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The aim of this article was to give an accessible introduction to stable distributions
for financial modeling. There is a real need to use better models for financial
returns because the normal (or bell curve/Gaussian) model does not capture
the large fluctuations seen in real assets. Stable laws are a class of heavy-tailed
probability distributions that can model large fluctuations and allow more general
dependence structures. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The fluctuations in many financial time series
are not normal. The consequences of this are

significant: underestimating extreme fluctuations in
asset returns causes real hardship to people the world
over. Unfortunately, most of the financial world
still uses a model based on a normal distribution,
even coining phrases like six sigma events to signify
fluctuations that should never happen in the lifetime
of the earth, yet they have occurred multiple times.
One financial expert wryly commented ‘We seem to
have a once-in-a-lifetime crisis every three or four
years’. (Leslie Rahl, founder of Capital Market Risk
Advisors, quoted in Ref 1, p. 211.) The simplicity
and familiarity of the normal distribution, which is
characterized by a mean and a variance, make it an
attractive model for practitioners. Yet it does not
capture the large fluctuations seen in real-life returns.

In this article, we describe one model for finan-
cial returns that explicitly incorporates heavy tails:
stable distributions. These are a four parameter family
of models that generalize the normal model, allowing
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both skewness and heavy tails. We do not claim that
stable laws perfectly describe real-world returns; no
distribution is exact. An old quote relevant here is:
‘Essentially, all models are wrong, but some are use-
ful’ (Ref 2, p. 424). The key question is what we want
to use a model for: if one wants to model the average
behavior of an asset, wants a simple model, and is not
concerned about extremes, the normal model may be
appropriate. Models based on stable laws give another
choice: they can describe real data well over most
of its range, give a tractable model for compounding
returns, and can capture skewness and heavy tails.

Many people have advocated the use of stable
laws in finance, starting with Mandelbrot.3 This idea
has been pursued by others, including Samuelson4

and Rachev and Mittnik.5 In the past, the lack of
efficient numerical methods have made it impractical
to use such models in practice. With recent progress
in software and increased computational power, it is
now worth another look at this class of models.

We note that there are other classes of models
that have been proposed for financial returns:
generalized t-distributions, generalized hyperbolic,
generalized inverse Gaussian, geometric stable,
tempered stable, etc. While these models can give a
good fit to data sets, they lack all the features described
above. A different approach is to use extreme value
theory as described in Embrechts et al.6 and McNeil
et al.7 The discussion of these other methods is beyond
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our scope here, so we focus only on the basics of stable
laws and illustrate their use in modeling returns.

UNIVARIATE STABLE LAWS

The theory of stable distributions comes from the
pioneering work of Paul Lévy in the 1930s, where
he examined what sort of limits can arise when
normalizing sums of independent terms. For this
reason, these distributions are sometimes called Lévy
stable laws. Here is the basic definition: a random
variable (rv) X is stable if for X1 and X2 independent
copies of X and any positive constants a and b,

aX1 + bX2
d= cX + d (1)

for some positive c and d ∈ R. ( d= denotes ‘equal in
distribution’). The rv X is strictly stable if Eq. (1) holds
with d = 0 for all choices of a and b. It is symmetric
stable if it is stable and symmetrically distributed

around 0, i.e. X d= −X.
For X1, . . . , Xn independent and identically

distributed as X in Eq. (1), iterating that equation
shows that there exist constants cn > 0 and dn, so that

X1 + · · · + Xn
d= cnX + dn. (2)

This equation generalizes the familiar property
of normal random variables: sums of normal terms
are normal. In words, sums of i.i.d. stable terms are
stable; this ‘stability under addition’ property is the
reason of the use of the word stable. We started with
Eq. (1) and derived Eq. (2), it can be shown that it
is possible to reverse this, so either condition can be
taken as a definition of stability.

This abstract definition does not specify what the
possible distributions are for stable laws. Paul Lévy8

showed that their characteristic functions (Fourier
transform) must have a special form. We will describe
two parameterizations here, which we call the 0-
parameterization and the 1-parameterization. (There
are multiple parameterizations in the mathematical lit-
erature: Hall9 describes a tangled history of meanings
of the skewness parameter; Zolotarev10 has forms
A, B, C, C′, E, and M; Samorodnitsky and Taqqu11

uses the 1-parameterization. To document these and
other parameterizations, Nolan12 lists 11 different
parameterizations, numbering them from 0 to 10.)

Four parameters are required to specify a stable
law: the index of stability α is in the interval (0,2],
the skewness β is in the interval [−1,1], the scale
parameter γ is any positive number, and the location
parameter δ is any number. The notation S(α,β,γ ,δ;k)

will be used to specify a stable distribution with k = 0
or k = 1 for the two parameterizations.

A random variable X is S(α,β,γ ,δ0;0) if it has
characteristic function

E exp (iuX) =

⎛⎜⎜⎜⎝
exp

(−γ α|u|α [
1 + iβ

(
tan πα

2

) (
signu

)
× (|γ u|1−α − 1

)] + iδu
)

α �= 1
exp

(−γ |u| [1 + iβ 2
π

(
signu

)
× log (γ |u|)] + iδu

)
α = 1.

(3)

A random variable X is S(α,β,γ ,δ1;1) if it has
characteristic function

E exp (iuX) =

⎛⎜⎜⎜⎝
exp

(−γ α|u|α [
1 − iβ

(
tan πα

2

)
× (

signu
)] + iδu

)
α �= 1

exp
(−γ |u| [1 + iβ 2

π

× (
signu

)
log |u|] + iδu

)
α = 1.

(4)

Here sign u is the sign of the number u: it
is +1 if u > 0, −1 if u < 0, and 0 if u = 0, and
x · log x is always interpreted as 0 at x = 0. The
only difference in the two parameterizations is in
the meaning of the location parameter. If β = 0, then
these two parameterizations are identical, it is only
when β �= 0 that the asymmetry factor (the imaginary
term in brackets) becomes an issue, and in this case
the laws are shifts of each other: δ0 = δ1 + βγ tan πα

2
when α �= 1 and δ0 = δ1 + β 2

π
γ log γ when α = 1.

If one is primarily interested in a simple form
for the characteristic function and nice algebraic
properties, the 1-parameterization is favored. Because
it is simpler to use when proving mathematical
properties of stable distributions, it is the most
common parameterization in the literature. The main
practical disadvantage of the 1-parameterization is
that the location of the mode is unbounded in
any neighborhood of α = 1: if X ∼ S(α,β,γ ,δ;1) and
β > 0, then the mode of X tends to + ∞ as α ↑ 1
and tends to − ∞ as α ↓ 1, see Figure 1 below. So
the 1-parameterization does not have the intuitive
properties desirable in applications (continuity of the
distributions as the parameters vary, a scale and
location family, etc.). We recommend using the 0-
parameterization for numerical work and statistical
inference with stable distributions: it has the simplest
form for the characteristic function that is continuous
in all parameters. It lets α and β determine the shape
of the distribution, while γ and δ determine scale
and location in the standard way: if X ∼ S(α,β,γ ,δ;0),
then (X − δ)/γ ∼ S(α,β,1,0;0). This is not true for the
1-parameterization when α = 1.
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FIGURE 1 | G•raphs of standardized S(α, β = 0.3, 1, 0; 0) (0-parameterization, top panel) and S(α, β = 0.3, 1, 0; 1) (1-parameterization, bottomAQ2
panel) densities for a range of α values. The distributions are skewed right because β > 0. Note that the shapes are the same in both plots for a given
(α,β) pair, but the different parameterizations have different shifts. With the 1-parameterization, arbitrarily small changes in α or β can have a large
effect on the location of the mode.

Properties of Stable Laws
We summarize some basic properties of
X ∼ S(α,β,γ ,δ;1) without proof.

• If β = 0, then a stable distribution is symmetric.

• Reflection property: − X ∼ S(α, − β, γ , − δ; 1).

• All stable laws have densities f (x) that are smooth
and unimodal.

• In most cases the support of X is the whole real
line; the exceptions are when (α < 1 and β = 1), in
which case the support is [δ, + ∞), or (α < 1 and
β = − 1), in which case the support is (−∞, δ].

• Tail behavior. If α < 2 and − 1 < β ≤ 1, then the
density f (x) and cumulative distribution function
(CDF) F(x) have an asymptotic power law: as
x →∞,

1 − F (x) = P (X > x) ∼ γ αcα (1 + β) x−α (5)

f (x|α, β, γ , δ; 0) ∼ αγ αcα (1 + β) x−(α+1)

where cα = sin πα
2 � (α) /π . Using the reflection

property, the lower tail properties are simi-
lar.Owing to the similarity of the tail behavior
to a Pareto distribution (an exact power law),
the phrase stable Paretian distribution is some-
times used in the non-Gaussian case. For all
α < 2 and − 1 < β < 1, both tail probabilities and

densities are asymptotically power laws. When

AQ3

β = − 1, the right tail of the distribution is not
asymptotically a power law; likewise when β = 1,
the left tail of the distribution is not asymptoti-
cally a power law. These are not exact relations,
only asymptotic ones, and the point at which
these approximations are accurate is not known
exactly; Fofack and Nolan13 give some numeri-
cal information on this question. The answer is
messy: for α near 2, an α-stable law is close to
a normal law, and one has to go to a very high
quantile to see the power law behavior.

• Fractional moments. When α < 2, E|X|p is finite
for 0 < p < α, but infinite for p ≥ α. This is a
consequence of the power law tail behavior. In
particular, for α < 2, the (population) variance is
infinite and for α ≤ 1, the (population) mean is
undefined.

• Generalized Central Limit Theorem. Let
X1, X2, . . . be independent identically dis-
tributed random variables. The classical Central
Limit says that if we start with any distribution
with a finite mean μ and standard deviation σ ,
normalized sums of such terms converge to a
normal law:

(X1 + · · · + Xn − nμ)

n1/2
d−→ N

(
0, σ 2

)
.

There is a more general result called the
Generalized Central Limit Theorem (GCLT) that
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applies when the summands do not have a
finite variance. The simplest version is that when
P(Xi > x) ∼ c+x− α and P(Xi < − x) ∼ c−|x|− α as
x →∞ with 0 < α < 2 and c+ + c− > 0. Set
β = (c+ − c−)/(c+ + c−), then there are constants
bn and γ such that(

X1 + · · · + Xn − bn
)

n1/α

d−→ S (α, β, γ , 0; 1) .

(If α > 1, then we may take bn = nμ.) Note
that the normalization factor is different: in the
classical case, the scaling is by n1/2 whereas in the
stable case, the scaling is by the larger factor n1/α.
There is a more precise statement of the GCLT
using the concept of regular variation which can
be found in Feller.14 In fact, stable laws are the
only possible nontrivial limits that can arise as
limits of normalized sums of i.i.d. terms.

Calculation and Estimation
There are only a few special cases where there are
closed form expressions for stable densities f (x) .
These cases are: (a) Gaussian/normal distributions
(α = 2, β = 0), (b) Cauchy distributions (α = 1, β = 0),
and (c) Lévy distribution (α = 1/2, β = 1). The only
case where there is a closed form expression for the
CDF is the Cauchy case. In all other cases, including
the CDF for Gaussian laws, numerical procedures are
needed to calculate densities and CDFs. Using results
of Zolotarev,10 Nolan15 describes and implements
algorithms to numerically compute stable densities,
CDFs, and quantiles when α < 2. In addition, the
method of Chambers et al.16 gives an algorithm
to simulate. So there are now reliable programs to
compute these quantities, making it practical to apply
these models to real problems. Figure 1 shows some
plots of stable densities.

Many of the standard parameter estimation
techniques do not work for stable data. For example,
the regular method of moments does not work: to
estimate the four parameters one would normally
compute EX, EX2, EX3, and EX4 and then try to
solve for α, β γ , and δ. But this will not work,
since most (or all) of these moments do not exist.
(More precisely, higher order population moments do
not exist. While the sample moments do exist, but

their behavior is erratic: for example, (1/n)

n∑
i=1

x2
i will

diverge as n → ∞. Large samples do not help with this
approach!). Since there are no closed analytic forms
for stable densities, the likelihood cannot be written
explicitly, making it impossible to analytically solve

for maximum likelihood estimators. As a result, there
are multiple nonstandard techniques for estimating
the stable parameters, some of them ingenious. Four
basic methods are the following.

• Tail estimators. This method uses the tail
behavior, Eq. (5), to estimate α. Different
methods have been proposed for doing this,
ranging from plotting extremes on a log–log
scale and estimating slope, to the Hill estimator
and generalizations. Unfortunately, these do not
work very well with stable laws because the when
the power law occurs is a complicated function
of the parameters and unless one has a very large
data set, it is unlikely that the tail will be exactly
a power law.

• Fractional moments. When X is strictly stable,
there are expressions for fractional moments
E|X|p, for − 1 < p < α. One can use these for
a generalized method of moments: compute
sample fractional moments, set them equal to
the expressions in term of the parameters, and
solve for the parameters. Nikias and Shao17 used
this approach in signal processing case when the
distribution is symmetric.

• Quantile matching. Fama and Roll18 noticed
certain patterns in tabulated quantiles xp(=p-th
quantile of a distribution) of symmetric stable
laws that could be used to estimate α and
the scale. For example, the interquartile range
x0.75 − x0.25 is a monotonic function of the scale
γ , and the ratio (x0.95 − x0.05)/(x0.75 − x0.25) is a
monotonic function of the index α. McCulloch19

generalized this to the nonsymmetric case, using
other functions of quantiles to estimate the
location δ and skewness β, giving a way to
estimate all four stable parameters from a
handful of sample quantiles.

• Empirical characteristic functions.
Koutrouvelis20 used the fact that there is
an explicit formula (4) for the characteristic
function φ(u). One can compute the sam-
ple/empirical characteristic function φ̂ (ui) on
a grid of ui values for a data set and then use
regression to estimate the parameters. Kogon
and Williams21 simplified this method by using
the continuous parameterization, Eq. (3), and
centering and scaling the data to avoid numerical
difficulties.

• Numerical maximum likelihood estimation.
DuMouchel22 gave an approximate numerical
maximum likelihood method and showed that
(away from the boundaries α = 2 and/or β = ± 1,
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FIGURE 2 | Contour lines of some bivariate stable distributions.
(a) Independent components with α = 1.1, (b) elliptical contours with
α = 1.7, (c) discrete spectral measure with 5-point masses and α = 1.3,
and (d) discrete spectral measure with 3-point masses and α = 0.75.

the resulting estimators are asymptotically
normal. The present author implemented this
in23 and computed tables that can be used for
confidence interval estimates. Further work using
a precomputed approximation to stable densities
has made this method significantly faster.

See Ref 23 for a summary of these methods
and a detailed description of the numerical maximum
likelihood approach. Simulations show that the
efficiency of the estimate procedures are in reverse
order of that listed above.

We end this section with a mention of regression
with stable error terms. Nolan and Ojeda24 describe a
procedure for estimating the coefficients for problems
of the form

Yi = a1xi,1 + a2xi,2 + · · · + amxi,m + εi, i = 1, . . . , n

where the error terms εi are i.i.d. S(α,β,γ ,δ;0).
This gives a robust method of estimating regression
coefficients when the error terms are heavy tailed.
For example, if one wants to estimate the CAPM
β for a volatile asset in relation to a broadly based
index, this method is more robust than ordinary least
squares.

MODELING FINANCIAL RETURNS

If St is the price of an asset at time t, then
Xt := log(St/St − 1) is the (log) return. (More precisely,
this is the log of price changes as it does not include
possible dividends or other income.) For many real
assets, plots of the returns show a unimodal, mound-
shaped distribution. We will show below that some
of these distributions have heavier tails than a normal
model, and we use a stable distribution to describe the
returns.

If Xt ∼ S(α,β,γ ,δ;1) stands for the one period
return, then property (2) shows that the multi-
period return X1 + · · · + Xn is also α-stable. The exact
relationship, derived using Eq. (4) is

X1 + · · · + Xn ∼ S
(
α, β, n1/αγ , nδ; 1

)
.

This gives an exact formula for the multi-period
return, a very useful fact (•Box 1). AQ4

MULTIVARIATE STABLE LAWS

The definition of stability is exactly the same, with
X a d-dimensional vector in Eq. (1). The surprise
here is that there are many possible dependence
structures possible in the stable case. One can
have an elliptically contoured case, but many other
unexpected types of dependence are possible, see
the contours of the bivariate stable densities in
Figure 2. Feldheim26 showed that every multivariate
stable vector has a characteristic function of the
form

φ (u) = E exp (iu· X)

= exp
(∫

S

ωα (u· s) �
(
ds

) + iu· δ

)
,

where � is a finite measure on the unit sphere
S = {|x| = 1}, δ is a shift vector in R

d,
and

ωα (t) = − log E exp (itZ)

=
(

|t|α[1 + i tan πα
2

(
sign t

)
] α �= 1

|t|[1 + i 2
π

(
signt

)
log |t|] α = 1,

is minus the exponent of the characteristic function
of a univariate Z ∼ S(α, β = 1, γ = 1, δ = 0; 1) Hence
every multivariate stable law is characterized by an
index of stability α, a spectral measure � on the
sphere, and a shift δ .
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BOX 1

A SINGLE ASSET EXAMPLE

Adjusted closing prices for IBM for 10 years were obtained from Yahoo Finance. The period is January 1,
2003–December 31, 2012, giving n = 2517 trading days (no weekends or holidays). The price and returns
are shown in the following figure.

Time
2004 2006 2008 2010 2012

0
50
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15
0

20
0

IBM price

Time
2004 2006 2008 2010 2012

−
0.

05
0.

00
0.

05
0.

10

IBM return

Price and return for IBM-adjusted closing price, 2003–2012.

The simplest computational approach is to analyze the returns directly. Taking all the returns
and using numerical maximum likelihood estimation to estimate parameters and giving 95%
confidence intervals yields: α = 1.614873 ± 0.061525, β = 0.00000 ± 0.14376, γ = 0.007331 ± 0.000291,
δ = 0.000499 ± 0.000506, the following figure shows some graphical diagnostics, comparing the observed
data, a stable model, and a normal model. The density plot on the left compares the kernel smoothed
data density with the stable and normal fits. The plot on the right is a transformed empirical CDF plot
that we find useful: in the middle (25th to 75th percentile), it is just a plot of the empirical CDF; on both
tails it is a log–log plot. This approach pulls in the extremes horizontally and stretches the vertical axis,
allowing one to view the whole distribution. Advantages of this plot are that it is nonparametric, any
power decay on the tails show up as straight lines, and one can superimpose different models to compare
to the data.

This is a very large class of distributions
which cannot be parameterized by a finite number
of parameters. To use multivariate stable laws in
practice, one has to restrict the type of spectral
measure. We describe three accessible classes.

• Independent components. Here the spectral
measure is concentrated on the points where
the coordinate axes intersect the sphere. The
independence makes it easy to work with,
simulate and compute densities and CDFs based
on the univariate case.

• Discrete spectral measures. Here the spectral
measures � is discrete, with point mass λj at
locations sj. It was shown by Byczkowski et al.27

that this is a dense class in the sense that for

any spectral measure �1, there is a discrete
measure �2 with a finite number of point masses
such that |f 1(x) − f 2(x)| (the difference in the
corresponding density functions) is uniformly
small over all x.

• Elliptical contours. In this case, the joint
characteristic function is of the form

φ (u) = exp
((

uTQu
)α/2 + iu· δ

)
,

where Q is a d × d positive definite shape matrix
and δ is a shift vector. A major advantage of
this class is that it is computationally accessible
and that joint dependence is characterized by the
set of pairwise parameters, so d(d − 1)/2 values
are needed, just like in the Gaussian case.
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BOX 1 CONTINUED.
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Comparison of the observed returns for IBM to a normal and a stable model. On the left is a plot the three densities: (a) a smoothed density plot
in red, (b) a stable S(α = 1.614873, β = 0, γ = 0.007331, δ = 0.000499) model in green, and (c) a normal N(μ= 0.000400, σ 2 = 0.000192) in
blue. On the right are transformed cumulative distribution function plots for the returns (black circles), the stable model (green curve), and the
normal model (blue curve).

In the center and midrange, the stable model describes the observed data much better than a
normal model. Less obvious is that in the tails, the normal model significantly underestimates the tails of
the data. The stable model tends to overestimate the extreme tails. In contrast, a normal model does a
poor job over almost the whole range—the density is too low near the middle, too high in the midrange,
and too low on the tails. While most of the attention to stable models has focused on the tails, it is most
striking how the stable model approximates the data very well over most of the range, say from 1st to
99th percentile.

A look at the returns shows that they are not stationary; the financial crisis is clearly visible in the
years 2008–2009. To deal with the changing volatility, we will apply a GARCH filter to the returns. For
further information on estimation of stable-GARCH models, and in particular how they can be used in
a multivariate framework suitable for portfolio optimization and risk prediction, see Ref 25 and the
references therein. Using the function GARCH in R package TSERIES with a GARCH(1,1) model on the log
returns yields the residuals shown in the following figure. These filtered returns are plausibly stationarity.
When maximum likelihood estimation is used, the estimated stable parameters along with 95%
confidence intervals are: α = 1.825890 ± 0.051727, β = − 0.081668 ± 0.253500, γ = 0.621666 ± 0.021484,
δ = 0.043795 ± 0.041979. Note that the index of stability is now 1.82, up from 1.61, and the skewness
is still close to 0. The differences in scale γ and location δ are because the GARCH filter changes the
scale.

We briefly state some of the basic properties
of multivariate stable laws. Sums of independent
stable random vectors are stable, all univariate
projections u · X =∑

kukXk are univariate stable
laws, the support of a stable law is generally the

whole space, but like in the one dimensional case,
there are exceptions when α < 1 and the spectral
measure is one-sided. Plot (d) in Figure 2 shows an
example where the support of the distribution is the
cone bounded by the dashed lines.
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BOX 1 CONTINUED.
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On the left are the residual returns for IBM stock after a GARCH(1,1) filter. On the right are transformed cumulative distribution function plots for
the residuals from the GARCH model (black circles), the stable model (green curve), and the normal model (blue curve).

For the raw returns, the transformed CDF plot of the above figure shows that the stable model has
heavier tails than the extremes of the data, while the normal model completely underestimates the tail
probabilities. The GARCH residuals in the above figure shows that in addition to accounting for most of
the changing volatility, the second stable fit captures the tails better. In both cases, the normal model
completely misses the heavy tails of the data. Widespread underestimation of tails risks made investors,
financial firms, and regulators sanguine about the market in the period leading up to the financial
meltdown in 2008.

To be jointly stable, there has to be one α

for which every component is univariate α-stable. In
finance and other applications, there may be different
components that have different tail behavior. In this
case, one can fit each component with a univariate
stable model, each having possibly different α’s. A
joint distribution can be constructed using copulas or
vines, see McNeil et al.7 or Kurowicka and Joe.28

If multiple components have the same or similar
index of stability, then it may make sense to use a
joint stable model for those components, and then
build a higher dimensional distribution out of these.
An unfortunate consequence of these procedures is
that the full distribution is generally not jointly
stable.

Multivariate Computations, Simulation,
and Estimation
At the current time, there is limited ability to compute
densities and probabilities for multivariate stable laws.
For discrete spectral measures, Nolan and Rajput29

gave a program to compute bivariate densities f (x)
as in Figure 2. There are integral expressions for
stable densities in Abdul-Hamid and Nolan30 in higher
dimensions, but they are complicated and difficult to
evaluate numerically, and the difficulties increase as
the dimension increases. Modarres and Nolan31 give
an algorithm to simulate stable random vectors with
discrete � in any dimension. Cheng and Rachev,32

Rachev and Xin,33 and Nolan et al.34 describe ways
to estimate a discrete spectral measure. While the
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BOX 2

A PORTFOLIO EXAMPLE

We examine a small portfolio with three assets: Ford (F), IBM, and Proctor and Gamble (PG).
Adjusted closing prices were obtained for 10 years: January 1, 2003–December 31, 2012. As
above, there were 2517 trading days in that period. As in the univariate example, there
is changing volatility, most clearly in 2008, so we applied a GARCH(1,1) filter to the data.
The residuals and the pairwise scatterplots of the residuals are shown in the following
figures.
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Residuals after GARCH(1,1) filtering of the three stocks over 10-year period 2003–2012: Ford (F), IBM, and Proctor and Gamble (PG).

methods work in higher dimensions, to our
knowledge these have only been implemented in
two-dimensions.

The elliptical case is much more accessible.
Nolan35 develops algorithms to evaluate the density
for dimensions up to d = 100. There are also
methods for simulating and estimating in arbitrary
dimensions, all based on the d × d shape matrix
Q. In finance, joint distributions of returns
are frequently somewhat elliptically shaped. One
intriguing feature of this class is that unlike the
Gaussian case, there can be positive tail dependence
when there are elliptical contours and α < 2 (Box
2). This is due to Hult and Lindskog36; values

for the tail dependence coefficient are tabulated in
Ref 35.

CONCLUSION

Stable distributions are a flexible class of probability
models that can be used in finance. They give a
better fit to data over most of the range, with a
overestimation of the extreme tails. In contrast, a
normal model does a poor job of describing the data
over most of the range, and radically underestimates
the chance of extreme values. The use of stable models
can be valuable for parties that are concerned about
extreme losses, e.g., risk adverse investors, reinsurers,
and regulators.
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BOX 2 CONTINUED.
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Pairwise scatterplots of the residuals after GARCH(1,1) filter for Ford (F), IBM, and Proctor and Gamble (PG).

The scatterplots are roughly elliptical and all three components of the residuals have α ≈ 1.86, so
we will estimate a jointly stable three-dimensional elliptical model for the data. The residuals were fit
with an elliptical stable model with index α = 1.86 shift δ =(−0.0291, 0.0400, 0.0386), and shape matrix

Q =

⎛⎜⎜⎝
0.3889 0.1871 0.1592
0.1871 0.3894 0.2040
0.1592 0.2040 0.3791

⎞⎟⎟⎠ .
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