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Abstract Stable distributions with elliptical contours are a class of distributions that
are useful for modeling heavy tailed multivariate data. This paper describes the theory
of such distributions, presents formulas for calculating their densities, and methods
for fitting the data and assessing the fit. Efficient numerical routines are implemented
and evaluated in simulations. Applications to data sets of a financial portfolio with 30
assets and to a bivariate radar clutter data set are presented.
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1 Introduction

Stable distributions are a class of probability distributions that generalize the normal
law, allowing heavy tails and skewness that make them attractive in modeling financial
data. While there are many attractive theoretical properties of stable laws, the use of
these models in practice has been restricted by the lack of formulas for stable densities
and distribution functions. The univariate stable distributions are now accessible: there
are reliable programs to compute stable densities, distribution functions, and quantiles.
And there are fast methods to simulate stable r.v.s and several methods of estimating
stable parameters based on maximum likelihood, quantiles, empirical characteristic
functions, and fractional moments, see Nolan (2001).

On the other hand, multivariate stable laws are only partially accessible. This is a
function of the lack of closed form expressions for densities, and the possible com-
plexity of the dependence structures. Byczkowski et al. (1993) and Abdul-Hamid
and Nolan (1998) give expressions for general multivariate stable densities. In the
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2068 J. P. Nolan

bivariate case, there are some methods of computing densities and estimating, but
these are difficult to implement in higher dimensions. This paper focuses on a compu-
tationally tractable case—elliptically contoured stable laws. It is shown that one can
compute densities, approximate cumulative probabilities for elliptical stable distrib-
utions in dimension d ≤ 100. Maximum likelihood estimation for the parameters is
feasible in low dimensions, and a pairwise estimation method is applicable to arbitrary
dimensions.

If X is α-stable and elliptically contoured, then it has joint characteristic function

E exp(iuT X) = exp(−(uT Qu)α/2 + iuT δ) (1)

for some d × d positive definite matrix Q and shift vector δ ∈ R
d . Here xT y =∑d

k=1 xi yi is the inner product in R
d . The spectral measure of this stable law is known,

but complicated; see Proposition 2.5.8 of Samorodnitsky and Taqqu (1994). We will
call the matrix Q the shape matrix or dispersion matrix of the elliptical distribution.
Note that it is not the covariance matrix of the distribution, which does not exist. It
is also not exactly the covariation matrix, because for X given by (1), the pairwise
covariations are [Xi , X j ]α = qi j q

α/2−1
j j . (Example 2.7.4 in Samorodnitsky and Taqqu

1994 shows this, with a constant factor that does not arise in our formulation.)
We assume throughout that X is nonsingular, which is equivalent to Q being strictly

positive definite, i.e. for every u �= 0,uT Qu > 0. All elliptically contoured stable dis-
tributions are scale mixtures of multivariate normal distributions, see Proposition 2.5.2
of Samorodnitsky and Taqqu (1994). Let G ∼ N (0, Q) be a d-dimensional multivari-
ate normal r. vector and A ∼ S(α/2, 1, γ, 0) be an independent univariate positive
(α/2)-stable r. v. with 0 < α < 2. Then X = A1/2G is α-stable and elliptically
contoured with joint characteristic function

exp(−(γ /2)α/2(secπα/4)(uT Qu)α/2).

For this reason, elliptically contoured stable distributions are sometimes called sub-
Gaussian stable. This gives a formula for simulating elliptical stable distributions. In
particular, if 0 < α < 2, A ∼ S(α/2, 1, 2(cosπα/4)2/α, 0) and G ∼ N (0, Q), then

X = A1/2G + δ

has characteristic function (1). An algorithm to simulate A is in Chambers et al. (1976)
and G can be simulated by standard methods.

The isotropic/radially symmetric cases arise when Q is a multiple of the identity
matrix, in which case the characteristic function simplifies to

E exp(iuT X) = exp(−γ α0 |u|α + iuT δ) (2)

where γ0 > 0 is a scale parameter and δ ∈ R
d is a location parameter. The spectral

measure in this case is a uniform distribution on the unit sphere S = {xT x = 1} ⊂ R
d .

If A ∼ S(α/2, 1, 2γ 2
0 (cosπα/4)2/α, 0) and independent G ∼ N (0, I ), then X =

A1/2G + δ has characteristic function (2).

123



Multivariate elliptically contoured stable distributions 2069

We briefly comment on recent related work on this problem which the referees iden-
tified. Amengual and Sentana (2010) estimate elliptical models, but assume that fourth
moments exist, so their methods do not handle the heavier tailed models considered
here. In Bonato (2011), financial data is modeled by a multivariate elliptical stable
model. The differences between that work and this one are that they use a much more
numerically intensive method of numerically inverting the characteristic function on
a grid and they use a dynamic conditional correlation GARCH model to deal with
volatility. While they state that they fit the full model in one step (as we do with maxi-
mum likelihood estimation below), they only do this in two dimensions. For dimension
higher than 2, they also resort to a pairwise model. Lombardi and Veredas (2009) use
indirect inference to fit a multivariate stable elliptical model. Finally, Dominicy et al.
(2010) fit multivariate elliptical stable models using sample quantiles to estimate the
scale of certain terms. It is known that using sample quantiles to estimate the scale of
univariate stable data sets is less efficient than the two methods used here. (See the
discussion in Sect. 3.2.)

The organization of this paper is as follows. Section 2 focuses on a special case:
the radially symmetric or isotropic case. Here the radial symmetry allows one to
characterize the joint distribution in terms of the amplitude R = |X|. The density
and cdf of this univariate random variable can be numerically evaluated, and provides
a way of evaluating the multivariate isotropic stable densities. Section 3 treats the
elliptically contoured stable laws, shows how to compute their multivariate densities,
and discusses estimation of this model. We then present simulations and a practical
application, where the 30 stocks in the Dow Jones index are jointly analyzed as an
elliptical stable model with α = 1.71. A brief discussion of engineering and other
applications in Sect. 4 is followed by an appendix with more facts about the amplitude
distribution.

2 Isotropic stable distributions

2.1 The amplitude distribution

Let X be a centered d-dimensional isotropic stable random vector with characteristic
function exp(−γ α0 |u|α). The amplitude of X is defined by

R = |X| =
√

X2
1 + · · · + X2

d .

Our primary interest here is in using the distribution of univariate R to get expressions
for the density of multivariate isotropic and elliptical stable distributions. However,
in some problems the amplitude arises directly, so it is worthwhile exploring it’s
properties. This section derives expressions for its density and d.f. for any dimension.
In dimension d = 1, isotropic is equivalent to symmetric, so the cumulative distribution
function of R = |X | is FR(r) = P(|X | ≤ r) = FX (r)− FX (−r) = 2FX (r)− 1 and
the density is fR(r) = 2 fX (r). For the rest of this paper we assume d ≥ 2.

When 0 < α < 2, X d=A1/2Z, where A ∼ S(α/2, 1, 2γ 2
0 (cosπα/4)2/α, 0) is

positive stable and Z ∼ N (0, I ), A and Z independent. Thus
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Fig. 1 The density of the standardized (γ0 = 1) amplitude in 2 dimensions (top) and 3 dimensions (bottom)
for α = 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2

R2 d=A(Z2
1 + · · · + Z2

d) = AT, (3)

where T is chi-squared with d degrees of freedom, and independent of A. Using the
standard formula for products of independent r.v., the d.f. of R can be expressed as

FR(r)= FR(r |α, γ0, d)= P(R ≤ r) = P(AT ≤ r2)=
∞∫

0

FA(r
2/t) fT (t)dt, (4)

and the density as

fR(r) = fR(r |α, γ0, d) = d

dr
FR(r) = 2r

∞∫

0

f A(r
2/t)

fT (t)

t
dt. (5)

A scaling argument shows FR(r |α, γ0, d) = FR(r/γ0|α, 1, d) and fR(r |α, γ0, d) =
fR(r/γ0|α, 1, d)/γ0. Figure 1 shows the graph of the density in two and three dimen-
sions.

Equation (3) gives a way of simulating the amplitude distribution directly,
without having to generate multivariate X. It also gives an alternative way of
simulating radially symmetric stable random vectors in d dimensions: let A ∼
S(α/2, 1, 2γ 2

0 (cosπα/4)2/α, 0), T ∼ χ2(d), and S uniform on S, then X d=√
AT S

is radially symmetric α-stable with scale γ0. In particular, in two dimensions, T is
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Multivariate elliptically contoured stable distributions 2071

exponential and can be generated by −2 log U1 and S = (cos(2πU2), sin(2πU2)),
where U1 and U2 are independent U(0,1).

There are other expressions for the amplitude distribution. One is a simple change
of variables: setting s = r2/t transforms (4) and (5) to

FR(r) = r2

∞∫

0

s−2 FA(s) fT (r
2/s)ds = rd

2d/2�(d/2)

∞∫

0

FA(s)s
−d/2−1e−r2/(2s)ds

(6)

fR(r) = 2r

∞∫

0

s−1 f A(s) fT (r
2/s)ds = 2rd−1

2d/2�(d/2)

∞∫

0

f A(s)s
−d/2e−r2/(2s)ds (7)

A third expression is from Zolotarev (1981):

fR(r) = 2

2d/2�(d/2)

∞∫

0

(r t)d/2 Jd/2−1(r t)e−γ α0 tαdt, (8)

where Jν(·) is the Bessel function of order ν.
We have written a C program to compute fR and FR by evaluating (4) and (5)

using numerical integration. It is based on existing routines to calculate the univariate
stable d.f. FA or the univariate stable density f A, respectively. The current program
works for α ≥ 0.8 and dimensions 1 ≤ d ≤ 100. The integral in (8) is more difficult
to evaluate reliably, because the integrand oscillates infinitely many times, whereas
the integrands in (4) and (5) do not. (For d ≥ 100, there are numerical difficulties
integrating these expressions and the current algorithms are unreliable.)

More facts about the amplitude density and d.f. are given in the Appendix. The
series expansions for the amplitude d.f. and density from there show behavior on the
tail and near the origin:

lim
r→∞ rα(1 − FR(r)) = lim

r→∞ rαP(R > r) = k1γ
α
0 (9)

lim
r→0

r−d FR(r) = k2γ
−d
0 (10)

lim
r→∞ rα+1 fR(r) = αk1γ

α
0 (11)

lim
r→0

r1−d fR(r) = dk2γ
−d
0 (12)

for positive constants

k1 = k1(α, d) = 2α
sin(πα/2)

πα/2

�((α + 2)/2)�((α + d)/2)

�(d/2)
,

k2 = k2(α, d) = 4�(d/α)

α2d�(d/2)2
.
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2072 J. P. Nolan

We note that R is not stable, but (9) shows R is in the domain of attraction of a
univariate α-stable law with β = 1.

2.2 Densities of isotropic stable distributions

Let X be any radially symmetric (around 0) r. vector, not necessarily stable, with density
fX(x) and amplitude R = |X|. The d.f. of R, FR(r) = P(|X| ≤ r), directly gives
circular probabilities. The following argument gives an expression for the density of X
in terms of the density of R. Using polar coordinates and radially symmetry for r > 0,

FR(r) = P(|X| ≤ r) =
∫

|x|≤r

fX(x)dx =
r∫

0

∫

S

fX(us)ud−1dsdu

=
r∫

0

∫

S

fX(u, 0, 0, . . . , 0)ud−1dsdu

= Area(S)

r∫

0

fX(u, 0, 0, . . . , 0)ud−1du.

Differentiating shows fR(r) = Area(S) fX(r, 0, 0, . . . , 0)rd−1. Hence for x �= 0,
radial symmetry shows

fX(x) = f (|x|, 0, . . . , 0) = fR(|x|)|x|1−d

Area(S)
= �(d/2)

2πd/2 |x|1−d fR(|x|). (13)

The key fact here is that calculating the density of multivariate X only requires calcu-
lating the univariate function fR(r).

Therefore, when X is α-stable with characteristic function (2), the above reasoning
shows

fX(x) =
{(
�(d/2)/

(
2πd/2

)) |x − δ|1−d fR(|x − δ| |α, γ0, d) x �= δ

�(d/α)/
(
α2d−1πd/2�(d/2)2γ d

0

)
x = δ.

The value at x = δ uses (12). It is useful to consider the radial function h(r |α, d) =
fX(r, 0, . . . , 0|α, γ0 = 1, δ = 0), which is given by

h(r |α, d) =
{
�(d/2)/

(
2πd/2

)
r1−d fR(r |α, γ0 = 1, d) r > 0

�(d/α)/
(
α2d−1πd/2�(d/2)2

)
r = 0.

Then for a general isotropic α-stable X with scale γ0 and location δ,

fX(x) = 1

γ d
0

h

( |x − δ|
γ0

∣
∣
∣
∣α, d

)

. (14)
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A different approach is to use Abdul-Hamid and Nolan (1998). Assuming γ0 = 1
and |x| > 0,

fX(x) = (2π)−d
∫

S

gα,d(xT s)ds,

where gα,d(t) = ∫ ∞
0 cos(tr)rd−1e−rαdr . Then using the radial symmetry of X and

the fact that the projection of s = (s1, . . . , sd) onto the first component s1 has density
c1(1 − t2)(d−3)/2,

fX(x) = (2π)−d

1∫

−1

gα,d(|x| s1)ds = c2

1∫

0

gα,d(|x| t)(1 − t2)(d−3)/2dt,

where c1 = 2π(d−1)/2/�((d − 1)/2) and c2 = 2c1(2π)−d . Using (13) gives another
expression for the amplitude density: fR(r) = c3rd−1

∫ 1
0 gα,d(r t)(1 − t2)(d−3)/2dt .

3 Elliptically contoured stable distributions

3.1 Densities of elliptically contoured stable laws

Let Y be d-dimensional α-stable elliptically contoured random vector with shape

matrix Q and shift vector δ. Then Y d=A1/2G + δ, where positive A ∼ S(α/2, 1,

2(cosπα/4)2/α, 0) and G ∼N(0, Q) as above. It is well known that G d=Q1/2G1,
where Q1/2 is from the Cholesky decomposition of Q and G1 ∼N(0,I) has independent

standard normal components. Hence Y d=A1/2 Q1/2G1 + δ = Q1/2 A1/2G1 + δ :=
Q1/2X + δ, where X is radially symmetric α-stable. So Y is an affine transformation
of X, and (14) shows

fY(y) = | det Q|−1/2 fX(Q
−1/2(y − δ)) = | det Q|−1/2h

(

|Q−1/2(y − δ)|
∣
∣
∣
∣α, d

)

.

(15)

We note that this is true for any elliptical distribution: the amplitude density of
the isotropic case gives an expression for multivariate densities of the corresponding
elliptically contoured distribution.

3.2 Statistical analysis of data as elliptical stable

We first describe ways of assessing a d-dimensional data set to see if it is approx-
imately sub-Gaussian and then discuss two methods of estimating the parameters.
These methods are evaluated in simulations and then illustrated using the 30 stocks
that make up the Dow Jones index.
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2074 J. P. Nolan

To assess for elliptical stability, first perform a one dimensional stable fit to each
component of the data using a univariate estimation method to get estimates θ̂ i =
(̂αi , β̂i , γ̂i , δ̂i ). If the α̂i ’s are significantly different, then the data is not jointly α̂-stable,
so it cannot be sub-Gaussian. Likewise, if the β̂i ’s are not close to 0, then the distribution
is not symmetric and it cannot be sub-Gaussian. If the α̂i ’s are all close, form a pooled
estimate of α̂ = (

∑d
i=1 α̂i )/d = average of the indices of each component.

Next, assess for elliptical behavior. This can be approached by examining two
dimensional projections because if X is a d-dimensional elliptical α-stable random
vector, then every two dimensional projection

Y = (Y1,Y2) = (aT
1 X, aT

2 X) (16)

(a1, a2 ∈ R
d ) is a 2-dimensional elliptical α-stable random vector. Conversely, sup-

pose X is a d-dimensional α-stable random vector with the property that every two
dimensional projection of form (16) is non-singular elliptical, then d-dimensional X is
non-singular elliptical α-stable. Thus it suffices to assess multivariate data by looking
at two dimensional distributions. While one cannot do this for all projections, one
can do some basic checking. A partial solution is to check pairs of assets visually by
looking at scatter plots.

Full estimation for an elliptical stable model requires estimating the stable index
α, a shift δ, and the upper triangular part of the matrix Q, i.e. 1 + d + d(d + 1)/2 =
(d2 + 3d + 2)/2 parameters. This is one more parameter than is needed in a Gaussian
fit, which is equivalent to setting α = 2. Estimating these parameters can be done
in two ways. The first is full maximum likelihood (ML), and the second we call
a projection method. While maximum likelihood is theoretically the most efficient,
it is computationally very expensive with the existing algorithms. Below we give
simulation results that show that it is prohibitive to use ML with the existing numerical
algorithms for dimensions d > 4, and that the projection method gives approximately
the same efficiency.

The maximum likelihood scheme is conceptually straightforward: the log-
likelihood of (α, Q, δ) given the data is


(α, Q, δ|X1, . . . ,Xn) =
n∑

i=1

log f (Xi |α, Q, δ).

Use (15) to evaluate the right hand side above for a given (α, Q, δ) and then numerically
maximize to get maximum likelihood (ML) estimators:

(̂αM L , Q̂M L , δ̂M L) = arg min
α,Q,δ


(α, Q, δ|X1, . . . ,Xn).

The second method is based on linear combinations of components and any method
of estimating univariate stable parameters. First we estimate an index α̂i and a shift
δ̂i for each component. As above, we use a pooled estimate for the index of stability:
α̂P RO J = (

∑d
i=1 α̂i )/d. Then shift the data by δ̂P RO J := (δ̂1, δ̂2, . . . , δ̂d) so the data

is centered at the origin. In what follows, we assume X has been centered in this way.
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To estimate the shape matrix Q = (qi j ), note that for any u, the linear combination
uT X is univariate α-stable with (squared) scale

γ 2(u) := [− ln E exp(iuT X)]2/α = uT Qu =
∑

i

u2
i qii + 2

∑

i< j

ui u j qi j . (17)

In particular if we let ei be the standard i th unit basis vector, γ 2(ei ) = qii and
γ (ei + e j ) = qii + q j j + 2qi j . We use these population identities to obtain sample
estimates of the shape parameters q̂i j . For the diagonal elements, set q̂i i = γ̂ 2

i =
γ̂ 2(ei ), i.e. the square of the estimated scale parameter of the i th coordinate. Likewise,
estimate qi j by analyzing the pair (Xi , X j ) and set q̂i j = (γ̂ 2(ei + e j )− q̂i i − q̂ j j )/2,
where γ̂ (ei + e j ) is the estimated scale parameter of the projection (ei + e j )

T X =
(1, 1)T (Xi , X j ) = Xi + X j . This involves estimating d(d + 1)/2 one dimensional
scale parameters. Since this method projects all pairs of the data to a sequence of
one dimensional data sets, we call this a projection estimator and denote the resulting
estimate by Q̂ P RO J .

There are a couple variations of the projection method. Using (17) again, γ 2(ei−e j )

=qii+q j j−2qi j , and combining with the expression above, γ 2(ei+e j )−γ 2(ei−e j )=
4qi j . Plugging in sample estimates of γ (ei +e j ) = scale of Xi + X j and γ (ei −e j ) =
scale of Xi − X j give a different projection estimate of qi j . Note that it involves twice
as many univariate estimation steps for the off-diagonal elements of Q as the method
above. A second variation is to include even more projections. Pick a grid of u points,
then for each u form a univariate data set by projecting each data vector uT Xi , and
estimating the scale for each of these univariate data sets. Using these estimates on the
left hand side of (17), and the known u values on the right hand side, we get a linear
system in the qi j that can be estimated by regression.

In the projection methods, the shape matrix is estimated term-by-term and there is
a possibility that the resulting matrix Q̂ is not positive definite. This can be corrected
by methods like those of Higham (2002). The function nearPD in the R package
Matrix implements this algorithm, and we use it to guarantee that Q̂ is a positive
definite matrix.

While we do not consider the non-stable case here, this projection approach works
for any elliptical model, whether heavy tailed or not. Specifically, the multivariate
shape model can be estimated by looking at univariate projections of pairs of (centered)
components. This requires a way to estimate the scale for the particular distributional
model being used.

We note that it is complicated to directly search over positive definite matrices
Q. Our implementation of the full maximum likelihood method uses the fact that
any positive definite Q can be written as ST S, where S is an upper triangular matrix
(Cholesky decomposition). The ML search is initialized by using a projection estimator
and then searching over the space of upper triangular matrices S.

3.3 Simulation results

Simulation was used to compare full maximum likelihood estimation with the pro-
jection method. For the projection method, we can use any one of several univariate
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Table 1 Execution times for the
different estimation methods
when n = 1, 000

Times are in seconds, when run
on a 2.4 GHz Intel processor
using a single core. Note that the
clock resolution is
approximately 0.01 s, so small
number are approximate. n/a
indicates not available—timing
results were not done because of
the long execution times

d Execution time (s)

PROJ_ECF PROJ_ML FULL_ML

2 <0.01 0.22 1,417

3 <0.01 0.42 2,365

4 0.01 0.77 3,551

5 0.02 1.03 n/a

10 0.05 3.90 n/a

25 0.22 25.27 n/a

50 0.91 93.49 n/a

100 3.62 372.61 n/a

1,000 347.31 n/a n/a

estimation techniques. In principle, univariate maximum likelihood is asymptotically
the most efficient, and can now be computed relatively quickly and reliably using
the method of Nolan (2001). However, other methods can be almost as efficient and
much faster. Below both ML and the empirical characteristic function (ECF) method
of Kogon and Williams (1998) will be used. Separate simulations have shown that the
relative efficiency of the ECF method, defined as MSE(θ̂EC F )/MSE((θ̂M L ), is approx-
imately 1.3 for estimating α, 1.4 for estimating β, 1.05 for estimating γ (which is of
most interest to us here), and 1.03 for estimating δ. (These relative efficiency values
are based on 1,000 simulations of size n = 2, 000 with α = 1.7 and β = 0, moti-
vated by the values in the Dow Jones portfolio example analyzed below.) The timing
results in Table 1 show that the ECF method is about 100 times as fast as ML. Other
univariate estimation methods, e.g. fractional moment estimators or quantile based
estimators, can be quick, but are much less accurate for small and moderate sized
samples.

So in the simulations below, we will compute three estimators: full maxi-
mum likelihood—denoted by α̂FU L L_M L , Q̂FU L L_M L and δ̂FU L L_M L ; projection
method with empirical characteristic function method of estimating the univariate
parameters—denoted by α̂P RO J_EC F , Q̂ P RO J_EC F and δ̂P RO J_EC F ; and projection
method with maximum likelihood method of estimating the univariate parameters—
denoted by α̂P RO J_M L , Q̂ P RO J_M L and δ̂P RO J_M L ;

The first simulation we did was to compare efficiency of the three different estima-
tors in dimension d = 3. For this, we used α = 1.86, δ = (0, 0, 0) and

Q = 10−5 ×
⎛

⎝
6.293 3.289 3.643
3.289 9.133 3.921
3.643 3.921 7.871

⎞

⎠ .

(The values of α and Q came from a real data: the daily returns from three stocks—
IBM, Google, and Microsoft were analyzed over a 1 year period. A fit was done using
the projection ECF method.) Figure 2 shows the results from analyzing M = 215
simulations, each of n = 250 days, i.e. one trading year. Each set of boxplots shows
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Fig. 2 Boxplots of the different estimators. The order is arranged so that the upper triangular entries qi j
of Q are in the upper right. Then α and δ are below

the spread of the three estimators over the 215 simulations for each parameter, with
the horizontal line showing the exact value. Our conclusion is that the three methods
yield approximately the same accuracy.

Next we performed timing results. Here for different dimensions d and number
of data vectors n, we set α = 1.7, simulated a random positive definite matrix Q,
and a random shift δ. Then we fit the data set using the three estimation methods
described above. The results are shown in Table 1. There are huge differences in timing,
for different reasons. The two projection methods both have to estimate d(d + 1)/2
parameters in the shape matrix Q, but this is done using existing univariate estimation
routines that have been optimized for speed and programmed in C. The ECF method
is much faster than ML, and seems to give almost the same accuracy. In contrast, the
full ML method is programmed in R and is very slow. Even in dimension 4, it took
almost 10 h of computing time. Since the computations involve ∼nd2 operations, this
will get extremely costly for higher dimensions. While the full ML method could be
improved by translating from R to C, we do not see much reason to do this as the other
methods are much, much faster and give comparable accuracy.
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We conclude that full ML is prohibitive if d > 4. The projection ECF method is
already feasible for matrices up to size 100 × 100 in <4 s. Furthermore, the projec-
tion methods are easily implemented in a parallel processing environment—separate
threads only need read access to data vectors, no sequential steps or complicated con-
trol is needed. While parts of full ML estimation could be parallelized, the slowest
part is the minimization step, which is a sequential procedure. Hence parallelization
is not likely to greatly increase the speed in the ML case.

3.4 Analysis of the Dow Jones 30 portfolio

Adjusted daily closing prices for the 30 stocks in the Dow Jones index (DJ30) were
collected between January 3, 2000 and December 31, 2004. Days with missing prices
for one or more stock were deleted—this occurred 8 times in the 2,256 trading days.
Log-ratios of consecutive prices were computed separately for each stock, with the
resulting data set having 2,247 returns for 30 stocks.

The results of the analysis of each component of the Dow Jones data set is given
in Table 2, Fig. 3 shows plots of the estimated α and β for each of the 30 components
from the Table, and Fig. 4 shows one pairwise plot. While there is some variability
in the α’s and in the βs around 0, we will proceed with the analysis here, and discuss
these issues in more detail below.

The 30×30 shape matrix Q was estimated for this set using the first method above.
For space reasons we do not show the numeric values of this large matrix, instead a
heat map of Q is displayed in Fig. 5. The color shows the magnitude of the entries
in the shape matrix. The estimation of the individual stable fits and the shape matrix
estimation using the projection method with maximum likelihood estimation for the
30 component example took 36.5 s on a desktop PC. The projection method with ECF
univariate estimations took 0.42 s, and the results from the two estimation methods
were highly correlated.

Because it is possible to quickly simulate from an elliptical stable distribution of
high dimension, Monte Carlo estimates of tail probabilities can be computed. Figure 6
compares the probability P(|Xi | < a, i = 1, . . . , 30) for (a) the observed data of
size 1,247, (b) an MC estimate from a simulated stable sample of size n = 10,000
generated from the elliptical stable fit, and (c) an MC estimate from a simulated
normal sample of size n = 10,000 generated from the normal fit. Note that the normal
fit severely underestimates the tail, while the stable fit is more accurate above the 0.95
level. In particular, if a multivariate value at risk is computed for this data, the normal
model will significantly underestimate the risk. For example, using the bottom plot
of Fig. 6 gives the 0.995 VaR as approximately 0.10 for the normal model, whereas
the empirical value is approximately 0.25 and the stable model value is approximately
0.28. Note that the time frame of this data set does not include the 2008 economic
crisis, where more extreme behavior was present.

We briefly discuss the appropriateness of an elliptical stable model. While the
fluctuations in the αs from the different components in Fig. 3 and the fluctuations
of the βs around 0 argue that an elliptical stable model won’t be perfect, we think
that there is reason to use these models. First of all, a normal model does a worse
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Table 2 Maximum likelihood
estimates of stable parameters
for the 30 stocks in the Dow
Jones index

Note that δ is in the continuous
0-parameterization. α and β
across stocks are plotted in Fig. 3

Symbol α̂ β̂ γ̂ δ̂

MMM 1.69 0.27 0.00972 −0.000657

AA 1.86 0.16 0.01623 −0.000576

MO 1.53 −0.05 0.01067 0.001335

AXP 1.72 −0.00 0.01383 0.000284

AIG 1.69 0.05 0.01168 −0.000313

BA 1.80 −0.05 0.01379 0.000720

CAT 1.82 0.27 0.01334 −0.000213

C 1.70 0.02 0.01280 0.000210

KO 1.62 0.01 0.00956 −0.000222

DD 1.69 0.26 0.01134 −0.001330

XOM 1.79 −0.25 0.00966 0.000862

GE 1.73 0.11 0.01268 −0.000670

GM 1.71 0.09 0.01319 −0.000709

HPQ 1.68 0.05 0.01805 −0.000970

HD 1.65 0.01 0.01436 −0.000229

HON 1.64 0.08 0.01460 −0.000469

INTC 1.75 0.05 0.02048 −0.000495

IBM 1.59 0.02 0.01179 −0.000361

JNJ 1.73 0.02 0.00939 0.000376

JPM 1.67 −0.00 0.01452 −0.000313

MCD 1.69 −0.03 0.01128 0.000115

MRK 1.72 −0.10 0.01127 0.000218

MSFT 1.65 0.02 0.01386 −0.000498

PFE 1.75 0.00 0.01216 0.000095

PG 1.55 0.08 0.00816 0.000170

SBC 1.71 0.01 0.01339 −0.000474

UTX 1.77 −0.01 0.01263 0.000721

VZ 1.76 0.11 0.01274 −0.000637

WMT 1.66 0.08 0.01185 −0.000689

DIS 1.79 0.16 0.01485 −0.000644

α = 1.71

job of modeling the data: all of the estimated αs are below 2, so a normal model will
underestimate the tails in the data. A normal model implicitly assumes symmetry, so an
elliptical stable model won’t do any worse than this. Within the family of stable models,
we can compute a likelihood ratio test using the computations of the 30 dimensional
density function for both the Gaussian model and the non-Gaussian stable model. For
the Dow Jones data, the stable log-likelihood is 
1 = 96, 307. In contrast, if the data
is fit with a N(μ, Q) model, the log-likelihood is 
2 = 97, 549. The likelihood ratio
test is exp(
1 − 
2) ≈ 10539, strongly favoring the stable model.

Here G. Box’s quote seems relevant: “All models are wrong, but some are useful.”
An elliptical multivariate stable model allows for heavy tails, captures some of the
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α̂P RO J = 1.71 and β = 0, respectively

−0.10 0.00 0.05 0.10

−
0.

10
0.

00
0.

05
0.

10

−0.10 0.00 0.05 0.10

05
10

15
20

25

AIG

−0.10 0.00 0.05 0.10

05
10

15
20

C

Fig. 4 Comparison of returns for AIG and Citigroup (symbol C). The scatterplot on the left shows an
approximate elliptical pattern (AIG on the horizontal axis, Citigroup on the vertical axis). The other plots
show the marginals for each asset: the solid curve is smoothed data, dashed curve is stable fit, dotted curve
is normal fit

123



Multivariate elliptically contoured stable distributions 2081

M
M

M
A

A
M

O
A

X
P

A
IG B
A

C
A

T C
K

O
D

D
X

O
M

G
E

G
M

H
P

Q
H

D
H

O
N

IN
T

C
IB

M
JN

J
JP

M
M

C
D

M
R

K
M

S
F

T
P

F
E

P
G

S
B

C
U

T
X

V
Z

W
M

T
D

IS

MMM
AA
MO
AXP
AIG
BA
CAT
C
KO
DD
XOM
GE
GM
HPQ
HD
HON
INTC
IBM
JNJ
JPM
MCD
MRK
MSFT
PFE
PG
SBC
UTX
VZ
WMT
DIS

Fig. 5 Heat map of the shape matrix Q for the DJ30 portfolio. Shading ranges from white for lowest values
(min = 0.0000177), through increasing darkness to highest values (max = 0.000419)

dependence, and retains the property of accumulated returns having the same type of
distribution as daily returns: cumulative sums of stable terms are stable.

Another advantage of the joint stable model is that linear combinations are auto-
matically univariate stable. Hence for a portfolio of d assets with returns (X1, . . . , Xd)

modeled by elliptical stable model (1) and weights w = (w1, . . . , wd), the distribution
of the weighted returns w1 X1 + · · · +wd Xd is univariate stable S(α, 0, γ (w), δ(w)),
where γ (w) = (wT Qw)1/2 and δ(w) = wT δ.

In large practical problems, there may be many assets that exhibit different tail
behaviors. It is possible to adapt the ideas of grouping data as in Daul et al. (2003).
They considered grouping data with similar tail behavior and then modeling each
group with a multivariate elliptical t-distribution, with different groups having different
degrees of freedom. One can extend this to allow the groups to have elliptical stable
models with different indices α, some Gaussian components, and some components
with multivariate t distributions, potentially with different degrees of freedom.

3.5 Serial dependence and tail dependence

Our primary focus in this paper is on the dependence structure among the components
of a multivariate heavy tailed data set without serial dependence. This was not an
issue for the simulations results discussed above, where we simulated independent
observations, but it may be relevant for the Dow Jones 30 analysis and other applica-
tions. Here we summarize results of estimation for that data set with various types of
serial dependence modeling: AR(1), ARMA(1,1) and GARCH(1,1) combined with
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Fig. 6 Comparison of empirical estimate of P(|Xi | < a, i = 1, . . . , 30) (solid line) for 30 dimensional
data set to Monte Carlo estimates for stable fit (dotted line) and normal fit (dash-dot line). The top plot
uses the full range of [0,1] for the vertical scale, the bottom plot restricts the vertical scale to [0.9,1]. A
horizontal line at p = 0.95 is added to the bottom graph for reference

the projection estimator. In all cases, the R package tserieswas used to fit the time
series model.

We first filtered each component of the DJ30 data with an AR(1) model and then fit
the residuals with the elliptical model. When this was done, the residuals had a lighter
tailed distribution with α̂P RO J = 1.79 than the raw returns (̂αP RO J = 1.71). This
was repeated with an ARMA(1,1) model, and the elliptical fit to the residuals gave
α̂P RO J = 1.79 again. Finally, we repeated the process with a GARCH(1,1) model,
this time the estimated index of stability was raised to α̂P RO J = 1.89. Comparing
the shape matrices is a bit more complicated. The GARCH filtering changes the scale
of residuals, and the shape matrices are not directly comparable. To deal with this,
we plot the normalized shape matrices: Q∗ = q∗

i j , where q∗
i j = qi j/

√
qii q j j . This

correspond to the correlation matrices of the Gaussian covariance. Figure 7 shows
the heatmaps of the four models, with the rows and columns are in the same order as
in Fig. 5. Figure 8 shows scatterplots of the off-diagonal elements of the normalized
shape matrices from the four different models for serial dependence.

Visually, it appears that the AR(1) and ARMA(1,1) model change little from the
independent case. The GARCH(1,1) model changes a bit. To quantify this, the mean
absolute difference of the entries q∗

i j from the independent case was computed: it
was 0.019 for the AR(1) model, 0.020 for the ARMA(1,1) model, and 0.036 for the
GARCH(1,1) model. While there is some change in the different cases, the serial
dependence has only a small effect on the overall shape matrix for this data set. This
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Fig. 7 Heatmaps for the normalized shape matrices Q∗ for the four different models of serial depen-
dence: independent, AR(1), ARMA(1,1) and GARCH(1,1). The shading scale uses white for lowest value
(min q∗

i j = 0.123) through increasing darkness to the highest values (q∗
i i = 1.0)

suggests that the co-movements of the assets are generally the same whether volatility
is high or low.

It is interesting to note that unlike Gaussian models, elliptical stable models with
α < 2 have positive tail dependence. Equation (5.2) of Schmidt (2002) gives the
following formula (correcting a sign misprint) for the tail dependence λ of a elliptical
α-stable vector (X1, X2):

λ(α, q∗) := lim
v→1− P(X2 > G−1

2 (v)|X1 > G−1
1 (v)) =

∫ √
(1+q∗)/2

0
uα√
1−u2 du

∫ 1
0

uα√
1−u2 du

,
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Fig. 8 Scatterplots of off-diagonal elements of the normalized shape matrices Q∗

where G−1
i (·) is the inverse cdf of Xi and q∗ = q12/

√
q11q22 is the normalized shape

coefficient. These expressions for λ(α, q∗) were evaluated numerically and plotted in
Fig. 9. The observed q∗ values for the DJ30 data were in the range 0.10–0.75, with α
in the range 1.71 (when no adjustment is made for serial dependence) to 1.89 (when
a GARCH(1,1) model is used), this for this data, λ(α, q∗) is in the range 0.3–0.7.

4 Signal processing and other applications

There is considerable interest in handling heavy tailed noise in engineering problems.
In signal processing applications, one wants to filter out impulsive noise from some
signal. Standard linear filters perform poorly in the presence of extreme values. Some
basic references to these problems are Nikias and Shao (1995), Kuruoglu and Zerubia
(2004), and Nolan et al. (2010). In particular, when there is a radar signal with in-
phase and quadrature components, one is explicitly dealing with an isotropic bivariate
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Fig. 9 Tail dependence parameter λ(α, q∗) for α-stable elliptical distributions

stable law. The envelope of the noise distribution is precisely the amplitude distribution
discussed above. The density of the amplitude derived in (5) is used to derive robust
filters for signals in the presence of heavy tailed noise.

A radar clutter data set from the authors of Tsakalides and Nikias (1998) consists of
n = 320,000 pairs of in-phase and quadrature components. Using the programs above
to fit a bivariate elliptical model using the PROJ_ML method gave α̂P RO J = 1.78
and

Q =
(

0.1667 0.0009
0.0009 0.16702

)

.

This is strong empirical evidence for an isotropic heavy tailed stable model for the
data.

Other examples are in sonar data, where environmental conditions generate impul-
sive noise that is well modeled by a stable law. In either a radar setting or a sonar
setting, if a sensor array with multiple sensors is used to beamform as in Tsakalides
and Nikias (1998), the spatial positions of the sensors lead to a multi-dimensional
elliptically stable model.

Elliptical stable laws arise in other applications. In astronomy, the Holtsmark distri-
bution is an isotropic stable law with α = 3/2 in R

3. And Boldyrev and Gwinn (2003)
use stable laws to describe fluctuations in observations of interstellar radiation. Lévy
flights in R

d are typically random walks with steps having a multivariate isotropic
stable distribution, e.g. Schlesinger et al. (1995). The methods developed here can be
used to work with these and other multi-dimensional problems.
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Appendix A: Additional facts about the amplitude distribution

There are many other facts about the amplitude density and cdf. Since they are useful
in finance applications, in signal processing, and astronomy, we collect them here.

Using the Bergstrom series expansions for stable densities in Eqs. (4) and (5) leads
to series expansions for fR(r) and FR(r): when 0 < α < 1

FR(r)=1 − 2

πα�(d/2)

∞∑

k=1

(−1)k+1�
( kα+2

2

)
�

( kα+d
2

)
sin

( kαπ
2

)

k k!
(

r

2γ0

)−kα

(18)

fR(r)= 1

πγ0�(d/2)

∞∑

k=1

(−1)k+1�
( kα+2

2

)
�

( kα+d
2

)
sin

( kαπ
2

)

k!
(

r

2γ0

)−kα−1

(19)

When 1 < α < 2,

FR(r) = 4

α�(d/2)

∞∑

k=0

(−1)k�
( 2k+d

α

)

(2k + d) k!� ( 2k+d
2

)

(
r

2γ0

)2k+d

(20)

fR(r) = 2

αγ0�(d/2)

∞∑

k=0

(−1)k�
( 2k+d

α

)

k!� ( 2k+d
2

)

(
r

2γ0

)2k+d−1

(21)

When α < 1, (18) and (19) converges absolutely for any r > 0; when α > 1, they are
asymptotic series as r → ∞. Likewise, (20) and (21) are absolutely convergent for
α > 1 and an asymptotic series for α < 1 for r near 0.

Let fd(r) = fR,d(r) be the amplitude density and Fd(r) = FR,d(r) be the ampli-
tude d.f. in d dimensions. An argument using (6) and (7) shows

Fd+2(r) = Fd(r)− r

d
fd(r) and fd+2(r) = d − 1

d
fd(r)− r

d
f ′
d(r). (22)

One consequence of the latter expression is that the score function for R can be
computed without explicitly differentiating:

− d

dr
log fd(r) = − f ′

d(r)

fd(r)
= d − 1

r
− d fd+2(r)

r fd(r)
.

When α = 2, R2 = X2
1 + · · · + X2

d = 2γ 2
0 T , where T is chi-squared

with d degrees of freedom. The d.f. and density are FR(r) = FT (r2/(2γ 2
0 )) =
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1 − �(d/2, r2/(4γ 2
0 ))/�(d/2) and fR(r) = (r/γ 2) fT (r2/(2γ 2

0 )). In two dimen-
sions, R = √

2γ0
√

T is a Rayleigh distribution with density and d.f.

fR(r) = 1

2γ 2
0

re−r2/(4γ 2
0 ) and FR(r) = 1 − e−r2/(4γ 2

0 ). (23)

(Note that this is not the customary scaling for the Rayleigh, which is based on X ∼
N (0, γ 2

0 I ) and has density r/γ 2
0 exp(−r2/(2γ 2

0 )) and d.f. 1 − exp(−r2/(2γ 2
0 )).)

When α = 1, the amplitude density and d.f. have explicit formula in all dimensions.
The expressions in dimensions 1, 2 and 3 are:

d = 1 fR(r) = 2
π
γ0/(γ

2
0 + r2) FR(r) = 2

π
arctan(r/γ0)

d = 2 fR(r) = γ0r/(γ 2
0 + r2)3/2 FR(r) = 1 − γ0/

√
γ 2

0 + r2

d = 3 fR(r) = 4γ0

3π

γ 2
0 + 2r2

(γ 2
0 + r2)2

FR(r) = 2

π

[

arctan(r/γ0)− γ0r

3(γ 2
0 + r2)

]

Expressions for higher dimensions can be found using the recursion relations (22).
The fractional moments of R can be found using (3): if −d < p < α,

E(R p) = E |X|p = E(AT )p/2 = (E Ap/2)(ET p/2)

= (2γ0)
p �(1 − p/α)

�(1 − p/2)

�((d + p)/2)

�(d/2)
, (24)

where the first expectation (which is finite for all for all p < α) is from Section 2.1 of
Zolotarev (1986); a short calculation is used for the second expectation (which is finite
for all p > −d). This expression holds for complex p in the strip −d < �p < α,
giving the Mellin transform of R.

The above expression for moments combined with Markov’s inequality gives a
uniform upper bound on tail probabilities of R and isotropic X:

sup
r>0

r p(1 − FR(r)) = sup
r>0

r p P(|X| > r) ≤ E(R p), 0 < p < α (25)

Let X be univariate strictly stable, e.g. X ∼ S(α, β, γ, 0) with α �= 1 or X ∼
S(1, 0, γ, 0). Section 3.6 of Zolotarev (1986) shows log |X | has mean and variance

E(log |X |) = γEuler

(
1

α
− 1

)

+ log

(
γ

(cosαθ0)1/α

)

Var(log |X |) = π2(1 + 2/α2)

12
− θ2

0

where γEuler ≈ 0.57721 is Euler’s constant and θ0 = arctan(β tan(πα/2))/α. (Note
the constant θ0 arises in our expression because Zolotarev uses a different parame-
terization.) The following is a multivariate generalization of this result, it uses the
digamma function ψ(z) = � ′(z)/�(z).
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Lemma 1 log R has moment generating function E exp(u log R) = E Ru given by
(24) for −d < u < α. The mean and variance of log R are

E(log R) = log(2γ0)+ γEuler

(
1

α
− 1

2

)

+ 1

2
ψ(d/2)

Var(log R) = π2

6

(
1

α2 − 1

4

)

+ 1

4
ψ ′(d/2).

We will not pursue it here, but there are several ways of estimating γ0 and α from
amplitude data: (a) maximum likelihood estimation using fR(r), (b) fractional moment
methods using (24), and (c) using the first and second sample moments of log R and
Lemma 1.
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