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Abstract 

We study limiting properties of ratios of ordered points of point processes whose intensity measures have 
regularly varying tails, giving a systematic treatment which points the way to “large-trimming” properties 
of extremal processes and a variety of applications. Our point process approach facilitates a connection with 
the negative binomial process of Gregoire (1984) and consequently to certain generalised versions of the 
Poisson–Dirichlet distribution. 
⃝c 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Recent work on ratios of ordered Poisson points and ordered jumps of stable subordinators 
and other Lévy processes due to Kevei and Mason [13] and the present authors in [4,5], and 
[10] placed an emphasis on limiting properties of those ratios, and on “trimmed” versions of 
the process generating the points, which may have been a subordinator or a more general Lévy 
process. 

Our aim in this paper is to give a systematic treatment of the limiting behaviour of ratios 
of ordered Poisson points. As is natural, we take a point process approach and make special 
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connection with the negative binomial process whose relevance in the present context was 
brought out in [11,12]. This connection via ratios of points enabled the construction of a 
generalised kind of Poisson–Dirichlet distribution which can be added to the repertoire of 
available models for data analytic purposes. 

A related topic is the behaviour of two dimensional Poisson points ordered by the second 
component when the r highest points are deleted. Such processes were explored in [5], and the 
present results provide impetus for further investigations of this kind. 

The paper is structured as follows. In Section 2 we set up the point processes to be studied in 
Section 3, notably a Poisson point process D on R+ = (0, ∞), and subsidiary point processes 
D(n) and D(r,r+n) consisting of ratios of the ordered points in D, where the ordering is by 
magnitude up till a given time t > 0, and the normalisation is by the nth or (r + n)th largest 
point. 

The tail of the canonical measure, Π , for the points is assumed to be regularly varying 
of index −α, α > 0, at 0. Under this assumption, Theorem 3.1 in Section 3 proves the 
weak convergence of D(r,r+n), as t ↓ 0 (“small time” convergence) to a limit comprised of 

t t 

t 
a sum of independent point processes on (0, ∞). The frst component of the sum represents 
the joint limiting distribution of ratios larger than 1 of points in D, conveniently expressed as 
the distribution of the order statistics of certain i.i.d. (independent and identically distributed) 
random variables; and the second component is a negative binomial point process, representing 
the limiting distribution of the (infnitely many) ratios smaller than 1. 

Further, in Section 4, we mention some interesting corollaries of Theorem 3.1, stated as 
separate propositions, and in Section 5 prove a converse result (Theorem 5.1) to the effect that 
convergence in distribution of ratios (larger or smaller than 1) implies regular (or slow, or rapid) 
variation of the tail of the canonical measure for points in D. 

1.1. Related results: order statistics of i.i.d. random variables 

We conclude this section with some history relating how these kinds of Lévy process results 
have antecedents in the literature of order statistics of i.i.d. real-valued random variables. The 

ξ (1)general scenario there is of the order statistics ξ (n) 
≤ · · · ≤ of i.i.d. random variables n n 

(ξi )1≤i≤n in R with distribution F such that F(x) < 1 for all x . The asymptotic is then as n →∞ 
(“large time”). (In most of the results we quote, the distribution F is also assumed continuous, so 
ties among order statistics have probability 0. We avoid such an assumption on Π where possible 
in our results but in some places it is essential, as we note later.) 

An early and well-cited venture in this area was by Arov and Bobrov [1]. They considered not 
only the order statistics but also their sum, i.e., the random walk Sn whose step sizes are the ξi , 
obtaining among other things results for convergence of joint distributions of deterministically 
normed order statistics, and, as a corollary, limiting distributions for ratios of (not necessarily 
successive) order statistics. This was extended to ratios of the sum after removal of a fxed 
number of extreme terms (the “trimmed sum”) to large order statistics. (The distribution F was 
assumed to have a density in [1].) 

Smid and Stam [29] considered the (ξ (i))1≤i≤n as above, and, in what amounts to an 
generalisation of and converse to one of the Arov and Bobrov [1] results, showed that 

( j+1) ( j) ∏klimn→∞P(ξn /ξn ≤ x, 1 ≤ j ≤ k) = j=1x jα for all x ∈ (0, 1) and k ∈ N if and only if the 
distribution tail F(x) ∈ RV∞(−α), α ≥ 0. They include the α = 0 case (F slowly varying at ∞). 
Their proof used Scheffé’s lemma and applications of the Wiener-Tauberian theory. A converse 
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to another of the Arov and Bobrov [1] results is in [20]. An earlier result along the lines of Smid 
and Stam [29] is in [28]. 

Teugels [30] considered order statistics of i.i.d. random variables in the domain of attraction 
of a stable law, and gave results extending some of the Arov–Bobrov limit laws concerning ratios 
of sums of order statistics to their (trimmed) sums. For an application of these kinds of ideas in 
reinsurance, see Ladoucette and Teugels [15] and Fan et al. [7]. 

Lanzinger and Stadtmüller [16] gave a simplifed version of the Smid and Stam [29] result 
(for the k = 1 case) and extended this for when F is in the domain of attraction of an extreme 
value distribution. 

There is of course also a very large literature analysing various functions of order statistics of 
i.i.d. real-valued random variables which we do not attempt to summarise here. 

Finally, in this section, we remark that while there are obvious correspondences between the 
(large-time) i.i.d. case and the (small time) point process case, there are signifcant differences 
too. The measure Π is assumed to satisfy Π {(x, ∞)} < ∞ but Π {(0, x)} = ∞, for all x > 0, 
so there are always infnitely many points of the process in any right neighbourhood of 0, hence, 
infnitely many ordered points; whereas, in the i.i.d. case, there are of course at most n order 
statistics in a sample of size n. Thus there is no immediate counterpart of some of our small 
time results. This feature actually simplifes some of the point process proofs, for example that 
of Theorem 3.1, although the formulation is more complex. 

2. Poisson point processes and ratios of ordered points 

In this section we set up the point process framework we will use. For general background on 
point processes, their Laplace functionals, and their convergence, etc., we refer to Resnick [25] 
and Daley and Vere-Jones [6]. 

Let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. Suppose Π is a Borel measure on (0, ∞), locally 
fnite at infnity. Then Π has fnite-valued tail function Π : (0, ∞) → (0, ∞), defned by 

Π (x) := Π {(x, ∞)}, x > 0, 

a right-continuous, non-increasing function. Let 
← 

Π (x) = inf{y > 0 : Π (y) ≤ x}, x > 0, 

be the right-continuous inverse of Π . Assume throughout that Π {(0, ∞)} = Π (0+) = ∞.∑ 
With δ{x} denoting a point mass at x ∈ (0, ∞), let D = s>0δ{s,∆s } defne a Poisson point 

process on [0, ∞) × (0, ∞) with intensity measure ds × Π (dx). Since Π (0+) = ∞, there are 
infnitely many non-zero points of D in any right neighbourhood of 0. Write those points of D 
occurring in [0, t], t > 0, in decreasing order of magnitude, possibly with ties, as; 

(1) (r )
∞ > ∆t ≥ · · · ≥ ∆t ≥ · · · > 0; 

then for each t > 0 defne a Poisson point process on (0, ∞) with intensity measure tΠ (dx) by ∑ 
Dt = δ

{∆
( j)
}
. (2.1) 

t 
j≥1 

The jump process (∆Xt := Xt − Xt−)t>0 of a real-valued Lévy process (Xt )t≥0 forms a 
Poisson point process on (0, ∞) whose intensity measure is the canonical measure of X . A 
representation detailed in Buchmann, Fan and Maller [4] shows how to construct all processes 

( j)Dt as in (2.1) on the same space when the ∆ are the ordered jumps of the jump process of t 
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a Lévy process. Their construction applies to our present, quite general, setup (not restricted to 
Lévy processes), and we can carry their formulations over directly, as follows. 

( j) ( j)Since Π (0+) = ∞, all ∆ are positive a.s. but ∆ ↓ 0 a.s. as t ↓ 0 for each j ∈ N. Lett t 

(Ei ) be an i.i.d. sequence of exponentially distributed random variables with common parameter∑ jEEi = 1. Then Γ j := 
=1Ei is a Gamma( j, 1) random variable, j ∈ N, and {Γ j , j ≥ 1} cani 

be regarded as the points of a homogeneous unit rate Poisson process on R+ written as ∑ 
δ{Γ j }. (2.2) 

j≥1 

Then the Buchmann, Fan and Maller [4] representation is given by setting { ( j)} D { ← }
∆ = Π (Γ j /t) (2.3)t j≥1 j≥1, t > 0. 

For earlier and related representations like this one can consult [17,18,19]; [27], pp. 21, 30; [25], 
Ex. 3.38, p. 139; [24], Sect. 2.4; and [8]. 

We will write the gamma density in the form 

j−1 −x dxx e
P(Γ j ∈ dx) = 1{x>0}, j ∈ N, (2.4)

Γ ( j) 

for the density of Γ j , which should not be confused with the Gamma function, Γ (a) = ∫ 
∞ xa−1e−x dx , a > 0. Recall that a beta random variable Ba,b on (0, 1) with parameters a, b > 00 

has density function 

Γ (a + b) 1
fB (x) = xa−1(1 − x)b−1 

= xa−1(1 − x)b−1 , 0 < x < 1, 
Γ (a)Γ (b) B(a, b) 

where B(a, b) := Γ (a)Γ (b)/Γ (a + b). Thus ∫ x1
P(Ba,b ≤ x) = ya−1(1 − y)b−1dy =: B(a, b; x), 0 < x < 1, (2.5)

B(a, b) 0 

where B(a, b; x) is the incomplete Beta function. 
To complete the setting up, for the conditioning arguments in Section 4 we require the next 

result. Recall the Poisson points {Γ j , j ≥ 1} described before (2.2). 

Lemma 2.1. Suppose {Γn, n ≥ 1} are successive homogeneous Poisson points obtained by 
summing i.i.d. unit exponential random variables. Then for any n ≥ 1, ( Γ2 Γn+1 

) 
, . . . , , Γn+1

Γ1 Γn 

are independent random variables, with Γr /Γr+n = 
D Br,n. 

Proof of Lemma 2.1. We use the standard fact (e.g., [26, Lemma 4.5.1(b), p. 322]) that the 
conditional density of (Γ1, . . . , Γn) given Γn+1 = s > 0 is the same as the joint density of 

≤ sU (1)the order statistics sU (n) 
≤ · · · , where Un 

( j) is the j th largest of a uniform samplen n 

of size n on [0, 1]. Recall also that the spacings from a unit exponential sample of size n, 
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(E ( j+1) 
− E ( j) D 

n n ) j=0,...,n−1, are independent and satisfy Un 
( j) 
= exp(−En 

( j)). Thus, with obvious 
notation, ( )⏐ ) sU (3)( Γ2 Γn+1 ⏐ D sUn 

(n−1) 
n s 

, . . . , ⏐Γn+1 = s = , . . . , , 
sU (2) sU (1)Γ1 Γn sUn 

(n) 
n n( )

U (n−1) U (3) 1n n
= , . . . , , . (2.6)

U (n) U (2) U (1) 
n n n 

Switching to exponential order statistics gives this equal in distribution to ( )
E (n)

−E (n−1) E (1) 
n n ne , . . . , e . 

The claimed result follows from exponential spacings being independent and from the fact that 
the last expression in (2.6) does not depend on s. That Γr /Γr+n = 

D Br,n is well known from 
“beta–gamma algebra” (e.g., [21, p. 11]). □ 

( j)We are interested in the convergence behaviour of ratios of the order statistics ∆ , as t ↓ 0.t 
The basic assumption is the regular variation of the tail function Π (x). Write RV0(β) (resp. 
RV∞(β)) for the real-valued functions regularly varying at 0 (resp, infnity) with index β. We 
have Π (x) ∈ RV0/∞(−α), 0 ≤ α ≤ ∞, if and only if 

Π (xλ)
lim = λ−α, for λ > 0. 

x→0/∞ Π (x) 

Here we interpret λ−∞ 
= 0 · 1{λ>1} + 1 · 1{λ=1} + ∞ · 1{λ<1} and 1/0 ≡ ∞. From [3, p. 28–29] 

we know that Π (x) ∈ RV0/∞(−α) iff Π 
←

(x) ∈ RV∞/0(−1/α). The slowly varying functions at 
0 or ∞ are denoted by RV0/∞(0), and RV0/∞(∞) are the rapidly varying functions at 0 or ∞. 

When Π (·) ∈ RV0(−α) with 0 ≤ α ≤ ∞ or, equivalently, Π 
←

(·) ∈ RV∞(−1/α), we have 
the easily verifed convergence (with the interpretation as above when α = 0 or α = ∞): 

← Π (uy−1/α Π 
←

(1/t))
tΠ (uΠ (y/t)) ∼ ← → u−α y as t ↓ 0, for all u, y > 0. (2.7) 

Π (Π (1/t)) 
−1/αWhen 0 < α < 2 we can interpret the Γ used in (2.2) as the j th largest jump of a stablej 

process (St )0<t≤1 with Lévy measure Λ(dx) = αx−α−11{x>0}; but we allow any α > 0. The∑ 
process S := j≥1δ −1/α is a Poisson point process on (0, ∞) with intensity measure Λ.

{Γ }j 

3. Ratios of ordered points 

In this section we give a general result for the convergence of point processes of ratios of 
ordered points of Dt . Fix r ∈ N0, n ∈ N and t > 0. Defne the point processes on (0, ∞): ∑ 

D(n) 
:= δ ( j) (n) (3.1)t {∆ /∆ }t t 

j≥n+1 

and 
n−1∑ ∑ 

D(r,r+n) 
+ 1 + D(r+n) 

t t:= δ ( j) (r+n) = δ (r+ j) (r+n) . (3.2)
{∆ /∆ } {∆ /∆ }t t t t 

j≥r+1 j=1 

(n) ( j)Conditionally on {∆ = z}, z > 0, the points (∆ ) j≥n+1 comprise a Poisson point process t t 

with intensity measure tΠ restricted to (0, z). Thus, the Laplace functional of D(n), conditionalt 
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(n)on {∆ = z}, is t ∫( ( )⏐ )( ⏐ )
−D( 

t
n)( f ) ⏐ ∆(n) f (x)D(n) ⏐ (n)E e = z = E exp − t (dx) ⏐ ∆ = zt t 

0<x<1( ∫ ) 
= exp −t (1 − e− f (x))Π (zdx) , (3.3) 

0<x<1 

where f ∈ F+, the nonnegative measurable functions on R+ . 
Analogous to (3.1), defne ∑ 

B(n) 
= δ{(Γ j /Γn )−1/α }, n ∈ N. (3.4) 

j≥n+1 

The point process in (3.4) has Laplace functional at f equal to ( ∫ 1( ) )−n
−B(n)( f )) = − f (x)E(e 1 + 1 − e Λ(dx) . (3.5) 

0 

Eq. (3.5) identifes B(n) as a negative binomial point process with base measure Λ ∗(dx) := 
Λ(dx)1{0<x<1}, denoted by BN (n, Λ ∗), in the notation of Gregoire [9]. (See (3.13) for the proof 
of (3.5).) 

D
The next theorem shows the weak convergence (denoted by ‘−→’) of D(r,r+n) as t ↓ 0 to at 

limit comprised of independent components of B(r+n) and a mixture of beta random variables. In 
this theorem we keep α positive and fnite. 

Theorem 3.1. Assume Π (·) ∈ RV0(−α), 0 < α < ∞, f ∈ F+, and n, r ∈ N. Then 

(i) In the space of point measures Mp(0, ∞) with the vague topology (cf. [25], Ch. 3) 
∞ n−1 

D ∑ ∑ 
D(r,r+n) 

−→ δ{(Γr+ j /Γr+n )−1/α } = δ{(Γr+ j /Γr+n )−1/α } + δ{1} + B(r+n), (3.6)t 
j=1 j=1 

as t ↓ 0. The limit in (3.6) has Laplace functional at f equal to ( 
− f (J (Br 

1 
,
/α 
n )))n−1 − f (1) E

( 
−B(r+n)( f ))E e e e , (3.7) 

where, for each u ∈ (0, 1), J (u) has distribution 
Λ(dx)1{1<x<1/u}P(J (u) ∈ dx) = , x > 0, (3.8)

1 − uα 

Br,n is a Beta(r, n) random variable independent of J (u), and the third factor on the right 
of (3.7) is determined from (3.5). 

(ii) For r = 0, ( 
−D(0,n) ) ( )n−1 ( )( f ) − f (L) − f (1) E −B(n)( f )tlim E e = E e e e , (3.9)

t↓0 

where L is a random variable with distribution 

P(L ∈ dx) = Λ(dx)1{x>1}. (3.10) 

Proof of Theorem 3.1. (i) Using the representation in (2.3) and the fact that Π 
←

∈ RV∞(−1/α), 
we immediately get, as t ↓ 0, with almost sure convergence, ( (r+ j) ) ( ← ) )

∆t D Π (Γr+ j /t) 
(( Γr+ j 

)−1/α 
; j ≥ 1 = ; j ≥ 1 → ; j ≥ 1 (3.11)(r+n)∆ Π 

←

(Γr+n/t) Γr+nt 
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for each r ∈ N0, n ∈ N. Analogous to (2.2), the left hand side of (3.11) equivalently defnes 
D(r,r+n) 

t , and so the convergence in (3.11) establishes the convergence in (3.6). By separating the 
ratios in the limit process into those bigger than 1, equal to 1, or smaller than 1, and recalling 
(3.4), we get the form on the right hand side of (3.6). 

The points in the two limit point processes in (3.6) occur in non-overlapping regions, 
so, conditionally on Γr+n , they are independent of each other. In fact (see Lemma 2.1), 
Γr /Γr+n = 

D Br,n with Br,n independent of Γr+n , so the components on the right hand side of (3.6) 
are also unconditionally independent. Thus the Laplace transform can be given in the product 
form of (3.7). 

Next we will derive the Laplace functional for each component separately. For ratios bigger 
than 1, we can write, for f ∈ F+, ( n−1 (( Γr+ j 

)⏐ ) ( n−1∑ )−1/α ⏐ ∑ (( )−1/α)) 
E exp − f ⏐Br,n = s = E exp − f (1 − s)U j + s 

Γr+nj=1 j=1 (∫ 1 )n−1( (( )−1/α ))
= exp − f (1 − s)u + s du . (3.12) 

0 

Here we used the same argument as in the proof of Lemma 2.1 to replace Γr+ j /Γr+n by 
(1 − s)U j + s, 1 ≤ j ≤ n − 1. Setting y = ((1 − s)u + s)−1/α , (3.12) is seen to be 
equal to (∫ s−1/α )n−1dy

− f (y) −α−1e αy . 
1 1 − s 

Take expectations in (3.12) to get ( n−1 (( Γr+ j 
)) (∫ B−1/α∑ )−1/α r,n dy )n−1

− f (y) −α−1E exp − f = E e αy . 
Γr+n 1 1 − Br,nj=1 

Conditional on B1/α , this is the Laplace functional of n − 1 i.i.d. random variables with ther,n 
distribution in (3.8). 

Next we compute the intensity measure of the limit point process with ratios less than 1,∑ 
that is, the process D(r+n) 

= j≥n+1δ{(Γr+ j /Γr+n )−1/α } in (3.2). Conditional on Γr+n , the process ∑ t 

j≥n+1δ{Γr+ j /Γr+n } is a Poisson process with mean measure Γr+ndx , where dx is the Lebesgue 
−1/αmeasure. Then the image measure of Γr+ndx under the map T : x ↦→ x is Γr+nΛ(dx). 

Hence, for any f ∈ F+, ( ∑ (( Γr+ j 
)−1/α)) 

E exp − f 
Γr+nj≥n+1∫ ( ∫ )( )

− f (x)
= exp − 1 − e yΛ(dx) P(Γr+n ∈ dy) 

y>0 0<x<1 ( ∫ 1( ) )−r−n
− f (x)

= 1 + 1 − e Λ(dx) . (3.13) 
0 

Referring to (3.5), this is the Laplace transform of a negative binomial point process BN (r + 
n, Λ(dx)1{0<x<1}) at f . (Note that (3.13) also establishes that B(n) has the Laplace functional in 
(3.5).) 

(ii) (r = 0) The proof of (3.9) is very similar. The treatment for ratios smaller than or equal 
to 1 is exactly the same. For points bigger than 1, no conditioning is necessary. We omit further 
details. □ 
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Remark 3.1. The frst component on the RHS of the limit in (3.7) shows that, after deleting 
r+n−1the r largest points, the sum 

∑ 
i=r+1 (Γi /Γr+n)−1/α has the distribution of a sum of i.i.d. random 

variables, once we condition on a Br 
1 
,
/α 
n random variable. The third component on the RHS of 

(3.7) is the negative binomial point process B(r+n) with base measure Λ ∗ . So we have the nice 
representation resulting from the decomposition of the original process into parts including ratios 
smaller than 1 and greater than 1. 

Ratios of jumps of stable subordinators also featured prominently in the work of Pitman and 
Yor [23]. Much subsequent related research involved Poisson–Dirichlet distributions and their 
involvement in fragmentation and coalescence problems; see [2] and references therein. An early 
infuential paper was [14]. The resulting processes have found wide application in a variety of 
applied areas ranging from Bayesian statistics to models for species diversity; see for example 
the list in [22, Sect. 1]. 

When 0 < α < 1, r = 0, similar results to some of those in Theorem 3.1 were obtained 
in Lemma 24 of Pitman and Yor [23] but without explicit reference being made to the negative 
binomial point process of Gregoire [9]. Our result allows the bigger range of α, α > 0, and 
generalises to point processes with intensity measures whose tails are regularly varying, rather 
than dealing only with jumps of subordinators. In general, in our scenario, the points of the 
limiting process may not be summable. As a special case, for example, we deal elsewhere 
(in [10]) with Lévy processes in the domain of attraction of a stable process with index α ∈ (1, 2); 
compensating the process is then essential. 

In the next section we draw out some ramifcations of Theorem 3.1. 

4. Corollaries, special cases and further results 

Theorem 3.1 is expressed as the convergence of point processes. In this section we express the 
theorem in a different form in order to facilitate comparisons with earlier results in the literature; 
we also extend the result to the α = 0 or α = +∞ cases and consider limits of conditional 
distributions. 

The discussion is again conveniently divided into parts covering ratios smaller than or greater 
than 1. Recall D(n) defned in (3.1) and defne the ratio t 

(r+n) 
tWr,n(t) := 

∆ 
, r, n ∈ N, t > 0. (4.1)(r )∆t 

Proposition 4.1 (Ratios Smaller than 1). Assume Π (·) ∈ RV0(−α), 0 ≤ α ≤ ∞. 
(i) Suppose 0 < α < ∞. Then, for each n ∈ N, 

DD(n) 
−→ B(n), as t ↓ 0, (4.2)t 

where B(n) is distributed as BN (n, Λ ∗) with the Laplace functional in (3.5). 
(ii) As t ↓ 0, for each r, n ∈ N, ( (r+1) (r+n) )∆ ∆ D ( )t t 

, . . . , −→ Yr , . . . , Yr+n−1 , (4.3)(r ) (r+n−1)∆ ∆t t 

where Yk, k ∈ N, are mutually independent random variables with Beta(kα, 1) distributions. 
When α = 0 or α = ∞, (4.3) remains true with each Yk equal to 0 or with each Yk equal to 1, 
respectively. 
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(iii) When 0 < α < ∞, Wr,n(t) in (4.1) has limiting distribution as t ↓ 0 that of 
n ( )1/α∏ D Γr D B1/αYr+i−1 = = =: Wr,n, (4.4)

Γr+n
r,n 

i=1 

where the Yi are as in (4.3) and Wr,n has density 

(1 − wα)n−1αwαr−1 

fWr,n (w) = , 0 < w < 1. (4.5)
B(r, n) 

Proof of Proposition 4.1. (i) The convergence in (4.2) is an immediate consequence of (3.9). 
(ii) When 0 < α < ∞ the convergence in (4.3) follows immediately from (3.11) and 

Lemma 2.1. When α = 0 or α = ∞, (3.11) remains true with the appropriate interpretations 
as outlined in the discussion leading to (2.7). 

(iii) Eq. (4.4) is implied by (4.3) and the density in (4.5) is easily calculated. □ 

Remark 4.1. Treated as ratios of ordered jumps of a subordinator, Kevei and Mason [13] proved 
the case n = 1 in (4.3), among other results comparing the magnitudes of ordered jumps of a 
subordinator with the magnitude of the subordinator itself. Proposition 4.1 is a multidimensional 
version of their Theorem 1.2, with the (∆t ) treated as points in D, in their own right. (Kevei and 
Mason [13] also proved converse results; see our Section 5.) 

Next we prove some results concerning convergence of certain conditional probabilities. For 
these, we assume that Π is atomless, or, equivalently, Π (x) is continuous in x . After the proof 
of the proposition we explain why this requirement is needed. In what follows, let σ (X ) denote 
the σ -feld generated by a random element X and let σ {Bκ , κ ∈ K} be the σ -feld generated by 
events indexed by some index set K. When Π (x) is continuous for all x > 0, we have for any 
i ∈ N 

(i) ← 
σ (∆ ) = σ (Π (Γi /t)) = σ {Γi ≤ tΠ (x), x > 0} = σ {Γi ≤ y, y > 0} = σ (Γi ). (4.6)t 

Proposition 4.2 (Ratios Greater than 1). Assume Π (·) ∈ RV0(−α) with 0 ≤ α ≤ ∞ and is 
continuous. Take xk ≥ 1 for 0 ≤ k ≤ n − 1, n = 2, 3, . . . , r ∈ N and x > 0. 

(a) Suppose 0 < α < ∞. 
(i) Then, for 0 < u < 1, ( (r+k) ⏐ )

∆ ⏐t (r+n)lim P > xk , 0 ≤ k ≤ n − 1⏐⏐Wr,n(t) = u, ∆ = x(r+n) t 
t↓0 ∆t 

= 1
{u<x−1

}
P
(
Jn 

(k 
− 
)
1(u) > xk, 1 ≤ k ≤ n − 1

) 
, (4.7)

0 

n−1(u) ≥ J (2) 
≥ J (n−1)where J (1) 

n−1(u) . . . (u) are distributed like the decreasing order statistics of n−1 
n − 1 i.i.d. random variables (Ji (u))1≤i≤n−1, each having the distribution in (3.8). 

(ii) For n, r , xk , x as specifed, ( (r+k) ⏐ )
∆t ⏐ (r+n)lim P > xk , 0 ≤ k ≤ n − 1⏐⏐∆t = x(r+n)t↓0 

t( ∆ ( ) )
B1/α −1 , J (k) B1/α

= P ≤ x > xk, 1 ≤ k ≤ n − 1 , (4.8)r,n 0 n−1 r,n 

where the Ji (u) are as in (4.7) and Br,n is a Beta(r, n) random variable independent of 
(Ji (u))1≤i≤n−1. 
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(r+k) (r+n) P
(b) When α = 0, each ratio ∆ /∆ −→ ∞ as t ↓ 0, for 1 ≤ k ≤ n − 1. When α = ∞,t t 

(r+k) (r+n) P
each ratio ∆ /∆ −→ 1 as t ↓ 0, for 1 ≤ k ≤ n − 1.t t 

Proof of Proposition 4.2. (a) (i) Let f : Rn 
+ ↦→ R+ be bounded and continuous and consider ( ) ⏐( (r+k) (r+n) )

∆t ⏐⏐ ∆t (r+n)E f , 0 ≤ k ≤ n − 1 , ∆t 
t t∆(r+n) ⏐ 

∆(r ) 

←( )( ( Γr+k )⏐ ← )Π t−1Γr+n · ⏐ Π (Γr+n/t)
= E f ← 

Γr+n 
, 0 ≤ k ≤ n − 1 ⏐⏐ ←( ) , Γr+n . (4.9) 

Π (t−1Γr+n) Π Γr /t 

Now, keeping in mind (4.6), we have the equality of σ -felds 
←( Π (Γr+n/t) ) 

σ ← , Γr+n = σ (Π 
←

(Γr /t), Γr+n) = σ (Γr , Γr+n) = σ (Γr /Γr+n, Γr+n). 
Π (Γr /t) 

The conditional expectation in (4.9) is therefore of the form ( )
E ft (X0, Z0, . . . , Zn−1)|X0, Z0 

where by Lemma 2.1, with r + n replacing n + 1, the random variables X0 = Γr+n and the vector 
(Zk = Γr+k /Γr+n, k = 0, . . . , n − 1) are independent of each other. Note Z0 = Br,n . By the 
regular variation of Π 

← 
at 0, as t ↓ 0,(( ))−1/αft (X0, Z0, . . . , Zn−1) → f Γr+k/Γr+n , 0 ≤ k ≤ n − 1 

f (Z−1/α
= , 0 ≤ k ≤ n − 1),k 

so by dominated convergence the conditional expectation in (4.9) converges to ( ) ( ) 
f (Z−1/α ⏐ 

f (Z−1/α ⏐ 
E , 0 ≤ k ≤ n − 1)⏐X0, Z0 = E , 0 ≤ k ≤ n − 1)⏐Z0 ,k k 

where the last equality holds since X0 is independent of the Z ’s. 
Recall the discussion around (3.12), which shows that, conditionally on Z0, (Z−1/α

, . . . ,1 
Z−1/α 

n−1 ) has joint distribution the same as that of the order statistics of n − 1 random variables 
(Ji (Z1/α ) := ((1− Z0)Ui + Z0)−1/α)1≤i≤n−1, where the Ui s are i.i.d. uniform on [0, 1]. From this, 0 
we retrieve (4.7) by replacing Z0 with uα . 

(a) (ii) The proof of (4.8) is easier because the analogous conditional expectation to (4.9) is 
of the form ( )

E ft (X0, Z0, . . . , Zn−1)|Γr+n 

which converges as t ↓ 0 to ( 
f (Z−1/α

, . . . , Z−1/α ) ( 
f (Z−1/α

, . . . , Z−1/α )E n−1 )|Γr+n = E n−1 )0 0 

after applying dominated convergence and Lemma 2.1. 
Part (b) follows from similar arguments as in Part (ii) of Proposition 4.1. □ 

Remark 4.2. (i) In Part (a)(i) of Proposition 4.2 the x0 variable is superfuous, but it is relevant 
in Part (a)(ii). 

(ii) If we make the convention that B0,n ≡ 0 a.s., set u = 0 in (3.8), and identify (Ji (0)) with 
a sequence (Li ) of i.i.d. random variables, each having the distribution defned in (3.10), we get 
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the case r = 0 of (4.8); namely, for xk ≥ 1, 0 ≤ k ≤ n − 1, n = 2, 3, . . . , and x > 0,( 
(k) ⏐⏐ ) ( )∆t (n) L (k)lim P > xk, 1 ≤ k ≤ n − 1⏐ = x = P n−1 > xk , 1 ≤ k ≤ n − 1 , (4.10)(n) ⏐∆t 

t↓0 ∆t 

n−1 ≥ L (2) 
n−1 . . . ≥ L (n−1)where L (1) are the decreasing order statistics of (Li )1≤i≤n−1, when (Li )i≥1n−1 

are i.i.d. random variables each having the distribution in (3.10). Eq. (4.10) can of course be 
proved directly. 

(iii) The case r ∈ N, n = 1, in Part(a) (i) of Proposition 4.2, is covered by setting n = r + 1, 
and x1 = · · · = xr−1 = 1 when r > 1, in (4.10), to get ( 

(r ) ⏐ ) 
∆ ⏐ ( )t (r+1) −rαlim P > xr ⏐ = x = P L (r ) > xr = x , (4.11)(r+1) ⏐∆t r rt↓0 ∆t 

Dfor xr ≥ 1 and x > 0. Here L (r ) 
= min1≤i≤r Li , where (Li )i≥1 are as in Part (ii). Note that r 

L (r ) 
= 
D B−1/α 

r r,1 . 
(iv) Convergence of the conditional distributions in (4.8), (4.10), and (4.11), together with ( ) ( )(r+ j)lim P tΠ (∆t ) ≤ xr+ j , 0 ≤ j ≤ n = P Γr+ j ≤ xr+ j , 0 ≤ j ≤ n , (4.12)

t↓0 

for 0 ≤ xr ≤ · · · ≤ xr+n , implies convergence of the corresponding joint, and hence marginal, 
distributions. Since the right hand sides of (4.8), (4.10), and (4.11) do not depend on x , 
independence obtains in the corresponding limiting joint distributions. To verify (4.12), observe 
that we have, for j = 0, 1, . . . , n, 

←(r+ j)) DtΠ (∆ = tΠ (Π (Γr+ j /t)) → Γr+ j ,t 

by (2.7), where the convergence is almost sure as t ↓ 0. 
(v) It is essential in Proposition 4.2 to assume Π is continuous. When Π (x) has a jump 

at x , then Π 
← 

is constant on the interval [Π (x), Π (x−)), and Π and Π 
← 

are not in 1–1 
(i)correspondence. While it is true in general that σ (∆ ) ⊂ σ (Γi ), the reverse inclusion is not true. t 

In fact it is possible to construct a counterexample (which we omit) to show that the convergence 
in (4.7) does not hold when Π has discontinuities. 

In the next proposition we need to assume even more in Part (ii); that Π has a continuous 
derivative. 

Proposition 4.3 (Ratios Smaller than 1). Suppose Π (·) ∈ RV0(−α) with 0 < α < ∞ and is 
continuous. Take r, n ∈ N. 

(i) For each x > 0 and w ∈ (0, 1)( )⏐ ( )(r+n) B1/αlim P Wr,n(t) ≤ w ⏐ ∆t = x = P r,n ≤ w . (4.13)
t↓0 

(ii) Assume in addition that Π (x) has a continuous derivative p(x) at each x > 0 which 
satisfes 

′ 
xp(x) x |Π (x)|

lim = lim = α. (4.14) 
x↓0 Π (x) x↓0 Π (x) 

Then for each u > 0 and w ∈ (0, 1)( )⏐ ( )(r ) ←

lim P ∆t > uΠ (1/t) ⏐ Wr,n(t) = w = P Γr+n ≤ (uw)−α . (4.15)
t↓0 
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Remark 4.3. (i) Taking expectations in (4.13) gives, as t ↓ 0, 
(r+n)∆t D

Wr,n(t) = −→ B1/α. (4.16)(r ) r,n 
∆t 

From (4.10) with n replaced by r + n, we thus have the various alternatives 

D D DB1/α DWr,n(t) −→ Wr,n = r,n = Kr 
(n 
+ 

) 
n−1 = 1/Lr 

(r 
+ 
) 
n−1, as t ↓ 0, 

where Kr 
(n 
+ 

) 
n−1 is the nth largest of i.i.d. random variables (Ki )1≤i≤r+n−1, each with distribution 

αP(K1 ≤ w) = w , w ∈ (0, 1), and L (r ) is the r th largest of i.i.d. random variables r+n−1 

(Li )1≤i≤r+n−1, each having the distribution in (3.10). Note that L = 
D 1/K . 

(ii) Again continuity of Π is essential for (4.13). (4.14) can be thought of as a suffcient 
condition for a kind of von Mises condition at 0, cf. [24], p. 63. 

Proof of Proposition 4.3. Assume throughout that Π (·) ∈ RV0(−α) with 0 < α < ∞ and is 
continuous. 

(i) For g : R+ ↦→ R+, bounded and continuous, we have, as t ↓ 0, ( ← )( )⏐( (r+n)) Π (t−1Γr+n) ⏐E g(Wr,n(t))|∆t = E g ← ⏐Γr+n 
Π (t−1Γr+n(Γr /Γr+n))( (( Γr+n 

)−1/α)⏐ ) ( (( Γr+n 
)−1/α ))⏐

→ E g ⏐Γr+n = E g , 
Γr Γr 

where the last equation follows from Lemma 2.1. This gives (4.13). 
(ii) Assume in addition that Π (x) has a continuous derivative p(·) satisfying (4.14). Take 

u > 0 and 0 < w < 1 and hold t > 0 fxed at frst. Write ( ⏐ )
(r ) ←

P ∆ > uΠ (1/t) ⏐ Wr,n(t) = w = t ( ⏐ )
← ← ⏐ Π 

←

(Γr+n/t)
P Π (Γr /t) > uΠ (1/t) ⏐ ← = w = 

Π (Γr /t)( ( ← ) ← ← ← )
P Γr < tΠ uΠ (1/t) , (w − ε)Π (Γr /t) < Π (Γr+n/t) < (w + ε)Π (Γr /t)

lim ( ) . 
ε↓0 P (w − ε)Π 

←

(Γr /t) < Π 
←

(Γr+n/t) < (w + ε)Π 
←

(Γr /t) 
(4.17) 

We can represent Γr+n = Γr + Γ̃  n , where Γ̃  n is a Gamma(n, 1) random variable independent of 
Γr , so the numerator in (4.17) can be written as ( ( ← ) ( ← ) ( ← ))

P Γr < tΠ uΠ (1/t) , tΠ (w + ε)Π (Γr /t) < Γr+n < tΠ (w − ε)Π (Γr /t)∫ ( ← )
= 1{y < tΠ uΠ (1/t) }

y>0 ( ( ← )
× P tΠ (w + ε)Π (y/t) < y( ← ))
+ Γ̃  n < tΠ (w − ε)Π (y/t) P(Γr ∈ dy), 

and similarly for the denominator (omitting the indicator function). For brevity let ( ← ) ( ← )
at (ε, y) := tΠ (w + ε)Π (y/t) < bt (ε, y) := tΠ (w − ε)Π (y/t) , 
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and let fn(z) denote the bounded, continuous, density of Γn . Then for the limit in (4.17) we need 
the limit as ε ↓ 0 of the ratio ∫ ( ← ) ∫ bt (ε,y)−y1{y < tΠ uΠ (1/t) } fn(z)dz P(Γr ∈ dy)y>0 at (ε,y)−y∫ . (4.18)∫ bt (ε,y)−y fn(z)dz P(Γr ∈ dy)y>0 at (ε,y)−y 

With the differentiability assumption on Π , both numerator and denominator here tend to 0 as( ← )
ε ↓ 0, because both at (ε, y) and bt (ε, y) tend to tΠ wΠ (y/t) , so we use L’Hospital’s rule to 
evaluate the limit of the ratio. This limit has numerator∫ ( ← ) ( ( ← ) )

1{y < tΠ uΠ (1/t) } 2 fn tΠ wΠ (y/t) − y 
y>0 

× tp(wΠ 
←

(y/t)) Π 
←

(y/t) P(Γr ∈ dy), (4.19) 

and similarly for the denominator (omitting the indicator function). The resulting ratio is an 
evaluation of the conditional probability we started with in (4.17). 

Now let t ↓ 0 in (4.19). The continuity of fn and (2.7) give ( ( ← ) )
lim fn tΠ wΠ (y/t) − y = fn(w −α y − y), 0 < w < 1, y > 0, 
t↓0 

and substituting x = wΠ 
←

(y/t) in (4.14) and use of (2.7) again give ( ← ) ←

lim tp wΠ (y/t) Π (y/t) = αw−α−1 y, w > 0, y > 0. 
t↓0 

So via (4.19) we get for the numerator of the limit of the conditional probability in (4.17) the 
integral ∫ ( )

e−y yr−1dy
−α−11{y < u−α

} fn((w −α 
− 1)y) · αw y · 

y>0 Γ (r )∫ −αu 
−α−1

= 
1 

e−(w −α 
−1)y ((w −α 

− 1)y)n−1 
· αw y · e−y yr−1dy, (4.20)

Γ (n)Γ (r ) 0 

and similarly for the denominator, but with u ≡ 0. The denominator is thus ∫ 
∞ (n+r−1)α−1Γ (n + r )(w −α 

− 1)n−1αw−α−1 
−w −α y α(w −α 

− 1)n−1 w 
e yn+r−1dy = 

Γ (n)Γ (r ) 0 Γ (n)Γ (r ) 

which is exactly equal to fWr,n (w) in (4.5). 
Now we evaluate the conditional probability P(Γr ≤ x |Wr,n = w). Use the fact that 

D ( )−1/αWr,n = (Γr + Γ̃  n)/Γr and, for any x > 0, ∫ ∫ ( ) ( )
−x −y( ) e xn−1 e yr−1 

P Γr ≤ x, Γr + Γ̃  n ≥ w −α Γr = dx dy. 
0≤y≤x x≥w−α y−y Γ (n) Γ (r ) 

Differentiate with respect to w and divide by the density of Wr,n to get the conditional probability 
P(Γr ≤ x |Wr,n = w) equal to 

1 
∫ x 

( 
e−(w −α 

−1)y(w −α 
− 1)n−1αw−α−1 yn 

)( 
e−y yr−1 ) 

dy. (4.21)
fWr,n (w) y=0 Γ (n) Γ (r ) 

With x ≡ u−α this is exactly the expression in (4.20), divided by fWr,n (w), which, as we showed, 
is the limit of the conditional probability in (4.17) (and in (4.15)). 
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Finally, substituting for fWr,n (w) from (4.5), we can simplify (4.21) (with x replaced by u−α) 
as ∫ −α −αu −w y yr+n−1 ∫ (uw)−α 

yr+n−1 
−α(r+n) e 

−yw dy = e dy, 
0 Γ (r + n) 0 Γ (r + n) 

which is the right hand side of (4.15). □ 

−1/αProposition 4.4 (Ratios Greater than 1). Let {Γ , j ≥ 1} be the ordered points of a Poisson j 
point process with intensity measure Λ(dx) = αx−α−1dx1{x>0}, α > 0. Let r, n ∈ N, 0 < u < 1, 
λ > 0. Then we have the conditional Laplace transform ( )( n−1 ) ⏐∑( Γr+i 

)−1/α ⏐ ( Γr+n 
)−1/α 

E exp −λ ⏐ = u = (Φ(λ, u))n−1 , (4.22)⏐Γr+n Γri=1 

where ∫ 1/u e−λx Λ(dx)
Φ(λ, u) = 1 . 

1 − uα 

When r = 0, the sum of ratios of jumps greater than 1 has representation 
n−1 n−1∑( Γi 

)−1/α ∑ 
= 
D Li , (4.23)

Γni=1 i=1 

where the Li are i.i.d random variables each with the same distribution as Γ1/Γ2; namely, 
P(L1 ∈ dx) = Λ(dx)1{x>1}. 

Remark 4.4. The representation (4.23) of the sum of ratios of the ordered jumps of a stable 
subordinator as a random walk in n provides the impetus for further work in large trimming 
results in the spirit of the investigations in [5]. 

Proof of Proposition 4.4. Equality (4.22) can be read from the order statistics property of the 
homogeneous Poisson process when r > 0 and from (3.9) when r = 0. □ 

5. Converse results 

Theorem 5.1 gives converses to the previous results. 

Theorem 5.1 (Converse Results: Ratios Bigger than 1). Suppose, for some r ∈ N, n ∈ N, 
(r ) (r+n) D 

∆ /∆t −→ Y , as t ↓ 0, for an extended value random variable1 Y ≥ 1. Then one of the t 
following holds: 

(i) P(1 < Y < ∞) > 0, in which case Π (·) ∈ RV0(−α) with 0 < α < ∞; 
(ii) P(Y = 1) = 1, in which case Π is rapidly varying at 0; 
(iii) P(Y = ∞) = 1, in which case Π is slowly varying at 0. 

Remark 5.1 (Converse Results: Ratios Smaller than 1). Analogous results to Theorem 5.1 for 
(r+n) (r ) (r ) (r+n)ratios smaller than 1 follow by taking reciprocals. Write ∆ /∆ = (∆ /∆ )−1 andt t t t 

apply the theorem, replacing Y by Y −1, and making the obvious interpretations in Parts (i), (ii) 
and (iii) of the theorem. 

1 A random variable that may take the value +∞ with positive probability. 
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Proof of Theorem 5.1. Assume for some r ∈ N, n ∈ N, 
(r )∆t D

−→ Y, as t ↓ 0, (5.1)(r+n)∆t 

where Y is an extended random variable with distribution G, say, on [1, ∞]. The proof that 
follows is similar in style to that of Kevei and Mason [13] who considered ratios of successive 
jumps, that is, the case n = 1. When n > 1, some rather different arguments are needed at some 
places. 

Keep u fxed in (0, 1) throughout the remainder of the proof and use (2.3) to write ( ) ( )
(r+n) (r ) ← ←

P ∆t < u∆t = P Π ((Γr + Γ̃  n)/t) < uΠ (Γr /t)∫ ( ( 
← 

) ) ( )
= P Γ̃  n > tΠ uΠ (y/t) − y P Γr ∈ dy , 

y≥0 

where Γr and Γ̃n are independent Gamma random variables. Substituting for their densities gives 

( ) ∫ ∫ ( 
−z ) ( 

−y )
zn−1 yr−1e e(r+n) (r )P ∆ < u∆ = dz dyt t 

y>0 z>tΠ (uΠ 
←(y/t))−y Γ (n) Γ (r ) 

tr+n ∫ ∫ ( 
−t z(z − y)n−1 )e 

= dz yr−1dy
Γ (r + n) y>0 z>Π (uΠ 

←(y)) B(r, n)∫ ∫ ( )
tr+n (1 − y)n−1 yr−1 

= dy e−t z zr+n−1dz. (5.2)
Γ (r + n) z>0 0<y<Π (Π 

←(z)/u)/z B(r, n)( ) ( ) 
Here note that, since u < 1, we have tΠ uΠ 

←

(y/t) ≥ tΠ Π 
←

(y/t)− ≥ y, and( ) ( )
← ← 

Π Π (z)/u /z ≤ Π Π (z) /z ≤ 1. We recognise the inner integral2 in (5.2) as the( ( ) )
←

incomplete Beta function B r, n; Π Π (z)/u /z (see (2.5)). By assumption (5.1), the 

expression in (5.2) tends to G(1/u) := P(Y > 1/u) as t ↓ 0, at continuity points of G. To 
simplify the notation, from this point on let x = 1/u > 1. Let ∫ z ( ( ) )

←

Ux (z) := B r, n; Π Π (v)x /v v r+n−1dv, z > 0. 
0 

Then from (5.2),∫ 
tr+n −t zUxe (dz) → Γ (r + n)G(x), as t ↓ 0, 

z>0 

at continuity points of G, which by Thm. 1.7.1 p. 37 of Bingham et al. [3] implies 

z−r−nUx (z) → Γ (r + n)G(x)/Γ (r + n + 1) = G(x)/(r + n), as z →∞. 

Write this as ∫ z1 G(x)r+n−1dv →bx (v)v , as z →∞, (5.3)
zr+n r + n0 

where ∫ ∫fx (v) fx (v)1 
bx (v) = B(r, n; fx (v)) = yr−1(1 − y)n−1dy =: p(y)dy,

B(r, n) 0 0 

2 When n = 1 the inner integral can be evaluated explicitly and the analysis takes a simpler form, as in [13]. 
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←

with fx (v) := Π Π (v)x /v, v > 0 and p(y) := yr−1(1 − y)n−1/B(r, n), 0 ≤ y ≤ 1. Note 
that x is kept fxed in bx (v) and fx (v). We have 0 ≤ fx (v) ≤ 1, so 0 ≤ bx (v) ≤ 1, for all v > 0. 
(5.3) implies∫ ∫λz λ1 (λr+n 

− 1)G(x)r+n−1dv = r+n−1dv →bx (v)v bx (vz)v , as z →∞, (5.4)
zr+n r + n 

for any λ > 1 and each fxed x > 0. 
Functions bx (v), fx (v), are not necessarily monotone but are of bounded variation (BV) on 

fnite intervals bounded away from 0. To see this, observe that the function mx (v) := v fx (v) = 

z 1 

( ) 
Π Π 

←

(v)x is nondecreasing in v and ⏐ ⏐⏐ dmx (v) mx (v)dv ⏐ dmx (v) dv⏐ ⏐|d fx (v)| = ⏐ − 2 ⏐ ≤ + ;
v v v v 

thus, with p0 := sup0≤y≤1 p(y), ( )
dmx (v) dv

|dbx (v)| = | p( fx (v))d fx (v)| ≤ p0 + , 
v v 

and the RHS is integrable over v ∈ [δ, z], for any 0 < δ < z. So fx and bx are of bounded 
variation on [δ, z] for any 0 < δ < z. Take any sequence zk →∞. By Helly’s theorem for fnite 
measures we can fnd a subsequence, also denoted zk , possibly depending on x , such that 

bx (vzk) → gx (v), v > 0, as k →∞, 

at continuity points of g, for a function gx (v) ∈ [0, 1]. Using dominated convergence in (5.4) we 
get ∫ ∫λ λ(λr+n 

− 1)G(x)
gx (v)v r+n−1dv = = G(x) v r+n−1dv. 

1 1r + n 

This holds for all λ > 1 and so implies gx (v) = G(x), for all v > 1, x > 0, not depending on the 
choice of subsequence. Thus we deduce that ∫ fx (vz) 

bx (vz) = p(y)dy → G(x), 
0 

as z →∞, at continuity points of G, for all v > 1. Take v = 2. Now fx (2z) is monotone in x for 
each z, so by Helly’s theorem again each sequence zk →∞ contains a further subsequence, also 
denoted zk , such that fx (2zk) → h(x) ∈ [0, 1], as k →∞, at continuity points of h(x). Thus we 
obtain∫ h(x) 

p(y)dy = G(x) (5.5) 

at continuity points of h. Again the limit does not depend on the choice of subsequence. This 
identifes h(x) as I←(G(x)), where I←(·) is the unique inverse function to the continuous strictly ∫ 

· increasing function I (·) = 0 p(y)dy. Thus, continuity points of h are points of increase of G. 
Defne 

A := {x ≥ 1 : x is a continuity point and a point of increase of G}. 

We conclude that( ) 
Π Π 

←

(z)x 
lim = lim fx (z) = lim fx (2z) = h(x), for all x ∈ A, (5.6) 

z→∞ z z→∞ z→∞ 
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where h satisfes (5.5). (5.6) is exactly analogous to Eq. (2.10) of Kevei and Mason [13] and we 
can follow their arguments henceforth to fnish the converse part of the proof. There are three 
alternatives. 

(i) P(1 < Y < ∞) > 0. In this case G has at least one point of decrease in (1, ∞), say 
x , and a neighbourhood (x − ε, x + ε) for some ε > 0, such that G(y) > 0 for all y in the 
neighbourhood. Kevei and Mason [13] gave a careful analysis of this situation, showing that it 
leads to Π (·) ∈ RV0(−α) with 0 < α < ∞. ∫ h(x)(ii) P(Y = 1) = 1. This means that P(Y > x) = G(x) = 0 for all x > 1, so 0 p(y)dy = 0 
and ( ) ( ) 

Π Π 
←

(z)x Π Π 
←

(z)x 
lim ≤ lim ( ) = 0 

z→∞ z z→∞ Π Π 
←

(z) 

for all x > 1. Thus Π is rapidly varying at 0. ∫ h(x)(iii) Y = ∞ a.s. This means that P(Y > x) = G(x) = 1 for all x > 1, so p(y)dy = 10 
and ( ) 

Π Π 
←

(z)x 
lim = 1 

z→∞ z 

for all x > 1. This leads to Π slowly varying at 0 as shown in [13], and completes the proof. □ 
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