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1 Introduction

A d-dimensional random vector X = (X1, . . . , Xd) is said to be stable if for all
n = 2, 3, 4, . . ., there is a constant an > 0 and a vector bn ∈ Rd such that X1 +

X2 + · · ·Xn
d
=anX+ bn, where X1,X2,X3, . . . are i.i.d. copies of X.
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2 Uğur Tuncay Alparslan, John P. Nolan

A multivariate stable distribution is usually described by a spectral measure Λ,
a finite Borel measure on the unit sphere S = {s ∈ Rd : |s| = 1}, and a shift
vector δ ∈ Rd. There are multiple parameterizations of stable laws; we will use
two, which we call the 0-parameterization and the 1-parameterization. We will say
X ∼ S(α,Λ, δ; j), j = 0, 1 if its joint characteristic function is given by

φ(u) = E exp(i〈u,X〉) = exp

(
−
∫
S
ω (〈u, s〉|α; j) Λ(ds) + i〈u, δ〉

)
,

where

ω(t|α; j) =


|t|α[1 + i sign (t)tan πα

2 (|t|1−α − 1)] α 6= 1, j = 0

|t|α[1− i sign (t)tan πα
2 ] α 6= 1, j = 1

|t|[1 + i sign (t) 2π log |t|] α = 1, j = 0, 1.

The 1-parameterization is more commonly used, but because |tan(πα/2)| → ∞ as
α → 1, the 1-parameterization is discontinuous in α. Since tan(πα/2)(|t|1−α −
1) → 2

π log |t| as α → 1, the 0-parameterization is a continuous parameterization
of multivariate stable laws. If X ∼ S(α,Λ, δ0; 0) and X ∼ S(α,Λ, δ1; 1), then the
shift vectors are related by

δ1 =

{
δ0 − tan πα

2

∫
S sΛ(ds) α 6= 1

δ0 α = 1.

Another way of describing a multivariate stable law is by the use of linear pro-
jections. If X is a stable vector, then every one dimensional projection 〈u,X〉 =
u1X1 + u2X2 + · · · + udXd has a univariate stable distribution, with a constant
index of stability α and skewness β(u), scale γ(u) and shift δ(u) that depend on
the direction u, see Samorodnitsky and Taqqu (1994), Section 2.1. (The converse
is true if α ≥ 1; when α < 1 an extra condition is needed for the converse, see
the discussion after Lemma 4.1 of Nolan (2010).) We will call the functions β(·),
γ(·) and δ(·) the projection parameter functions. Since they uniquely determine all
one dimensional projections, they determine the joint distribution via the Cramér-
Wold device. In this case, we will parameterize X by these projection parameter
functions: X ∼ S(α, β(·), γ(·), δ(·); j), j = 0 or j = 1. It is well known that
γ(u) =

(∫
S |〈u, s〉|

αΛ(ds)
)1/α

in both parameterizations. One fact we will note
here is that these projection parameter functions have scaling properties, in partic-
ular γ(ru) = rγ(u), so knowing them on the unit sphere determines them every-
where. For the symmetric case, the joint characteristic function is E exp(i〈u,X〉) =
exp(−γα(u)) = exp(−|u|αγα(u/|u|)), so the values of γ(·) on S completely deter-
mines the joint distribution.

In Nolan (2010), the projection parameter functions were used to measure the
distance between two multivariate stable distributions. Here we will adapt that idea
to measure distance between a multivariate stable distribution and the stable law with
independent components. Specifically, let X = (X1, X2) be a bivariate α-stable r.
vector. We assume that the components are normalized: γj = γ(ej) = 1, j = 1, 2,
where ej is the j-th standard unit vector. Set γ⊥(u) = (|u1|α + |u2|α)1/α; this
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A measure of independence for stable distributions 3

θ

0 π 2 π 3π 2 2π

0
1

2

γ⊥

γ

Fig. 1 η1 is the area between the curves γ(·) and γ⊥(·). The vertical lines are discussed when the sample
estimator η̂p is defined below.

is the scale function of any two-dimensional stable distribution having independent
components and unit scales. (The distribution can be symmetric or skewed, so there
are multiple stable distributions that have this scale function. Specifying the skewness
β1 and β2 for each component uniquely determines the joint distribution.) For any
p ∈ [1,∞], define a measure of independence by

ηp = ηp(X1, X2) = ‖γα(u1, u2)− γα⊥(u1, u2)‖Lp(S,du) . (1)

Here du is surface area on S (unnormalized, with total mass 2π). Figure 1 illustrates
the geometric idea behind ηp.

The following simple result is the motivation for this definition.

Proposition 1 Let X = (X1, X2) be an α−stable random vector with normalized
components, α ∈ (0, 2). Then X has independent components if and only if ηp = 0
for some (every) p ∈ [1,∞].

Proof It is well-known that X has independent components if and only if the spectral
measure is concentrated on the 4 points where the axes intersect the unit circle, e.g.
Samorodnitsky and Taqqu (1994), Example 2.3.5. Let λj,+ be the spectral mass at ej
and λj,− be the spectral mass at −ej , j = 1, 2. Then

γα(u) = |u1|α(λ1,+ + λ1,−) + |u2|α(λ2,+ + λ2,−).

Since γ(ej) = γj = 1, we must have γαj = (λj,+ + λj,−) = 1, j = 1, 2. Thus
γα(u1, u2) = |u1|α + |u2|α, and therefore ηp = 0 for all p. For the converse, the
scale function γ(·) is continuous, so the only way ηp can be 0 is if γα(u1, u2) =
γ⊥(u1, u2). The following argument shows that the spectral measure is concentrated
on {e1,−e1, e2,−e2}. Define Λsym(A) = (Λ(A)+Λ(−A))/2. This is a symmetric
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4 Uğur Tuncay Alparslan, John P. Nolan

spectral measure with same scale function as Λ. By the uniqueness of the spectral
measure, this means the spectral measure Λsym must be of the form (εe1 + ε−e1 +
εe2

+ ε−e2
)/2, the spectral measure of the symmetric stable r. vector with the above

scale function. By the definition of Λsym, the original Λmust also be concentrated on
±ej , j = 1, 2. Thus X has independent components. �

Here are several comments about ηp and its properties.

1. The p-norm in (1) is evaluated as an integral over the unit circle S, not all of R2.
In polar coordinates,

ηp =

(
2

∫ π

0

|γα(cos θ, sin θ)− γα⊥(cos θ, sin θ)|
p
dθ

)1/p

, (2)

where the interval of integration has been reduced by using the fact that γ(·) is
π-periodic. Below we will use polar notation for the scale function on the unit
circle when it is more convenient: γ(θ) := γ(cos θ, sin θ). In particular, γ⊥(θ) =
(| cos θ|α + | sin θ|α)1/α.

2. α can be any value in (0, 2) and X can have symmetric or non-symmetric com-
ponents, and it can be centered or shifted.

3. ηp is symmetric: ηp(X1, X2) = ηp(X2, X1).
4. ηp ≥ 0 by definition, so with this measure there is no notion of positive or neg-

ative dependence. Some authors have defined a signed measure of dependence,
e.g. the signed covariation of Garel and Kodia (2014), but there is an arbitrariness
with the sign. While this assignment may make sense in a some cases, e.g. ellip-
tically contoured stable, it doesn’t seem to make sense in general. For example,
a distribution that is a rotation by π/4 of the bivariate independent stable com-
ponent case has probability concentrated along both lines y = x and y = −x;
we do not see a meaningful way of assigning a sign to such dependence. See the
discussion in Section 2 on the distribution of mass among different quadrants.

5. The definition makes sense in the Gaussian case: when α = 2, the scale function
for a bivariate Gaussian distribution with standardized marginals and correlation
ρ is γ2(u) = 1 + 2ρu1u2 and γ2⊥(u) = 1 on S. Then ηpp = |2ρ|p

∫
S |u1u2|

pdu,
so ηp = kp|ρ|.

6. In the elliptically contoured/sub-Gaussian stable case with 0 < α < 2, and shape
matrix (1, ρ; ρ, 1), γα(u) = (u21 + 2ρu1u2 + u22)

α/2, so

ηpp = 2

∫ π

0

∣∣∣(1 + 2 cos θ sin θ)α/2 − (| cos θ|α + | sin θ|α
∣∣∣p dθ.

This can be computed numerically, see Figure 2 for a plot of η2 in the elliptical
case.

7. If the components of X are not standardized, then define

ηp(X1, X2) =

∥∥∥∥γα(u1γ1 , u2γ2
)
− γα⊥(u1, u2)

∥∥∥∥
Lp(S,du)

.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A measure of independence for stable distributions 5

γ(u1/γ1, u2/γ2) is the scale function of the scaled r. vector Y = (X1/γ1, X2/γ2).
This normalizes the measure of independence.

8. A stable random vector X = (X1, . . . , Xd) has mutually independent compo-
nents if and only if all pairs are independent, e.g. Corollary 3.5.4 in Samorodnit-
sky and Taqqu (1994). Hence the components of X are mutually independent if
and only if ηp(Xi, Xj) = 0 for all i > j.

9. Since Lp(S, ds) is a finite measure space, Holder’s Inequality shows for 1 ≤ p ≤
∞, η1 ≤ (2π)1+1/pηp. Also, Section 2 below shows |γα(u)−γα⊥(u)| ≤ 2, so for

any q > 1, ηq =
(∫
|γα(u)− γα⊥(u)|q

)1/q ≤ (2q−1 ∫ |γα(u)− γα⊥(u)|)1/q =

21−1/qη
1/q
1 . Hence, ηp is small for some p if and only if it is small for all q. We

will focus on the case p = 2 below, particularly in the sample analog η̂2.
10. ηp measures how far the scale function of X is from the scale function of a stable r.

vector with independent components. When X is symmetric, not only is is ηp = 0
a characterization of independence, but more generally the size of ηp is a measure
of closeness between X and the independent case. Let f(·) be the density of X
and let f⊥(·) be the density of the independent components case (both having
normalized components), then Nolan (2010) shows

sup
x∈R2

|f(x)− f⊥(x)| ≤ kα‖γ(u)− γ⊥(u)‖1.

When α ∈ (0, 1], the right hand side can be bounded by ηp. To see this, Section 2
shows γ(u) and γ⊥(u) are in a bounded interval [0, Rα]. For α in the range (0,1]
and s, t ∈ [0, Rα], |s− t| ≤ (R1−α

α /α)|sα − tα|, so

‖γ(u)− γ⊥(u)‖1 =

∫
|γ(u)− γ⊥(u)|ds

≤ cα

∫
|γα(u)− γα⊥(u)|ds = cαη1 ≤ c′αηp.

When 1 < α ≤ 2, a similar result can be shown by modifying the arguments
in Nolan (2010). In the non-symmetric case, showing that the respective densi-
ties f(x) and f⊥(x) are close requires an additional condition, i.e. that ‖β(u) −
β⊥(u)‖1 is also small.

11. The same idea can be used to compare the distribution given by γα(·) to a differ-
ent model, other than the independent one, by replacing γα⊥(·) with the appropri-
ate scale function. For example, using γαiso(·) = 1 in place of γα⊥(·) in (1) would
measure distance from the isotropic distribution. Modification of the sample mea-
sure η̂2 in Section 3 is straightforward.

The next section examines the scale function, the proposed measure η, and com-
pares with covariation and co-difference. In the third section, a sample analogue is
defined and demonstrated with simulated and real data with bivariate and multivariate
data, time series and a modification is given for vectors in the domain of attraction of
a stable law.
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6 Uğur Tuncay Alparslan, John P. Nolan
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Fig. 2 Plot of η2 for α-stable elliptically contoured stable distribution with shape parameter ρ.

2 Properties of γ(·), ηp, covariation and co-difference

In multivariate extreme value theory, Pickands (1981) defined a function that char-
acterizes the dependence in a bivariate extreme value distribution. Here we briefly
describe how the stable scale function can serve a similar purpose.

Let X be a bivariate α-stable r. vector with spectral measure Λ and scale function
γ(·). Throughout this section we assume that X has normalized components: γ1 =
γ2 = 1. As above, let γ(θ) = γ(cos θ, sin θ), θ ∈ [0, 2π]. In polar coordinates,

γα(θ) =

∫ 2π

0

|〈(cos θ, sin θ), (cosφ, sinφ)〉|αΛ(φ) =
∫ 2π

0

| cos(θ − φ)|αΛ(φ).

First, let us look for envelope functions:

γmin(θ) := inf
γ
γ(θ) and γmax(θ) := sup

γ
γ(θ),

where the inf and sup are taken over all valid scale functions for a bivariate α−stable
random vector with normalized components. Proposition 2 gives an explicit formula
for γmax(θ), Proposition 3 gives a candidate for γmin(θ); both depend only on α.

Proposition 2 For normalized components, 0 ≤ γ(θ) ≤ γmax(θ), where

γmax(θ) =

{
| cos θ|+ | sin θ| 1 ≤ α < 2

(| cos θ|α + | sin θ|α)1/α 0 < α < 1.

Proof Since the distribution has normalized components, γ(1, 0) = γ(0, 1) = 1. The
proof is easier using rectangular coordinates: write u ∈ S as (u1, u2) = (cos θ, sin θ).
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A measure of independence for stable distributions 7

When 0 < α ≤ 1,

γα(u1, u2) =

∫
S
|u1s1 + u2s2|αΛ(ds)

≤
∫
S
|u1s1|αΛ(ds) +

∫
S
|u2s2|αΛ(ds)

= |u1|αγα(1, 0) + |u2|αγα(0, 1) = |u1|α + |u2|α = γα⊥(u1, u2)

When α ≥ 1, using the triangle inequality,

γ(u1, u2) =

(∫
S
|u1s1 + u2s2|αΛ(ds)

)1/α

≤
(∫

S
|u1s1|αΛ(ds)

)1/α

+

(∫
S
|u2s2|αΛ(ds)

)1/α

= |u1|γ(1, 0) + |u2|γ(0, 1) = |u1|+ |u2|

The expressions for γmax(·) are sharp. To see this, set

γ+(θ) = 21/2| cos(θ − π/4)|
γ−(θ) = 21/2| cos(θ − 3π/4)|
γ⊥(θ) = (| cos θ|α + | sin θ|α)1/α

Note that γ+(·) corresponds to a bivariate stable distribution with exact positive linear
dependence (X2 = X1, spectral measure with mass of weight 2α/2 on the diagonal),
γ−(·) corresponds to exact negative linear dependence (X2 = −X1, mass of weight
2α/2 on the anti-diagonal), and γ⊥(·) corresponds independent components (masses
of weight 1 on the line y = 0 and weight 1 on the line x = 0). When α ≥ 1,
| cos θ| + | sin θ| = max(γ−(θ), γ+(θ)), so the upper bound is achieved by γ−(θ)
in the first and third quadrants and γ+(θ) in the second and fourth quadrants. When
α ≤ 1, the upper bound is achieved by the independent component case. �

We conjecture that a sharp lower bound γmin(θ) is given by

γ∗(θ) =

{
max(g(θ), g(π/2− θ)) α < 1

min(γ−(θ), γ+(θ)) α ≥ 1,

where g(θ) = | cos θ| (1− | tan θ|α)1/α. The following result shows that γmin(·) is
less than or equal to γ∗(·).

Proposition 3 For normalized components, 0 ≤ γmin(θ) ≤ γ∗(θ).

Proof Consider the α < 1 case. First assume θ0 is in the interval (0, π/4). For
λ1 > 0, define θ1 = θ0 + π/2 and θ2 = θ2(α, θ0, λ1) = π/2 + arctan[(1 −
λ1| cos θ0|α)/(1−λ1| sin θ0|α)], and λ2 = λ2(α, θ0, λ1) = (1−λ1| sin θ0|α)/| cos θ2|α.
When 0 < λ1 < λ∗ := 1/| cos θ0|α, calculation shows that λ2 > 0, θ1 < θ2 < π,
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8 Uğur Tuncay Alparslan, John P. Nolan
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Fig. 3 Envelope functions γαmax(θ) (black) and conjectured γαmin(θ) (red) for differentα. For comparison
to the independent case, γα⊥(θ) is also shown as a dotted curve; when α ≤ 1, the independent scale
function is identical to the upper bound.

and the bivariate stable distribution Xλ1
having the two point spectral measure with

mass λj at θj has standardized components. For large λ1, most of the mass is at θ1,
which is perpendicular to θ0. The second point mass is placed to get normalized com-
ponents. The corresponding scale function is γαλ1

(φ) = | cos(φ−θ1)|αλ1+ | cos(φ−
θ2)|αλ2. So γαλ1

(θ0) = 0 · λ1 + | cos(θ0 − θ2)|αλ2. As λ1 ↑ λ∗, γαλ1
(θ0) ↓ g(λ∗).

For θ0 in the interval (π/4, π/2), the argument can be reflected to get the g(π/2−
θ0) bound. For the rest of the interval (π/2, 2π), the argument can be shifted from the
first quadrant. When α ≥ 1, γ∗(·) is achieved by γ−(·) in the first and third quadrants,
and by γ+(·) in the second and fourth quadrants. �

For any scale function with normalized components, γ(θ) ≤ γmax(π/4) = 21/2

when 1 ≤ α ≤ 2, and γ(θ) ≤ γmax(π/4) = 21/α−1/2 when 0 < α ≤ 1. This latter
term is unbounded as α ↓ 0. However γα(θ) ≤ 2 for all α and all θ; this is why
we used the α-th power in the definition of ηp. Figure 3 shows the α-th power of the
upper envelope function γmax(·) and the proposed lower envelope γ∗(·).

Unlike the Pickands function, convexity is not necessary for γα(·) to be a valid
scale function, γα(·) must be of positive type, or equivalently, exp(−γα(·)) must be
non-negative definite. We are not aware of any intrinsic characterization of a function
γα(·) that guarantees this.

Since γα(·) ≤ 2 for any scale function with normalized components, ηp is always
bounded by 4π, but this bound is not sharp. We conjecture that for any 0 < α ≤
2, any p ≥ 1, and any normalized bivariate α-stable distribution (X1, X2), 0 ≤
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A measure of independence for stable distributions 9

ηp(X1, X2) ≤ η∗p , where

η∗p =
∥∥γα+(θ)− γα⊥(θ)∥∥p = ∥∥γα−(θ)− γα⊥(θ)∥∥p .

In words, the farthest distributions away from independence are the exact linear de-
pendent cases. These values of η∗p can be compute numerically.

We briefly compare ηp to the covariation and co-difference. For α > 1, the co-
variation is defined by the first term and Example 2.7.3 in Samorodnitsky and Taqqu
(1994) shows the second equality:

[X1, X2]α =

∫
S
s1s

<α−1>

2 Λ(ds) =
1

α

∂γα(u1, u2)

∂u1

∣∣∣∣
(u1=0,u2=1)

.

Thus the covariation depends only on the behavior of γ(·, ·) near the point (0, 1). If
X1 and X2 are independent, then [X1, X2]α = 0. The discussion below shows that
converse is false: there are many dependent distributions where [X1, X2]α = 0.

The co-difference is defined for symmetric α-stable vectors, and can be written
as

τ = τ(X1, X2) = γα(1, 0) + γα(0, 1)− γα(1,−1),

and is defined for any α ∈ (0, 2). It uses the values of the scale function at three
particular points. If X1 and X2 are independent, then τ = 0; when α ≤ 1, the
converse is true, see Section 2.10 of Samorodnitsky and Taqqu (1994). When α > 1,
the converse is false, however if both τ(X1, X2) = 0 and τ(X1,−X2) = 0, then X1

and X2 are independent, see Section 2 of Rosiński and Zak (1997). A direct proof of
this is straightforward: the condition τ(X1, X2) = 0 is equivalent to∫

S
|s1|αΛ(ds) +

∫
S
|s1|αΛ(ds) =

∫
S
|s1 − s2|αΛ(ds),

and the condition τ(X1,−X2) = 0 is equivalent to∫
S
|s1|αΛ(ds) +

∫
S
|s1|αΛ(ds) =

∫
S
|s1 + s2|αΛ(ds).

By Lemma 2.7.14 (2) in Samorodnitsky and Taqqu (1994), these two conditions to-
gether are equivalent to s1s2 = 0 Λ-a.e., i.e.X1 andX2 are independent. As a conse-
quence, one can define τ2(X1, X2) + τ2(X1,−X2) as a measure that characterizes
independence. However the sample analog of this has less power then the sample
analog of η2 proposed below.

Chapter 2 of Samorodnitsky and Taqqu (1994) gives properties of covariation and
co-difference. Here we elaborate some on these properties, with attention to when
they can be zero. Let Qj be the open j-th quadrant, j = 1, 2, 3, 4.

For the covariation we restrict to α > 1. Expressing the covariation in polar
coordinates gives

[X1, X2]α =

∫ 2π

0

cos θ(sin θ)
<α−1>

Λ(dθ).
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10 Uğur Tuncay Alparslan, John P. Nolan

The integrand is zero precisely at the “poles” θ = 0, π/2, π, and 3π/2, which is
precisely the support of any independent stable vector. So independence implies 0
covariation. But there are many other ways this can happen. The integrand function
above is strictly positive on Q1∪Q3, and strictly negative on Q2∪Q4. Hence, if Λ is
supported onQ1∪Q3, [X1, X2]α > 0; if Λ is supported onQ2∪Q4, [X1, X2]α < 0.
Furthermore, if support Λ satisfies either condition, then normalizing the compo-
nents of the corresponding distribution also has support in the corresponding region.
So, there are many distributions with positive covariation and many with negative
covariation, even if we restrict to normalized components.

The integral definition shows that covariation is linear in the spectral measure:
for c0, c1 ≥ 0, the covariation corresponding to c0Λ0 + c1Λ1 is the sum of c0 times
the covariation corresponding to Λ0 plus c1 times the covariation corresponding to
Λ1. Thus if Λ0 has positive covariation and Λ1 has negative covariation, setting
cj = |covariation of Λ1−j | /(|covariation of Λ0|+ |covariation of Λ1|), c0Λ0+ c1Λ1

has covariation 0. Since this is a convex combination, if Λ0 and Λ1 have normalized
components, so does the sum. Hence, there are many normalized dependent distribu-
tions with zero covariation.

For the co-difference, any α ∈ (0, 2] is allowed. Scaling shows τ = γα(1, 0) +
γα(0, 1) − 2α/2γα(1/

√
2,−1/

√
2), so it suffices to consider γ(·) on the unit circle.

Expressing the spectral measure in polar coordinates also gives a polar expression for
τ :

τ = γα(0) + γα(π/2)− 2α/2γα(3π/4)

=

∫ 2π

0

[
| cosφ|α + | sinφ|α − 2α/2| cos(3π/4− φ)|α

]
Λ(dφ). (3)

The integrand above is 0 at the “poles”, so independence implies 0 co-difference.
Some special cases are straightforward to compute. In the elliptical case, γellip(u) =
1 + 2ρu1u2, so τellip = 1 + 1 − (1 + 2ρ(−1)) = 2 − (2(1 − ρ))α/2. The range of
τellip is [2− 2α, 2]; the lower bound is negative if and only if α > 1. In the isotropic
case, ρ = 0 and τ = 2 − 2α/2. For γ+(·), τ+ = 1 + 1 − 2α/2| cosπ/2|α = 2. This
achieves max. For γ−(·), τ− = 1+ 1− 2α/22α/2| cos 0|α = 2− 2α. This is positive
for α < 1, zero for α = 1, and negative for α > 1.

When α > 1, the integrand function in (3) is strictly positive in Q1 ∪ Q3 and
strictly negative in Q2 ∪Q4. So, as with the covariation above, any spectral measure
concentrated in Q1 ∪Q3 has strictly positive co-difference, and any spectral measure
concentrated in Q2 ∪ Q4 has strictly negative co-difference. As above, if Λ satis-
fies either of the conditions on the support, then normalizing the coordinates gives a
spectral measure with support that satisfies the same condition.

We can also follow the argument above for covariation of sums to co-difference.
Here we use notation τΛ for the co-difference for (X1, X2) having spectral mea-
sure Λ. It is simple to see that for spectral measures Λ0 and Λ1 and non-negative
c0, c1, τc0Λ0+c1Λ1

= c0τΛ0
+ c1τΛ1

. In particular, if τΛ0
< 0, τΛ1

> 0 and cj =
|τΛ1−j |/(|τΛ0 |+ |τΛ1 |), then τc0Λ0+c1Λ1 = 0. This shows that for a fixed α, the range
of τ is an interval. Combined with the previous example, this gives many examples
with α > 1 where τ = 0, but X1 and X2 are dependent. If Λ0 and Λ1 have unit
scales, then so does the convex combination c0Λ0 + c1Λ1.
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A measure of independence for stable distributions 11

When α ≤ 1, the situation is different. In this case, the integrand in (3) is strictly
positive off the “poles”, so τ ≥ 0. The only way τ can be zero is therefore when the
components are independent.

Combining the results above, we have shown that for a fixed α, min(0, 2−2α) ≤
τ ≤ 2. For α ≥ 1, all values in this region can be achieved by an elliptical stable law
with some ρ. For α < 1, all values can be achieved with spectral measures the sum
of an independent and exact positive independence. Most values of τ can be achieved
by many different distributions.

3 Measuring independence in a bivariate sample

Next we consider the statistical problem of determining the independence for a bi-
variate sample X1, . . . ,Xn of α-stable vectors. We start by normalizing the data:
estimate the parameters (α̂j , β̂j , γ̂j , δ̂j) of each component, j = 1, 2 using max-
imum likelihood as in Nolan (2001). Then use a pooled estimate of α: set α̂ =
(α̂1 + α̂2)/2. To avoid numerical problems around α = 1, we will only consider
the 0-parameterization in this section. Then normalize the data Yi = ((Xi,1 −
δ1)/γ1, (Xi,2 − δ2)/γ2), i = 1, . . . , n.

We note that γ(−u) = γ(u), so as in (2) it suffices to restrict the θj’s to be in
the interval [0, π]. For a set of angles 0 ≤ θ1 < θ2 < · · · < θm ≤ π, define γ̂j =
γ̂(cos θj , sin θj) = scale of the projected data set 〈Yi, (cos θj , sin θj)〉, i = 1, . . . , n
and γα̂⊥,j = | cos θj |α̂ + | sin θj |α̂, j = 1, . . . ,m. We will discuss the choice of grid
below.

A straightforward sample approximation to η2(Y1, Y2) for the normalized data set
is

η̂22 = η̂22(m,n) =

m∑
j=1

(
γ̂α̂j − γα̂⊥,j

)2
. (4)

We propose using this as a test statistic to determine the independence of a bivariate
data set. The distribution of η̂2 can be approximated using simulation.

For a formal test of independence, the null hypothesis is H0: X has independent
components. We compute the sample measure of independence η̂2 and reject H0 if
η̂2 > cε,α,β1,β2,n,m, where the ε is the desired significance level. We have written
an R program to compute η̂2 and estimate cε,α,β1,β2,n,m. Below we shows several
examples.

We now discuss the choice of grid points θ1, . . . , θm. A uniform grid is not op-
timal: because of the normalizing, γ̂(u) = 1 at u ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}
so we get no information including those points in the grid. Furthermore, when an-
gles θj and θk are close, the corresponding directional scales are correlated. Figure 4
shows a plot of the covariance surface in one case. The discussion in Section 2 shows
that the maximum distance between γ(θ) and γ⊥(θ) can occur at the angles π/4 and
3π/4. A reasonable choice is to pick an integer k and then define θj = jπ/(2m),
j = 1, . . . , k and θj+k = θj + π/2. This gives a grid of length m = 2k that is uni-
formly spread on the interior of the first and third quadrant. Figure 1 shows the k = 3
case. The choice of k is complicated for several reasons. There is little information
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0 π 2 π

0
π
2

π

Fig. 4 Plot of the empirical covariance of γα(·) for α = 1.5, β1 = β2 = 0. The plot was generated by
running M = 20000 simulations of sample size n = 1000 with independent components.

gained by getting close to the points (1,0), (0,1) and (-1,0) where the scale is fixed
at 1. As k increases, the estimators of γ̂j and γ̂i are highly correlated. Unless n is
very large, the variability in the estimators γ̂j will swamp the information gained by
adding more grid points. We recommend k = 5 as a reasonable grid size for most
practical applications. With very large sample sizes, there can be an increase in power
by taking larger values of k.

An alternative approach is a χ2 type of statistic. Let Σ = Σ(n, α̂, β1, β2) =

[σi,j ]
m
i,j=1 be the covariance matrix of γ̂α̂j , j = 1, . . . ,m and let γ̂α̂ = (γ̂α̂1 , . . . , γ̂

α̂
m)T

and γα̂⊥ = (γα̂⊥,1, . . . , γ
α̂
⊥,m)T . Then define

η̂2∗,2 = (γ̂α̂ − γα̂⊥)
T Σ−1 (γ̂α̂ − γα̂⊥).

This is the square of the Mahalanobis distance when the data is from a stable dis-
tribution with indpendent components, and has χ2(m) sampling distribution. This
approach has the advantage of using tabulated critical values of the χ2 distribution.
However, we have been unable to prove that the vector γ̂ is jointly normal or derive
an analytic expression for Σ = Σ(α, β1, β2, θ1, . . . , θm).

Next we analyze some financial data. Closing price data on two pharmaceutical
stocks, Pfizer (symbol PFE) and Merck (MRK), was gathered for the five year time
period January 1, 2010 to December 31, 2014 resulting in 1257 prices. For each stock,
log returns were computed and stable parameters were estimated using maximum
likelihood for each company. For Pfizer, α̂ = 1.748, β̂ = 0.0000, γ̂ = 0.0070 and
δ̂ = 0.00585; for Merck, α̂ = 1.735, β̂ = −0.0852, γ̂ = 0.0070 and δ̂ = 0.000684.
The indices are close, so we used α = (1.748 + 1.735)/2 = 1.7415 and computed
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A measure of independence for stable distributions 13

sample independent independent independent exact linear
size n isotropic 	 π/4 	 π/8 	 π/16 dependence

25 0.191 0.322 0.243 0.213 1
50 0.223 0.624 0.381 0.183 1

100 0.344 0.918 0.644 0.214 1
200 0.636 0.998 0.937 0.440 1
300 0.874 1 0.997 0.627 1
400 0.960 1 1 0.791 1
500 0.989 1 1 0.893 1
600 0.999 1 1 0.959 1
700 1 1 1 0.980 1
800 1 1 1 0.985 1
900 1 1 1 0.998 1

1000 1 1 1 0.997 1

Table 1 Power of the statistic η̂2 for various types of dependence when α = 1.5.

the test statistic η̂2 = 1.3381. Simulations with 1256 independent stable terms shows
that this value is highly significant: the critical value for p = 0.01 is 0.241, so we
reject the null hypothesis that the terms are independent. This is not surprising as
PFE and MRK are in the same sector. We repeated this procedure with PFE and
Walmart (WMT), which has a similar α and also reject independence at the p=0.01
level. In fact, we computed η̂2 for every pair of stocks in the Dow Jones 30 index, and
all reject independence at this level. These results should be interpreted cautiously,
as estimates of α varied between 1.62 and 1.87 for different stocks and there were
C(30, 2) = 435 comparisons made.

Table 1 shows estimates of the power for detecting dependence for several types
of dependence. The isotropic column is when the data is radially symmetric, the third,
fourth and fifth columns are counterclockwise rotations of the independent spectral
measure by the stated angle, the last column shows exact linear positive dependence
(all the mass of the spectral measure on the diagonal line y = x). The isotropic case
is a modest departure from independence, and shows to reliably detect this kind of
dependence, same sizes in the several hundreds are required. The third column shows
that when the spectral measure is concentrated on the diagonal and anti-diagonal
lines, η̂2 reliably detects dependence with sample sizes on the order of 100 or more.
As the rotation lessens, the corresponding distribution is closer and closer to indepen-
dence, and larger samples are needed to reliably detect dependence. The last column
shows that quite small samples of size n = 25 are sufficient to detect dependence
when the data is concentrated on the diagonal line.

3.1 Higher dimensions

For X = (X1, . . . , Xd), d > 2, we can apply this method to each pair of coordi-
nates and assess the d-dimensional data set. Specifically, for each pair of indices we
compute ηi,j = η2(Xi, Xj). Recall from above that the d dimensional data set is
independent if and only if each pair of components is independent. Perhaps more im-
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Ordered,  n= 150 Ordered, n= 4000

Random order, n= 4000 Reordered, n= 4000

Fig. 5 Plot of η̂2 for a simulated 10 dimensional data set with α = 1.3, and dependence structure as
described in the text.

portant is the view of the joint dependence structure in a multivariate data set given
by the η2 matrix.

One application of this idea is in dimension reduction. If the η matrix shows
obvious structure, e.g. blocks of dependence, then one can split the d dimensional
modeling problem into two or more lower dimensional problems. This is illustrated
in Figure 5, which shows a greyscale plot of the pairwise values of η2 for a simulated
10 dimensional data set that is α = 1.3 stable. The first four coordinates of the sim-
ulated vector are independent, the next three are from an elliptical stable distribution
with shape matrix R = (1, 0.5, 0.25; 0.5, 1, 0.5; 0.25, 0.5, 1), and the last three are
from a discrete spectral measure with mass spread around the first octant. The blocks
are independent of each other. The upper left plot shows the estimated η̂2 matrix for
a modest sample size of n = 150, where the dependence structure is visible, but not
yet sharp. In upper right plot, the sample size is increased to n = 4000, and now the
dependence structure is sharp. In the bottom left plot, the coordinates are randomly
permuted to hide the dependence structure. Finally, the bottom right plot shows the
reordered (from the permuted data) η̂2 matrix, with the ordering coming from a clus-
tering algorithm. (Specifically, we used the R function hclust(dist(·)) applied
to the η̂2 matrix.) This approach may be useful in applications to discover structure
in a heavy tailed multivariate data set.
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0 1 2 3 4 5

0.0
0.5

1.0
1.5

2.0

Lag

η
AR(1), coef= 0.5 

n= 1000   alpha= 1.468   beta= −0.082

Fig. 6 η2(Xi, Xi+j) for a simulated AR(1) time series. The horizontal line is the critical value for reject-
ing independence when n = 1000, α = 1.5, β1 = β2 = 0, and ε = 0.05.
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MRK 
n= 1257   alpha= 1.744   beta= −0.078

Fig. 7 η2(Xi, Xi+h) for Merck returns for ε = 0.05.

3.2 Application to times series

Given a univariate time series X1, X2, . . . , Xn stable error terms, the above defini-
tion of independence can be used to define an analogy of the autocorrelation func-
tion. The approach is similar: compute the dependence measure η2,h for lagged pairs
(Xt+h, Xt), t = 1, . . . , n−h. Plot η2,h as a function of h and show a threshold value
as in the ACF plot.

Figure 6 shows an example of this with simulated data. In this case, and AR
process is simulated: Xt = cXt−1 + Zt, where c = 1/2 and Zt are normalized i.i.d.
symmetric α-stable.

This method is applied to the financial returns of Merck stock that was examined
above. Figure 7 shows that there is no evidence for dependence among the lagged
values of the returns.
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Fig. 8 η2(Xi, Xi+j) for a simulated stable time series with ε = 0.05, α = 1.5, and independent terms.
The top left shows a plot of η̂2 for the original time series, the bottom left shows the standard acf plot for
the same data. On the right side, one point in the time series was changed.

One advantage of η over the standard ACF is robustness. While generally the η
plot and the acf plot look similar, the latter is sensitive to extreme values. This is
illustrated in Figure 8, where a time series with independent terms is analyzed on the
left side of the plot using both the η plot and a standard acf plot. Then one point is
changed in the time series in the following way: we looked for the maximum value
in the time series (which was 204.62 in this simulation), and replaced a value 15 time
periods away with 80% of this maximum. The η plot and the standard acf were then
graphed for this altered time series on the right set of plots. Changing this one point
makes acf plot shows a strong spike at lag 15, whereas the η plot does not. Thus one
changed value, significantly changes the ACF, but not the η plot.

3.3 Vectors in the domain of attraction of a stable law

In the preceding sections we assumed the bivariate vector was stable. We now show
how the method can be adapted to vectors in the domain of attraction of a stable law.
We will use the notation X ∈DOA(S(α, β(·), γ(·), δ(·); 0)) when X is in the domain
of attraction of a S(α, β(·), γ(·), δ(·); 0) law. Our approach is straightforward: use
any univariate tail estimator for α̂ and the scale function and then use the above
approach for stable.

There are a range of methods to choose here; we use the simplest to illustrate the
approach. Sort the data and look at log x vs. the log of 1− F̂ (x), the complement of
the empirical distribution function, beyond some threshold. A simple linear regres-
sion will give an estimate of the tail index and the scale. A similar approach can be
done for the lower tail. For simplicity, we will assume that the data is two sided, and
we average the tail indices to get α̂ and scale γ̂.
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A measure of independence for stable distributions 17

sample independent independent independent exact linear
size n isotropic 	 π/4 	 π/8 	 π/16 dependence

100 0.253 0.057 0.049 0.058 0.161
200 0.708 0.025 0.040 0.049 0.342
300 0.844 0.010 0.013 0.023 0.481
400 0.940 0.011 0.020 0.022 0.995
500 0.956 0.011 0.007 0.018 1
600 0.986 0.024 0.013 0.028 1
700 0.988 0.023 0.003 0.009 1
800 0.995 0.258 0.012 0.019 1
900 0.998 0.284 0.013 0.011 1

1000 0.993 0.498 0.006 0.009 1
2000 1 0.996 0.376 0.008 1
3000 1 1 0.876 0.003 1
4000 1 1 0.989 0.003 1
5000 1 1 1 0.004 1

Table 2 Power of the statistic η̂2 for X in the domain of attraction of an α = 1.5 stable law, see the text
for data description.

Equipped with a one dimensional estimate of the tail index and scale, we proceed
as we did in the exact stable case: (i) analyze the marginals and average the resulting
tail indices to get an estimate of α; (ii) pick a grid of directions θ1, . . . , θm; (iii)
project the data along each direction, getting estimates of the scale γ̂1, . . . , γ̂m; (iv)
compute η̂2 using (4).

To compute a critical value, we use non-parametric bootstrapping: generate M
data sets, each time generating independent vectors, with each component sampled
with replacement from the sample component; compute η̂2 for this bootstrap sample;
tabulate the values of η̂2 and find the appropriate quantile.

To test this method, we reproduced Table 1 for the domain of attraction case. We
generated several data sets based on Pareto terms: we simulated X = (X1−X ′1, X2−
X ′2), where each term is independent Pareto(α = 1.5). This is a symmetric r. vector
with independent components that is in the domain of attraction of an independent
α = 1.5 stable law. For each n, this was simulated M = 10000 times and η̂2 was
calculated using the tail estimator modification. In this and the following examples,
k = 5 grid points were used in each quadrant for a total of m = 2k = 10 grid
points and 10% of the tails were used to estimate the tail index and scale of both the
lower and the upper tails. From these simulatinos, the 0.95-percentile was calculated
and used as critical values were used for each of the cases considered in Table 2.
For each column in that table we simulated M = 1000 data sets of the specified
type and computed the fraction of times that independence is rejected at the 95%
level. For the column labeled isotropic, we generated R ∼ Pareto(α = 1.5) and
θ ∼ Uniform(0, 2π) and set X = (R cos θ,R sin θ). For the next three columns,
we generated independent terms as in the critical value calculations and then rotated
those vectors by the specified angles. For the exact linear dependence, we simulated
X = ε(R,R), where ε± 1 with probability 1/2 and R ∼ Pareto(α = 1.5).

This table starts at higher values of n then the earlier table because we could not
get consistent results with smaller sample sizes. Recall that the tail estimator is based
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on the bottom and top 10% of a sample, and without sample sizes in the hundreds,
little can be done. The power values are much lower than the ones in the exact stable
case because most of the data is not being used by the tail estimator. We note that these
results are dependent on multiple factors: the tail estimation method, the fraction of
the tail used to estimate the index and scale, the marginal distributions of the data, etc.
Finally, we note that the this method will be unreliable if the threshold is not chosen
well or the available data doesn’t show the limiting behavior clearly.
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