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On the Behavior of EMD and MEMD in Presence
of Symmetric -Stable Noise
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Abstract—Empirical Mode Decomposition (EMD) and its
extended versions such as Multivariate EMD (MEMD) are
data-driven techniques that represent nonlinear and non-sta-
tionary data as a sum of a finite zero-mean AM-FM components
referred to as Intrinsic Mode Functions (IMFs). The aim of this
work is to analyze the behavior of EMD and MEMD in stochastic
situations involving non-Gaussian noise, more precisely, we ex-
amine the case of Symmetric -Stable ( ) noise. We report
numerical experiments supporting the claim that both EMD and
MEMD act, essentially, as filter banks on each channel of the input
signal in the case of noise. Reported results show that, unlike
EMD, MEMD has the ability to align common frequency modes
across multiple channels in same index IMFs. Further, simulations
show that, contrary to EMD, for MEMD the stability property
is well satisfied for the modes of lower indices and this result is
exploited for the estimation of the stability index of the input
signal.

Index Terms—EMD, filter banks, MEMD, symmetric –stable
noise.

I. INTRODUCTION

E MPIRICAL MODE DECOMPOSITION (EMD) is a
fully adaptive data-driven approach for the decomposi-

tion of non-stationary signals [1]. This technique decomposes
any signal into a linear combination of a finite number of basis
functions called intrinsic mode functions (IMFs). Being proven
efficient when dealing with deterministic signals of oscillatory
nature, EMD also reveals interesting properties when dealing
with random signals. Dealing with such signals, their proper-
ties, their transformations, and their characterization in time and
frequency domains has gained enormous attention in the last
decade. Since a random signal is not repeatable in a predictable
manner, it may only be described probabilistically or in terms
of its average behavior. To be able to devise mathematical tools
for this purpose, one needs to assume a statistical model which
best describes the data. Evaluation of the performances of such
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methods depends upon the ability to determine the probability
density function (pdf) of a function of the data samples, either
analytically or numerically. When this is not possible, one must
resort to Monte Carlo computer simulations. Among various
probability distributions, the Gaussian distribution plays a pre-
dominant role in signal processing [2]. Many of the theorems
of communications, estimation and detection theory have been
formulated based on the Gaussian assumption thanks to the
Central Limit Theorem (CLT), which holds for a large variety
of distributions. Unfortunately, a broad class of phenomena
encountered in practice are undeniably non-Gaussian and
can be characterized by their impulsive nature [3]. Random
fluctuations of gravitational fields, underwater acoustic noise
of snapping shrimp, radar clutter, economic market indexes,
Internet traffic or man-made noise have been found to belong
to this class. Signals of this class are more likely to exhibit
sharp spikes or bursts of outlying measurements than one
would expect from normally distributed signals [4]–[6]. Im-
pulsive perturbations of these signals are commonly modeled
by symmetric –stable ( ) distributions. More precisely S
S distribution describes a large class of impulsive random

variables with heavy-tailed distributions. This family possesses
strong theoretical justifications according to the Generalized
CLT (GCLT) which extends the CLT to the case when the sum-
mands are heavy-tailed [7]. Up to now the behavior of EMD has
been analyzed in presence of fractional Gaussian noise (fGn)
[8] and its extended version, Multivariate EMD (MEMD) [9],
in white Gaussian noise case [10]. But much less attention has
been paid to situations involving processes that generate impul-
sive signals or noise bursts using such decompositions. Thus,
for more real world applications, it is important to investigate
how such signal decompositions behave in the presence of
noise. Because Gaussian and stable non-Gaussian distributions
are invariant under linear operations, they are very important
in signal processing. Hence the importance of studying their
characteristics when decomposed using EMD and MEMD.

II. BASICS OF EMD AND MEMD

EMD: Standard EMD breaks down any real-valued signal
into a reduced number of oscillating modes (AM-FM)

called Intrinsic Mode Functions (IMFs) and a residual
consisting of all local trends [1]. By construction, each IMF is
a zero-mean waveform whose number of zero-crossings (ZCs)
differs at most by one from the number of its extrema. More
precisely, EMD ends up with an expansion of the form:

(1)
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where is the th IMF and is the number of extracted
modes. The number of extrema of is decreased when going
from one residual to the next.
MEMD: Standard EMD considers only 1D signals and the

local mean is calculated by averaging the upper and lower
envelopes obtained by interpolating between the local maxima
and minima respectively. MEMD has been developed to
process a general class of multivariate signals having an arbi-
trary number of channels [9]. For an –dimensional signal the
local mean cannot be defined directly, and thus the multiple
–dimensional envelopes are generated by projecting the signal
along different directions in –variate spaces. The calculation
of the local mean can be considered as an approximation of
the integral of all the envelopes along multiple directions in an
–dimension space. MEMD uses a vector-valued form of (1)
to decompose a –variate signal as follows:

(2)

where is the number of extracted –variate modes,
contains scale-aligned intrinsic joint rotational

modes and is the –variate residue.

III. DISTRIBUTIONS

There is no closed-form for the pdf of the distri-
bution, but it is represented by its characteristic function:

, where is the location parameter
and is called the stability index. is the most impor-
tant parameter of the distribution because it controls the
density’s tail heaviness and is the dispersion parameter that
controls the width of the bell curve [4]. This scale parameter,
similar to variance of the Gaussian distribution, determines the
spread of the distribution around . The bell curve’s tails get
thicker as falls from 2 to near 0. For , corresponds
to the mean of the S S distribution while for ,
corresponds to its median. The only known closed-form S S
pdfs are the thin-tailed Gaussian with (less impulsive)
and the thick-tailed Cauchy with (more impulsive). The

distribution is the only distribution that verifies the GCLT:
GCLT: is -stable if and only if is the limit in

distribution of the sum , where
, are independent and identically distributed

(i.i.d.) r.v.’s, , and
Therefore the -stable distribution is more general than the

Gaussian distribution, and has a stronger justification since it
covers the class of signals that does not satisfy the classical CLT.

IV. PROPERTIES IN PRESENCE OF NOISE

A. Filter Bank Structure

A quantitative appreciation of the filter bank structure of
EMD and MEMD, in presence of S S noise, can be done
by measuring the mean frequency content of each IMF. Mea-
suring the average number of ZCs is a meaningful way of
characterizing its mean frequency, and the way this varies from
mode to mode is an indication of the hierarchical structure

of the filter bank [8]. Thus, it has been shown, by analyzing
the graphical representation of the average number of ZCs
as function of the IMF index, that output of EMD exhibits
a dyadic filter-bank structure for fGn [8] and that MEMD
acts as a dyadic filter-bank for multivariate white noise input
[9]. Fig. 1 shows that this property also holds for a i.i.d.
process decomposed into IMFs by MEMD and EMD. For both
EMD and MEMD, the standard stopping criterion described
in [20] is used. The noise is generated using the MatLab
STABLE toolbox [21]. The number of channels of MEMD is
set to 16 and the number of realizations is set to 1000. EMD
is applied to each channel separately. For sake of readability,
only the curves corresponding to 6 values of are plotted. As
evidenced in this figure, the logarithm (base 2) of the average
number of ZCs is a decreasing function of the mode index
for both decompositions. For MEMD this figure suggests a
functional relation of the form: , with close to
1.8. While for EMD the corresponding relation depends on the
stability index as follows:

(3)

where , and is a constant step equal to
0.2. Fig. 1 reveals similar results to those obtained in presence
of fGn [8], where a slope of - 1 means an ideal dyadic filter-
bank structure, indicating a quasi-dyadic filter bank structure for
EMD and MEMD when facing a i.i.d. process. Although
EMD produces a more pronounced dyadic filter than MEMD
for , they have almost the same slope for
and MEMD becomes more dyadic for . It is also
worth noticing that the slope of the line in the MEMD case is

and is the same regardless of the coefficient , while
in the EMD case, the slope varies from - 1 in the Gaussian case
( ) to ( ).

B. Mode Alignment Property

The Hilbert transform produces meaningful instantaneous
frequency (IF) only for mono-component data. Thus, accurate
IF estimation requires that extracted modes by EMD or its
extended versions be mono-component and locally orthogonal.
A cue to identify such modes is to look at the cross-corre-
lation (CC) coefficients between modes [16]. The schematic
representation of CC values (correlograms) allows us to check
if IMFs extracted from the input signal are aligned and have
the same information at the same level of decomposition. It
should be noted that mode alignment corresponds to finding
a set of common scales/IMFs across different components
(variates) of a multivariate signal, thus ensuring that the modes
are matched both in the number and in scale properties [17].
The higher the CC, the less significant the splitting in separate
IMFs. Thus, CC between normalized IMFs (leakage between
sub-bands) may cause blurred time-frequency estimates such
as IF. Using this quantitative evaluation, it has been shown that
EMD and MEMD generate approximately mono-component
and locally orthogonal data-driven basis functions in presence
of white Gaussian noise ( ) [12]. Fig. 2 shows CC of IMFs
averaged over realizations of S S 2-channel process
of length samples using EMD (channel-wise) and



820 IEEE SIGNAL PROCESSING LETTERS, VOL. 22, NO. 7, JULY 2015

Fig. 1. Logarithm of average number of ZCs as a function of . Slopes of the
fitted lines are approximately equal to - 0.84 when using MEMD (dashed lines),
and varying from - 1 ( ) to - 0.8 ( ) when using EMD (solid lines).
For sake of readability MEMD curves are shifted upwards by one unit.

Fig. 2. CCs of IMFs for a bivariate distribution using (a-c) EMD (channel-
wise) and (d-f) MEMD.

MEMD. The CC estimates are calculated for IMFs
obtained from MEMD and EMD as follows:

(4)

By definition, we have .
We report in Fig. 2 alignment results of three typical values

of . Fig. 2(d)–2(f) show that, on average, MEMD has almost
the same behavior for all . Larger values along the
diagonal ( ) suggest that the IMFs in MEMD are well
aligned. For and , both decompositions
produce correlograms with diagonal-dominant elements while
being more pronounced in the case of MEMD. For ,
unlike MEMD, EMD does not exhibit a pronounced diagonal
dominance, concluding that EMD does not produce same index
IMFs with the same scale when deviates from 2. As shown
in Fig. 2(c), for more impulsive cases, significant values of
CC estimates are observed off-diagonal ( ) indicating
missaligned IMFs. This suggests that standard EMD is not well
suited for decomposing signals of high impulsive nature.

C. Stability Test

EMD or MEMD are data-driven projections of a signal on
some space, thus it is important to check if the stability prop-
erty is preserved or not using these decompositions. As with
any other family of distributions, it is not possible to prove that

Fig. 3. Density plot and Q-Q plot of the first IMF for a i.i.d. signal with
and a data length of 10000 samples.

a given set is or is not stable, even for normality this is still
an active research field [11]. A solution to this problem is to
check whether or not data are consistent with stability hypoth-
esis. More precisely, for plausibly stable smoothed density of
data (Fig. 3(a),3(c)) the fitted distribution is compared to data
using Quantile-Quantile (Q-Q) plot as shown in Figs. 3(b) and
3(d). Q-Q plot is designed to show the closeness of two dis-
tributions [11]. If the fitting is consistent, stability parameters
( ) are estimated. Four methods are used: Maximum
Likelihood (ML) [19], Quantile, Empirical Characteristic Func-
tion (ECF) and Fractional Lower Order Moments (FLOM). De-
veloping these estimationmethods goes beyond the scope of this
paper, and the reader is referred to [4], [13]–[15] and [19] for
more details. If the estimates differ significantly, the
data are considered not stably distributed. While non-Gaussian
stable distributions are heavy-tailed, most heavy-tailed distri-
butions are not stable. In many cases, it is not appropriate to
fit heavy-tailed data with a stable distribution. As shown in
Fig. 3, the pdf of the first extracted IMF (averaged over 150
realizations) by EMD is bimodal, while the corresponding one
of MEMD is unimodal. However, in both cases, an -stable fit-
ting is used to approximate the first mode even though, for the
EMD case, this fitting is not accurate (one cannot fit a bimodal
distribution using a unimodal stable one). Nevertheless, this test
was made to prove that, even if the first IMF is not stable, when
fitted using a stable distribution, its estimate is approximately
equal to the original index . The Q-Q plot of Fig. 3 shows that
this fitting is more consistent in MEMD than in EMD. However,
estimates , averaged over 150 realizations, reported
in Table I for the first IMF results in a significantly different re-
sults using the four methods in the case of EMD, but the param-
eters retrieved in MEDM are on the average the same and close
to the true parameters . There-
fore, these results support the claim that, in first approximation,
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TABLE I
ESTIMATED PARAMETERS OF THE FIRST IMF FOR EMD AND

MEMD USING ML QUANTILE, ECF, AND FLMO

stability is more preserved by MEMD than by EMD and more
particularly the stability index .

D. Estimation of the Stability Index

The most important parameter for the stable family is the sta-
bility index that can be estimated from observations [18]. We
decompose an input noise with values ranging from 1 to
2 into IMFs by EMD and MEMD. For sake of clarity, only five
typical values of are presented. Estimates , using the method
developed by McCulloch [14], are plotted as function of in
Fig. 4. As evidenced in Fig. 4, the stability property is mostly
satisfied for modes of lower indices ( ) in MEMD, which
capture the sharp spikes and tail heaviness of the original data.
These modes, when fitted to a stable distribution, have the same
parameter as the input signal. Thus satisfaction of this

property, for such modes, allows us to estimate the parameter
of the input signal. Note that for higher indices ( ),
but with , the stability is moderately satisfied. When
going from the last IMFs to the residue, the distribution of these
modes approaches a Gaussian distribution. For EMD, the sta-
bility property only holds for (white noise). We illustrate
the relevance and the importance of our study on a real under-
water acoustic signal containing: background underwater noise,
propeller noise, Dolphin’s sounds and sonar pings (Fig. 5). On
can notice that outliers occurred more than frequently in this
signal. Thus, adopting the Gaussian model is not relevant in
such case. One way to study the statistical model of the signal
is to decompose the signal into blocks, and estimate a statis-
tical model for each block. It should be noted that this signal is
6 million samples long. We decompose it into blocks of length
10000 samples each (if we take fewer samples per block, the es-
timation of the pdf will not be accurate, and a larger block size
will mitigate the effects of large spikes). Then is estimated
on each block and if the block could be modeled as Gaussian,
then should be close to 2, otherwise will deviate from 2.
The ML estimation is plotted in Fig. 5 (dashed red). However,
when EMD is applied to each block before the estimation, then
ML estimation is performed using only the first 4 modes, the
result is plotted in solid blue. It can be seen that using EMD, the
estimator captures almost all the regions where the signal ex-
perience non-Gaussian phenomenon. Thus, EMD can be very
useful for such situations, where the data contains –stable dis-
tribution along with other types of distributions (Gaussian or
simply deterministic). In such cases, applying classical estima-
tion techniques such as the ML on the whole data is not efficient
because the –stable distribution presence will be attenuated by
the presence of other signals or distributions.

Fig. 4. values for input signal with different (EMD: dashed lines- MEMD:
solid lines).

Fig. 5. Underwater acoustic signal (black) with estimation per block using
ML (dashed red) and EMD-ML (solid blue).

V. CONCLUSIONS

In this work we report on numerical experiments aimed at
supporting the claim that in presence of noise, both EMD
and MEMD can be interpreted as filter bank on each channel
of this process. Moreover, the first modes extracted by MEMD
could be accurately fitted using an –stable distribution, unlike
original EMD, which produces bimodal modes that could not be
fitted using a stable distribution. Unlike EMD, for MEMD the
stability property is well satisfied for the modes of lower indices
and this result is a new MEMD-based estimator of the stability
index of the input signal. The reported results also show
that MEMD aligns similar modes present across multiple chan-
nels in same-index IMFs for varying values of the stability index
. This property is crucial for real world applications such as
Instantaneous Frequency estimation, signals denoising or data
fusion. However, mode alignment is not achieved by standard
EMD applied channel-wise and thus is not well suited for de-
composing signals of high impulsive nature (small values). As
future work we plan to study the behavior of MEMD and EMD
with isotropic, elliptical and other multivariate stable processes.
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