is sensitive
to extreme values. This is illustrated in Fig. 8, where a simulated time series with
independent terms is analyzed on the left side of the plot using both the η plot and
a standard ACF plot. Then one point is changed in the time series in the following
way: we looked for the maximum value in the time series (which was 204.62 in this
simulation), and replaced a value 15 time periods away with 80 % of this maximum.
The η plot and the standard ACF were then graphed for this altered time series on the
right set of plots. For the modified data set, the ACF plot has a strong spike at lag 15,
whereas the η plot does not. Thus one changed value significantly changes the ACF,
but not the η plot.
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Fig. 6 η2(Xi,Xi+j ) for a simulated AR(1) time series. The dashed horizontal line is the critical value for
rejecting independence when n = 1000, α = 1.5, β1 = β2 = 0, and ε = 0.05

3.5 Vectors in the domain of attraction of a stable law

In the preceding sections we assumed the bivariate vector was stable. We now show
how the method can be adapted to vectors in the domain of attraction of a stable law.
We will use the notation X ∈DOA(S(α, β(·), γ (·), δ(·); 0)) when X is in the domain
of attraction of a S(α, β(·), γ (·), δ(·); 0) law. Our approach is straightforward: use
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Fig. 7 η2(Xi,Xi+h) for Merck returns for ε = 0.05
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n= 1000   alpha= 1.575   beta= 0 n= 1000   alpha= 1.552   beta= 0

Fig. 8 η2(Xi,Xi+j ) for a simulated stable time series with ε = 0.05, α = 1.5, and independent terms.
The top left shows a plot of η̂2 for the original time series, the bottom left shows the standard ACF plot for
the same data. On the right side, one point in the time series was changed

any univariate tail estimator for α̂ and the scale function and then compute Eq. 5 as
above.

There are a range of methods to choose here; we use the simplest to illustrate the
approach. Sort the data and look at log x vs. the log of 1 − F̂ (x), the complement of
the empirical distribution function, beyond some threshold. A simple linear regres-
sion will give an estimate of the tail index and the scale. A similar approach can be
done for the lower tail. For simplicity, we will assume that the data is two sided, and
we average the tail indices to get α̂ and scale γ̂ .

Equipped with a one dimensional estimate of the tail index and scale, we proceed
as we did in the exact stable case: (i) analyze the marginals and average the resulting
tail indices to get an estimate of α; (ii) pick a grid of directions θ1, . . . , θm; (iii)
project the data along each direction, getting estimates of the scale γ̂1, . . . , γ̂m; (iv)
compute η̂2 using Eq. 5.

To compute a critical value, we use non-parametric bootstrapping: generate M

data sets, each time generating independent vectors, with each component sampled
with replacement from the sample; compute η̂2 for this bootstrap sample; tabulate the
values of η̂2 and find the appropriate quantile.

To test this method, we reproduced Table 1 for the domain of attraction case.
We generated several data sets based on independent Pareto terms: we simulated
X = (X1 −X′

1, X2 −X′
2), where each term is independent Pareto(α = 1.5). This is a

symmetric r. vector with independent components that is in the domain of attraction
of an independent α = 1.5 stable law. For each n, this was simulatedM = 1000 times
and η̂2 was calculated using the tail estimator modification. In this and the following
examples, k = 5 grid points were used in each quadrant for a total of m = 2k = 10
grid points and 10 % of the tails were used to estimate the tail index and scale of
both the lower and the upper tails. From these simulations, the 0.95-percentile was
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Table 3 Power of the statistic η̂2 for X in the domain of attraction of an α = 1.5 stable law, see the text
for data description

Sample Independent Independent Independent Exact linear

size n Isotropic � π/4 � π/8 � π/16 dependence

100 0.253 0.057 0.049 0.058 0.161

200 0.708 0.025 0.040 0.049 0.342

300 0.844 0.010 0.013 0.023 0.481

400 0.940 0.011 0.020 0.022 0.995

500 0.956 0.011 0.007 0.018 1

600 0.986 0.024 0.013 0.028 1

700 0.988 0.023 0.003 0.009 1

800 0.995 0.258 0.012 0.019 1

900 0.998 0.284 0.013 0.011 1

1000 0.993 0.498 0.006 0.009 1

2000 1 0.996 0.376 0.008 1

3000 1 1 0.876 0.003 1

4000 1 1 0.989 0.003 1

5000 1 1 1 0.004 1

calculated and used as critical values for each of the cases considered in Table 3.
For each column and row in that table we simulated M = 1000 data sets of the
specified type and computed the fraction of times that independence is rejected at
the 95 % level. For the column labeled isotropic, we generated R ∼ Pareto(α = 1.5)
and θ ∼ Uniform(0, 2π ) and set X = (R cos θ, R sin θ). For the next three columns,
we generated independent terms as in the critical value calculations and then rotated
those vectors by the specified angles. For the exact linear dependence, we simulated
X = ε(R, R), where ε ± 1 with probability 1/2 and R ∼ Pareto(α = 1.5).

This table starts at higher values of n than the earlier table because we could not
get consistent results with smaller sample sizes. Recall that the tail estimator is based
on the bottom and top 10 % of a sample, and without sample sizes in the hundreds,
little can be done. In fact, the high sample variability when there are small samples
leads to some of the columns of Table 3 being non-monotonic. The power values are
much lower than the ones in the exact stable case because most of the data is not
being used by the tail estimator. We note that these results are dependent on multiple
factors: the tail estimation method, the fraction of the tail used to estimate the index
and scale, the marginal distributions of the data, etc. Finally, we note that the this
method will be unreliable if the tail threshold is not chosen well or the available data
doesn’t show the limiting behavior clearly.
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Appendix

To prevent having to do time consuming simulations to establish critical values,
large scale simulations of critical values were run for a range of parameter val-
ues. The ranges were α ∈ {0.5, 0.6, . . . , 1.9, 2}, (β1, β2) ∈ {0, 1/2, 1}2, n ∈
{100, 200, . . . , 900, 1000, 2000, 3000, 4000} and the grid had k ∈ {1, 2, . . . , 10}
points uniformly spread in the first and second quadrant as described above.
A total of 1479 sets of critical values were generated for quantile levels ε ∈
{0.30, 0.20, 0.10, 0.05, 0.025, 0.01, 0.001}. each from simulation of size M = 1000.
Combining heuristics and ad hoc fitting lead to the following approximation to the
critical value:

cε(α, β1, β2, n, k) = D0(α, β1 + β2)σγ̂ (α)

√
(k + 1)χ2

1−ε,2

n
+ D1(α, β1 + β2),

where σγ̂ (α) is the asymptotic standard deviation of the maximum likelihood estima-
tion of the scale parameter γ for a standardized univariate symmetric stable law with
index α (available from Nolan (2001)), χ2

1−ε,2 is the standard χ2 critical value for 2
degrees of freedom, and

D0(α, b) = d0(α)d1(b)d2(α)

D1(α, b) = d0(α)[d1(b)d3(α) + d4(b)]
d0(α) = 0.1666α + 0.95

d1(b) = 1 − 0.0719b + 0.0083b2

d2(α) = 0.01342 + 0.69421α − 0.09149α2

d3(α) = −0.0387 + 0.124α − 0.0558α2

d4(b) = 0.007163b − 0.00187b2.

To choose grid size k, further simulations were done for several different types
of bivariate dependent stable components. For dependent distributions that are far
away from independence or had maximum difference between γ (·) and γ⊥(·) near
π/4 or 3π/4, high empirical power is reached with k = 1. However for some types
of dependency, empirical power increases as k increases through k = 1, 2, 3, 4, 5,
and plateaus after that. Two particular cases that show this are independence rotated
by π/16 and the example in Proposition 3 with θ0 = π/16, both with sample size
n = 100.
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Székely, G.J., Rizzo, M.L.: Brownian distance covariance. Ann. Appl. Stat 3(4), 1236–1265 (2009)
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