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Abstract. Preferential attachment is an appealing edge generating mechanism for mod-
eling social networks. It provides both an intuitive description of network growth and an 
explanation for the observed power laws in degree distributions. However, there are of-
ten limitations in fitting parametric network models to data due to the complex nature of 
real-world networks. In this paper, we consider a semi-parametric estimation approach by 
looking at only the nodes with large in- or out-degrees of the network. This method exam-
ines the tail behavior of both the marginal and joint degree distributions and is based on 
extreme value theory. We compare it with the existing parametric approaches and demon-
strate how it can provide more robust estimates of parameters associated with the network 
when the data are corrupted or when the model is misspecified. 

1. Introduction 

Empirical studies [18] suggest that the distribution of in- and out-degrees of the nodes of 
many social networks have Pareto-like tails. The indices of these distributions control the 
likelihood of nodes with large degrees appearing in the data. Some social network models, 
such as preferential attachment, theoretically exhibit these heavy-tailed characteristics. This 
paper estimates heavy tail parameters using semi-parametric extreme value (EV) methods 
and compares such EV estimates with model-based likelihood methods. The EV estimates 
only rely on the upper tail of the degree distributions so one might expect these estimates 
to be robust against model error or data corruption. 
Preferential attachment (PA) describes the growth of a network where edges and nodes 

are added over time based on probabilistic rules that assume existing nodes with large 
degrees attract more edges. This property is attractive for modeling social networks due to 
intuitive appeal and ability to produce power-law networks with degrees matched to data 
[3, 9, 16, 17, 23]. Elementary descriptions of the preferential attachment model can be found 
in [10] while more mathematical treatments are available in [1, 9, 23]. Also see [15] for a 
statistical survey of methods for network data and [11] for inference for an undirected model. 
The linear preferential attachment model has received most attention. Marginal degree 

power laws were established in [3, 16, 17], while joint power-law behavior, also known as joint 
regular variation, was proved in [21, 22, 26] for the directed linear PA model. Given observed 
network data, [25] proposed parametric inference procedures for the model in two data 
scenarios. For the case where the history of network growth is available, the MLE estimators 
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of model parameters were derived and shown to be strongly consistent, asymptotically normal 
and efficient. For the case where only a snapshot of the network is available at a single 
time point, the estimators based on moment methods as well as an approximation to the 
likelihood were shown to be strongly consistent. The loss of efficiency relative to full MLE 
was surprisingly mild. 
The drawback of these two methods is that they are model-based and sensitive to model 

error. To overcome this lack of robustness, this paper describes an EV inference method 
applied to a single snapshot of a network and where possible, compares the EV method to 
model-based MLE methods. The EV method is based on estimates of in- and out-degree 
tail indices, ιin and ιout, using a combination of the Hill estimator [13, 20] coupled with a 
minimum distance thereshold selection method [5]. We also describe estimation of model 
parameters using the joint tail distribution of in- and out-degrees relying on the asymptotic 
angular measure [20, page 173] density obtained after standardizing [20, page 203] the data. 
If the data are generated by the linear PA model, the EV estimators can be applied to 

estimate the parameters of the model and compared with MLE estimates and not surpris-
ingly, the EV estimates exhibit larger variance. However, if there is model error or data 
corruption, the EV estimates more than hold their own and we illustrate the comparison in 
two ways: 

• The data is corrupted; linear PA data have edges randomly deleted or added. The 
EV approach reliably recovers the original preferential attachment parameters while 
parametric methods degrade considerably. 

• The data comes from a misspecified model, namely a directed edge superstar model 
[2] but is analyzed as if it comes from the linear PA model. The EV method gives 
good estimates for superstar model tail indices and outperforms MLE based on a 
misspecified linear PA model if the probability of attaching to the superstar is sig-
nificant. 

The rest of the paper is structured as follows. Section 2 formulates the power-law phe-
nomena in network degree distributions along with joint dependency in the in- and out-
degrees. We describe two network models which exhibit such heavy tail properties, the 
linear PA and the superstar linear PA models. The EV inference method for networks is 
described in Section 3 where we discuss its use for estimating the parameters of the linear PA 
model. Section 4 gives EV estimation results for simulated data from the linear PA model. 
Since the generating model is correctly specified, we use the previous parametric methods 
as benchmarks for comparison in Section 4.1. Section 4.2 analyzes network data generated 
from the linear PA model but corrupted by random edge addition or deletion. Pretending 
ignorance of the perturbation, we compare the performance of the extreme value method 
with the MLE and snapshot methods to recover the original model. In Section 4.3, we use 
our EV inference approach on data from the directed superstar model and attempt to to 
recover the tail properties of the degree distributions. A concluding Section 5 summarizes 
the discussion and reasons why EV methods have their place. Appendices give proofs and 
a fuller discussion of MLE and the snapshot method for linear PA models abstracted from 
[25]. 
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2. Networks and Heavy-Tailed Degree Distributions 

2.1. General discussion. We begin with a general discussion of power laws and networks. 
Let G(n) = (V (n), E(n)) denote a directed network, where V (n) is the set of nodes, E(n) 
is the set of edges, and n is the number of edges. Let N(n) denote the number of nodes in 
G(n) and Nn(i, j) be the number of nodes with in-degree i and out-degree j. The marginal 
counts of nodes with in-degree i and out-degree j are given by 

∞ ∞X X 
N in Nout 

i (n) := Nn(i, j) and j (n) := Nn(i, j), 
j=0 i=0 

respectively. For many network data sets, log-log plots of the in- and out-degree distributions, 
i.e., plots of log i vs. log Ni 

in(n) and log j vs. log Nj 
out(n), appear to be linear and generative 

models of network growth seek to reflect this. Consider models such that the empirical 
degree frequency converges almost surely, 

(2.1) Nn(i, j)/N(n) → pij , (n →∞) 
where pij is a bivariate probability mass function (pmf). The network exhibits power-law 
behavior if 

∞X 
in pij ∼ Cini

−(1+ιin)(2.2) pi := as i →∞, 
j=0 

∞X 
out(2.3) pj := pij ∼ Coutj

−(1+ιout) as j →∞, 
i=0 

for some positive constants Cin, Cout. Let (I, O) be a fictitious random vector with joint pmf 
pij , then 

· i−ιinP(I ≥ i) ∼ Cin(1 + ιin)
−1 as i →∞, 

· j−ιoutP(O ≥ j) ∼ Cout(1 + ιout)
−1 as j →∞. 

In the linear PA model, the joint distribution of (I, O) satisfies non-standard regular 
variation. Let M(R2+ \ {0}) be the set of Borel measures on R2+ \ {0} that are finite on sets 
bounded away from the origin. Then (I, O) is non-standard regularly varying on R2 \ {0}+ 
means that as t →∞, �� � � 

I O 
(2.4) tP , ∈ · → ν(·), in M(R2+ \ {0}), t1/ιin t1/ιout 

where ν(·) ∈ M(R2 \ {0}) is called the limit or tail measure [7, 14, 19]. Using the power + 
transformation I 7→ Ia with a = ιin/ιout, the vector (Ia, O) becomes standard regularly 
varying, i.e., �� � � 

Ia O 
(2.5) tP , ∈ · → ν̃(·), in M(R+2 \ {0}), 

t1/ιout t1/ιout 

awhere ν̃ = ν ◦ T −1 with T (x, y) = (x , y). With this standardization, the transformed 
measure ν̃ is directly estimable from data [20]. 
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In the following we describe two classes of preferential attachment models that generate 
networks with power-law degree distributions. 

2.2. The linear preferential attachment (linear PA) model. The directed linear PA 
model [3, 17] constructs a growing sequence of directed random graphs G(n)’s whose dy-
namics depend on five nonnegative parameters α, β, γ, δin and δout, where α + β + γ = 1 
and δin, δout > 0. To avoid degenerate situations, assume that each of the numbers α, β, γ is 
strictly smaller than 1. 
We start with an arbitrary initial finite directed graph G(n0) with at least one node and 

n0 edges. Given an existing graph G(n − 1), a new graph G(n) is obtained by adding a 
single edge to G(n − 1) so that the graph G(n) contains n edges for all n ≥ n0. Let In(v) 
and On(v) denote the in- and out-degree of v ∈ V (n) in G(n), that is, the number of edges 
pointing into and out of v, respectively. We allow three scenarios of edge creation, which 
are activated by flipping a 3-sided coin with probabilities α, β and γ. More formally, let 
{Jn, n > n0} be an iid sequence of trinomial random variables with cells labelled 1, 2, 3 and 
cell probabilities α, β, γ. Then the graph G(n) is obtained from G(n − 1) as follows. 

v 

w v 

w 

v 

w 

α-scheme β-scheme γ-scheme 

• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) 
and an edge (v, w) leading from v to an existing node w ∈ V (n − 1). Choose the 
existing node w ∈ V (n − 1) with probability depending on its in-degree in G(n − 1): 

In−1(w) + δin
(2.6) P[choose w ∈ V (n − 1)] = . 

n − 1 + δinN(n − 1) 

• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) with v ∈ 
V (n − 1) = V (n) and w ∈ V (n − 1) = V (n) and the existing nodes v, w are chosen 
independently from the nodes of G(n − 1) with probabilities � �� �On−1(v) + δout In−1(w) + δin

(2.7) P[choose (v, w)] = . 
n − 1 + δoutN(n − 1) n − 1 + δinN(n − 1) 

• If Jn = 3 (with probability γ), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) 
and an edge (w, v) leading from the existing node w ∈ V (n − 1) to the new node v. 
Choose the existing node w ∈ V (n − 1) with probability 

On−1(w) + δout
(2.8) P[choose w ∈ V (n − 1)] = . 

n − 1 + δoutN(n − 1) 
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For convenience we call these scenarios the α-, β- and γ-schemes. Note that this construction 
allows for the possibility of multiple edges between two nodes and self loops. This linear 
preferential attachment model can be simulated efficiently using the method described in 
[25, Algorithm 1] and linked to http://www.orie.cornell.edu/orie/research/groups/ 
multheavytail/software.cfm. 
It is shown in [21, 22, 26] that the empirical degree distribution 

Nn(i, j) a.s.−→ pij ,
N(n) 

and the marginals satisfy (2.2) and (2.3), where the tail indices are 

1 + δin(α + γ) 1 + δout(α + γ)
(2.9) ιin =: , and ιout =: . 

α + β β + γ 

Furthermore, the joint regular variation condition (2.5) is satisfied by the limit degree dis-
tribution and the limit measure [22] or its density [26] can be explicitly derived. We shall 
use this property for parameter estimation in Section 3. 

2.3. The superstar linear PA model. The key feature of the superstar linear PA model 
that distinguishes it from the standard linear PA model is the existence of a superstar node, 
to which a large proportion of nodes attach. A new parameter p represents the attachment 
probability. The α-, β- and γ-schemes of the linear PA model are still in action. However, for 
the α- and β-schemes, an outgoing edge will attach to the superstar node with probability p, 
while with probability 1 − p it will attach to a non-superstar node according to the original 
linear PA rules. 
For simplicity, the network is initialized with two nodes V (1) = {0, 1} where node 0 is 

the superstar node. We assume at the first step, there is an edge pointing from 1 → 0 so 
E1 = {(1, 0)}. Again each graph G(n) contains n edges for all n ≥ 1. Let 

V 0(n) := V (n) \ {0}, and E0(n) := E(n) \ {(u, 0) : u ∈ V 0(n)}, 

so that E0(n) is the set of edges in G(n) that do not point to the superstar. Let |V 0(n)|
and |E0(n)| denote the number of nodes and edges in the non-superstar subgraph of G(n), 
respectively. 
The model is specified through the parameter set (p, α, β, γ, δin, δout). Let {Bn : n ≥ 1} be 

another iid sequence of Bernoulli random variables where 

P(Bn = 1) = p = 1 − P(Bn = 0). 

The Markovian graph evolution from G(n − 1) to G(n) is modified from the linear PA model 
as follows. 

• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) 
and an edge (v, w) leading from v to an existing node w. 

– If Bn = 1 (with probability p), w = 0, the superstar node; 
– If Bn = 0 (with probability 1 − p), w ∈ V 0(n − 1) is chosen according to the 
linear PA rule (2.6) applied to (V 0(n − 1), E0(n − 1)). 

• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) where 

http://www.orie.cornell.edu/orie/research/groups


6 P. WAN, T. WANG, R.A. DAVIS, AND S.I. RESNICK 

– If Bn = 1 (with probability p), v = 0 and w ∈ V 0(n − 1) = V 0(n) is chosen with 
probability (2.6) applied to (V 0(n − 1), E0(n − 1)); 

– If Bn = 0 (with probability 1 − p), v, w ∈ V 0(n − 1) = V 0(n) are chosen with 
probability (2.7) applied to (V 0(n − 1), E0(n − 1)). 

• If Jn = 3 (with probability γ), append to G(n − 1) a new node w ∈ V 0(n) \ V 0(n − 1) 
and an edge (v, w) leading from the existing node v ∈ V 0(n − 1) to w, where v ∈ 
V 0(n − 1) is chosen with probability (2.8) applied to (V 0(n − 1), E0(n − 1)). 

If we use Ni 
in(n) and Nj 

out(n) to denote the number of non-superstar nodes that have in-
degree i and out-degree j, respectively, then Theorem 2.1 shows that (Ni 

in(n)/n, Nj 
out(n)/n) → 

in out(qi , q ) almost surely where the limits are deterministic constants that decay like power j 
laws. 

Theorem 2.1. Let (Ni 
in(n), Nj 

out(n)) be the in- and out-degree counts of the non-superstar 
in outnodes of the superstar model. There exists constants qi and qj such that as n →∞, 

N in Nout 
i (n) a.s. in j (n) a.s. out−→ qi , −→ qj . 
n n 

Moreover, 
(i) As i →∞, 

in i−(1+ιin)(2.10) qi ∼ Cin 
0 , 

where Cin 
0 is a positive constant and 

1 − (α + β)p + δin(α + γ)
(2.11) ιin := . 

(α + β)(1 − p) 

(ii) As j →∞, 
out j−(1+ιout)(2.12) q ∼ C 0 ,j out 

where C 0 is a positive constant andout 

1 + δout(α + γ)
(2.13) ιout := . 

β + γ 

The proof of Theorem 2.1 is provided in Appendix B. 

3. Estimation Using Extreme Value Theory 

In this section, we consider network parameter estimation using extreme value theory. 
Given a graph G(n) at a fixed timestamp, the data available for estimates are the in- and 
out-degrees for each node denoted by (In(v), On(v)), v = 1, . . . , N(n). Let Fn(·) be the 
empirical distribution of this data on N × N. Then from (2.1), almost surely Fn converges 
weakly to a limit distribution F on N × N which is the measure corresponding to the mass 
function {pij }. Let �(i,j)(·) be the Dirac measure concentrating on (i, j) and we have from 
(2.1), 

NX(n) X X1 Nn(i, j) w
(3.1) Fn(·) = �(In(v),On(v))(·) = �(i,j)(·) → pij �(i,j)(·) =: F (·). 

N(n) N(n)
v=1 i,j i,j 
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3.1. Estimating tail indices; Hill estimation. We review tail index estimation of ιin (ιout 
is similar) using the Hill estimator [13, 20] applied to in-degree data In(v), v = 1, . . . , N(n). 
From (2.2), the marginal of F , called Fin is regularly varying with index −ιin. From Kara-
mata’s theorem ι− 

in
1 can be expressed as a function of Fin [8, page 69],R∞

(log(u) − log(t))Fin(du)
ι−1 t(3.2) in = lim . 

t→∞ 1 − Fin(t) 

The Hill estimator of ι− 
in
1 replaces Fin(·) with the marginal of the empirical distribution in 

(3.1) of in-degrees, called Fin,n, and t with I(kn+1) in (3.2). Let I(1) ≥ . . . ≥ I(N(n)) be the 
decreasing order statistics of In(v), v = 1, . . . , N(n). The resulting estimator is R∞ 

(log(u) − log(I(kn+1)))Fin,n(du)I(kn+1)
ι−1în (kn) = 

kn/N(n) 
knX1 

= (log(I(j)) − log(I(kn+1))). kn j=1 

With iid data, if we assume kn →∞ and kn/N(n) → 0, then the Hill estimator is consistent. 
Of course, our network data is not iid but Hill estimation still works in practice. Consistency 
for an undirected graph is proven in [27] but for directed graphs, this is an unresolved issue. 
To select kn in practice, [5] proposed computing the Kolmogorov-Smirnov (KS) distance 

between the empirical distribution of the upper k observations and the power-law distribution 
with index ι̂in(k): 

kX1 −ι̂in(k)Dk := sup 1{I(j)/I(k+1)>y} − y , 1 ≤ k ≤ n − 1. 
y≥1 k 

j=1 

Then the optimal k∗ is the one that minimizes the KS distance 

k ∗ := argmin Dk, 
1≤k≤n 

and the tail index is estimated by ι̂in(k∗). This estimator performs well if the thresholded 
portion comes from a Pareto tail and also seems effective in a variety of non-iid scenarios. 
It is widely used by data repositories of large network datasets such as KONECT (http: 
//konect.uni-koblenz.de/) [18] and is realized in the R-package poweRlaw [12]. 
We refer to the above procedure as the minimum distance method in estimating ιin, ιout for 

network data. There are two issues when applying this method. First, the data is node-based 
and not collected from independent repeated sampling. Secondly, degree counts are discrete 
and do not exactly comply with the Pareto assumption made in the minimum distance 
method. Our analysis shows that even if we ignore these two issues, the tail estimates are 
still reasonably good. 

3.2. Estimating dependency between in- and out-degrees. If the limiting random 
vector (I, O) ∼ F corresponding to pij in (2.1) is jointly regularly varying and satisfies (2.5), 
we may apply a polar coordinate transformation, for example, with the L2-norm, √ 

(Ia, O) 7→ ( I2a + O2 , arctan(O/Ia)) := (R, T ), 

https://konect.uni-koblenz.de
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where a = ιin/ιout. Then, with respect to F in (3.1), the conditional distribution of T given 
R > r converges weakly (see, for example, [20, p. 173]), 

F [T ∈ ·|R > r] → S(·), r →∞, 

where S is the angular measure and describes the asymptotic dependence of the standardized 
pair (Ia, O). Since for large r, F [T ∈ ·|R > r] ≈ S(·) and for large n, Fn ≈ F , it is plausible 
that for r and n large Fn[T ∈ ·|R > r] ≈ S(·). Skeptics may check [20, p. 307] for a more 
precise argument and recall Fn is the empirical measure defined in (3.1). 
Based on observed degrees {(In(v), On(v)); v = 1, . . . , N(n)}, how does this work in prac-

tice? First a is replaced by â = ι̂in/ι̂out estimated from Section 3.1. Then the distribution S is 
estimated via the empirical distribution of the sample angles Tn(v) := arctan(On(v)/In(v)

â)p 
(v)2ˆ for which Rn(v) := In a + On(v)2 > r exceeds some large threshold r. This is the POT 

(Peaks Over Threshold) methodology commonly employed in extreme value theory [6]. 
In the cases where the network model is known, S may be specified in closed form. For the 

linear PA model, S has a density that is an explicit function of the linear PA parameters [22]. 
After estimating ιin and ιout by the minimum distance method, the remaining parameters 
can then be estimated by an approximate likelihood method that we now explain. 

3.3. EV estimation for the linear PA model. From (2.9), 

ιin(α + β) − 1 ιout(β + γ) − 1 
δin = , δout = ,

α + γ α + γ 

so that the linear PA model may be parameterized by θ = (α, β, γ, ιin, ιout). To construct the 
ιEV ιEV EV estimates, begin by computing the minimum distance estimates în , ̂ out of the in- and 

out-degree indices. The parameter β, which represents the proportion of edges connected 
βEV between existing nodes, is estimated by ˆ = 1 − N(n)/n. 

+ O2 2From (2.5), arctan(O/Ia) given I2a > r converges weakly as r → ∞ to the distri-
bution of a random variable Θ [22, Section 4.1.2], whose pdf is given by (0 ≤ x ≤ π/2)Z ∞γ δin+1 

ιin+δin+aδout −t(cos x)1/a−ta sin xdtafΘ(x; α, β, γ, δin, δout) ∝ (cos x) −1(sin x)δout−1 t e 
δin 0 

α δin 

Z ∞ 

ta−1+ιin+δin+aδout −t(cos x)1/a−ta sin xdt.a(3.3) + (cos x) −1(sin x)δout e 
δout 0 

β̂EV ιEV ιEV By replacing β, ιin, ιout with their estimated values , ˆ , and ˆ and setting γ = in out 

βEV 1 − α − ˆ , the density (3.3) can be viewed as a profile likelihood function (based on a 
single observation x) of the unknown parameter α, which we denote by 

βEV βEV δ̂EV δ̂EV l(α; x) = fΘ(x; α, ˆ , 1 − α − ˆ , in , out ). � � 
αEV Given the degrees (In(v), On(v)), v ∈ V (n) , ˆ can be computed by maximizing the 

profile likelihood based on the observations (In(v), On(v)) for which Rn(v) > r for a large 
threshold r. That is, 

NX(n) � � �� 
On(v)

(3.4) α̂EV := argmax log l α; arctan 1{Rn(v)>r},a 
0≤α≤1 (In(v))ˆ 

v=1 
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where r is typically chosen as the (ntail + 1)-th largest Rn(v)’s for a suitable ntail. This 
estimation procedure is sometimes referred to as the “independence estimating equations” 
(IEEs) method [4, 24], in which the dependence between observations is ignored. This 
technique is often used when the joint distribution of the data is unknown or intractable. 

γEV αEV βEV Finally, using the constraint, α + β + γ = 1, we estimate γ by ˆ = 1 − ˆ − ˆ . 

4. Estimation results 

In this section, we demonstrate the estimation of the linear PA and related models through 
the EV method described in Section 3.3. In Section 4.1, data are simulated from the stan-
dard linear PA model and used to estimate the true parameters of the underlying model. 
Section 4.2 considers data generated from the linear PA model but corrupted by random 
addition or deletion of edges. Our goal is to estimate the parameters of the original linear 
PA model. In Section 4.3, we simulate data from the superstar linear PA model and attempt 
to use the standard linear PA estimation to recover the degree distributions. 
Throughout the section, the EV method is compared with two parametric estimation ap-

proaches for the linear PA model, namely the MLE and snapshot (SN) methods, proposed in 
[25]. For a given network, when the network history is available, that is, each edge is marked 
with the timestamp of its creation, MLE estimates are directly computable. In the case 
where only a snapshot of the network is given at a single point in time (i.e., the timestamp 
information for the creation of the edges is unavailable), we have an estimation procedure 
combining elements of method of moments with an approximation to the likelihood. A brief 
summary of the MLE and SN methods is in Appendix A and desirable properties of these 
estimators are in [25]. 
Note that a main difference between the MLE, SN and EV methods lies in the amount of 

data utilized. The MLE approach requires the entire growth history of the network while 
the SN method uses only a single snapshot of the network. The EV method, on the other 
hand, requires only a subset of a snapshot of the network; only those degree counts of nodes 
with large in- or out-degrees. When the underlying model is true, MLE is certainly the most 
efficient, but also hinges on having a complete data set. As we shall see, in the case where 
the model is misspecified, the EV method provides an attractive and reliable alternative. 

4.1. Estimation for the linear PA model. 

4.1.1. Comparison of EV with MLE and SN. Figure 4.1 presents biases for estimates of 
(α, ιin, ιout) using EV, MLE, and SN methods on data simulated from the linear PA model. 
We held (β, δin, δout) = (0.4, 1, 1) constant and varied α = 0.1, 0.2, 0.3, 0.4 so that the 

true values of γ, ιin, ιout were also varying. For each set of parameter values (α, ιin, ιout), 200 
independent replications of a linear PA network with n = 105 edges were simulated and the 
true values of (ιin, ιout) were computed by (2.9). We estimated (ιin, ιout) by the minimum 

ιEV ιEV distance method (ˆ , ̂  ), MLE and the one-snapshot methods applied to the parametric in out 
ιMLE ιMLE ιSN ιSN ιEV ιEV model (cf. Section A), denoted by (ˆ , ̂  ) and (ˆ , ̂  ), respectively. With (ˆ , ̂  ),in out in out in out 

αEV ˆ is calculated by (3.4) using ntail = 200. 
As seen here, for simulated data from a known model, MLE outperforms other estimation 

procedures. The EV procedure tends to have much larger variance than both MLE and SN 
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Figure 4.1. Boxplots of biases for estimates of (α, ιin, ιout) using EV, MLE 
and SN methods. Panels (a)–(c) correspond to the case where α = 0.1, 0.2 
and (d)–(f) are for α = 0.3, 0.4, holding (β, δin, δout) = (0.4, 1, 1) constant. 

with slightly more bias. This is not surprising as the performance of the EV estimators is 
dependent on the quality of the following approximations: 

(1) The number of edges in the network, n, should be sufficiently large to ensure a close 
approximation of Nn(i, j)/N(n) to the limit joint pmf pij . 

(2) The choice of thresholds must guarantee the quality of the EV estimates for the 
indices and the limiting angular distribution. The thresholding means estimates are 
based on only a small fraction of the data and hence have large uncertainty. 

(3) The parameter a used to transform the in- and out-degrees to standard regular vari-
ation is estimated and thus subject to estimation error which propagates throughout 
the remaining estimation procedures. 

4.1.2. Sensitivity analysis. We explore how sensitive EV estimates are to choice of r, the 
threshold for the approximation to the limiting angular density in (3.4). Equivalently, we 
consider varying ntail, the number of tail observations included in the estimation. 



11 EXTREME VALUE ESTIMATION 

−
0.

10
0.

00
0.

05
0.

10
0.

15
0.

20

ntail,  α=0.3, β=0.4

B
ia

s

50 200 500 875 1500

●

α̂*
α̂
n*tail

(a)

0 500 1000 1500

−
0.

10
0.

00
0.

05
0.

10
0.

15
0.

20

ntail,  α=0.3, β=0.4
B

ia
s

● ●

● ●
● ● ●

●

●

●

●

●

●

●

●

●

α̂*
α̂

(b)

Figure 4.2. (a) Boxplots of biases of α̂ and α̂∗ for different ntail and n ∗ 
tail 

over 50 replications, where (α, β, γ, δin, δout) = (0.3, 0.4, 0.3, 1, 1). (b) Linearly 
interpolated trajectories of biases of α̂ and α̂∗ from 10 randomly picked real-
izations. 

For the sensitivity analysis, 50 linear PA networks with 105 edges and parameter set 

(α, β, γ, δin, δout) = (0.3, 0.4, 0.3, 1, 1), 

or equivalently, 

(α, β, γ, ιin, ιout) = (0.3, 0.4, 0.3, 2.29, 2.29) 

are generated. We use ntail = 50, 100, 200, 300, 500, 1000, 1500 to calculate the EV estimates 
αEV for α. The performances of ˆ across different values of ntail are demonstrated by the blue 

boxplots in Figure 4.2(a). We see that the biases of α̂ remain small until ntail increases to 
300, and for larger values of ntail, α̂ considerably underestimates α. 
We note that the angular components Rn(v), 1 ≤ v ≤ N(n) are also power-lawed. As an 

attempt to select the optimal value of ntail, we apply the minimum distance method to the 
Rn(v)’s and use the selected threshold, ntail 

∗ , as the truncation threshold. The boxplot of 
ntail 
∗ for the 50 simulated networks are represented by the horizontal boxplot in Figure 4.2(a). 
The EV estimator with respect to this threshold for each simulation, denoted by α̂∗ , is shown 
by the red boxplot and plotted at ntail = 875, the mean of n ∗ Overall, n ∗ varies between tail. tail 
300 and 1500 and results in an underestimated α̂∗ . 
In Figure 4.2(b), we randomly choose 10 realizations (among the 50 replications) and plot 

the linearly interpolated trajectories of α̂, based on different values of ntail. Black points 
are the estimation results using fixed thresholds ntail = 50, 100, 200, 300, 500, 1000, 1500 and 
red ones are determined by (α̂∗ , n ∗ ) using the minimum distance method. Black and redtail 
points denoted by the same symbol belong to the same realization. Comparison among 
estimation results for different values of ntail reveals that choosing a fixed threshold ntail ≤ 300 
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outperforms selecting a n ∗ using the minimum distance method, as it produces estimatestail 
with smaller biases and variances. 

4.2. Data corrupted by random edge addition/deletion. PA models are designed to 
describe human interaction in social networks but what if data collected from a network is 
corrupted or usual behavior is changed? Corruption could be due to collection error and 
atypical behavior could result from users hiding their network presence or trolls acting as 
provocateurs. In such circumstances, the task is to unmask data corruption or atypical 
behavior and recover the parameters associated with the original preferential attachment 
rules. 
In the following, we consider network data that are generated from the linear PA model 

but corrupted by random addition or deletion of edges. For such corrupted data, we attempt 
to recover the original model and compare the performances of MLE, SN, and EV methods. 

4.2.1. Randomly adding edges. We consider a network generating algorithm with linear PA 
rules but also a possibility of adding random edges. Let G(n) = (V (n), E(n)) denote the 
graph at time n. We assume that the edge set E(n) can be decomposed into two disjoint S 
subsets: E(n) = EPA(n) ERA(n), where EPA(n) is the set of edges resulting from PA rules, 
and ERA(n) is the set of those resulting from random attachments. This can be viewed as 
an interpolation of the PA network and the Erdös-Rényi random graph. 
More specifically, consider the following network growth. Given G(n − 1), G(n) is formed 

by creating a new edge where: 
(1) With probability pa, two nodes are chosen randomly (allowing repetition) from V (n− 

1) and an edge is created connecting them. The possibility of a self loop is allowed. 
(2) With probability 1−pa, a new edge is created according to the preferential attachment 

scheme (α, β, γ, δin, δout) on GPA(n − 1) := (V (n − 1), EPA(n − 1)). 
The question of interest is, if we are unaware of the perturbation effect and pretend the data 

from this model are coming from the linear PA model, can we recover the PA parameters? 
To investigate, we generate networks of n = 105 edges with parameter values 

(α, β, γ, δin, δout) = (0.3, 0.4, 0.3, 1, 1), pa ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15}. 
For each network, the original PA model is fitted using the MLE, SN and EV methods, 
respectively. The angular MLE in (3.4) in the extreme value estimation is performed based on 
ntail = 500 tail observations. In order to compare these estimators, we repeat the experiment 
200 times for each value of pa and obtain 200 sets of estimated parameters for each method. 
Figure 4.3 summarizes the estimated values for (δin, δout, α, γ, ιin, ιout) for different values of 
pa. The mean estimates are marked by crosses and the 2.5% and 97.5% empirical quantiles 
are marked by the bars. The true value of parameters are shown as the horizontal lines. 
While all parameters deviate from the true value as pa increases and the network becomes 

more “noisy”, the EV estimates for (δin, δout) exhibit smaller bias than the MLE and SN 
methods (Figure 4.3 (a) and (b)). All three methods give underestimated probabilities 
(α, γ) (Figure 4.3 (c) and (d)). This is because the perturbation step (1) creates more edges 
between existing nodes and consequently inflates the estimated value of β. 
Also note that the mean EV estimates of (ιin, ιout) stay close to the theoretical values for 

all choices of pa; see Figure 4.3 (e) and (f). The MLE and SN estimates of (ιin, ιout), which 
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Figure 4.3. Mean estimates and 2.5% and 97.5% empirical quantiles of 
(a) δin; (b) δout; (c) α; (d) γ; (e) ιin; (f) ιout, using MLE (black), SN 
(red) and EV (blue) methods over 200 replications, where (α, β, γ, δin, δout) = 
(0.3, 0.4, 0.3, 1, 1) and pa = 0.025, 0.05, 0.075, 0.1, 0.125, 0.15. For the EV 

αEV method, 500 tail observations were used to obtain ˆ . 

are computed from the corresponding estimates for (α, β, γ, δin, δout), show strong bias as 
pa increases. In this case, the EV method is robust for estimating the PA parameters and 
recovering the tail indices from the original model. 

4.2.2. Randomly deleting edges. We now consider the scenario where a network is generated 
from the linear PA model, but a random proportion pd of edges are deleted at the final 
time. We do this by generating G(n) and then deleting [npd] edges by sampling without 
replacement. For the simulation, we generated networks with parameter values 

(α, β, γ, δin, δout) = (0.3, 0.4, 0.3, 1, 1), pd ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15}. 

Again, for each value of pd, the experiment is repeated 200 times and the resulting parameter 
plots are shown in Figure 4.4 using the same format as for Figure 4.3. For the EV method, 

αEV 100 tail observations were used to compute an ˆ . 
Surprisingly, for all six parameters considered, MLE estimates stay almost unchanged for 

different values of pd while SN and EV estimates underestimate (δin, δout) and overestimate 
(α, γ), with increasing magnitudes of biases as pd increases. For tail estimates, the minimum 
distance method still gives reasonable results (though with larger variances), whereas the 
SN method keeps underestimating ιin and ιout. 
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Figure 4.4. Mean estimates and 2.5% and 97.5% empirical quantiles of 
(a) δin; (b) δout; (c) α; (d) γ; (e) ιin; (f) ιout, using MLE (black), SN 
(red) and EV (blue) methods over 50 replications, where (α, β, γ, δin, δout) = 
(0.3, 0.4, 0.3, 1, 1) and pd = 0.025, 0.05, 0.075, 0.1, 0.125, 0.15. For the EV 

αEV method, 100 tail observations were used to compute ˆ . 

The performance of MLE in this case is surprisingly competitive. This is intriguing and 
in ongoing work, we will think about why this is the case. 

4.3. Superstar model. In this section, we consider network data generated from the su-
perstar model. We compare the accuracy of tail index estimates under parametric methods 
applied to the linear PA model with extreme value estimates applied directly to data. 
Networks are simulated from the superstar model with the following parameter values: 

(α, β, δin, δout, n) = (0.3, 0.4, 0.3, 1, 1, 106), p ∈ {0.1, 0.15, 0.2, 0.25, 0.3}. 

ιMLE ιMLE The MLE estimates of the tail indices based on (2.9), (ˆ , ̂  ), are compared to thein out 
ιEV ιEV EV estimates calculated directly from the node degree data, (ˆ , ̂  ). According to The-in out 

orem 2.1, the theoretical marginal tail indices for In(v) and On(v), 1 ≤ v ≤ N(n), based on 
a superstar PA model are given by (2.11), (2.13). This experiment is repeated 50 times and 
Table 1 records the mean estimates for (ιin, ιout) over these 50 replications. 
As p increases and the influence of the superstar node becomes more profound, the MLE 

method does not give an accurate estimate of tail indices, while the EV method stays more 
robust. However, when p becomes too large, the in-degrees of non-superstar nodes will be 
greatly restricted, which increases the finite sample bias in the EV estimates. 
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ιMLE ιMLE ιEV ιEV p (ιin, ιout) (ˆ , ̂  ) (ˆ , ̂ )in out in out 

0.1 (2.43, 2.29) (2.11, 2.31) (2.24 2.25) 
0.15 (2.51, 2.29) (2.03, 2.33) (2.28 2.20) 
0.2 (2.61, 2.29) (1.97, 2.34) (2.35 2.18) 
0.25 (2.71, 2.29) (1.91, 2.36) (2.43 2.18) 
0.3 (2.84, 2.29) (1.86, 2.38) (2.51 2.15) 

Table 1. Mean estimates for (ιin, ιout) using both MLE and minimum dis-
tance methods, with (α, β, γ, δin, δout, n) = (0.3, 0.4, 0.3, 1, 1, 106). 

Note that the theoretical indices (ιin, ιout) in Table 1 are for the in- and out-degrees of the 
non-superstar nodes. In the EV methods, the inclusion of the superstar node can severely 
bias the estimation of ιin. Let kn be some intermediate sequence such that kn → ∞ and 
kn/n → 0 as n →∞ and use I(1) ≥ . . . ≥ I(kn+1) to denote the upper kn + 1 order statistics 
of {In(v) : 0 ≤ v ≤ N(n)}. Then the corresponding Hill estimator is 

kn1 
ιEV 

X I(i)
1/ în (kn) := log

kn I(kn+1)i=1 X1 1 1 
kn I(i)

(4.1) = log I(1) − log I(kn+1) + log . 
kn kn kn i=2 

I(kn+1) 

From the construction of the superstar model, we know that the superstar node likely has 
the largest in-degree, which is approximately equal to np for large n. Hence, the first term 
in (4.1) goes to 0, as long as 

kn/ log n →∞, as n →∞, 

and the third term in (4.1) is the Hill estimator computed from the in-degrees of non-
superstar nodes. In [27], the consistency of the Hill estimator has been proved for a simple 

ιEV undirected linear PA model, but consistency for în (kn) is not proven for either of the two 
ιEV models we consider here. However, with the belief on the consistency of ˆ ), (4.1)in (kn 

suggests that choosing a larger kn will reduce the bias when estimating ιin in the superstar 
model. 
To illustrate this point numerically, we choose kn = 200, 500, 1000, 1500, 2000 for a su-

perstar network with 106 edges and probability of attaching to the superstar node p = 
0.1, 0.15, 0.2, 0.25, 0.3. For each value of p, we again simulate 50 independent replications of 
the superstar PA model with parameters (α, β, γ, δin, δout, n) = (0.3, 0.4, 0.3, 1, 1, 106). Then 
for each replication generated, Hill estimates of the in- and out-degree tail indices are calcu-
lated under different choices of kn. The mean values of the 50 pairs of estimates are recorded 
in Table 2, where the first entry is the in-degree tail estimate and the second is for out-degree. 
From the in-degree estimates in Table 2, we observe that for most values of p increasing 

kn to 500 improves the estimation results, but further increase in kn has adverse effects. One 
reason is that large kn means smaller in-degrees are taken into the calculation of the Hill 
estimator; these smaller in-degrees might not be large enough to be considered as following 
the power law in (2.10). This also explains the increasing biases for the out-degree estimates, 
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200 
Number of Upper Order Statistics kn 

500 1000 1500 2000 
p = 0.1 
p = 0.15 
p = 0.2 
p = 0.25 
p = 0.3 

(2.16, 2.22) 
(2.25, 2.18) 
(2.32, 2.17) 
(2.36, 2.18) 
(2.41, 2.17) 

(2.26, 2.19) 
(2.32, 2.17) 
(2.39, 2.16) 
(2.47, 2.16) 
(2.58, 2.13) 

(2.27, 2.16) 
(2.29, 2.14) 
(2.37, 2.15) 
(2.43, 2.12) 
(2.56, 2.11) 

(2.28, 2.14) 
(2.31,2.15) 
(2.39, 2.11) 
(2.49, 2.11) 
(2.47, 2.11) 

(2.27, 2.15) 
(2.28, 2.14) 
(2.33, 2.13) 
(2.52, 2.12) 
(2.51, 2.12) 

Table 2. Mean values of EV estimates of tail indices (ιin, ιout) over 50 repli-
cations, with (α, β, γ, δin, δout, n) = (0.3, 0.4, 0.3, 1, 1, 106). The true values are 
given in Table 1. 
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Figure 4.5. Empirical in- and out-degree distributions, with 
(α, β, γ, δin, δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 105 , 0.25). 

where the superstar node does not have any impact. Comparing the results in Table 2 to 
those EV estimates in Table 1, we see that the minimum distance method seeks a good 
balance between eliminating the effect of the superstar nodes and choosing a reasonably 
large threshold. 
The next question is how the model misspecification affects the empirical distributions of 

in- and out-degrees. To evaluate this, we generated a superstar PA model with parameters 

(α, β, γ, δin, δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 105 , 0.25). 
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We estimated parameters by both MLE and EV methods from simulated superstar data, 
pretending that the data was generated from an ordinary PA rule. For the EV approach, 

αEV 200 tail observations were used while computing ˆ . Denote the MLE and EV estimates 
by bMLE 

αMLE β̂MLE γMLE δ̂MLE δ̂MLE θn := (ˆ , , ̂  , in , out ), 

αEV βEV γEV δEV δEV θbEV 
:= (ˆ , ˆ , ̂  , ̂  , ̂ ).n in out 

MLE 
We then simulated 20 independent replications of a linear PA model with parameters θb n 

EV 
and 20 with parameters θb n . For each set of replicates we computed the empirical frequency 
distributions. Comparisons of degree distributions are provided in Figure 4.5. 
In all 4 panels, the green dots represent the empirical degree frequencies for the simulated 

superstar data, top for in-degree and bottom for out-degree. Blue in the two left panels 
represents overlaid frequency distributions for the 20 simulated data sets from the linear PA 

MLE 
replicates using θb n . Red in the right two panels does the same thing for 20 replicates of 

EV 
the linear PA model using parameter θb n . 
The EV method seems to give better fit for in-degrees. Based on out-degrees, it is difficult 

to visually discern an advantage for either approach. While not obvious in the plots, we 
again expect the estimated degrees from the EV method to have higher variance than those 
from MLE, as much less data were used for the model fitting. 

5. Conclusion 

In this paper, we proposed a semi-parametric extreme value (EV) estimation method 
for network models. We compared the performance of this method to the two parametric 
approaches (MLE and snapshot methods) given in [25] under three scenarios: (1) data 
generated from a linear preferential attachment (linear PA) model; (2) data generated from 
a linear PA model with corruption; (3) data generated from a superstar linear PA model. 
To summarize our findings and experience, EV estimation methods play important roles 

while applied to social network data. The method provides a robust procedure for estimating 
parameters of the network related to heavy-tailedness of the marginal and joint distributions 
of the in- and out-degrees. Also EV methods play a confirmatory role to other estimation 
procedures that are likelihood based, such as MLE or the snapshot (SN) method, which 
require that the model is correctly specified. If, for example, MLE or SN produces estimates 
of tail indices different from those given by the EV procedure, then this might suggest a lack 
of fit of the underlying model. 
In practice, data are not as clean as those produced in simulations and one expects de-

viations from a base model such as the linear PA. As seen in this paper, these deviations 
can lead to sharply biased MLE and SN estimates especially when compared to EV esti-
mates. As in classical EV estimation in the iid setting, the choice of threshold upon which 
to base the estimation remains a thorny issue in the network context. The minimum dis-
tance method based on [5] for estimating marginal tail indices works well for the examples 
considered here, but worse for multivariate data where it is employed to set thresholds based 
on radius vectors. 
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Appendix A. Parameter Estimation for linear PA Model 

Parameter estimation for the linear PA model was studied in [25]. If the complete history 
of the network evolution is available (i.e., timestamps of edge creation are known), then MLE 
estimates exist and are computable. On the other hand, if only a snapshot of the network 
is given at a single point in time (i.e., timestamp information for the creation of the edges 
is unavailable), an approximate MLE was proposed. This procedure combined elements of 
method of moments with an approximation to the likelihood. In the following we provide a 
brief summary of these two estimation methods. Asymptotic properties of these estimators 
can be found in [25]. 

A.1. MLE. Given the full evolution of the network G(n), assuming the graph began with 
n0 initial edges, the MLE estimator of θ = (α, β, γ, δin, δout), 

αMLE β̂MLE γMLE δ̂MLE δ̂MLE θbMLE 
:= (ˆ , , ̂  , , ),n in out 

is obtained by setting X 
α̂MLE =

1 
n 

1{Jt=1}, n − n0 t=n0+1 X1 
n 

β̂MLE = 1{Jt=2}, n − n0 t=n0+1 

γMLE αMLE − β̂MLE ˆ = 1 − ˆ , 

δMLE δMLE and solving for (ˆ , ̂  ) fromin out 

∞ 
(n0) 

nX N in (n) − N in 

γMLE 
X 

>i >i n − n0 N(t − 1) 
= ˆ + 

i + δ̂MLE δ̂MLE t − 1 + δ̂MLE N(t − 1) 
1{Jt∈{1,2}}, 

i=0 in in t=n0+1 in X∞ N>j 
out(n) − Nout Xn 

>j (n0) n − n0 N(t − 1) 

j + δ̂MLE 
= 

δ̂MLE 
α̂MLE + 

δMLE 
1{Jt∈{2,3}}, 

j=0 out out t=n0+1 t − 1 + ˆ out N(t − 1) 

where X X 
N in N in Nout Nout(n) := (n), (n) := (n).>i i0 >j j0 

i0>i j0>j 

MLE 
By [25, Theorem 3.3], θb n is strongly consistent, asymptotically normal and efficient. 

A.2. Snapshot. The estimation method for θ from the snapshot G(n) is summarized in the 
following 7-step procedure: 

βSN 1. Estimate β by ˆ = 1 − N(n)/n. 
2. Obtain δ̂  

in
0 by solving 

∞ 
(n) 

N in(n) 
+ β̂SN X N in i 0 

>i (1 + δ̂  
in
0 (1 − β̂SN )) = n ,

N in δ̂0n i + δ̂0 
0 (n) in 

i=1 in 1 − 
βSN )ˆn 1+(1− ̂  δ0 

in 
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where N0
in(n) denotes the number of nodes with in-degree 0 in G(n). 

3. Estimate α by 
N0

in(n) 
+ β̂SN 

α0 n − β̂SN ˆ = . 
N in δ̂0 

0 (n) in1 − 
n 1+(1−β̂SN )δ̂0 

in 

4. Obtain δ̂0 by solvingout 

∞ (n) j 
Nout(n)X Nout 0 + β̂SN 

δ0 βSN )) = n>j 
(1 + ˆ (1 − ˆ , 

n j + δ̂0 out N0
out(n) δ̂0 

out 
j=1 out 1 − 

n βSN )δ̂01+(1− ̂  
out 

where N0
out(n) denotes the number of nodes with out-degree 0 in G(n). 

5. Estimate γ by 
N0

out(n) 
βSN + ˆ 

n βSN γ̂0 = − ˆ . 
Nout ˆ(n) δ0 

0 out1 − 
n βSN )δ̂01+(1− ̂  

out 

6. Re-normalize the probabilities ! 
αSN β̂SN γSN ) ← 

α̂0(1 − β̂SN ) 
β̂SN γ̂

0(1 − β̂SN )
(ˆ , , ̂  , , . 

α̂0 + γ̂0 α̂0 + γ̂0 

δSN 7. Solve for ˆ in from X N in αSN − β̂SN αSN + ˆ βSN )
∞ 

(n)/n 1 − ˆ (ˆ βSN )(1 − ˆ >i − − = 0. 
δSN δ̂SN βSN )δ̂SN 

i=0 i + ˆ 1 + (1 − ˆ in in in 

δSN Similarly, solve for ˆ out from X Nout γSN − β̂SN γSN + ˆ βSN )
∞ 

>j (n)/n 1 − ˆ (ˆ βSN )(1 − ˆ − − = 0. 
j + δ̂SN δ̂SN βSN )δ̂SN 

j=0 out out 1 + (1 − ˆ out 

Note that Step 6 ensures that 

αSN βSN γSN ˆ + ˆ + ˆ = 1. 
SN 

αSN β̂SN γSN δ̂SN δ̂SN a.s.
It is shown in [25, Theorem 4.1] that θb := (ˆ , , ̂  , , ) −→ θ. Its asymptotic n in out 
normality and efficiency are analyzed through simulation studies in the same paper. 

Appendix B. Proof of Theorem 2.1 

Proof. We first prove the out-degree part of Theorem 2.1. Note that � � 
Nout = NoutE (n + 1)|G(n) (n) + γ1{j=0} + α1{j=1}j j � � 

Nout j − 1 + δout − Nout j + δout
(B.1) +(β + γ) (n) (n) .j−1 n + δout|V 0(n)| j n + δout|V 0(n)| 
Meanwhile, by the definition of V 0(n), we have 

(B.2) |V 0(n)| + 1 = N(n) ∼ Binomial(n, 1 − β). 
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Applying the arguments in the proof of Theorem 3.1 of [3], it follows that the out-degree 
distribution of a linear superstar model coincides with that of a standard linear preferential 
attachment network with parameters (α, β, γ, δin, δout). Moreover, 

Nout(n) a.s.j out−→ qj , j > 0, n →∞, 
n 

out outwhere {q } := {p } is the limiting out-degree distribution of PA(α, β, γ, δin, δout). Inj j 
particular, 

∼ C 0 j−(1+ιout)qj 
out 

out as j →∞, 

for C 0 positive andout 

β + γ 
ι−1 = .out 1 + δout(α + γ) 

Next we consider the in-degree counts of non-superstar nodes. Observe also from the 
construction of the superstar model that 

(B.3) |E0(n)| ∼ Binomial(n, 1 − (α + β)p). 

Applying the Chernoff bound to both (B.2) and (B.3) gives 

V 0(n) = (1 − β)n + O(n 1/2 log n), 

E0(n) = (1 − (α + β)p)n + O(n 1/2 log n). 

Taking expectation on both sides of (B.1) then gives � � 
i + δin

E (α + β)(1 − p)Ni 
in(n)

|E0(n)| + δin|V 0(n)|
i + δin 

E(N in(B.4) = (α + β)(1 − p) i (n)) + O(n −1/2 log n). 
n(1 − (α + β)p) + δin · n(1 − β) 

By the rule of the superstar model, given G(n), Ni 
in(n) will increase by 1 if either scenario 

(1b) or (2b) happens and a node with In 
(n)
(v) = i − 1 is chosen as the ending point of the 

edge. Also, it will decrease by 1 if either scenario (1b) or (2b) happens, but a node with 
(n)

In (v) = i is chosen as the ending point of the edge. Moreover, with probability α a new 
node with in-degree 0 will be added to the graph, and with probability γ a new node with 
in-degree 1 is created in the next step. Hence, {N in(n)}n≥1 satisfies the following: � � i 

N in N inE (n + 1)|G(n) = (n) + α1{i=0} + γ1{i=1}i i 

i − 1 + δin
+ (α + β)(1 − p)Ni 

in 
−1(n) |E0(n)| + δin|V 0(n)|

i + δin− (α + β)(1 − p)Ni 
in(n)

|E0(n)| + δin|V 0(n)| 
. 

in inNow let q−1 = 0, and define {qi }i≥0 by 

(α + β)(1 − p) � � 
in in in(B.5) q = (i − 1 + δin)q − (i + δin)q + α1{i=0} + γ1{i=1}.i i−1 i1 − (α + β)p + δin(α + γ) 
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According to the approximation in (B.4), we use the same proof technique as in [3, Theo-
rem 3.1] to obtain 

N in(n) a.s.i −→ qi 
in , as n →∞. 

n 
Also, solving the recursion in (B.5) yields 

α 
(B.6) q0

in = ,
1 + ι− 

in
1δin � � 

γin αδin 
q1 = (1 + δin + ιin)

−1 + 
ι−1 ,

1 + ι−1δinin in 

Γ(2 + δin + ιin)in Γ(i + δin) in(B.7) qi = q1 , i ≥ 2,
Γ(i + δin + ιin + 1) Γ(1 + δin) 

where 
(α + β)(1 − p)

ι−1 :=in 1 − (α + β)p + δin(α + γ) 
. 

Therefore, applying Stirling’s approximation to (B.6)–(B.7) gives 
in i−(1+ιin)qi ∼ Cin 

0 , as n →∞, 

for some positive constant Cin 
0 . This completes the proof. � 
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	We start with an arbitrary initial ﬁnite directed graph G(n) with at least one node and nedges. Given an existing graph G(n − 1), a new graph G(n) is obtained by adding a . Let In(v) and On(v) denote the in-and out-degree of v ∈ V (n) in G(n), that is, the number of edges pointing into and out of v, respectively. We allow three scenarios of edge creation, which are activated by ﬂipping a 3-sided coin with probabilities α, β and γ. More formally, let Jn,n > n} be an iid sequence of trinomial random variables
	0
	0 
	single edge to G(n 
	− 
	1) so that the graph G(n) contains n edges for all n 
	≥ 
	n
	0
	{
	0

	v w v w v w 
	α-scheme β-scheme γ-scheme 
	• If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and an edge (v, w) leading from v to an existing node w ∈ V (n − 1). Choose the existing node w ∈ V (n − 1) with probability depending on its in-degree in G(n − 1): 
	In−1(w)+ δin
	(2.6) P[choose w ∈ V (n − 1)] = . 
	n − 1+ δinN(n − 1) 
	• If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) with v ∈ V (n − 1) = V (n) and w ∈ V (n − 1) = V (n) and the existing nodes v, w are chosen independently from the nodes of G(n − 1) with probabilities 
	. ...
	On−1(v)+ δout In−1(w)+ δin
	(2.7) P[choose (v, w)] = . 
	n − 1+ δoutN(n − 1) n − 1+ δinN(n − 1) 
	• If Jn = 3 (with probability γ), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and an edge (w, v) leading from the existing node w ∈ V (n − 1) to the new node v. Choose the existing node w ∈ V (n − 1) with probability 
	On−1(w)+ δout
	(2.8) P[choose w ∈ V (n − 1)] = . 
	n − 1+ δoutN(n − 1) 
	n − 1+ δoutN(n − 1) 
	For convenience we call these scenarios the α-, β-and γ-schemes. Note that this construction allows for the possibility of multiple edges between two nodes and self loops. This linear preferential attachment model can be simulated eﬃciently using the method described in [25, Algorithm 1] and linked to / multheavytail/software.cfm. 
	http://www.orie.cornell.edu/orie/research/groups


	It is shown in [21, 22, 26] that the empirical degree distribution 
	Nn(i, j) a.s.
	−→ pij ,
	N(n) 
	and the marginals satisfy (2.2) and (2.3), where the tail indices are 
	1+ δin(α + γ) 1+ δout(α + γ)
	(2.9) in =: , and ιout =: . 
	ι

	α + ββ + γ 
	Furthermore, the joint regular variation condition (2.5) is satisﬁed by the limit degree distribution and the limit measure [22] or its density [26] can be explicitly derived. We shall use this property for parameter estimation in Section 3. 
	-

	2.3. The superstar linear PA model. The key feature of the superstar linear PA model that distinguishes it from the standard linear PA model is the existence of a superstar node, to which a large proportion of nodes attach. A new parameter p represents the attachment probability. The α-, β-and γ-schemes of the linear PA model are still in action. However, for the α-and β-schemes, an outgoing edge will attach to the superstar node with probability p, while with probability 1 − p it will attach to a non-super
	For simplicity, the network is initialized with two nodes V (1) = {0, 1} where node 0 is the superstar node. We assume at the ﬁrst step, there is an edge pointing from 1 → 0 so E= {(1, 0)}. Again each graph G(n) contains n edges for all n ≥ 1. Let 
	1 

	V (n) := V (n) \{0}, and E(n) := E(n) \{(u, 0) : u ∈ V (n)}, 
	0
	0
	0

	so that E(n) is the set of edges in G(n) that do not point to the superstar. Let |V (n)|and |E(n)| denote the number of nodes and edges in the non-superstar subgraph of G(n), respectively. 
	0
	0
	0

	The model is speciﬁed through the parameter set (p, α, β, γ, δin,δout). Let {Bn : n ≥ 1} be another iid sequence of Bernoulli random variables where 
	P(Bn = 1) = p =1 − P(Bn = 0). 
	The Markovian graph evolution from G(n − 1) to G(n) is modiﬁed from the linear PA model as follows. 
	• 
	• 
	• 
	• 
	If Jn = 1 (with probability α), append to G(n − 1) a new node v ∈ V (n) \ V (n − 1) and an edge (v, w) leading from v to an existing node w. 

	– 
	– 
	– 
	If Bn = 1 (with probability p), w = 0, the superstar node; 

	– 
	– 
	If Bn = 0 (with probability 1 − p), w ∈ V (n − 1) is chosen according to the linear PA rule (2.6) applied to (V (n − 1),E(n − 1)). 
	0
	0
	0




	• 
	• 
	• 
	If Jn = 2 (with probability β), add a directed edge (v, w) to E(n − 1) where 
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	– 
	– 
	– 
	If Bn = 1 (with probability p), v = 0 and w ∈ V (n − 1) = V (n) is chosen with probability (2.6) applied to (V (n − 1),E(n − 1)); 
	0
	0
	0
	0


	– 
	– 
	If Bn = 0 (with probability 1 − p), v, w ∈ V (n − 1) = V (n) are chosen with probability (2.7) applied to (V (n − 1),E(n − 1)). 
	0
	0
	0
	0




	• 
	• 
	If Jn = 3 (with probability γ), append to G(n − 1) a new node w ∈ V (n) \ V (n − 1) and an edge (v, w) leading from the existing node v ∈ V (n − 1) to w, where v ∈ V (n − 1) is chosen with probability (2.8) applied to (V (n − 1),E(n − 1)). 
	0
	0
	0
	0
	0
	0



	If we use N(n) and N(n) to denote the number of non-superstar nodes that have in-degree i and out-degree j, respectively, then Theorem 2.1 shows that (N(n)/n, N(n)/n) → in out
	i 
	in
	j 
	out
	i 
	in
	j 
	out

	(q,q ) almost surely where the limits are deterministic constants that decay like power 
	i 

	j 
	laws. 
	Theorem 2.1. Let (N(n),N(n)) be the in-and out-degree counts of the non-superstar 
	i 
	in
	j 
	out

	in out
	nodes of the superstar model. There exists constants qand qsuch that as n →∞, in out 
	i 
	j 
	N
	N

	a.s. in a.s. out
	i (n) 
	j 
	(n) 

	−→ q, −→ q. 
	i 
	j 

	nn 
	Moreover, 
	(i) As i →∞, 
	in −(1+ιin)
	i

	(2.10) i in 
	q
	∼ C
	0 
	, 

	where Cis a positive constant and 
	in 
	0 

	1 − (α + β)p + δin(α + γ)
	1 − (α + β)p + δin(α + γ)

	(2.11) in := . 
	ι

	(α + β)(1 − p) 
	(ii) As j →∞, 
	out −(1+ιout)
	j

	(2.12) q ∼ C,
	0 

	j out 
	where Cis a positive constant and
	0 

	out 
	1+ δout(α + γ)
	1+ δout(α + γ)

	(2.13) out := . 
	ι

	β + γ 
	The proof of Theorem 2.1 is provided in Appendix B. 
	3. Estimation Using Extreme Value Theory 
	In this section, we consider network parameter estimation using extreme value theory. Given a graph G(n) at a ﬁxed timestamp, the data available for estimates are the in-and out-degrees for each node denoted by (In(v),On(v)), v =1,...,N(n). Let Fn(·) be the n converges weakly to a limit distribution F on N × N which is the measure corresponding to the mass function {pij }. Let .(i,j)(·) be the Dirac measure concentrating on (i, j) and we have from (2.1), 
	empirical distribution of this data on 
	N 
	× 
	N
	. Then from (2.1), almost surely F

	N(n) 
	X

	XX
	1 Nn(i, j) w
	(3.1) Fn(·)= .(In(v),On(v))(·)= .(i,j)(·) → pij .(i,j)(·) =: F (·). 
	N(n)
	N(n) 

	v=1 i,j i,j 
	3.1. Estimating tail indices; Hill estimation. We review tail index estimation of ιin (ιout is similar) using the Hill estimator [13, 20] applied to in-degree data In(v), v =1,...,N(n). From (2.2), the marginal of F , called Fin is regularly varying with index −ιin. From Karamata’s theorem ιcan be expressed as a function of Fin [8, page 69],
	-
	− 
	in
	1 

	R∞
	in(du)
	(log(u) 
	− 
	log(t))F

	−1 
	ι
	t

	(3.2) = lim . 
	in 

	t→∞ 
	1 − Fin(t) 
	The Hill estimator of ιreplaces Fin(·) with the marginal of the empirical distribution in 
	− 
	in
	1 

	(3.1) of in-degrees, called Fin,n, and t with I(k+1) in (3.2). Let I(1) ≥ ... ≥ I(N(n)) be the n(v), v =1,...,N(n). The resulting estimator is 
	n
	decreasing order statistics of I

	R∞ 
	(log(u) − log(I(k+1)))Fin,n(du)
	n

	I(kn+1)
	I(kn+1)

	−1
	ι

	ˆ(kn)= 
	in 

	kn/N(n) 
	kn
	X
	1 
	= (log(I(j)) − log(I(k+1))). 
	n

	kn 
	kn 

	j=1 
	With iid data, if we assume kn →∞ and kn/N(n) → 0, then the Hill estimator is consistent. Of course, our network data is not iid but Hill estimation still works in practice. Consistency for an undirected graph is proven in [27] but for directed graphs, this is an unresolved issue. 
	To select kn in practice, [5] proposed computing the Kolmogorov-Smirnov (KS) distance between the empirical distribution of the upper k observations and the power-law distribution with index ˆιin(k): 
	k
	X
	1 
	−ˆιin(k)
	Dk := sup 1{I/I>y} − y, 1 ≤ k ≤ n − 1. y≥1 k 
	(j)
	(k+1)

	j=1 
	Then the optimal kis the one that minimizes the KS distance 
	∗ 

	k 
	k 
	∗ 

	:= argmin Dk, 1≤k≤n 
	and the tail index is estimated by ˆιin(k). This estimator performs well if the thresholded portion comes from a Pareto tail and also seems eﬀective in a variety of non-iid scenarios. It is widely used by data repositories of large network datasets such as KONECT (http: ///) [18] and is realized in the R-package poweRlaw [12]. 
	∗
	konect.uni-koblenz.de

	We refer to the above procedure as the minimum distance method in estimating ιin,ιout for network data. There are two issues when applying this method. First, the data is node-based and not collected from independent repeated sampling. Secondly, degree counts are discrete and do not exactly comply with the Pareto assumption made in the minimum distance method. Our analysis shows that even if we ignore these two issues, the tail estimates are still reasonably good. 
	3.2. Estimating dependency between in-and out-degrees. If the limiting random vector (I,O) ∼ F corresponding to pij in (2.1) is jointly regularly varying and satisﬁes (2.5), we may apply a polar coordinate transformation, for example, with the L-norm, 
	2

	√ 
	(I,O) 7→ ( , arctan(O/I)) := (R, T ), 
	a
	I
	2
	a 
	+ O
	2 
	a
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	where a = ιin/ιout. Then, with respect to F in (3.1), the conditional distribution of T given 
	R>r converges weakly (see, for example, [20, p. 173]), 
	F [T ∈ ·|R>r] → S(·),r →∞, 
	where S is the angular measure and describes the asymptotic dependence of the standardized pair (I,O). Since for large r, F [T ∈ ·|R>r] ≈ S(·) and for large n, Fn ≈ F , it is plausible that for r and n large Fn[T ∈ ·|R>r] ≈ S(·). Skeptics may check [20, p. 307] for a more n is the empirical measure deﬁned in (3.1). 
	a
	precise argument and recall F

	Based on observed degrees {(In(v),On(v)); v =1,...,N(n)}, how does this work in practice? First a is replaced by ˆa =ˆιin/ˆιout estimated from Section 3.1. Then the distribution S is estimated via the empirical distribution of the sample angles Tn(v) := arctan(On(v)/In(v))
	-
	aˆ

	p 
	2ˆ 
	(v)

	for which Rn(v) := In+ On(v)>r exceeds some large threshold r. This is the POT (Peaks Over Threshold) methodology commonly employed in extreme value theory [6]. 
	a 
	2 

	In the cases where the network model is known, S may be speciﬁed in closed form. For the linear PA model, S has a density that is an explicit function of the linear PA parameters [22]. After estimating ιin and ιout by the minimum distance method, the remaining parameters can then be estimated by an approximate likelihood method that we now explain. 
	3.3. EV estimation for the linear PA model. From (2.9), 
	3.3. EV estimation for the linear PA model. From (2.9), 
	ιin(α + β) − 1 ιout(β + γ) − 1 
	ιin(α + β) − 1 ιout(β + γ) − 1 

	δin = ,δout = ,
	α + γα + γ 
	so that the linear PA model may be parameterized by θ =(α, β, γ, ιin,ιout). To construct the 
	EV EV 
	ι
	ι

	EV estimates, begin by computing the minimum distance estimates ˆ, ˆof the in-and 
	in 
	out 

	out-degree indices. The parameter β, which represents the proportion of edges connected EV 
	β

	between existing nodes, is estimated by = 1 − N(n)/n. 
	ˆ 

	2
	+ O
	2

	From (2.5), arctan(O/I) given I>r converges weakly as r →∞ to the distribution of a random variable Θ [22, Section 4.1.2], whose pdf is given by (0 ≤ x ≤ π/2)
	a
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	in,ιout with their estimated values , ˆ , and ˆ and setting γ = 
	By replacing β, ι

	in out 
	EV 
	β

	1 − α − , the density (3.3) can be viewed as a proﬁle likelihood function (based on a single observation x) of the unknown parameter α, which we denote by 
	ˆ 

	EV EV ˆEV ˆEV 
	β
	β
	δ
	δ

	l(α; x)= fΘ(x; α, , 1 − α − , , ). 
	ˆ 
	ˆ 
	in 
	out 

	Ł. 
	EV 
	α

	Given the degrees (In(v),On(v)),v ∈ V (n) , ˆ can be computed by maximizing the n(v),On(v)) for which Rn(v) >r for a large threshold r. That is, 
	proﬁle likelihood based on the observations (I

	N(n) . ... 
	X

	On(v)
	(3.4) αˆ:= argmax log lα; arctan 1{R(v)>r},
	EV 
	n

	a 
	0≤α≤1 (In(v))
	ˆ 

	v=1 
	where r is typically chosen as the (ntail + 1)-th largest Rn(v)’s for a suitable ntail. This estimation procedure is sometimes referred to as the “independence estimating equations” (IEEs) method [4, 24], in which the dependence between observations is ignored. This technique is often used when the joint distribution of the data is unknown or intractable. 
	EV EV EV 
	γ
	α
	β

	Finally, using the constraint, α + β + γ = 1, we estimate γ by ˆ =1 − ˆ − . 
	ˆ

	4. Estimation results 
	In this section, we demonstrate the estimation of the linear PA and related models through the EV method described in Section 3.3. In Section 4.1, data are simulated from the standard linear PA model and used to estimate the true parameters of the underlying model. Section 4.2 considers data generated from the linear PA model but corrupted by random addition or deletion of edges. Our goal is to estimate the parameters of the original linear PA model. In Section 4.3, we simulate data from the superstar linea
	-

	Throughout the section, the EV method is compared with two parametric estimation approaches for the linear PA model, namely the MLE and snapshot (SN) methods, proposed in [25]. For a given network, when the network history is available, that is, each edge is marked with the timestamp of its creation, MLE estimates are directly computable. In the case where only a snapshot of the network is given at a single point in time (i.e., the timestamp information for the creation of the edges is unavailable), we have
	-

	Note that a main diﬀerence between the MLE, SN and EV methods lies in the amount of data utilized. The MLE approach requires the entire growth history of the network while the SN method uses only a single snapshot of the network. The EV method, on the other hand, requires only a subset of a snapshot of the network; only those degree counts of nodes with large in-or out-degrees. When the underlying model is true, MLE is certainly the most eﬃcient, but also hinges on having a complete data set. As we shall se

	4.1. Estimation for the linear PA model. 
	4.1. Estimation for the linear PA model. 
	4.1.1. Comparison of EV with MLE and SN. Figure 4.1 presents biases for estimates of in,ιout) using EV, MLE, and SN methods on data simulated from the linear PA model. 
	(α, ι

	We held (β, δin,δout) = (0.4, 1, 1) constant and varied α =0.1, 0.2, 0.3, 0.4 so that the true values of γ, ιin,ιout were also varying. For each set of parameter values (α, ιin,ιout), 200 independent replications of a linear PA network with n = 10edges were simulated and the true values of (ιin,ιout) were computed by (2.9). We estimated (ιin,ιout) by the minimum 
	5 

	EV EV 
	ι
	ι

	distance method (ˆ , ˆ ), MLE and the one-snapshot methods applied to the parametric 
	in out 
	MLE MLE SN SN EV EV 
	ι
	ι
	ι
	ι
	ι
	ι

	model (cf. Section A), denoted by (ˆ , ˆ ) and (ˆ , ˆ ), respectively. With (ˆ , ˆ ),
	in out in out in out 
	EV 
	α

	ˆ is calculated by (3.4) using ntail = 200. As seen here, for simulated data from a known model, MLE outperforms other estimation procedures. The EV procedure tends to have much larger variance than both MLE and SN 
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	Figure
	in,ιout) using EV, MLE and SN methods. Panels (a)–(c) correspond to the case where α =0.1, 0.2 and (d)–(f) are for α =0.3, 0.4, holding (β, δin,δout) = (0.4, 1, 1) constant. 
	in,ιout) using EV, MLE and SN methods. Panels (a)–(c) correspond to the case where α =0.1, 0.2 and (d)–(f) are for α =0.3, 0.4, holding (β, δin,δout) = (0.4, 1, 1) constant. 
	Figure 4.1. Boxplots of biases for estimates of (α, ι



	with slightly more bias. This is not surprising as the performance of the EV estimators is dependent on the quality of the following approximations: 
	(1) 
	(1) 
	(1) 
	The number of edges in the network, n, should be suﬃciently large to ensure a close n(i, j)/N(n) to the limit joint pmf pij . 
	approximation of N


	(2) 
	(2) 
	The choice of thresholds must guarantee the quality of the EV estimates for the indices and the limiting angular distribution. The thresholding means estimates are based on only a small fraction of the data and hence have large uncertainty. 

	(3) 
	(3) 
	The parameter a used to transform the in-and out-degrees to standard regular variation is estimated and thus subject to estimation error which propagates throughout the remaining estimation procedures. 
	-



	4.1.2. Sensitivity analysis. We explore how sensitive EV estimates are to choice of r, the threshold for the approximation to the limiting angular density in (3.4). Equivalently, we consider varying ntail, the number of tail observations included in the estimation. 
	Figure
	Figure 4.2. (a) Boxplots of biases of αˆ and αˆfor diﬀerent ntail and n 
	Figure 4.2. (a) Boxplots of biases of αˆ and αˆfor diﬀerent ntail and n 
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	tail 
	over 50 replications, where (α, β, γ, δin,δout) = (0.3, 0.4, 0.3, 1, 1). (b) Linearly 
	interpolated trajectories of biases of αˆ and αˆfrom 10 randomly picked real
	∗ 
	-

	izations. 
	For the sensitivity analysis, 50 linear PA networks with 10edges and parameter set 
	5 

	in,δout) = (0.3, 0.4, 0.3, 1, 1), 
	(α, β, γ, δ

	or equivalently, 
	in,ιout) = (0.3, 0.4, 0.3, 2.29, 2.29) are generated. We use ntail = 50, 100, 200, 300, 500, 1000, 1500 to calculate the EV estimates 
	(α, β, γ, ι

	EV 
	α

	for α. The performances of ˆ across diﬀerent values of ntail are demonstrated by the blue tail increases to 300, and for larger values of ntail, αˆ considerably underestimates α. 
	boxplots in Figure 4.2(a). We see that the biases of αˆ remain small until n

	We note that the angular components Rn(v), 1 ≤ v ≤ N(n) are also power-lawed. As an attempt to select the optimal value of ntail, we apply the minimum distance method to the Rn(v)’s and use the selected threshold, n, as the truncation threshold. The boxplot of nfor the 50 simulated networks are represented by the horizontal boxplot in Figure 4.2(a). The EV estimator with respect to this threshold for each simulation, denoted by αˆ, is shown tail = 875, the mean of n Overall, n varies between 
	tail 
	∗ 
	tail 
	∗ 
	∗ 
	by the red boxplot and plotted at n
	∗ 
	∗ 

	tailtail 
	. 

	300 and 1500 and results in an underestimated αˆ. 
	∗ 

	In Figure 4.2(b), we randomly choose 10 realizations (among the 50 replications) and plot the linearly interpolated trajectories of αˆ, based on diﬀerent values of ntail. Black points are the estimation results using ﬁxed thresholds ntail = 50, 100, 200, 300, 500, 1000, 1500 and red ones are determined by (ˆα,n ) using the minimum distance method. Black and red
	∗ 
	∗ 

	tail 
	points denoted by the same symbol belong to the same realization. Comparison among estimation results for diﬀerent values of ntail reveals that choosing a ﬁxed threshold ntail ≤ 300 
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	outperforms selecting a n using the minimum distance method, as it produces estimates
	∗ 

	tail 
	with smaller biases and variances. 
	4.2. Data corrupted by random edge addition/deletion. PA models are designed to describe human interaction in social networks but what if data collected from a network is corrupted or usual behavior is changed? Corruption could be due to collection error and atypical behavior could result from users hiding their network presence or trolls acting as provocateurs. In such circumstances, the task is to unmask data corruption or atypical behavior and recover the parameters associated with the original preferent
	In the following, we consider network data that are generated from the linear PA model but corrupted by random addition or deletion of edges. For such corrupted data, we attempt to recover the original model and compare the performances of MLE, SN, and EV methods. 
	4.2.1. Randomly adding edges. We consider a network generating algorithm with linear PA rules but also a possibility of adding random edges. Let G(n)=(V (n),E(n)) denote the graph at time n. We assume that the edge set E(n) can be decomposed into two disjoint 
	S 
	subsets: E(n)= E(n) E(n), where E(n) is the set of edges resulting from PA rules, and E(n) is the set of those resulting from random attachments. This can be viewed as an interpolation of the PA network and the Erd¨os-R´enyi random graph. 
	PA
	RA
	PA
	RA

	More speciﬁcally, consider the following network growth. Given G(n − 1), G(n) is formed by creating a new edge where: 
	(1) 
	(1) 
	(1) 
	(1) 
	With probability pa, two nodes are chosen randomly (allowing repetition) from V (n− 

	1) and an edge is created connecting them. The possibility of a self loop is allowed. 

	(2) 
	(2) 
	a, a new edge is created according to the preferential attachment scheme (α, β, γ, δin,δout) on G(n − 1) := (V (n − 1),E(n − 1)). 
	With probability 1
	−
	p
	PA
	PA



	The question of interest is, if we are unaware of the perturbation eﬀect and pretend the data from this model are coming from the linear PA model, can we recover the PA parameters? To investigate, we generate networks of n = 10edges with parameter values 
	5 

	(α, β, γ, δin,δout) = (0.3, 0.4, 0.3, 1, 1),pa ∈{0.025, 0.05, 0.075, 0.1, 0.125, 0.15}. 
	For each network, the original PA model is ﬁtted using the MLE, SN and EV methods, respectively. The angular MLE in (3.4) in the extreme value estimation is performed based on ntail = 500 tail observations. In order to compare these estimators, we repeat the experiment 200 times for each value of pa and obtain 200 sets of estimated parameters for each method. in,δout, α, γ, ιin,ιout) for diﬀerent values of pa. The mean estimates are marked by crosses and the 2.5% and 97.5% empirical quantiles are marked by 
	Figure 4.3 summarizes the estimated values for (δ

	a increases and the network becomes more “noisy”, the EV estimates for (δin,δout) exhibit smaller bias than the MLE and SN methods (Figure 4.3 (a) and (b)). All three methods give underestimated probabilities (α, γ) (Figure 4.3 (c) and (d)). This is because the perturbation step (1) creates more edges between existing nodes and consequently inﬂates the estimated value of β. 
	While all parameters deviate from the true value as p

	Also note that the mean EV estimates of (ιin,ιout) stay close to the theoretical values for all choices of pa; see Figure 4.3 (e) and (f). The MLE and SN estimates of (ιin,ιout), which 
	Also note that the mean EV estimates of (ιin,ιout) stay close to the theoretical values for all choices of pa; see Figure 4.3 (e) and (f). The MLE and SN estimates of (ιin,ιout), which 
	(a) in; (b) δout; (c) α; (d) γ; (e) ιin; (f) ιout, using MLE (black), SN in,δout)= a =0.025, 0.05, 0.075, 0.1, 0.125, 0.15. For the EV 
	δ
	(red) and EV (blue) methods over 200 replications, where (α, β, γ, δ
	(0.3, 0.4, 0.3, 1, 1) and p


	Figure
	Figure 4.3. Mean estimates and 2.5% and 97.5% empirical quantiles of 
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	EV 
	α

	method, 500 tail observations were used to obtain ˆ . 
	are computed from the corresponding estimates for (α, β, γ, δin,δout), show strong bias as pa increases. In this case, the EV method is robust for estimating the PA parameters and recovering the tail indices from the original model. 
	4.2.2. Randomly deleting edges. We now consider the scenario where a network is generated from the linear PA model, but a random proportion pd of edges are deleted at the ﬁnal time. We do this by generating G(n) and then deleting [npd] edges by sampling without replacement. For the simulation, we generated networks with parameter values 
	(α, β, γ, δin,δout) = (0.3, 0.4, 0.3, 1, 1),pd ∈{0.025, 0.05, 0.075, 0.1, 0.125, 0.15}. 
	d, the experiment is repeated 200 times and the resulting parameter plots are shown in Figure 4.4 using the same format as for Figure 4.3. For the EV method, 
	Again, for each value of p

	EV 
	α

	100 tail observations were used to compute an ˆ . 
	Surprisingly, for all six parameters considered, MLE estimates stay almost unchanged for diﬀerent values of pd while SN and EV estimates underestimate (δin,δout) and overestimate d increases. For tail estimates, the minimum distance method still gives reasonable results (though with larger variances), whereas the SN method keeps underestimating ιin and ιout. 
	(α, γ), with increasing magnitudes of biases as p
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	(a) in; (b) δout; (c) α; (d) γ; (e) ιin; (f) ιout, using MLE (black), SN in,δout)= d =0.025, 0.05, 0.075, 0.1, 0.125, 0.15. For the EV 
	δ
	(red) and EV (blue) methods over 50 replications, where (α, β, γ, δ
	(0.3, 0.4, 0.3, 1, 1) and p

	EV 
	α

	method, 100 tail observations were used to compute ˆ . 
	The performance of MLE in this case is surprisingly competitive. This is intriguing and in ongoing work, we will think about why this is the case. 
	4.3. Superstar model. In this section, we consider network data generated from the superstar model. We compare the accuracy of tail index estimates under parametric methods applied to the linear PA model with extreme value estimates applied directly to data. 
	-

	Networks are simulated from the superstar model with the following parameter values: 
	(α, β, δin,δout,n) = (0.3, 0.4, 0.3, 1, 1, 10),p ∈{0.1, 0.15, 0.2, 0.25, 0.3}. 
	6

	MLE MLE 
	ι
	ι

	The MLE estimates of the tail indices based on (2.9), (ˆ , ˆ ), are compared to the
	in out 
	EV EV 
	ι
	ι

	EV estimates calculated directly from the node degree data, (ˆ , ˆ ). According to The-
	in out 
	orem 2.1, the theoretical marginal tail indices for In(v) and On(v), 1 ≤ v ≤ N(n), based on a superstar PA model are given by (2.11), (2.13). This experiment is repeated 50 times and Table 1 records the mean estimates for (ιin,ιout) over these 50 replications. 
	As p increases and the inﬂuence of the superstar node becomes more profound, the MLE method does not give an accurate estimate of tail indices, while the EV method stays more robust. However, when p becomes too large, the in-degrees of non-superstar nodes will be greatly restricted, which increases the ﬁnite sample bias in the EV estimates. 
	MLE MLE EV EV 
	ι
	ι
	ι
	ι

	p (ιin,ιout) (ˆ , ˆ )(ˆ , ˆ)
	in out in out 
	in out in out 

	0.1 (2.43, 2.29) (2.11, 2.31) (2.24 2.25) 0.15 (2.51, 2.29) (2.03, 2.33) (2.28 2.20) 0.2 (2.61, 2.29) (1.97, 2.34) (2.35 2.18) 0.25 (2.71, 2.29) (1.91, 2.36) (2.43 2.18) 0.3 (2.84, 2.29) (1.86, 2.38) (2.51 2.15) 
	Table 1. Mean estimates for (ιin,ιout) using both MLE and minimum distance methods, with (α, β, γ, δin,δout,n) = (0.3, 0.4, 0.3, 1, 1, 10). 
	-
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	Note that the theoretical indices (ιin,ιout) in Table 1 are for the in-and out-degrees of the non-superstar nodes. In the EV methods, the inclusion of the superstar node can severely bias the estimation of ιin. Let kn be some intermediate sequence such that kn →∞ and kn/n → 0 as n →∞ and use I(1) ≥ ... ≥ I(k+1) to denote the upper kn + 1 order statistics of {In(v):0 ≤ v ≤ N(n)}. Then the corresponding Hill estimator is 
	n

	kn
	1 
	EV 
	ι
	X 
	I
	(i)

	1/ˆ(kn) := logI(kn+1)
	in 
	kn 

	i=1 
	X
	11 1 I(i)
	k
	n 

	(4.1) = log I(1) − log I(k+1) + log . I(kn+1) 
	n
	kn kn kn
	i=2 

	From the construction of the superstar model, we know that the superstar node likely has the largest in-degree, which is approximately equal to np for large n. Hence, the ﬁrst term in (4.1) goes to 0, as long as 
	kn/ log n →∞, as n →∞, 
	and the third term in (4.1) is the Hill estimator computed from the in-degrees of non-superstar nodes. In [27], the consistency of the Hill estimator has been proved for a simple 
	EV 
	ι

	undirected linear PA model, but consistency for ˆ(kn) is not proven for either of the two 
	in 

	EV 
	ι

	models we consider here. However, with the belief on the consistency of ˆ ), (4.1)
	in n suggests that choosing a larger kn will reduce the bias when estimating ιin in the superstar model. To illustrate this point numerically, we choose kn = 200, 500, 1000, 1500, 2000 for a superstar network with 10edges and probability of attaching to the superstar node p = 0.1, 0.15, 0.2, 0.25, 0.3. For each value of p, we again simulate 50 independent replications of the superstar PA model with parameters (α, β, γ, δin,δout,n) = (0.3, 0.4, 0.3, 1, 1, 10). Then for each replication generated, Hill estima
	(k
	-
	6 
	6
	-

	16 
	16 
	16 
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	TR
	200 
	Number of Upper Order Statistics kn 500 1000 1500 
	2000 

	TR
	p = 0.1 p = 0.15 p = 0.2 p = 0.25 p = 0.3 
	(2.16, 2.22) (2.25, 2.18) (2.32, 2.17) (2.36, 2.18) (2.41, 2.17) 
	(2.26, 2.19) (2.32, 2.17) (2.39, 2.16) (2.47, 2.16) (2.58, 2.13) 
	(2.27, 2.16) (2.29, 2.14) (2.37, 2.15) (2.43, 2.12) (2.56, 2.11) 
	(2.28, 2.14) (2.31,2.15) (2.39, 2.11) (2.49, 2.11) (2.47, 2.11) 
	(2.27, 2.15) (2.28, 2.14) (2.33, 2.13) (2.52, 2.12) (2.51, 2.12) 


	Table 2. Mean values of EV estimates of tail indices (ιin,ιout) over 50 replications, with (α, β, γ, δin,δout,n) = (0.3, 0.4, 0.3, 1, 1, 10). The true values are given in Table 1. 
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	Figure
	Figure 4.5. Empirical in-and out-degree distributions, with in,δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 10, 0.25). 
	Figure 4.5. Empirical in-and out-degree distributions, with in,δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 10, 0.25). 
	(α, β, γ, δ
	5 



	where the superstar node does not have any impact. Comparing the results in Table 2 to those EV estimates in Table 1, we see that the minimum distance method seeks a good balance between eliminating the eﬀect of the superstar nodes and choosing a reasonably large threshold. 
	The next question is how the model misspeciﬁcation aﬀects the empirical distributions of in-and out-degrees. To evaluate this, we generated a superstar PA model with parameters 
	in,δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 10, 0.25). 
	(α, β, γ, δ
	5 

	We estimated parameters by both MLE and EV methods from simulated superstar data, pretending that the data was generated from an ordinary PA rule. For the EV approach, 
	EV 
	α

	200 tail observations were used while computing ˆ . Denote the MLE and EV estimates by 
	bMLE ˆMLE MLE ˆMLE ˆMLE 
	MLE 
	α
	β
	γ
	δ
	δ

	θ:= (ˆ ,, ˆ , , ), 
	n 
	in 
	out 

	EV EV EV EV EV 
	α
	β
	γ
	δ
	δ

	θ:= (ˆ , , ˆ , , ).
	b
	EV 
	ˆ 
	ˆ 
	ˆ

	n in out 
	MLE We then simulated 20 independent replications of a linear PA model with parameters θEV and 20 with parameters θ. For each set of replicates we computed the empirical frequency distributions. Comparisons of degree distributions are provided in Figure 4.5. In all 4 panels, the green dots represent the empirical degree frequencies for the simulated superstar data, top for in-degree and bottom for out-degree. Blue in the two left panels represents overlaid frequency distributions for the 20 simulated data s
	b 
	n 
	b 
	n 

	MLE replicates using θ. Red in the right two panels does the same thing for 20 replicates of EV the linear PA model using parameter θ. The EV method seems to give better ﬁt for in-degrees. Based on out-degrees, it is diﬃcult to visually discern an advantage for either approach. While not obvious in the plots, we again expect the estimated degrees from the EV method to have higher variance than those from MLE, as much less data were used for the model ﬁtting. 
	b 
	n 
	b 
	n 

	5. Conclusion 
	In this paper, we proposed a semi-parametric extreme value (EV) estimation method for network models. We compared the performance of this method to the two parametric approaches (MLE and snapshot methods) given in [25] under three scenarios: (1) data generated from a linear preferential attachment (linear PA) model; (2) data generated from a linear PA model with corruption; (3) data generated from a superstar linear PA model. 
	To summarize our ﬁndings and experience, EV estimation methods play important roles while applied to social network data. The method provides a robust procedure for estimating parameters of the network related to heavy-tailedness of the marginal and joint distributions of the in-and out-degrees. Also EV methods play a conﬁrmatory role to other estimation procedures that are likelihood based, such as MLE or the snapshot (SN) method, which require that the model is correctly speciﬁed. If, for example, MLE or 
	In practice, data are not as clean as those produced in simulations and one expects deviations from a base model such as the linear PA. As seen in this paper, these deviations can lead to sharply biased MLE and SN estimates especially when compared to EV estimates. As in classical EV estimation in the iid setting, the choice of threshold upon which to base the estimation remains a thorny issue in the network context. The minimum distance method based on [5] for estimating marginal tail indices works well fo
	-
	-
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	Appendix A. Parameter Estimation for linear PA Model 
	Parameter estimation for the linear PA model was studied in [25]. If the complete history of the network evolution is available (i.e., timestamps of edge creation are known), then MLE estimates exist and are computable. On the other hand, if only a snapshot of the network is given at a single point in time (i.e., timestamp information for the creation of the edges is unavailable), an approximate MLE was proposed. This procedure combined elements of method of moments with an approximation to the likelihood. 
	A.1. MLE. Given the full evolution of the network G(n), assuming the graph began with ninitial edges, the MLE estimator of θ =(α, β, γ, δin,δout), 
	0 

	MLE ˆMLE MLE ˆMLE ˆMLE 
	α
	β
	γ
	δ
	δ

	θ:= (ˆ ,, ˆ ,, ),
	b
	MLE 

	n in out 
	is obtained by setting 
	X 
	αˆ=1{J=1}, 
	MLE 
	1 
	n 
	t
	n − n
	0 

	t=n+1 
	0

	X
	1 
	n 

	ˆMLE 
	β

	= 1{J=2}, 
	t
	n − n
	0 

	t=n+1 MLE MLE ˆMLE 
	0
	γ
	α
	− β

	ˆ =1 − ˆ , 
	MLE MLE 
	δ
	δ

	and solving for (, ) from
	ˆ 
	ˆ 

	in out 
	∞ n
	(n
	0
	) 

	in in X 
	X
	N
	(n) − N
	γ
	MLE 

	n − nN(t − 1) 
	>i >i 
	0 

	= ˆ+ i + δt − 1+ δN(t − 1) 
	ˆ
	MLE 
	δ
	ˆ
	MLE 
	ˆ
	MLE 
	1
	{J
	t
	∈{1,2}}
	, 

	i=0in in t=n+1 in 
	0

	∞ outout n 
	X
	N
	>j 
	(n) − N
	X

	>j (n) n − nN(t − 1) ˆMLE ˆMLE MLE 
	0
	0 
	j + δ
	= 
	δ
	αˆ
	MLE 
	+ 
	δ
	1
	{J
	t
	∈{2,3}}
	, 

	t − 1+ N(t − 1) 
	j=0 
	out 
	out 
	t=n
	0
	+1 
	ˆ 
	out 

	where 
	XX 
	in in out out
	N
	N
	N
	N

	(n):= (n), (n):= (n).
	>i i>j j
	0 
	0 

	i>i j>j 
	0
	0

	MLE By [25, Theorem 3.3], θis strongly consistent, asymptotically normal and eﬃcient. 
	b 
	n 

	A.2. Snapshot. The estimation method for θ from the snapshot G(n) is summarized in the following 7-step procedure: 
	SN 
	β

	1. 
	1. 
	1. 
	Estimate β by =1 − N(n)/n. 
	ˆ 


	2. 
	2. 
	Obtain δby solving 
	ˆ 
	in
	0 



	∞ SN 
	(n) 
	N
	in
	(n) 
	+ β
	ˆ

	in (1 + δ(1 − β)) = ,
	X
	N
	i 
	0 
	>i 
	ˆ 
	in
	0 
	ˆ
	SN 
	n 

	in ˆ0
	N
	δ

	n
	i + δ
	ˆ0 
	0 
	(n) 

	in 
	i=1 in 1 − SN 
	β
	)
	ˆ

	n 1+(1− δ
	ˆ 
	0 

	in 
	where N(n) denotes the number of nodes with in-degree 0 in G(n). 
	0
	in

	3. Estimate α by 
	SN n ˆSN 
	N
	0
	in
	(n) 
	+ β
	ˆ
	α
	0 
	− β

	ˆ= . 
	in ˆ0 
	N
	δ

	in
	0 
	(n) 

	1 − 
	n 1+(1−βˆ)δˆ
	SN 
	0 

	in 
	4. Obtain δby solving
	ˆ
	0 

	out ∞ 
	(n) 
	j 
	N
	out
	(n)

	out ˆSN SN n
	X
	N
	0 
	+ β
	δ
	0 
	β
	)) = 

	(1+ (1 − , 
	>j 
	ˆ 
	ˆ 

	nˆ0 δˆ
	j + δ
	out 
	N
	0
	out
	(n) 
	0 

	out 
	j=1 out 1 − SN ˆ0
	n
	β
	)δ

	1+(1− 
	ˆ 

	out 
	where N(n) denotes the number of nodes with out-degree 0 in G(n). 
	0
	out

	5. Estimate γ by 
	SN 
	N
	0
	out
	(n) 
	β

	+ˆ 
	n SN 
	β

	γˆ= − . 
	0 
	ˆ 

	out ˆ
	N

	δ
	(n) 
	0 

	out
	0 

	1 − 
	nSN ˆ0
	β
	)δ

	1+(1− 
	ˆ 

	out 
	6. Re-normalize the probabilities 
	! 
	αˆ(1 − β) γˆ(1 − β)
	α
	SN 
	β
	ˆ
	SN 
	γ
	SN 
	) ← 
	0
	ˆ
	SN 
	β
	ˆ
	SN 
	0
	ˆ
	SN 

	(ˆ ,, ˆ ,, . 
	αˆ+ γˆαˆ+ γˆSN 
	0 
	0 
	0 
	0 
	δ

	7. Solve for from in SN ˆSN SN ˆ SN 
	ˆ 
	in 
	X
	N
	α
	− β
	α
	+
	β
	)

	(n)/n 1 − ˆ (ˆ β)(1 − 
	∞ 
	SN 
	ˆ 

	−− =0. 
	>i 

	SN ˆSN SN ˆSN 
	δ
	δ
	β
	)δ

	i +1+(1 − 
	i=0 
	ˆ 
	ˆ 

	inin in 
	SN 
	δ

	Similarly, solve for from Xout SN ˆSN SN ˆ SN 
	ˆ 
	out 
	N
	γ
	− β
	γ
	+
	β
	)

	>j (n)/n 1 − ˆ (ˆ β)(1 − 
	∞ 
	SN 
	ˆ 

	−− =0. 
	ˆSN ˆSN SN ˆSN 
	j + δ
	δ
	β
	)δ

	j=0 out out out 
	1 + (1 − 
	ˆ 

	Note that Step 6 ensures that 
	SN SN SN 
	α
	β
	γ

	ˆ ++ˆ =1. SN ˆSN SN ˆSN ˆSN 
	ˆ 
	SN 
	α
	β
	γ
	δ
	δ
	a.s.

	It is shown in [25, Theorem 4.1] that θ:= (ˆ ,, ˆ ,, ) −→ θ. Its asymptotic 
	b 

	n in out 
	normality and eﬃciency are analyzed through simulation studies in the same paper. 
	Appendix B. Proof of Theorem 2.1 Proof. We ﬁrst prove the out-degree part of Theorem 2.1. Note that 
	Ł. 
	out out
	N
	= N

	E (n + 1)|G(n)(n)+ γ1{j=0} + α1{j=1}
	jj 
	.. 
	out out out
	N
	j − 1+ δ
	out 
	− N
	j + δ

	(B.1) +(β + γ)(n)(n) .n + δout|V (n)| n + δout|V (n)| 
	j−1 
	0
	j 
	0

	Meanwhile, by the deﬁnition of V (n), we have 
	0

	(B.2) |V (n)| +1 = N(n) ∼ Binomial(n, 1 − β). 
	0
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	Applying the arguments in the proof of Theorem 3.1 of [3], it follows that the out-degree distribution of a linear superstar model coincides with that of a standard linear preferential attachment network with parameters (α, β, γ, δin,δout). Moreover, 
	out
	out
	N

	(n) a.s.

	out
	j 

	−→ q, j> 0,n →∞, 
	j 

	n 
	out out
	where {q } := {p } is the limiting out-degree distribution of PA(α, β, γ, δin,δout). In
	jj 
	particular, 
	∼ Cj
	0 
	−(1+ι
	out
	)

	qas j →∞, 
	j 
	out 
	out 

	for Cpositive and
	0 

	out 
	β + γ 
	−1 
	ι

	= .
	out 
	1+ δ
	out
	(α + γ) 

	Next we consider the in-degree counts of non-superstar nodes. Observe also from the construction of the superstar model that 
	(B.3) |E(n)|∼ Binomial(n, 1 − (α + β)p). 
	0

	Applying the Chernoﬀ bound to both (B.2) and (B.3) gives 
	V (n) =(1 − β)n + O(n log n), 
	0
	1
	/2 

	E(n) =(1 − (α + β)p)n + O(n log n). 
	0
	1
	/2 

	Taking expectation on both sides of (B.1) then gives 
	.. 
	i + δin
	E (α + β)(1 − p)N(n)E(n)| + δin|V (n)|
	i 
	in
	|
	0
	0

	i + δin in
	E(N

	(B.4) = (α + β)(1 − p) (n)) + O(n log n). 
	i 
	−1/2 

	n(1 − (α + β)p)+ δin · n(1 − β) 
	By the rule of the superstar model, given G(n), N(n) will increase by 1 if either scenario (1b) or (2b) happens and a node with In (v)= i − 1 is chosen as the ending point of the edge. Also, it will decrease by 1 if either scenario (1b) or (2b) happens, but a node with 
	i 
	in
	(n)

	(n)
	n (v)= i is chosen as the ending point of the edge. Moreover, with probability α a new node with in-degree 0 will be added to the graph, and with probability γ a new node with in-degree 1 is created in the next step. Hence, {N(n)}n≥1 satisﬁes the following: 
	I
	in

	Ł. 
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	in in
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	E (n + 1)|G(n)= (n)+ α1{i=0} + γ1{i=1}
	ii 
	i − 1+ δin
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	in in
	Now let q= 0, and deﬁne {q}i≥0 by (α + β)(1 − p) �. 
	−1 
	i 

	in inin
	(B.5) q =(i 1+ δin)q − (i + δin)q + α1{i=0} + γ1{i=1}.
	− 

	ii−1 i
	1 − (α + β)p + δin(α + γ) 
	1 − (α + β)p + δin(α + γ) 
	According to the approximation in (B.4), we use the same proof technique as in [3, Theorem 3.1] to obtain 
	-


	in
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	(n) a.s.
	−→ q, as n →∞. 
	i 
	i 
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	n 
	Also, solving the recursion in (B.5) yields 
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	. 

	Therefore, applying Stirling’s approximation to (B.6)–(B.7) gives 
	in −(1+ιin)
	i

	q∼ C, as n →∞, 
	i 
	in 
	0 

	for some positive constant C. This completes the proof. . 
	in 
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