
Package ‘mvmesh’
April 11, 2015

Type Package

Title Multivariate Meshes and Histograms in Arbitrary Dimensions

Version 1.0

Date 2015-04-10

Author John P. Nolan

Maintainer John P. Nolan <jpnolan@american.edu>

Depends R (>= 3.0), rcdd, rgl

Description Define, manipulate and plot meshes on simplices, spheres, balls, and rectangles for use in
multivariate statistics. Directional and other multivariate histograms are provided.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-04-11 01:19:14

R topics documented:

mvmesh-package . 2
mvhist . 4
mvmesh-geom . 6
mvmesh-methods . 10
PolarSphere . 11
RectangularMesh . 13
UnitSimplex . 14
UnitSphere . 15

Index 17

1

2 mvmesh-package

mvmesh-package Multivariate meshes and histograms in arbitrary dimensions

Description

Define, manipulate and plot multivariate meshes/grids in n-dimensional Euclidean space. Multi-
variate histograms based on these meshes are provided.

Details

Package: mvmesh
Type: Package
Version: 1.0
Date: 2015-04-10
License: GPL (>= 3)

A range of multivariate problems require looking at simplices, spheres, balls and rectangular grids
in dimension n > 1. Examples are multivariate stable distributions or multivariate extreme value
distributions, where a probability distribution is specified by a measure on a sphere or simplex.
Also, simulation of generalized spherical laws involves a triangulation of some surface. Quadrature
problems on a simplex or sphere require the ability to specify and work with meshes, e.g. packages
SphericalCubature and SimplicialCubature. Another application of this is multivariate histograms.
For example, directional histograms tablulate the number of points in a sequence of directions, see
function histDirectional.

A key goal here is that the dimension n is not limited to 2 or 3, but in principle can be arbitrary.
Of course, as n increases compute times and required memory will increase quickly. This package
uses existing methods from computational geometry that work in arbitrary dimension. Several of
these functions were written as prototypes, so getting something to work was the immediate goal,
speed was not.

In this documentation we will use the term grid to mean a collection of points, usually approximately
evenly spread on a solid or surface. We will use the term mesh to mean both the grid, and the
grouping information that tells which points make up the simplices that triangulate the region.

Please let me know if you find any mistakes. I will try to fix bugs promptly.

Constructive comments for improvements are welcome; actually implementing any suggestions will
be dependent on time constraints.

This research was supported by an agreement with Cornell University, Operations Research & In-
formation Engineering, under contract W911NF-12-1-0385 from the Army Research Development
and Engineering Command.

Version history:

• 1.0 (2015-03-01) original package

The remainder of this section describes some of the internal details of the package. It is not needed
for the average users.

mvmesh-package 3

Points in n-dimensional space are stored in row vectors as is customary in R. All simplices consid-
ered in this package are convex. A single convex simplex can be described/stored in two ways:

• A vps x n matrix of (doubles) S; the rows S[1,], S[2,], etc. are the vertices in R^n. The
simplex is the convex hull of the vertices. Note: vps stands for ’vertices per simplex’.

• An nV x n matrix of (doubles) vertices V with rows giving the points in R^n, and an integer
vector of length vps called SVI (=Simplex Vertex Indices) that specifies which vertices make
up a simplex.

Both of these descriptions have their uses, so the core functions in this package calculate both. Most
geometric objects described be a list of simplices. To store all the relevant information needed, the
basic functions in this package return an object of class mvmesh. An object of class mvmesh has
the following fields, extending the definitions above from a single simplex to a list of simplices:

• type - a string describing the mesh, e.g. "unit simplex" (see table below)

• mvmesh.type - an integer specifying the type of mesh (see table below)

• n - dimension of the space

• m - dimension of the mesh, e.g. the unit sphere in n=3 dimensions is an m=2 dimensional
surface. (see table below)

• vps - vertices per simplex, the number of vertices that define a simplex, which must be the
same for all simplices in this mesh (see table below)

• S - an (vps x n x nS) array, with S[, ,k] specifying the vertices of k-th simplex

• V - an (nV x n) matrix giving the distinct vertices in the list of simplices (repeated vertices in
S that are on common edges are removed)

• SVI - an integer (vps x nS) matrix which specifies the indices of the vertices that make up the
simplices in S. SVI = Simplex Vertex Indices. SVI[,k] gives the subscripts in the vertex array
V that determine the k-th simplex in S

• other fields are specific to the type of mesh. Generally, they describe the parameters that were
used to generate the mesh

type mesh.type m vps
——————— ————- —— ——
unit simplex 1 n-1 n
solid simplex 2 n n+1
unit sphere, edgewise 3 n-1 n
unit sphere, dyadic 4 n-1 n
unit ball, edgewise 5 n n+1
unit ball, dyadic 6 n n+1
rectangular 7 n 2^n
icosahedron 8 2 3
polar sphere 9 n-1 2^(n-1)
polar ball 10 n 2^(n-1) + 1

Currently two generic S3 methods work for objects of class mvmesh: print and plot.

Notes: This package represents points in n dimensional space as double precision numbers. This is

4 mvhist

convenient, but has potential problems. For example, determining whether points lie on a line or in
a plane may not be possible with floating point arithmetic because coordinates can’t be represented
exactly. The computational geometry package rcdd on CRAN gives a way around this by using
exact rational arithmetic. This works fine for points on a linear space, but not for points on the
unit sphere: (sqrt(2)/2,sqrt(2)/2) is on the unit circle, but cannot be represented exactly as a rational
number. So, we use floating point numbers everywhere. When required package rcdd is loaded,
it prints out a warning message about double precision numbers and encourages the use of rational
arithmetic. I do not know how to suppress this message.

Examples

UnitSimplex(n=2, k=3)
UnitBall(n=3, k= 2)

Not run:

plot(SolidSimplex(n=2, k=3), col="red")
title("2d solid simplex")

plot(SolidSimplex(n=3, k=4))
plot(UnitSimplex(n=3,k=4), new.plot=FALSE, col="red", lwd=5)
title3d("unit simpex and solid simplex in 3d")
rgl.viewpoint(-45, 15)

plot(UnitSphere(n=3, k=2), col="blue")
mesh2 <- AffineTransform(UnitBall(n=3,k=2), A=diag(c(1,1,1)), shift=c(3,0,0))
plot(mesh2, new.plot=FALSE, col="magenta")
title3d("triangulation of unit sphere and ball in 3d")

demo(mvmesh) # shows a range of meshes
demo(mvhist) # shows a range of multivariate histograms
demo(mvmesh2) # miscellaneous examples

End(Not run)

mvhist Multivariate histograms

Description

Tabulate and plot histograms for data, including directional histograms

Usage

histDirectional(x, k, p=2, plot.type="default", freq=TRUE, positive.only=FALSE,
report="summary", ...)

mvhist 5

histRectangular(x, breaks=10, plot.type="default", freq=TRUE, report="summary", ...)
histSimplex(x, S, plot.type="default", freq=TRUE, report="summary", ...)

TallyHrep(x, H, report="summary")
DrawPillars(S, height, shift=rep(0.0,3), ...)

Arguments

x data in an (n x d) matrix; rows are d-dimensional data vectors

k number of subdivisions

p power of p-norm

freq TRUE for a frequency histogram, FALSE for a relative frequency histogram

breaks specifes the subdivision of the region; see ’breaks’ in RectangularMesh

plot.type type of plot, see details below

positive.only If TRUE, look only in the first octant

report level of warning messages; one of "summary", "all", "none".

... Optional arguments to plot

S (vps x d x nS) array of simplices in V representation, see V2Hrep

H array of simplices in H representation, see V2Hrep

height vector of length nS giving the heights of the pillars

shift shift of the pillars, typically (0,0,0) for 2d data or (0,0,z0) for 3d data

Details

Calculate and plot multivariate histograms. In all cases, the bins are simplices computed from some
description. Then the number in each simplex is tallied using TallyHrep.

’plot.type’ values depend on the type of plot being used. Possible values are:

• "none" - does not show a plot, just return the counts

• "index" - shows a histogram of simplex index number versus count, does not show the geom-
etry, but works in any dimension

• "pillars" - shows a 3D plot with pillars/columns having base the shape of the simplices and
height proportional to frequency counts. When the points are 2D, this works for histRectangular
and histSimplex; when the points are 3D, this only works for histRectangular

• "counts" - shows frequency counts as a number in the center of each simplex

• "radial" - histDirectional only, shows radial spikes proportional to the counts

• "grayscale" - histDirectional only, shows radial spikes proportional to the counts

• "orthogonal" - histDirectional only, shows radial spikes proportional to the counts

• "default" - type depends on the dimension of the data and type of histogram

6 mvmesh-geom

Value

A plot is drawn (unless plot.type="none"). A list is returned invisibly, with fields:

• counts - frequency count in each bin

• nrejects - number of x values not in any bin

• nties - number of points in more than one bin (if bins are set up to be non-overlapping, this
should only occur on a shared edge between two simplices

• nx - total number of data points in x

• rel.freq - counts/nx

• rel.rejects - nrejects/nx

• mesh - object of type mvmesh, see mvmesh

• plot.type - input value

• report - input value

Examples

two dimensional, isotropic
x <- matrix(rnorm(8000), ncol=2)
histDirectional(x, k=1)
histRectangular(x, breaks=5)

Not run:

three dimensional positive data
x <- matrix(abs(rnorm(9000)), ncol=3)
histDirectional(x, k=3, positive.only=TRUE, col='blue', lwd=3)
histRectangular(x, breaks=4)

demo(mvhist) # shows a range of multivariate histograms

End(Not run)

mvmesh-geom Miscellaneous functions for working with multivariate meshes

Description

EdgeSubdivision calculates an equal area/volume subdivision of a simplex. AffineTransformMesh
define new mesh by translating all vertices by A Rotate2D and Rotate3D calculate rotation matrices
for use by AffineTransform.

Icosahedron returns the vertices of the icosahedron with vertices on the unit sphere

Other functions are internal functions, use at your own risk.

mvmesh-geom 7

Usage

EdgeSubdivision(n, k)
EdgeSubdivisionMulti(V, SVI, k, normalize = FALSE, p = 2)
ConvertBase(m, b, n)
NumVertices(n, k, single = TRUE)
PointCoord(S, color)
SimplexCoord(S, color)
SVIFromColor(S, T)

MatchRow(v, table, first = 1, last = nrow(table))
AffineTransform(mesh, A, shift)
Rotate2D(theta)
Rotate3D(theta)
Icosahedron()

V2Hrep(S)
H2Vrep(H)
SatisfyHrep(x, Hsingle)
HrepCones(S)

Arguments

v a vector of length n

table matrix of size m3 x n

first row to start search

last row to end search

mesh object of class "mvmesh"

A n x n matrix

shift shift vector of length n

theta rotation angle; in 2D, this is a single angle; in 3D is it a vector of length 3, with
theta[i] giving rotation around i-th axis

... optional parameters to rgl plot commands

k number of subdivisions

n dimension of simplex

V matrix of vertices; each row is a point in R^n

normalize TRUE to normalize vertices to lie on the unit sphere in the l^p norm

p power in the l^p norm

S matrix of size (vps x n) specifying the vertices of a single simplex; S[j,] is the
j-th vertex of S

SVI Simplex Vertice Index, see mvmesh

m positive integer to be converted to base ’b’

b positive integer, the base used to expess ’x’

single If TRUE, return only one value; if FALSE, return table of values

8 mvmesh-geom

color color matrix, internal matrix used by EdgeSubdivision to subdivide a simplex

T array giving a list of color matrices

H array of simplices in the H-representation, H[„k] is the H-representation for the
k-th simplex

x matrix with columns giving the points

Hsingle matrix giving the H-representation of a single simplex

Details

AffineTransform computes a new mesh from a previous one, with each vertex v being replaced
by A Rotate3D computes a 3D rotation matrix.

Icosahedron returns the vertices of the icosahedron with vertices on the unit sphere

H2Vrep converts from the half-space (H) representation to the vertex (V) representation of a sim-
plex. V2Hrep converts from the V-representation to the H-representation. It is assumed that all the
resulting value are of the same dimension. If this is not the case, an error will occur. To work with
such cases, call the function separately for each simplex and save the result in different size objects.
The one place where this can occur with mvmesh objects is with a PolarSphere or PolarBall: at
the places where polar coordinates are nonunique, vertices will repeat and the H-representation will
have fewer constraints than other simplices.

Value

MatchRow returns an integer vector, showing which rows of table match v. If there are no matches,
it returns integer(0).

AffineTransform returns an object of class "mvmesh". Rotate2D returns a 2 x 2 rotation matrix,
Rotate3D returns a 3 x 3 rotation matrix.

EdgeSubdivision computes an edgewise subdivision of a simplex using the method of Edelsbrun-
ner and Grayson. The algorithm of Concalves, et. al. was implemented in R. It is a coordinate free
method. ConvertBase is an internal routine used by the subdivision algorithm. NumVertices is a
utility routine to recursively calculate the number of vertices in an edgewise subdivision.

EdgeSubdivMulti is roughly a vectorized version of EdgeSubdivison. It takes a list of simplices,
and performs a k-subdivision of each simplex for function UnitSphere and related functions. Since
some simplices may share edges, the same vertex can be occur multiple times, so this function goes
through the resulting vertices and eliminates repeats. This function is not meant to be called by an
end user; it is not guaranteed to be general.

ConvertBase is an internal function that converts a positve integer ’x’ to an ’n’ digit base ’b’
representation. NumVertices is an internal function that computes the number of simplices in an
edgewise subdivision (without doing the subdivision). PointCoord is an internal function that
computes a single vertex of a simplex. SimplexCoord is an internal function that computes the
coordinates of a simplex ’S’ given color matrix ’color’. SVIFromColor is an internal function that
computes the SVI from a starting simplex ’S’ and color array ’T’.

Note that rays and lines are not allowed in V2Hrep; use rcdd funtion makeH directly to use them.

EdgeSubdivision returns a color matrix, a coordinate free representaion of the subdivision. One
generally uses UnitSimplex or UnitBall to get a vertex representation of the subdivision.

EdgeSubdivMulti returns a list of class ’mvmesh’

mvmesh-geom 9

References

Edelsbrunner and Grayson, Discrete Comput. Geom., Vol 24, 707-719 (2000).

Goncalves, Palhares, Takahashi, and Mesquita, Algorithm 860: SimpleS – an extension of Freuden-
thal’s simplex subdivision, ACM Trans. Math. Softw., 32, 609-621 (2006).

Examples

Icosahedron()

T <- EdgeSubdivision(n=2, k=2)
T

ConvertBase(10, 2, 6) # note order of digits

NumVertices(n=4, k=8, single=FALSE)

S <- rbind(diag(rep(1,2)), c(0,0)) # solid simplex in 2D
PointCoord(S, T[,,1])

SimplexCoord(S, T[,,1])

SVIFromColor(S, T)

S1 <- rbind(c(0,0,0), diag(rep(1,3)))
S2 <- rbind(c(1,1,1), diag(rep(1,3)))
S3 <- rbind(c(1,1,1), c(0,1,0), c(1,0,0), c(1,1,0))
S <- array(c(S1,S2,S3), dim=c(4,3,3))

(H1 <- V2Hrep(S))
(S4 <- H2Vrep(H1))

(H2 <- HrepCones(UnitSphere(n=2,k=1)$S)[,,2]) # cone between 0 <= y <= x, x >= 0
x <- matrix(rnorm(100), ncol=2)
(i <- SatisfyHrep(x, H2))
x[i,]

(table <- matrix(c(1:12,1:3), ncol=3, byrow=TRUE))
MatchRow(1:3, table)

Not run:
plot(Icosahedron(), col="green")

mesh <- SolidSimplex(n=3, k=2)
plot(mesh, col="blue")
mesh2 <- AffineTransform(mesh, A=Rotate3D(rep(pi/2,3)), shift=c(1,1,1))
plot(mesh2, new.plot=FALSE, col="red")

End(Not run)

10 mvmesh-methods

mvmesh-methods Methods to print and draw mvmesh objects

Description

Print summary of a mesh and plot 2D and 3D simplices. The 2D plot routines use the standard R
plots; 3D plot routines use the rgl package.

Usage

S3 method for class 'mvmesh'
print(x, ...)
S3 method for class 'mvmesh'
plot(x, new.plot=TRUE, show.points=FALSE, show.edges=TRUE, show.faces=FALSE,

show.labels = FALSE, label.values=NULL, ...)
DrawSimplex2d(S,label,show.labels,mvmesh.type,show.edges=TRUE,show.faces=FALSE,...)
DrawSimplex3d(S,label,show.labels,mvmesh.type,show.edges=TRUE,show.faces=FALSE,...)

Arguments

x an object of class "mvmesh", usually from one of the functions UnitSimplex,
SolidSimplex, UnitSphere, UnitBall, RectangularMesh, etc.

new.plot If TRUE, start a new plot; otherwise add to an existing plot

show.points If TRUE, show vertices (use cex= to change size)

show.edges If TRUE, show edges

show.faces If TRUE, fill in solid faces (only works in certain cases); otherwise show edges

show.labels If TRUE, an identifying label will be drawn inside each simplex

label.values values to display if show.label=TRUE; defaults to 1,2,3,...

... Optional argument to plot functions to set color, alpha, etc.

label Integer to label current simplex

S a simplex, an n x m matrix with columns S[,1],...,S[,m] giving the vertices

mvmesh.type integer code identifying what type of mesh this is, see the definition of class
"mvmesh" in mvmesh.

Details

print will print out summary information about a mesh object

plot will plot a mesh, calling DrawSimplex2d or DrawSimplex3d to plot a each simplex as appro-
priate for the dimension. These routines are meant to give a basic display; not all rgl capabilities
are used.

Value

A plot is drawn, usually nothing is returned

PolarSphere 11

Examples

print(SolidSimplex(n=3, k=2))

Not run:

plot(SolidSimplex(n=3, k=2), col='red')

End(Not run)

PolarSphere Define a mesh on the unit sphere/ball in n-dimensions determined by
a polar coordinates grid.

Description

Subdivide the unit ball or sphere into simplices in arbitrary dimensions using a rectangular grid on
the polar parameterization of the sphere.

The general n-dimensional polar coordinates to and from rectangular coordinates transformations
are provided.

Usage

PolarSphere(n, breaks=c(rep(4,n-2),8), p = 2, positive.only = FALSE)
PolarBall(n, breaks=c(rep(4,n-2),8), p=2, positive.only=FALSE)
Rectangular2Polar(x)
Polar2Rectangular(r, theta)

Arguments

n Dimension of the space; the Polar sphere is an (n-1) dimensional manifold

breaks specification of the partition of in the angle space theta. See the definition of
’breaks’ in RectangularMesh.

p Power used in the l^p norm; p=2 is the Euclidean norm

positive.only TRUE means restrict to the positive orthant; FALSE gives the full ball

r a vector of radii of length m.

theta a (n-1) x m matrix of angles.

x (n x m) matrix, with column j being the point in n-dimensional space.

12 PolarSphere

Details

PolarSphere computes an approximation to the unit sphere using a rectangular grid in the polar
angle space. PolarBall uses a partition of the polar sphere and joins those simplices to the origin
to approximately partition the unit ball. LpNorm computes the l^p norm of each columns of x.

Polar2Rectangular and Rectangular2Polar convert between the polar coordinate representation
(r,theta[1],...,theta[n-1]) and the rectangular coordinates (x[1],...,x[n]).

n dimensional polar coordinates are given by the following:
rectangular x=(x[1],...,x[n]) corresponds to polar (r,theta[1],...,theta[n-1]) by
x[1] = r*cos(theta[1])
x[2] = r*sin(theta[1])*cos(theta[2])
x[3] = r*sin(theta[1])*sin(theta[2])*cos(theta[3])
...
x[n-1]= r*sin(theta[1])*sin(theta[2])*...*sin(theta[n-2])*cos(theta[n-1])
x[n] = r*sin(theta[1])*sin(theta[2])*...*sin(theta[n-2])*sin(theta[n-1])

Here theta[1],...,theta[n-2] in [0,pi), and theta[n-1] in [0,2*pi). This is the parameterization de-
scribed in the Wikipedia webpage for "n-sphere". Note that this is NOT a 1-1 transformation:
when theta[1]=0, it follows that x[2]=x[3]=...=x[n]=0. This is analagous to all longitude lines going
through the north pole in standard 3d spherical coordinates.

For multivariate integration, the Jacobian of the above tranformation is J(theta) = r^(n-1) * prod(
sin(theta[1:(n-2)])^((n-2):1)); note that theta[n-1] does not appear in the Jacobian.

Value

PolarSphere and PolarBall return an object of class "mvmesh" as described in mvmesh. Polar2Rectangular
returns an (n x m) matrix of rectangular coordinates. Rectangular2Polar returns a list with fields:

r a vector of length m containing the radii

theta an (n x m) matrix of angles

Examples

PolarSphere(n=3, breaks=4)
PolarBall(n=3, breaks=4)

(x <- matrix(1:10, ncol=2))
(a <- Rectangular2Polar(x))
Polar2Rectangular(ar, atheta)

(x <- matrix(1:12, ncol=4))
(a <- Rectangular2Polar(x))
Polar2Rectangular(ar, atheta)

Not run:
plot(PolarSphere(n=2, breaks=8))
plot(PolarBall(n=2, breaks=8))

plot(PolarSphere(n=3, breaks=c(4,8)))
plot(PolarBall(n=3, breaks=c(4,8)))

RectangularMesh 13

End(Not run)

RectangularMesh Subdivide a hyperrectangle with a standard grid

Description

EdgeSubdivision implements the

Usage

RectangularMesh(a, b, breaks=5, silent=FALSE)
NextMultiIndex(i, n)

Arguments

a vector specifying the "lower left" vertex of the rectangle

b vector specifying the "upper right" vertex of the rectangle

breaks a specification of the subdivision scheme. See details below.

silent indicates whether or not to warn the caller if the subdivision determined by
’breaks’ covers the whole hyperrectangle [a,b].

i integer vector

n integer vector

Details

RectangularMesh computes an rectangular mesh on the hyperrectangle [a,b] = [a[1],b[1]] x [a[2],b[2]]
x ... x [a[n],b[n]]. It is similar to the function mesh in CRAN package plot3D, but works for dimen-
sion d=2,3,4,...

’breaks’ determines how each component is divided, it is motivated by the argument breaks in
hist. If ’breaks’ is a vector of length n, then breaks[i] gives the number of evenly sized bins
in coordinate i, spread out over the range [a[i],b[i]]. If ’breaks’ is a single number m, then each
component is subdivided into that many bins, i.e. this is equivalent to breaks=rep(m,n). Thus the
default breaks=6 subdivides each coordinate into 6 bins. Finally, if a more complicated subdivision
is desired, ’breaks’ can a list with n fields. breaks[[i]] should be a vector of dividing points for
coordinate i. See the example below. In this last case, where the bin boundaries are explictly
defined, ’a’ and ’b’ are not used (other than a possible warning if the specified bins do not cover the
rectangle given by ’a’ and ’b’).

Value

An object of class "mvmesh" as described in mvmesh.

14 UnitSimplex

Examples

RectangularMesh(a=c(1,3), b=c(2,7), breaks=2)
RectangularMesh(a=c(1,3), b=c(2,7), breaks=c(4,10))
RectangularMesh(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1)))

Not run:
plot(RectangularMesh(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE)
plot(RectangularMesh(a=c(1,3), b=c(2,7), breaks=c(4,10)), show.labels=TRUE)
plot(RectangularMesh(a=c(1,3), b=c(2,7),

breaks=list(seq(1,3,by=0.25), seq(2,7,by=1))), show.labels=TRUE)
plot(RectangularMesh(a=c(1,3), b=c(2,7), breaks=3), show.labels=TRUE,

label.values=letters[1:9], col='green')
plot(RectangularMesh(a=c(1,3,0), b=c(6,7,6), breaks=3), show.labels=TRUE, col='blue')

End(Not run)

UnitSimplex Define a mesh on the unit simplex or the canonical simplex

Description

Defines an equal area/volume subdivision of the unit simplex and the canonical simplex in R^n. The
unit simplex is the (n-1) dimensional simplex with vertices (1,0,0,...,0), (0,1,0,...,0), ...,(0,0,0,...,1),
i.e. all x >= 0 with sum(x)==1.

The solid simplex is the n dimensional simplex with vertices (1,0,0,...,0), (0,1,0,...,0), ...,(0,0,0,...,1),
and (0,0,...,0), i.e. all x >= 0 with sum(x) <= 1.

Usage

UnitSimplex(n, k)
SolidSimplex(n, k)

Arguments

n dimension of the space

k number of subdivisions

Details

EdgeSubdivision is called to do a k-subdivision of each edge, and then that output is converted to
a matrix of vertices.

Value

an object of class "mvmesh" as described in mvmesh.

UnitSphere 15

Examples

UnitSimplex(n=2, k=3)
SolidSimplex(n=2, k=3)

UnitSimplex(n=3, k=2)
SolidSimplex(n=3, k=2)

UnitSimplex(n=5, k=4)
SolidSimplex(n=5, k=4)

Not run:
plot(UnitSimplex(n=2, k=3))
plot(SolidSimplex(n=2, k=3))

plot(UnitSimplex(n=3, k=2))
plot(SolidSimplex(n=3, k=2))

End(Not run)

UnitSphere Define a mesh on a unit ball in n-dimensions

Description

Subdivide the unit ball or sphere into approximately equal simplices in arbitrary dimenions.

Usage

UnitSphere(n, k, method = "dyadic", p = 2, positive.only = FALSE)
UnitSphereEdgewise(n, k, p, positive.only)
UnitSphereDyadic(n, k, start = "diamond", p, positive.only)
UnitBall(n, k, method="dyadic", p=2, positive.only=FALSE)
LpNorm(x, p)

Arguments

n Dimension of the space; the unit sphere is an (n-1) dimensional manifold

k Number of subdivisions

method "dyadic" or "edgewise": the former recursively subdivides the sphere to get a
more uniform grid; the latter uses a faster method using one edgewise subdivi-
sion.

p Power used in the l^p norm; p=2 is the Euclidean norm

positive.only TRUE means restrict to the positive orthant; FALSE gives the full ball

start starting shape: "diamond" or "icosahedron"

x Matrix of points in n-dimensions; each column is a point in R^n

16 UnitSphere

Details

UnitSphere computes a hyperspherical triangle approximation to the unit sphere. It calls either
UnitSphereDyadic or UnitSphereEdgewise based on ’method’. Both work by subdividing the
first octant, and then rotating that subdivision around to other octants. Note that ’k’ has a different
meaning for the different methods. When method="dyadic", k specifies the number of dyadic sub-
divisions. When method="edgewise", k specifies the number of subdivisions as in UnitSimplex,
which is then projected outward to the unit sphere. So when n=2, a dyadic subdivision with k=2
will result in 16 edges, whereas an edgewise subdivions with k=2 results in 8 edges.

UnitBall computes an approximate simplicial approximation to the unit ball. Specifically, it gen-
erates cones with one vertex at the origin and the other vertices on the surface of the unit sphere;
these later vertices are from UnitSphere. If k is large, these cones will be very narrow/thin.

Value

an object of class "mvmesh" as described in mvmesh.

Examples

UnitSphere(n=2, k=2, method="edgewise", positive.only=TRUE)
UnitSphere(n=2, k=2, method="edgewise")

UnitSphere(n=3, k=2, method="edgewise", positive.only=TRUE)
UnitSphere(n=3, k=2, method="edgewise")

UnitBall(n=2, k=2, method="edgewise", positive.only=TRUE)
UnitBall(n=2, k=2, method="edgewise")

UnitSphere(n=3, k=2, method="dyadic", positive.only=TRUE)
UnitSphere(n=3, k=2, method="dyadic")

UnitBall(n=3, k=2, method="dyadic", positive.only=TRUE)
UnitBall(n=3, k=2, method="dyadic")

UnitSphere(n=3, k=2)
UnitBall(n=3, k=2)

x <- c(3,-1,2)
LpNorm(x, p=2)

Not run:
plot(UnitSphere(n=3, k=2), show.label=TRUE)
plot(UnitBall(n=3, k=2))

End(Not run)

Index

AffineTransform (mvmesh-geom), 6

ConvertBase (mvmesh-geom), 6

DrawPillars (mvhist), 4
DrawSimplex2d (mvmesh-methods), 10
DrawSimplex3d (mvmesh-methods), 10

EdgeSubdivision (mvmesh-geom), 6
EdgeSubdivisionMulti (mvmesh-geom), 6

H2Vrep (mvmesh-geom), 6
histDirectional, 2
histDirectional (mvhist), 4
histRectangular (mvhist), 4
histSimplex (mvhist), 4
HrepCones (mvmesh-geom), 6

Icosahedron (mvmesh-geom), 6

LpNorm (UnitSphere), 15

MatchRow (mvmesh-geom), 6
mvhist, 4
mvmesh, 6, 7, 10, 12–14, 16
mvmesh (mvmesh-package), 2
mvmesh-geom, 6
mvmesh-methods, 10
mvmesh-package, 2

NextMultiIndex (RectangularMesh), 13
NumVertices (mvmesh-geom), 6

plot.mvmesh (mvmesh-methods), 10
PointCoord (mvmesh-geom), 6
Polar2Rectangular (PolarSphere), 11
PolarBall (PolarSphere), 11
PolarSphere, 11
print.mvmesh (mvmesh-methods), 10

Rectangular2Polar (PolarSphere), 11

RectangularMesh, 5, 11, 13
Rotate2D (mvmesh-geom), 6
Rotate3D (mvmesh-geom), 6

SatisfyHrep (mvmesh-geom), 6
SimplexCoord (mvmesh-geom), 6
SolidSimplex (UnitSimplex), 14
SVIFromColor (mvmesh-geom), 6

TallyCones (mvhist), 4
TallyHrep (mvhist), 4

UnitBall (UnitSphere), 15
UnitSimplex, 14, 16
UnitSphere, 15
UnitSphereDyadic (UnitSphere), 15
UnitSphereEdgewise (UnitSphere), 15

V2Hrep, 5
V2Hrep (mvmesh-geom), 6

17

	mvmesh-package
	mvhist
	mvmesh-geom
	mvmesh-methods
	PolarSphere
	RectangularMesh
	UnitSimplex
	UnitSphere
	Index

