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Abstract P r (i)
We analyse a trimmed stochastic process of the form (r)Xt = Xt− Δ ,i=1 t 

where (Xt)t≥0 is a driftless subordinator on R with its jumps on [0, t] ordered 
(1) (2) (r)

as Δt ≥ Δt · · · . When r → ∞, both (r)Xt ↓ 0 and Δt ↓ 0 a.s. for each � � 
t > 0, and it is interesting to study the weak limiting behaviour of (r)Xt, Δ

(r) 
t 

in this case. We term this “large-trimming” behaviour. Concentrating on the� � 
case t = 1, we study joint convergence of (r)X1, Δ

(r) 
under linear normal-1 

ization, assuming extreme value-related conditions on the Lévy measure of X 

which guarantee that Δ(r) has a limit distribution with linear normalization. 

Allowing (r)X to have random centering and scaling in a natural way, we show 

that 
� 
(r)X1, Δ

(r)� 
has a bivariate normal limiting distribution, as r →∞; but1 

replacing the random normalizations with natural deterministic ones produces 

non-normal limits which we can specify. 

Keywords: Trimmed Lévy process, trimmed subordinator, subordinator large jumps, 

extreme value-related conditions, large-trimming limits. 
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Introduction 

Suppose (Xt)t≥0 is a driftless subordinator with infinite Lévy measure Π and tail 

function Π(x) := Π(x, ∞), x > 0. Thus, (Xt) has Laplace transform Ee−λXt = 
−tψ(λ)e , t ≥ 0, where Z 

ψ(λ) = (1 − e −λx)Π(dx), λ > 0. 
(0,∞) 
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⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

Let Δ(r) be the rth largest jump of Xt on [0, t], t > 0, r ∈ N := {1, 2, . . .}. Thet P 
trimmed subordinator is defined to be (r)Xt = Xt − r Δ

(i) 
, t > 0, r ∈ N. Ini=1 t 

Buchmann et al. (2018); Ipsen et al. (2018) we considered distributional properties 
(r)

of Δt as a function of r and here we continue that study by considering the joint� � 
weak limiting behaviour of (r)Xt, Δt 

(r) 
as r → ∞. As r → ∞, (r)Xt ↓ 0 and 

(r) (r)
Δt ↓ 0 a.s. for each t > 0, but conditionally on Δt we may consider (r)Xt as a 

(r)
Lévy process with Lévy measure restricted to (0, Δt ) (e.g., Resnick (1986)). So as 

r → ∞ and big jumps are removed from (r)X, it makes sense that we expect (r)X 

should have a Gaussian weak limit after centering and norming. We focus on the� � � � 
(r)X1, Δ

(r)
case t = 1 and write simply (r)X, Δ(r) for 1 (the case of general t > 0 

is considered briefly in Section 7). 

The approach we take is to assume conditions on Π guaranteeing that Δ(r) has 

a limit distribution under linear normalization, and then prove that a normal limit 

distribution of (r)X conditional on the value of Δ(r) also exists as r →∞. For finite r, 
we denote the conditional distribution with the notation (r)X|Δ(r). The conditioned 

limit of (r)X|Δ(r) initially requires a natural random centering and random scaling 

to achieve asymptotic normality. Having derived that, we then investigate replacing 

the random centering and scaling with deterministic versions. 

According to (Buchmann et al., 2018, Section 4.2), there exist scaling functions 

ar > 0 and centering functions br ∈ R such that, as r → ∞, weak convergence1 

holds in R: 
Δ(r) − br ⇒ Δ(∞), (1.1) 

ar 

with Δ(∞) non-degenerate, if, for x ∈ R such that arx + br > 0, � � 
r − Π arx + br 

lim √ = h(x), (1.2) 
r→∞ r 

where h(x) ∈ R is a non-decreasing and non-constant limit function. The function 

h(x) has the form (see Buchmann et al. (2018), Eq. (4.2)): ⎧ ⎨− 1 log(1 − γx), if γ ∈ R \ {0}, 1 − γx > 0,
1 h(x) = 1 hγ (x) = γ (1.3)
2 2 ⎩x, if γ = 0, x ∈ R. 

We can identify the distribution of the limit random variable Δ(∞) in terms of 

the inverse function h← of h. From (1.3) this function satisfies, for y ∈ R, ⎧ 
y/2, if γ = 0, ⎪ −γy/2−γy/2 ⎨1 − e1 − e , if γ > 0,h←(y) = = γ (1.4)

γ 
|γ|y/2 − 1e⎪⎩ , if γ < 0. 
|γ| 

1We use the symbol “⇒” to denote weak convergence in R or R2 . 
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⎪⎪
⎪⎪

We note that h← : R 7→ Rγ , where, for γ ∈ R, ⎧ ⎪R, if γ = 0,⎨ 
Rγ := {x ∈ R : 1 − γx > 0} = (−∞, 1 ), if γ > 0, ⎪ γ ⎩(− 1 ), ∞), if γ < 0.|γ| 

Taking inverses in (1.2), we get an equivalent form 

← √ 
Π (r − y r) − br

lim = h←(y), y ∈ R, (1.5) 
r→∞ ar 

where the inverse function Π 
← 
to Π is defined by 

Π 
← 
(x) = {inf y > 0 : Π(y) ≤ x}. 

From (1.4) we have h←(0) = 0, so from (1.5) we deduce for y ∈ R, 
← √ ← � ← √ ← �Π (r − y r) − Π (r) Π (r − y r) − br Π (r) − br

lim = lim − 
r→∞ r→∞ar ar ar 

= h←(y) − h←(0) = h←(y). (1.6) 

We conclude that for centering constants we may always set br = Π 
← 
(r) (appropriate 

norming constants ar will be specified later). 

The convergences in (1.2), (1.5) and (1.6) are locally uniform since they are 

convergences of monotone functions to a continuous limit. Recalling the notation in 

(1.1), we have under (1.2) that � �Δ(r) − br � � � � 
lim P ≤ x = P Δ(∞) ≤ x = Φ h(x) , x ∈ R, (1.7) 
r→∞ ar 

where Φ(x) is the standard normal cdf. (This will be proved in (3.1) below, or see 

Buchmann et al. (2018)). Thus Δ(∞) = 
D 
h←(N(0, 1)) where N(0, 1) is a standard 

normal random variable. 

Remark 1.1. Since we assume only positive jumps for the Lévy process, Π(·) con-
centrates on (0, ∞). This implies that the case γ > 0 in (1.3) or (1.4) cannot 

occur. From the discussion in Buchmann et al. (2018), (1.2) means that the func-√ 
tion G(x) := e− Π(x) defined on (0, ∞) is a distribution function in the minimal 

domain of attraction, which for the γ > 0 case would require G(x) to be regularly 

varying as x → −∞. This is impossible because Π(·) concentrates on R+. So from 

now on we concentrate attention on the cases γ ≤ 0. 

To conclude this introduction we set out the steps we intend to follow to under-

stand the joint limit behaviour of ((r)X, Δ(r)) as r →∞ under (1.2) or, equivalently, 

(1.5). 
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1. As discussed, we expect a normal limit as r →∞ for (r)X with suitable linear 

normalizations. We show that this happens for (r)X|Δ(r) under a natural 
random centering and scaling (Theorem 2.1). 

2. Following that, we extend asymptotic normality of (r)X|Δ(r) to a joint asymp-
totic weak limit for ((r)X, Δ(r)) in which the limit has independent compo-

nents. At this stage, (r)X still has random centering and scaling, though Δ(r) 

has non-random normalizations (Corollary 2.1). 

3. Finally, we note there is a cost to replacing the random centering and scaling: 

dependencies and non-normality are introduced into the limit (Theorems 2.2 

and 2.3). 

In the next section we give our main results. Proofs of the theorems and further 

discussion are deferred to Sections 5 and 6. A number of subsidiary propositions are 

also needed; these are proved in Sections 3 and 4. Section 7 concludes with some 

general discussion. 

Main Results 

Throughout, we write PΔ
(r) 
(·) = P(·|Δ(r)) for the conditional distribution, given 

Δ(r). In introducing this we make the simplifying assumption that Π is atomless 

(equivalently, Π is continuous on (0, ∞)). This means that the inverse function Π 
← 

is strictly increasing on (0, ∞) and the ordered jumps ΔXt 
(i) 
are uniquely defined. 

We expect that this assumption can be removed by some well known manipulations 

which would add little of interest to the exposition, so we omit them. 

We will also need truncated first and second moment functions, defined for t > 0 

by Z t Z t 
µ(t) = x Π(dx) and σ2(t) = x 2 Π(dx). (2.1) 

0 0 

Theorem 2.1. Suppose X is a driftless subordinator on (0, ∞) with Lévy measure 

Π(·) on (0, ∞) that satisfies (1.2) or, equivalently, (1.5), for deterministic functions 

ar > 0 and br ∈ R. Then we have � 
PΔ

(r) 
� (r)X − µ(Δ(r))

lim ≤ x = Φ(x), x ∈ R. (2.2) 
r→∞ σ(Δ(r)) 

Remark 2.1. By the dominated convergence theorem the convergence in (2.2) holds 

unconditionally as well, so we also have 

(r)X − µ(Δ(r)) ⇒ N(0, 1), as r →∞,
σ(Δ(r)) 

under the conditions of Theorem 2.1. 
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Retaining the random centering and scaling, Theorem 2.1 immediately leads to 

a joint limit distribution for ((r)X, Δ(r)). In the following corollary, NX and NΓ are 

independent standard normal random variables, being the limits of the standardised 
(r)X and Δ(r), with the subscripts on NX and NΓ serving to distinguish the compo-

nents corresponding to (r)X and Δ(r). (Throughout, NX and NΓ will be independent 

standard normal random variables corresponding to (r)X and Δ(r) in this way.) 

Corollary 2.1. Under the conditions leading to (1.7) and (2.2) we have, in R2 , � (r)X − µ(Δ(r)) Δ(r) − br 
� � � 

, ⇒ NX , h
←(NΓ) , as r →∞. 

σ(Δ(r)) ar 

Next we need to understand the effect of replacing the random centering and 

scaling by deterministic counterparts. We begin with the scaling constants. The 

treatment is broken up according to the cases of the constant γ in (1.3). 

Theorem 2.2. Suppose (1.2) holds. 

(i) When γ < 0, we have, as r →∞, with br = Π 
← 
(r), � � �� (r)X − µ(Δ(r)) Δ(r) −NΓ|γ|/2 −NΓ|γ|/2 , ⇒ NX e , e (2.3)

σ(br) br 

and removing the random centering from (r)X gives � (r)X − µ(br) Δ(r) � � 2 −NΓ|γ|/2 
� 

√ , ⇒ (e −NΓ|γ|/2 − 1), e , as r →∞. (2.4)
br r br |γ| 

← √ ← 
(ii) When γ = 0, we have, as r → ∞, with ar = 2(Π (r − r) − Π (r)) and 

br = Π 
← 
(r), � � �� (r)X − µ(Δ(r)) Δ(r) − br NΓ 

, ⇒ NX , , as r →∞. (2.5)
σ(br) ar 2 

Remark 2.2. (a) Note that when γ < 0, we no longer have independence of the 

components in the limit when we replace the random scaling by the deterministic 

one as in (2.3) and (2.4). 

(b) When γ = 0, we can always make the scaling deterministic, as in (2.5), however 

this is not in general the case for the centering; replacing µ(Δ(r)) with µ(br) in 

(2.5) is only possible under some subsidiary conditions. A detailed discussion is 

given in Section 6. For the special case when Π ∈ RV0(−α) for 0 ≤ α ≤ 1, the 

joint limiting distribution of (r)X and Δ(r) is specified in the following theorem. 

Theorem 2.3. Suppose γ = 0 and Π is regularly varying at 0 with index −α. Let 
← √ ← ← 

cα := α/(2 − α), ar = 2(Π (r − r) − Π (r)) and br = Π (r). 
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 (i) Suppose 0 < cα ≤ 1, so that α ≤ 1. Then ! � �(r)X − µ(br) Δ(r) − br NΓ NΓ 
, ⇒ NX + √ , . (2.6)

σ(br) ar cα 2 

(ii) Suppose cα = 0, so that Π is slowly varying at 0. Then � � �� (r)X − µ(br) Δ(r) − br NΓ√ , ⇒ NX , . 
br r ar 2 

3 Convergence of Δ(r) 

We begin the program outlined in the previous section by examining the convergence 

of Δ(r), after norming and centering, as r → ∞. Throughout this section assume2 

(1.2) or, equivalently, (1.5), and recall the function h in (1.3) and its inverse h← in 

(1.4). 

We need some more preliminary setting up. Let {Γl} and {Γ0} be cumulative l 

sums of independent sequences of iid standard exponential random variables. We 

can construct the subordinator X from a Poisson random measure 

∞X 
X(·) = δΠ 

← 
(Γl) 

l=1 

where the mean measure is Π(·) and the points are written in decreasing order 

Ferguson & Klass (1972), LePage et al. (1981), Resnick (1986), Buchmann et al. 

(2016) and (Resnick, 2008, p.139, Ex. 3.38). This means Z ∞∞ X 
Δ(r)X = x X(dx) = Π 

← 
(Γl) and = Π 

← 
(Γr); 

0 l=1 

also 
∞ ∞X X 

(r)X = Π 
← 
(Γl) = Π 

← 
(Γr + Γ

0 
l). 

l=r+1 l=1 

3.1 Proof of the convergence in (1.7) 

We may understand the form of the limit for Δ(r) in (1.7) as follows. By properties 
√ 

of the gamma distribution, we know that, as r →∞, Gr := (Γr − r)/ r ⇒ N(0, 1), 

a standard normal random variable. Assume (1.2), or, equivalently, (1.5); then, 

owing to the local uniform convergence in (1.5), we get (1.7) from 

← ← √ 
Δ(r) − br Π (Γr) − br Π (r + Gr r) − br D 

= = ⇒ h←(−N(0, 1)) = h←(N(0, 1)). 
ar ar ar 

(3.1) 
2The simplifying assumption that Π is continuous on (0, ∞) is not in fact needed for the results 

in this section. 
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⎪
⎪

3.2 Role of the de Haan classes Γ and Π 

Now introduce the function H : [0, ∞) 7→ [1, ∞) defined by 

H(t) = e 2 
√ 
t, t > 0, (3.2) 

and define the non-increasing function V by 

V (x) = Π 
← ◦ H←(x), x > 1, (3.3) 

and changing variables gives the representation Π 
← 
(x) = V (H(x)), 

The function H is the canonical example of a non-decreasing function in the de √ 
Haan class Γ with auxiliary function f(t) = t Bingham et al. (1989); de Haan 

(1970, 1974); de Haan & Resnick (1973); Geluk & de Haan (1987); Resnick (2008) 

satisfying 
H(t + xf(t))

lim = e x , x ∈ R. (3.4) 
t→∞ H(t) 

This can be verified directly or by reference to (de Haan, 1974, p. 248, line -1). 

The inverse function H← : [1, ∞) 7→ [0, ∞) to H is H←(y) = 1
4 log

2 y, y > 1, and 

inverting (3.4) shows that H← satisfies 

H←(sy) − H←(s)
lim = log y, y > 0, (3.5) 
s→∞ f(H←(s)) 

so H← is an increasing function in de Haan’s function class Π (Bingham et al. 

(1989); de Haan (1970); Resnick (2008) or (de Haan & Ferreira, 2006, p. 375)). It p
has slowly varying auxiliary function g(s) = f ◦ H←(s) = H←(s) = 

2
1 log s which 

is the denominator in (3.5). The convergence in (3.5) is uniform in compact intervals 

of y bounded away from 0. 

Recall that (1.5) is in force throughout, so we have (1.6) also. Applying the 

uniform convergence in (1.6) and (3.5), we see that V satisfies, for x > 0, 

V (sx) − V (s) Π 
← ◦ H←(sx) − Π 

← ◦ H←(s)
lim = lim 
s→∞ a ◦ H←(s) s→∞ a ◦ H←(s)� n op � 

← H←(sx)−H←(s) ← 
Π H←(s) + √ H←(s) − Π ◦ H←(s)

H←(s) 
= lim 

s→∞ a ◦ H←(s) 
← √ ← 
Π (t + log x · t) − Π (t) 

= lim 
t→∞ a(t) 

= h←(− log x). 

Thus, for x > 0, using the form of h← in (1.4), ⎧ ⎪−1 log x, if γ = 0,⎨ 2V (sx) − V (s) � �lim = γ/2 − 1 (3.6)xs→∞ a ◦ H←(s) ⎪−1 , if γ =6 0.⎩ 2 γ/2 
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From (de Haan & Ferreira, 2006, Theorem B.2.1, p.372), we get a ◦ H←(s) ∈ RVγ/2. 

Then multiply the limit relation in (3.6) by −1 to see that the non-decreasing func-
tion −V is extended regularly varying at ∞ ((de Haan & Ferreira, 2006, p.127ff, 

p.139)). 

We summarise the working up to (3.6) as follows. 

Proposition 3.1. Assume (1.5). 

(i) When γ < 0: 

V (x) = −V (∞) − (−V (x)) ∼ a ◦ H←(x)/|γ| ∈ RV−|γ|/2, as x →∞; (3.7) 

(ii) When γ = 0: −V ∈ Π (or, equivalently, V ∈ Π−, de Haan & Resnick (1979)) 

with slowly varying auxiliary function 1
2 a ◦ H← . 

Remark 3.1. (i) Note V being regularly varying with negative index in (3.7) is 

consistent with V being non-increasing. 

(ii) Note that γ > 0 cannot obtain in (3.6). The numerator on the left side of the 

limit is a difference of two decreasing functions which as functions of s approach 0. 

The denominator is regularly varying with positive index and hence asymptotically 

increasing. So we cannot get a non-trivial limit. See Remark 1.1. 

3.3 Refining the centering and scaling for Δ(r). 

Now we apply the material from Subsection 3.2 to refine the centering and scaling 

for Δ(r). Recall that (1.2) or equivalently (1.5) is in force throughout. Depending 

on the range of γ, we may now simplify the form of the limit law for Δ(r) as follows. 

Proposition 3.2. Suppose (1.2) holds with h←(y) as in (1.4). Let NΓ be a standard 

normal random variable. 

(i) When γ < 0: we may take br = Π 
← 
(r), and then 

Δ(r) −NΓ|γ|/2⇒ e , as r →∞. (3.8)
br 

← ← √ ← 
(ii) When γ = 0: we may take br = Π (r) and ar = 2(Π (r − r) − Π (r)), and 

then 
Δ(r) − br NΓ⇒ , as r →∞. (3.9) 

ar 2 

Furthermore 
Δ(r) 

ar = o(br) and ⇒ 1, as r →∞. (3.10)
br 
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Proof of Proposition 3.2: (i) Take γ < 0. From (3.7), V (x) ∼ a ◦ H←(x)/|γ|, so 

br = Π 
← 
(r) = V (H(r)) ∼ ar/|γ|. (3.11) 

Thus (3.1) can be written 
Δ(r) − br ⇒ h←(NΓ),|γ|br 

and hence, using (1.4), 

Δ(r) ⇒ 1 + |γ|h←(NΓ) = 
D 
e−|γ|NΓ/2 ,

br 

which gives (3.8). 

(ii) Take γ = 0. From (1.4) with γ = 0 and (1.5) with y = 1 we get 
← √ ← 

2(Π (r − r) − Π (r)) → 1, 
ar 

and the choice of ar for (3.9) follows from the convergence to types theorem. Since 

V ∈ Π− with auxiliary function a ◦ H← and the ratio of a non-negative Π function 

to its auxiliary function tends to ∞, we have 

br Π 
← 
(r) V (H((r))

lim = lim = lim = ∞. 
r→∞ ar r→∞ ar r→∞ a ◦ H← ◦ H(r) 

Finally, dividing (3.9) by br/ar, which tends to ∞ as r → ∞, yields a limit of 0 
which is tantamount to saying Δ(r)/br ⇒ 1. 

Example 1. [Stable Subordinator] 

To fix ideas, consider the case of the stable subordinator, where 

−α −1/αΠ(x) = x , x > 0, 0 < α < 1, Π 
← 
(y) = y , y > 0. (3.12) 

The numerator of the left side of (1.5) is then, for y ∈ R, �√ 
r)−1/α − r −1/α −1/α 

�� y �−1/α
(r − y = r 1 − √ − 1 

r 

∼ r −1/α−1/2y/α, as r →∞, 

so (1.5) holds if we take 

br = r −1/α, ar = 2r 
−1/α−1/2/α, and h←(y) = y/2. 

Thus we are in the γ = 0 case. 

Furthermore, recalling that H←(x) = 1
4 log

2 x, we get � �−1/α 
V (x) = Π 

← ◦ H←(x) = 
1
log2 x ∈ Π−. 
4 

The auxiliary function corresponding to Π−-varying V is � �−1/α−1/2 
a ◦ H←(x) = 

2 1
log2 x ,

α 4 
which is slowly varying at ∞ (as it should be), and for x > 0 

V (sx) − V (s) 1 
lim = − log x. 
s→∞ a ◦ H←(s) 2 
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This completes the line-up of results needed for our analysis of Δ(r). Next we 

turn to the results needed for (r)X. 

← 
4 Further implications of the variation of Π 

Here we derive additional properties of Π 
← 
depending on whether γ < 0 or γ = 0. 

These properties will be needed to replace random centerings and scalings for (r)X 

by deterministic normalizations in the following sections. 

4.1 Case γ < 0. 

Suppose throughout that (1.2) holds with h(x) = hγ (x) for γ < 0 as in (1.3), so 

by (3.8) and (3.11) we can take ar = |γ|br and br = Π 
← 
(r), and have Δ(r)/br ⇒√ 

−NΓ|γ|/2 − Π(x)e . Recall the distribution function G defined as G(x) = e , x > 0. Then 

the following hold. 

Proposition 4.1. Assume (1.2) holds with γ < 0. 

(i) For p ≥ 1, Z br 2 √ 
upΠ(du) ∼ bp r, as r →∞. (4.1) 

p|γ| r 0 

In particular, when p = 2, 

1 √ 
σ2(br) ∼ b2 

r r, as r →∞. 
|γ| 

(ii) Π(x) is slowly varying at 0, σ2(x) is regularly varying at 0 with index 2 and 

G(x) is regularly varying at 0 with index 1/|γ|. 

Proof of Proposition 4.1: (i) Assume (1.2) holds and keep γ < 0 throughout. To 

see (i), use Π 
← 
= V ◦ H from (3.3), where V is regularly varying at ∞ with index √ 

γ/2 and H is a Γ function with auxiliary function f(t) = t. Such a composition 

is again in the class Γ (Bingham et al. (1989); de Haan (1970, 1974); de Haan & 

Ferreira (2006); Resnick (2007, 2008)), so for z ∈ R � √ � 
H(r + rz) 

← √ V H(r)
Π (r + rz) H(r) zγ/2 

← = → e , 
Π (r) V (H(r)) 

or, equivalently, after a change of variable w = −z|γ|/2, 

Π 
← 
(r + 2 

√ 
r w)|γ|

← → e −w , w ∈ R. (4.2)
Π (r) 

The limit relation (4.2) identifies the auxiliary function of the non-increasing Γ-
← √ 

varying function Π (x) as f1(r) = 2 r. The function Γ class already appeared |γ| 
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in (3.4) where we constructed a non-decreasing function in Γ. Likewise for any 
← 2 √ 

p ≥ 1, (Π )p ∈ Γ with auxiliary function fp(r) = r. Auxiliary functions of 
p|γ|

Γ-functions are unique up to asymptotic equivalence and also may be constructed in 

a canonical way (see for example, (de Haan & Ferreira, 2006, page 19, eqn. 1.2.5), 

(Bingham et al., 1989, p. 177, Corollary 3.10.5(b))). Therefore, we may identify the 

auxiliary function of the Γ-function (Π 
← 
)p in two asymptotically equivalent ways: R∞� ← �p

2 √ 
r Π (u) du 

fp(r) ∼ r or fp(r) ∼ � ← �p , (r →∞). (4.3) 
p|γ| Π (r) 

Using the transformation theorem for integrals, we can write (e.g. (Brémaud, 1981, 

p. 301)) Z ← ZΠ (r) ∞� ← �p 
upΠ(du) = Π (u) du 

0 r 

and since br = Π 
← 
(r), applying (4.3) gives (4.1). 

(ii) Invert the limit relation (4.2) and change variables s = br → 0 to get 

Π(sy) − Π(s)
lim q = − log y, y > 0. 
s→0 

(2/|γ|) Π(s) q 
Dividing by Π(t) instead of Π(t), we get zero on the right side in the limit, which 

shows that Π(t) is slowly varying at 0. Factoring as 

1/2 1/2 1/2 1/2 
Π(sy) − Π(s) = (Π (sy) − Π (s))(Π (sy) + Π (s)) 

1/2 
and using the slow variation of Π(x), hence of Π (x), at 0, gives the regular vari-√ 

− Π(x)ation of e at 0 with index 1/|γ|. 2 

4.2 Case γ = 0. 

Suppose (1.2) holds with h(x) = hγ (x) = 2x for γ = 0 as in (1.3). From Proposition 
← ← √ 

3.2 we know in this case we may take br = Π (r) and ar = 2(Π (r − r) − br), 

and then (Δ(r) − br)/ar ⇒ NΓ/2, where NΓ is a standard normal random variable. 

Also ar/br → 0 and Δ(r)/br ⇒ 1. The following proposition parallels Proposition 

4.1 for the γ = 0 case. Recall the functions H from (3.2) and V = Π 
← ◦ H← from 

(3.3), satisfying V ← = H ◦ Π and V ∈ Π− with slowly varying auxiliary function 
1 a ◦ H←(s).
2 

Proposition 4.2. Assume that (1.2) holds with γ = 0. 

(i) For p ≥ 1, there exist Π-varying functions πp(·) such that Z br 

upΠ(du) = πp(H(r)) = πp(e 
2 
√ 
r) (4.4) 

0 

where the slowly varying auxiliary function of πp is gp(t) = 
2
1 V p(t) log t. 
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(ii) As r →∞, 
σ2(Δ(r)) ⇒ 1. (4.5)
σ2(br) 

Proof of Proposition 4.2: (i) For p ≥ 1 and t > 0, recall H←(y) = 1
4 log

2 y and 

consider Z Z Z Zt ∞ ∞ ∞� ← �p � 
upΠ(du) = Π (s) ds = (V ◦ H(s))pds = V p(v)dH←(v) 

0 Π(t) Π(t) H◦Π(t)Z ∞ 1 dv � � 
= V p(v) log v = πp V ←(t) , (4.6) 

V ←(t) 2 v 

where we define Z ∞ 1 dv 
πp(t) = V p(v) log v . (4.7) 

t 2 v 
Now, V is Π-varying and hence slowly varying, so V p is slowly varying, as is log v. 

Thus the function πp(·) is the integral of a −1-varying function. The indefinite 
integral of a −1-varying function is Π-varying (de Haan (1976); de Haan & Ferreira 

(2006), (Resnick, 2008, p. 30)). Thus πp ∈ Π and the auxiliary function is gp(t) = 
1 V p(t) log t.
2 

(ii) A Π-varying function is always of larger order than its auxiliary function 

(de Haan & Ferreira, 2006, p.378), so 

πp(t)
lim = ∞. (4.8) 
t→∞ gp(t) 

Now we apply these results with p = 2. Because of the representation in (4.6), 

we invert the Π−-variation of V (·) in (3.6) and get for y > 0, � � 
V ← br − yar → e 2y, as r →∞. (4.9)

V ←(br) 

To show (4.5), take the difference between numerator and denominator and use 

(4.6): � � � � 
σ2(Δ(r)) − σ2(br) = π2 V ←(Δ(r)) − π2 V ←(br) . 

From (3.1) write (Δ(r) − br)/ar = ξr so that ξr ⇒ NΓ/2 and remember br = Π 
← 
(r). 

The previous difference then becomes � �� � � � V ←(arξr + br) � � 
π2 V ←(arξr + br) − π2 V ←(br) = π2 V ←(br) − π2 V ←(br) . 

V ←(br) 

Applying the definition of Π-variation and (4.9) we get 

σ2(Δ(r)) − σ2(br) ⇒ NΓ. (4.10) 
g2(V ←(br)) 

Since 
σ2(br) π2(V ←(br)) 

= →∞, 
g2(V ←(br)) g2(V ←(br)) 

by (4.8), we have proved (4.5), since if we divide (4.10) by something of larger order 

(namely, σ2(br)), we get a limit of 0. 2 
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5 Proofs of Theorems 2.1 and 2.2 

In this section we first prove the conditioned limit theorem, Theorem 2.1, using both 

random centering and scaling; this is followed by the proof of Corollary 2.1; then we 

give the proof of Theorem 2.2. The proof of Theorem 2.3 is deferred to Section 6. 

Proof of Theorem 2.1: Suppose X is a driftless subordinator on (0, ∞) with 

atomless Lévy measure Π(·) on (0, ∞) and its rth largest jump satisfies (1.1) for 

some deterministic functions ar > 0 and br ∈ R. 
Conditional on Δ(r), we have that (r)X is a subordinator whose Lévy measure is 

Π|(0,Δ(r)), i.e., the measure Π restricted to (0, Δ(r)) (e.g., (Resnick, 1986, Prop. 2.3, 

p.75)).3 So the conditional characteristic function (chf) of (r)X is 

nZ Δ(r) o� � � � 
iθ (r)X Δ(r) iθx − 1E e = exp e Π(dx) , θ ∈ R, 

0 

and the conditional chf of the centered and scaled (r)X is � n o �(r)X − µ(Δ(r)) 
Δ(r)E exp iθ 

σ(Δ(r)) nZ Δ(r) � � ouiθ u 
σ(Δ(r))= exp e − 1 − iθ Π(du) . (5.1) 

0 σ(Δ(r)) 

Thus for (2.2) it is enough to show Z Δ(r) � �uiθ u 1 
σ(Δ(r)) θ2 e − 1 − iθ Π(du) + → 0, as r →∞. (5.2) 

0 σ(Δ(r)) 2 

Noting that, by (2.1), Z Δ(r) θ2 1 
u 2Π(du) = θ2 , 

0 2σ2(Δ(r)) 2 

iθ − 1 − iθ − (iθ)
2 

and using the inequality |e | ≤ |θ|3/3!, θ ∈ R, the lefthand side of
2 

(5.2) is seen to be Z Δ(r) � � Z Δ(r) � � 2uiθ u 1 u 
σ(Δ(r)) θ2 e − 1 − iθ Π(du) − − Π(du) 

0 σ(Δ(r)) 0 2 σ2(Δ(r))Z Δ(r)|θ|3 u3 

≤ Π(du)
3! σ3(Δ(r))0 

|θ|3 Δ(r) ≤ . (5.3)
3! σ(Δ(r)) 

Next we show Δ(r)/σ(Δ(r)) converges to 0 when (1.1) holds. We separate the 

analysis into cases according to whether the constant γ < 0 or γ = 0 in (1.3). 

3Continuity of Π is needed to apply Prop. 2.3 of Resnick (1986); Resnick (1986) only gives the 

case r = 1 but this is easily extended to r ∈ N. 
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(i) When γ < 0, by (3.8), Δ(r)/br ⇒ Y := exp(−NΓ|γ|/2), where NΓ is a standard 

normal random variable. Furthermore, σ2(t) is regularly varying at 0 with 

index 2, so 
σ2(Δ(r)) → Y 2 , as r →∞. 
σ2(br) 

√1 b2By (4.1), it is also true that σ2(br) ∼ r. Then we have |γ| r 

(Δ(r))2 (Δ(r))2 b2 σ2(br) |γ| 1r∼ · · = Op(Y 2) · √ · OP ( ) ⇒ 0, as r →∞. 
σ2(Δ(r)) b2 σ2(br) σ2(Δ(r)) r Y 2 

r 
(5.4) 

(ii) When γ = 0, apply (3.10) and then Proposition 4.2, and we have Δ(r)/br ⇒ 1 

and σ2(Δ(r))/σ2(br) ⇒ 1. Therefore, as in (5.4), 

(Δ(r))2 (Δ(r))2 b2 σ2(br) b2 

= · r · = (1 + op(1)) 
r ⇒ 0, as r →∞,

σ2(Δ(r)) br 
2 σ2(br) σ2(Δ(r)) σ2(br) 

where the convergence to 0 follows from (4.8) for the following reason: we can 

use (4.4) (and recalling the definition of the function gp in (4.4)) to write � �σ2(br) π2(H(r)) π2(t) π2(t) 1 
lim = lim ← = lim = lim log t 
r→∞ b2 r→∞ (Π (r))2 t→∞ V 2(t) t→∞ V 2(t)1 log t 2r � � 2 

π2(t) 1 
= lim log t = ∞. 

t→∞ g2(t) 2 

Thus the righthand side of (5.3) tends to 0, completing the proof of Theorem 2.1. 

2 

Proof of Corollary 2.1: Define 

(r)X − µ(Δ(r)) Δ(r) − br
ΦX ΦΔ = , = ,r σ(Δ(r)) r ar 

and suppose f, g are non-negative continuous functions and bounded by 1. From 

(1.7) we have 

Eg(ΦΔ 
r )Ef(NX ) → E(g(h←(NΓ))Ef(NX ). 

Then from (2.2) and dominated convergence � � �	 � � �	 
Ef(ΦX )g(ΦΔ) = E g(ΦΔ)EΔ

(r) 
f(ΦX ) → E{f(NX )}E g h←(NΓ) ,r r r r 

because 

E 
� 
g(ΦΔ)EΔ

(r) 
(f(ΦX ) 

�	 
− Eg(ΦΔ)Ef(NX )r r r� � 

= E g(ΦΔ 
r )E

Δ(r) 
� 
f(ΦXr ) − Ef(NX ) � � 

≤ E EΔ
(r) 

f(Φr
X ) − Ef(NX ) → 0, as r →∞. 

This completes the proof of Corollary 2.1. 2 
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Proof of Theorem 2.2: (i) When γ < 0 we set br = Π (r) and ar = |γ|br, and 

then by (3.8) 
Δ(r) −NΓ|γ|/2⇒ Y := e , as r →∞,
br 

and the joint convergence in Corollary 2.1 can be written with a deterministic scaling 

via continuous mapping as 

Δ(r) � Δ(r) �� (r)X − µ(Δ(r)) � (r)X − µ(Δ(r)) σ(Δ(r)) 
, = · ,

σ(br) br σ(Δ(r)) σ(br) br� � � �−NΓ|γ|/2 −NΓ|γ|/2⇒ NX Y, Y = NX e , e , 

where (NX , NΓ) are iid standard normal random variables. 

Now consider the effect of changing the random centering to a deterministic one 

in the first component. From (4.1), s p 1 
σ(br) = σ2(br) ∼ brr 

1/4 , as r →∞. (5.5)
|γ| 

Remember ar = |γ|br and convert (1.2) to vague convergence on (0, ∞) to get 

Π(brdu) v 2 du √ → , u > 0, 
r |γ| u 

and so Z Δ(r)/brµ(Δ(r)) − µ(br) Π(brdu)√ = u √ 
r rbr 1Z Y 2 2 ⇒ du = (Y − 1). 

|γ| |γ|1 

√ 
Since br r/σ(br) →∞ by (5.5), we have � � �(r)X − µ(br) 

� (r)X − µ(Δ(r)) µ(Δ(r)) − µ(br)√ = √ + √ 
br r br r br r � � µ(Δ(r)) − µ(br) 2 

= op(1) + √ ⇒ (Y − 1), as r →∞. 
br r |γ| 

(ii) When γ = 0, by Proposition 4.2, we have σ(Δ(r))/σ(br) ⇒ 1 with br = Π 
← 
(r). 

Then from Corollary 2.1, � (r)X − µ(Δ(r)) Δ(r) − br)
� � NΓ � 

, ⇒ NX , , (5.6)
σ(br) ar 2 

where (NX , NΓ) are independent standard normal random variables. By Proposition 
← √ ← 

3.2 we may choose ar = 2(Π (r − r) − Π (r)). 2 
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6 Proof of Theorem 2.3 

In this section we keep γ = 0. As displayed in (5.6), we may replace the random 

scaling for (r)X by the deterministic scaling σ(br). We investigate what happens 

when we try to replace µ(Δ(r)) with µ(br) in (5.6) by a method similar to the one 

used in the proof of Proposition 4.2. As before we can apply (4.6), now with p = 1, 

to get � � � � 
µ(Δ(r)) − µ(br) = π1 V ←(Δ(r)) − π1 V ←(br) . 

Recall from (3.1) that we may write (Δ(r) − br)/ar = ξr ⇒ NΓ/2. The previous 

difference thus becomes � �� � � � V ←(arξr + br) � � 
π1 V ←(arξr + br) − π1 V ←(br) = π1 V ←(br) − π1 V ←(br) . 

V ←(br) 

Applying the definition of Π-variation and (4.9) we get 

µ(Δ(r)) − µ(br) ⇒ NΓ. (6.1) 
g1(V ←(br)) 

To replace µ(Δ(r)) with µ(br) in (5.6) requires that the difference in (6.1) be 

compared with σ(br). The cleanest result would be if the difference were o(σ(br)) 

as r →∞, but this is not always the case and the final form of the joint limit with 

deterministic centering and scaling in general depends on the behaviour of the limit 

of R∞� �2 
σ2(br) π2(H(r)) z Π 

← 
(v) dv 

lim 
2 = lim 

2 = lim � ← �2 , (6.2) 
r→∞ g1 (H(r)) r→∞ g1 (H(r)) z→∞ z Π (z) 

assuming there is indeed a limit. Note that the Π-function π2(·) has auxiliary 

function g2 and not g1
2 so we cannot rely on (4.8) here. 

An easy example to show that (µ(Δ(r)) − µ(br))/σ(br) does not always vanish 

is the stable subordinator from Example 1. Recall from[(i)] (3.12) we have, for 

0 < α < 1, 
−α −1/αΠ(x) = x , x > 0; Π 

← 
(v) = v , v > 0. 

The ratio on the right of (6.2) is in fact constant now: R∞ −2/αdvv α z = .−2/α)z(z 2 − α 

More generally, if Π(x) = x−αL(x), x ↓ 0 is regularly varying at 0 with index α, 

then (Π 
← 
(z))2 = z−2/α(L0(z))2 , z → ∞, for slowly varying functions L at 0 and L0 

at ∞. Then by Karamata’s theorem for integrals (eg. (Bingham et al., 1989, page 

27)) R∞� �2 
Π 
← 
(v) dv α 

lim z � �2 = = cα. 
z→∞ ← 2 − αz Π (z) 
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Since 0 < α < 1, we have 0 < cα < 1. The converse half of Karamata’s theorem 

((Bingham et al., 1989, p. 30)) tells us that if R∞� �2 

z Π 
← 
(v) dv 

lim � �2 = c, for some c ∈ (0, ∞), 
z→∞ z Π 

← 
(z) � ← �2 ← 

then Π (z) is regularly varying at ∞ with index −(c−1+1) and Π (z) is regularly 

varying with index −(c−1 + 1)/2 at ∞. Set 1/α = (c−1 + 1)/2. Then for Π to 

correspond to a subordinator, we need α < 1, which makes c < 1. 

Following this path leads to Theorem 2.3 as we state it in Section 2, giving the 

joint limiting distribution of (r)X and Δ(r) in this particular case. Based on the 

technology previously developed we can now prove that theorem. 

Proof of Theorem 2.3: Suppose γ = 0 and Π is regularly varying at 0 with index 

−α, 0 < α < 1. This happens iff Π 
← 
(z) is regularly varying at ∞ with index 

−1/α = −(1 + cα 
−1)/2, where cα = α/(2 − α), or, equivalently, R∞� ← �2 R x
Π (v) dv u2Π(du)

lim z � = lim 0 = cα, where cα ∈ (0, 1). (6.3)← �2 z→∞ x→0 x2Π(x)Π (z) z 
√ 

Thus, suppose (6.3) holds. By (6.2), we have g1(H(r))/σ(br) → 1/ cα. Then 

by (2.5) and (6.1), 

(r)X − µ(br) (r)X − µ(Δ(r)) µ(Δ(r)) − µ(br) 
= + (6.4)

σ(br) σ(br) σ(br) 

D µ(Δ(r)) − µ(br) g1(H(r)) 
= NX + op(1) + · 

g1(H(r)) σ(br) 
D 1 
= NX + NΓ · √ + op(1). 

cα 

Taking r →∞, this proves (2.6). 
When cα = 1, the Lévy measure property that Z Z1 ∞� ← �2 

u 2Π(du) = Π (s) ds < ∞ 
0 1 � ← �2 

(always) and the usual version of Karamata’s theorem, imply that Π (x) is 

regularly varying at infinity with index −2, so Π 
← 
(x) is regularly varying at infinity 

with index −1 and Π(x) is regularly varying at 0 with index −1. Conversely, if Π(x) 
is regularly varying at 0 with index −1, then (6.3) holds with cα = 1 and so (2.6) 

holds with cα = 1. � ← �2 
When (6.3) holds with cα = 0, then Π (z) is rapidly varying at infinity 

((de Haan, 1970, p. 26)) so the same is true for Π 
← 
(z), and, by inversion, Π(x) is 

slowly varying at 0. The converse holds as well: if Π is slowly varying at 0 then 

(6.3) holds with cα = 0. Referring back to (6.2) we find 

σ2(br)
lim = 0. 
r→∞ g1

2(H(r)) 
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Divide on the left side of (6.4) by g1(H(r)) instead of σ(br). Then by (6.1) we see 

that (2.6) becomes � � �� (r)X − µ(br) Δ(r) − br NΓ 
, ⇒ NΓ, , 

g1(H(r)) ar 2 
√ 

and unpacking the notation shows that g1 ◦ H(r) = br r as claimed in Theorem 

2.3. 2 

7 Final thoughts 

One motivation for studying joint limit theorems as in Section 2 is to get information 

on limiting behaviour of ratios of a subordinator to its large jumps. See Ipsen et al. 

(2018) and their references for related results and applications along these lines. 

There are obvious open issues we leave for another day. Restricting the investi-

gation to subordinators clearly makes analysis easier but we would like investigate 

what happens if we remove the assumption that the Lévy process is non-decreasing. 

This would presumably require analysis of the missing case γ > 0 which was nec-

essarily absent from this paper. We also would like to investigate functional weak 

limit theorems for ((r)Xt, Δt 
(r)
) as functions of t. Relevant to this, we note from 

Buchmann et al. (2018), Prop. 4.2, that (1.2) implies, more generally, �Δ(r) � 
t − br/t � (∞) � �√ � 

lim P ≤ x = P Δt ≤ x = Φ th(x) , x ∈ R, (7.1) 
r→∞ ar/t 

for each t > 0. But (r)Xt does not scale with t in the same way as Δ( t
r) 
, so generali-

sations of Theorems 2.1–2.3 are not straightforward in this respect. As an incidental 

comment we note, though it’s not mentioned in Buchmann et al. (2018), that (1.2) 

is in fact necessary and sufficient for (1.1). 
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