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Abstract For integers n ≥ r , we treat the rth largest of a sample of size n as an R∞-
valued stochastic process in r which we denote as M(r). We show that the sequence 
regarded in this way satisfies the Markov property. We go on to study the asymptotic 
behavior of M(r) as r → ∞, and, borrowing from classical extreme value theory, 
show that left-tail domain of attraction conditions on the underlying distribution of 
the sample guarantee weak limits for both the range of M(r) and M(r) itself, after 
norming and centering. In continuous time, an analogous process Y (r) based on a 
two-dimensional Poisson process on R+ × R is treated similarly, but we note that 
the continuous time problems have a distinctive additional feature: there are always 
infinitely many points below the rth highest point up to time t for any t >  0. This 
necessitates a different approach to the asymptotics in this case. 
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1 Introduction 

In this paper we consider Markovian and other properties of the order statistics of 
independent identically distributed (iid) random variables (rvs) in discrete time, and 
of extremal processes in continuous time. Although venerable these are important 
issues and research continues to throw up significant new aspects. As a starting 
point let Mn

(r) be the rth largest among iid random variables X1, . . . , Xn with cdf 
F . (Precise specifications of the order statistics will be given later.) It is known 
(Arnold et al. 1984) that for fixed n, the  finite sequence (Mn

(r)
)r=1,2,...,n is Markov 

if and only if F is continuous on (�F , uF ), where  �F and uF are the left and right 
extremes of F . We investigate the infinitely many order statistics (Mn

(r)
, n  ≥ r)  

for sample sizes beyond r , and further, derive properties of the whole collection 
{M(r) = (Mn

(r)
, n  ≥ r); r ≥ 1}, considered as an R∞-valued stochastic process. 

Apart from their intrinsic interest, our results relate a number of areas and techniques. 
We begin in Section 2 by setting up the notation required for, then proving, the 

Markov property, that the conditional distribution of the infinite sequence 

M(r+1) (r+1) (r+1)= (M ,M  , . . .),  r+1 r+2 
knowing all values 

M(1) (1) (1) (2) (2) = (M(r) (r) =(M ,M  , . . .),  M(2) = (M ,M  , . . .), . . . ,  M(r) ,Mr+1, . . .),  1 2 2 3 r 

is the same as the conditional distribution knowing only M(r). No continuity 
assumptions on F are required for this. 

In Section 3 we turn to an investigation of asymptotic properties of the collection 
M(r), for large values of r . The weak convergence of M(r), after norming and cen-
tering, is related to domain of attraction theory for the minimum of an iid sequence 
of rvs. A key tool in these proofs is Ignatov’s (Ignatov 1986) theorem showing that 
the r-records of an iid sequence are points of a Poisson random measure. 

This study is continued in Section 4 for continuous time rth-order extremal pro-
cesses. Some notable differences between the discrete and continuous time situations 
emerge here. In particular, unlike in the discrete case, in the continuous time case 
there are always infinitely many points below the currently considered order statistic, 
and thus the convergence criterion has to be modified. Section 5 concludes the paper 
with some modest final thoughts and open problems. 

We conclude the present section by mentioning previous and related work. For 
alternative proofs and other background on Ignatov’s (1977) theorem see Igna-
tov (1986), Stam (1985), Goldie and Rogers (1984), Engelen et al. (1988), and 
Resnick (2008). Other treatments of the Markov structure of the finite sequence 
(Mn

(r) are in (Goldie and Maller 1999; R¨)r=1,2,...,n uschendorf 1985; Cramer and  Tran  
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2009) and  (R¨ n
(r)
)r isuschendorf 1985; Cramer and Tran  2009) show that (M =1,2,...,n 

Markov if information on tied values is incorporated into the sequence. For back-
ground on continuous time extremal processes we refer to (Resnick 1974, 1975, 
2008; Resnick and Rubinovitch 1973). Additional references are given throughout 
the text. 

2 Markov property of higher order extremal processes with discrete 
indexing 

2.1 Notation and indexing 

The statement and proof of the Markov property requires precise and detailed nota-
tion so that we keep track of infinite sequences indexed by r where the first members 
are being moved further out as r increases. To cope with this we use the idea of 
shifted sequences, with first members replaced by −∞. 

To see how this � works, set � N = {1, 2, 3, . . . }, R−∞ := R ∪ {−∞} = [−∞,∞), 
and conventions = 0, := 1, ±∞ × 0 = 0. Sequence space is RN :=∅ ∅ −∞ {x = (xn) : xn   R−∞ , n    N} endowed with the Borel field associated with the 

N,↑product topology and R−∞ = {x = (xn)   RN xn ≤ xn+1 , n    N} is the subset −∞ : � N,↑of nondecreasing sequences. The partial maxima operator : RN −∞ maps−∞ → R 
a given sequence x = (xn)n   R−∞ 

N to its associated sequence of partial maxima 
� (1) (2) (n)

x := (∨{x1, . . . , xn})n. For  n   N, yn ≥ yn ≥  · · ·  ≥  yn denotes the order 
statistics associated with (possibly extended) real numbers y1, . . . , yn   R−∞. 

(r) For a given sequence x   RN −∞ and r   N, n ≥ r , let  mn be the rth largest of 
x1, . . . , xn, arranged in lexicographical order in case of ties. Then set 

�−∞, if n < r;(r) x = n (r)
mn , if n ≥ r. 

(r)   RN,↑The extremal sequence of order r associated with x is the sequence x ∞ , 
with finite elements xn

(r) augmented with −∞ as follows: 
�

(r) (r) x = −∞, . . . ,−∞,m , n  ≥ r . (2.1)n � �	
r−1 entries  

Write x(0) := x for the extremal sequence of zero order. The extremal sequence of �
(1)unit order equals the partial maximum sequence: x = x. 

For a sequence x = (xn)n   RN = (−∞, x)  −∞ the shifted sequence xR is xR 

R
N −∞, so that we append −∞ in front of x. For two sequences x = (xn)n, y = 
(yn)n   R−∞ 

N , let  

xR ∧ y := {(−∞)1n=1 + (xn−1 ∧ yn)1n>1}n   R−∞ 
N 

be the componentwise minimum of x and y, taken after shifting x to the right with 
proper augmentation with −∞. Thus, componentwise, when x = (x1, x2, . . .)  and 
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y = (y1, y2, . . .), we have  

xR = (−∞, x1, x2, . . .)  and xR ∧ y = (−∞, x1 ∧ y2, x2 ∧ y3, . . .).  

In Theorem 2.1, we will show a Markov property for the rth largest of an iid 
sequence, and since recursions are an effective tool for proving a sequence of random 
elements is Markovian, we first prove a preliminary result focussing on properties of 
the shifted sequences. 

Proposition 2.1 For r   N, we have the identity, 

(r+1) (r) x = (x R ∧ x) (2.2) 

or in component form, 

n �
(r+1) (r) 
xn = xj−1 ∧ xj , r    N, n  ≥ r + 1, (2.3) 

j=r+1 

with both sides taken as −∞ for 1 ≤ n ≤ r . 

Proof Fix an integer r and we prove (2.3) by induction on n. The base of the induc-
(r+1)tion is n = r + 1 and the left side of Eq. 2.3 is x = ∧ir =+ 

1
1 xi . The right side is r+1 

(r) 
xr ∧ xr+1 = ∧ri=+ 

1
1 xi . So Eq.  2.3 is proved for n = r + 1. 

As an induction hypothesis, assume (2.3) is true for  n = r + p for p ≥ 1 and we  
verify (2.3) to be true for  n = r + p + 1. The left side of Eq. 2.3 for n = r + p + 1 

(r+1)is xr+p+1 =: LH S. The right side is 

r+p+1 r+p 
� � �(r) (r) (r) 

RH S := x = x xj−1 ∧ xj j−1 ∧ xj r+p ∧ xr+p+1 
j=r+1 j=r+1 

and from the induction hypothesis this is equal to 

�(r+1) (r) 
x x ∧ xr+p+1 . (2.4)r+p r+p 

Now consider cases: 

�(r) (r) (r+1) (r+1) (r) Case (a) xr+p+1 > x  Then x = xr+p+1, so  RH S = x x = r+p r+p r+p r+p 
(r) 
x = LH S.r+p 

(r+1) (r) Case (b) xr+p ≤ xr+p+1 ≤ xr+p The term in parentheses on the right side of 
Eq. 2.4 then is 

(r) (r+1)
x ∧ xr+p+1 = xr+p+1 = xr+p r+p+1 

and thus 
(r+1) (r+1) (r+1)

RHS = x ∨ x = x = LH S. r+p r+p+1 r+p+1 
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(r+1)Case (c) xr+p+1 < x  In this case we have r+p 
�(r+1) (r) (r+1) (r+1)

RHS = xr+p ∨ xr+p ∧ xr+p+1 = xr+p ∨ xr+p+1 = xr+p 

(r+1) (r+1)because xr+p+1 < x  . It follows that x = LHS.r+p r+p+1 
The three cases exhaust the possibilities and this completes the induction argument. 

2.2 The iid setting 

Now we add the randomness. Let X = (Xn)n   RN be an iid sequence of rvs in 
R with cdf F and set X(0) = X. Then for r   N the r-th order extremal process 
is the augmented sequence X(r) = n

(r)
)n N in RN(X −∞ constructed as in Eq. 2.1; 

specifically, �
X(r) M(r) = −∞, . . . ,  −∞, , n  ≥ r , (2.5)n � �	

r−1 entries  
where the Mn

(r) are the order statistics of X1, X2, . . . , Xn defined lexicographically 
(r) �

X(0) 
�

as for the mn in Eq. 2.1. Note that X(1) = = X is the sequence of partial 
maxima associated with X. 

To think about the Markov property for (X(r), r  ≥ 1), we imagine conditioning 
(r) (r) is aon the monotone sequence X(r) = x . For indices where the sequence x 

constant, say x, the structure of X(r+1) should be as if we construct the maximum 
sequence from repeated observations from the conditional distribution of (X1|X1 ≤ 
x). See  Fig.  1. The following construction makes this precise. 

Let U = (Ur,n)n,r N be an iid array of uniform r.v.’s in (0, 1). Assume X = 
X(0) and U are independent random elements. For m   R with F(m)  >  0 the left-
continuous inverse u → F ←(u|m) of the conditional cdf x → F(x|m) := P(X1 ≤ 

Fig. 1 Blue dotted lines track height of current maximum process M(1) generated by vertical lines. The 
red dotted line tracks the second maximum process M(2). Note that a jump in M(1) can affect M(2) as seen 
at n = 6 where  X4 becomes the new value of M(2). During intervals where the blue dotted line is constant, 
M(2) is obtained by sampling from the distribution conditional on the sampled value being less than the 
blue height. The range of M(1) consists of blue tick-marks on y-axis and the range of M(2) is the red ticks 
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x|X1 ≤ m) is well-defined; otherwise, if F(m)  = 0 set  F ←(u|m) = 1m>0 with 
F ←(u| −∞) ≡ 0. 

For r   N = {1, 2, . . .  } introduce two sequences X(r+1) X(r+1),n)n 

X(r+1) X(r+1),n)n. For the first, we have for n 1 that  X(r+1),1 := X 

� 

and, for n ≥ 2,

� 

� 

�� 
and(= 

(1)= ( = X1= 1 

⎧
⎨ 

⎩ 

(r) 
F ←(Ur,n|X (r) (r) 1 (k) (k) , if X = X)

�
1≤k≤r n−1,n nX =X 

n−1 (2.6)nX(r+1),n := 

so if there is no jump in the rth order maximum process we sample from the condi-
tional distribution and if there is a jump, we note the new value that caused the jump. 

�
r (k) 
k=1 X 1 (r) (r) � �

1 (l) (l) , if X > X(k) (k) 1≤l<k n−1,n nX >X X =X 
n−1 n−1n n 

For the second sequence we have X(r+1),n := −∞ if n ≤ r and if n > r  

(r) (r) (r) 
F ←(Ur,n|Xn ) if Xn = Xn−1, (2.7)(r) (r) (r) 

� 

� 

X(r+1),n := 

� 

so if there is no jump in the rth order maximum at n, we sample from the conditional 
distribution and if there is a jump at index n we note the smaller value at n − 1 that  

Xr+1 depends on X, X(1) 

�
if XX > X  n−1,n−1 n 

, . . . ,  X(r) only via the process jumps from. The sequence 

� 

X(r+1) depends on all X(1), X(2) � 

2.3 Identities in law and the Markov property 

(r) Next we provide some identities in law which will show that the sequence ≥ 1X , r  
of extremal processes is sequence-valued Markov chain.a 

Theorem 2.1 For r   N the following random variables are equal in distribution as 
random elements in (RN ,−∞)(r+1) 

d 
X(r+1), X(1) 

X(r), but  , . . . ,  X(r). 

(X(0), X(1) , . . . ,  X(r) , . . . ,  X(r)) ,  (2.8)) = ( 

and � �
d 

X(1) , . . . ,  X(r+1) X(1) , . . . ,  X(r) (2.9)� 

�
� 

X(r+1) 

In particular, X(1), X(2) . . .  is a Markov chain with state space R 

�X(r) 

= , . 

N,↑ 
−∞, with its 

�
� 

conditional distributions satisfying 

�X(r) 
� �

d 
X(r+1) , . . . ,  X(1) , r    N . (2.10) 

� 

� 

� 

X(r+1) 

Proof Indeed, Eq. 2.9 follows from Eq. 2.8 because 

X(r+1)) 

X(r+1) 

= 

X(1) , . . . ,  X(r+1) X(1) (X(r)R ∧ X(0) , . . . ,  X(r) ) (by Proposition 2.1),
� �

� 

= 

d 
X(1) (X(r) , . . . ,  X(r) , R ∧= (from (2.8)) 
�
X(1) , . . . ,  X(r) , .= 



�










 

X

Processes of rth  largest 

(X(r) R ∧
�

The last equality holds because 
(r) 
j−1 ∧

��n 
j=r+1when n ≥ r + 1) the terms (compare with Eq. 2.2), and X 

(r) (k) (k) = j−1, 1  ≤ k ≤in this, by Eq. 2.6, we take  ) if X X= 

X(r+1)) has (for its finite components, 

X(r+1),j 
X(r+1),j 

r; otherwise, there is a k, 1  ≤ k ≤ r , with X 

� 

� 

�
j jF ←(Ur,j |X 

(k) (k) (l) (l) 
j−1 and X = j−1 for 

X(r+1),j 
← |F (U X= r,j 

� 

� 

> X  Xj j 
(r) 1 ≤ � < k, in which case, by Eq. 2.6, we take  . In the first case,= Xj 

(r) (1) 
j−1 ∧X(r+1),j j−1 ∧� (r) 

), and in the second X(r+1),j 
(r) 
j−1 ∧ X 

� 
X(r+1) (see Eq. 2.7). 

Thus indeed (2.9) holds, and on the righthand side 
, r   N. In particular, Eq. 2.10 holds, and X(1) 

� 

� = X X(r+1),j 
(r) = 

� = j 
(r) 
j−1. On taking  n(r) 

j−1 ∧ =r+1, this replicates X(r+1),j 
the corresponding component for 

�case, X X X= jj � 

Xr+1 depends on X(1) 
, X(2) 

, . . . ,  
X(r) only through X(r) , . . .  must 
be a Markov chain.  

It remains to show (2.8). For r   N let 

r,↓
R−∞ := {m = (m1, . . . , mr)   R−∞ 

r : m1 ≥  · · ·  ≥  mr } 
be the space of r-tuples with nonincreasing R−∞-valued components, and introduce 
a continuous truncation mapping μr = r,↓ r,↓

(μr,1, . . . , μr,r ) : R −∞, by  −∞ × R → R
setting 

μr,1(m, x) = x ∨ m1, 

and 

��� 

μr,k(m, x)  = mk−11x>mk−1 + mk1x≤mk + x1mk<x≤mk−1 , 2 ≤ k ≤ r, (2.11) 

r,↓when x   R and m = (m1, . . . , mr)   R−∞. Note that μr,k (m, x)  interpolates 
continuously between components mk and mk−1, mk ≤ mk−1, of  m, and satisfies 

r,↓
μr,k (m, x)  ≥ mk for m   R−∞, x    R, 1 ≤ k ≤ r. (2.12) 

Having constructed μ , define two further mappings r 

r,↓ r,↓
μr = (μr,0, . . . ,  μr,r ) : R−∞ × R → R × R−∞ 

��� 

and 
r,↓ r,↓

μ μr,0, . . . ,  μr,r r −∞ × R × (0, 1) → R × R) : R= ( −∞, 
r,↓ as follows. Take m = (m1, . . . , mr)   R−∞, x   R and u   (0, 1). When  k = 0, set 

F ←(u|mr), if x ≤ mr, 
x, 

�

and (2.13) 

� 

� 

� 

�

� μr,0(m, x)  = x μr,0(m, x, u)  = 

When 1 ≤ k ≤ r , set  

μr,k (m, x)  = μr,k(m, x)  and also 

μr 

if x >  mr. 

(2.14)μr,k(m, x, u)  = μr,k (m, x).  

With these mappings the component form of the lefthand side of Eq. 2.8 can be 
written as 

(Xn,X
(1) 
n , . . . , X

(r)), n ≥ 2n 

�
= (X

(1) 
n−1, . . . , Xn

(r) 
−1, Xn), n ≥ 2

�
(2.15) 



 

 �
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and the component form of the righthand side of Eq. 2.8 can be written as 

(X(r+1),n, Xn(1), . . . , X(r)), n ≥ 2n 

�
= (X

(1) 
n−1, . . . , Xn

(r) 
−1, Xn,Ur,n), n ≥ 2

�
.μr 

We check that these are verified, as follows. Apply the formulae Eqs. 2.13 and 2.14, 
(1) (r)substituting m = (Xn , . . . , Xn ), x = Xn and u = Ur,n. Consider the righthand 

��

(2.16) 

side of Eq. 2.15. With those substitutions, the k = 0 component equals � μr,0(m, x)  
x = Xn, matching the lefthand side of Eq. 2.15. The  kth component, for 1 ≤ k ≤ r , 
with the substitutions, equals, by Eq. 2.11, 

(k−1) (k)
μr,k(m, x)  = μr,k(m, x)  = X 1 (k−1) + Xn−11 � 

= 

(k)n−1 ≤XXn>X Xnn−1 n−1 
= X(k)+X 1 (k) (k−1) , (2.17)n nX

n−1<Xn≤X 
n−1 

again matching the kth component on the lefthand side of Eq. 2.15. Next consider 
the righthand side of Eq. 2.16. With the above substitutions, the k = 0 component 
equals, by Eq. 2.13, 

�
(r) (r)

F←(Ur,n|Xn−1), if Xn ≤ Xn−1,μr,0(m, x, u)  

agreeing with X�(r+1),n from Eq. 2.6. So the righthand side of Eq. 2.16 matches the 
lefthand side of Eq. 2.16 for the k = 0 component. The kth component, for 1 ≤ k ≤ 

� 

� 

� 

with the substitutions, equals, by Eq. 2.14 the righthand side of Eq. 2.17. So ther , , 
righthand side of Eq. 2.16 matches the lefthand side of Eq. 2.16 for the components 
1 ≤ k ≤ r . With these checkings we have verified Eqs. 2.15 and 2.16. 

(1) (r) (1) (r)In Eqs. 2.15 and 2.16, Xn ⊥ (Xn−1, . . . , Xn−1) and Ur,n ⊥ (Xn−1, . . . , Xn−1, 
Xn, )  since we assumed that X and U are independent arrays of iid rv’s. The right 
sides of Eqs. 2.15 and 2.16 are Markov chains with stationary transition probabilities 
in the index n (new value is a function of the previous value and an independent 
quantity) and for n = 1, the left sides of Eqs. 2.15 and 2.16 have common initial value 

r,↓
(X1, X1,−∞, . . . ,−∞)   R × R−∞. Therefore, to prove equality in distribution in 
Eq. 2.8, it suffices to prove both chains have a common transition kernel. 

d d
To see this, let X� = X1 ∼ F and U � = U1,1   (0, 1) be independent rv’s. For 

x, y   R with F(y)  >  0 note 
←P(X� ≤ y, F (U �|y) ≤ x) = P(X� ≤ y)P (X� ≤x|X� ≤y) = F(x  ∧ y). (2.18) 

� � r,↓Take m = (m1,. . .,mr), m = (m� 1,. . .,mr)   R−∞ with F(m
� )>0 for 1≤ k≤r , andk 

m0 
� := ∞. By Eq.  2.16 we have for the transition probability, 

r 

X(r+1),n+1, X  

μr 

= (r)if X > X  n−1,Xn, n 

(1) (r) 
n+1, . . . , X    (−∞, x] ×n+1

�� [−∞,mk]P 
k=1 

�
�

��X(r+1),n = y, (X(1), . . . , X(r)) = m n n�� 

= P (m � � �, X ,U  )   (−∞, x] ×  
r � 

k=1
[−∞,mk]

�
. 
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Decompose the last expression as 

r 
� � � �P �μ (m , X ,U  )   (−∞, x] ×  

�
[−∞,mk], X� ≤ m 

� 

r r 
k=1 

r r � � �� � � � �+ P �μr (m , X ,U  )   (−∞, x] ×  [−∞,ml], X�   (mk,mk−1]
k=1 l=1 

=: A+ B. 

First consider the probability A. It equals 

← � � � � �P F (U �|m ) ≤ x, μrk(m , X ,U  ) ≤ mk, 1 ≤ k ≤ r; X� ≤ m 
� 

r r 

� � � �= P X� ≤ x, μrk(m , X ,U  ) ≤ mk, 1 ≤ k ≤ r; X� ≤ m 
�
. (2.19)r 

Next consider the probability B. For this we use Eq. 2.13 and get 

r 
� � � �B = 

�
P(X� ≤ x, μrl(m , X  ) ≤ ml, 1 ≤ l ≤ r, X�   (mk,mk−1]), (2.20) 

k=1 
�in which μrl(m �, X�) ≥ m , 1  ≤ l ≤ r , by Eq.  2.12.l 

On the other hand, from the left sides of Eqs. 2.8 and 2.15, 

r �� �
(1) (r) 

P Xn+1, Xn+1, . . . , X    (−∞, x] ×  [−∞,mk]n+1 
k=1 

�
� � �Xn = y, (Xn,X

(1), . . . , X(r)) = m n n 

r 

= P
�
�μ (m �, X�)   (−∞, x] ×  

�
[−∞,mk

�
)r 

k=1 
� � r �� � �= P X , μrl(m , X  ), l = 1, . . . , r    (−∞, x] ×  [−∞,mk] . 

k=1 

Again decompose the last as 
� � � �P X� ≤ x, μrl(m , X  ) ≤ ml, l  = 1, . . . , r,  X� ≤ mr 
r 

� �+ 
�
P
�
X� ≤ x, μrl(m , X  ) ≤ ml, l  = 1, . . . , r, X�   (mk,mk−1]

k=1 
= A+ B (by Eqs. 2.19 and 2.20). 

This completes the proof of Eq. 2.8 and of Theorem 2.1. 

Remark Probabilities A and B can be calculated explicitly as follows. 
For A, take  m � > mk for some k = 1, . . . , r . Then because of Eq. 2.12, the  k �probability A is 0. So assume that m ≤ mk for 1 ≤ k ≤ r . Then the condition X� ≤k 
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� � m in A implies X� ≤ m ≤ mk , hence μr,k(m �, X�, U �) ≤ mk for k = 1, . . . , r , by  r k 
Eq. 2.11. So, using (2.18), A reduces to 

A = P(F←(U �|m � r ) ≤ x,X� ≤ m � r ) = F(x ∧ m � ) 
� 

1m � . (2.21)r ≤mkk 
1≤k≤r 

�For B, fix  k and suppose l > k. Then the interval (m� ,ml−1] is to the left ofl� �(m� ,mk−1] where X� is located, and μrl(m�, X�) = ml−1. The probability is then 0 k � �unless ml ≥ ml−1. If  l < k, the order of the intervals is reversed, μrl(m�, X�) = m ,l 
and the probability is 0 unless m � ≤ ml . Thus, B becomesl 

r � � � � �
B = P(mk < X

� ≤ x ∧ mk ∧ mk−1) 1m �≤ml 1m � 
l−1≤ml . (2.22)

l 
k=1 1≤l<k k<l≤r 

3 Asymptotic behavior of the discrete time process M(r) for large r 

In this section we consider the asymptotic behavior as r → ∞  of the R∞-valued 
(r) stochastic process {M(r) := (Mn , n  ≥ r), r  ≥ 1}. As  r increases the sequence 

moves further and further from its largest values, so limit behavior for both the range 
of M(r) and M(r) itself, depend critically on left tail behavior of the distribution 
of X1. Appropriate left-tail conditions related to minimal domains of attraction in 
classical extreme value theory make the range and the sequence of rth order maxima 
converge weakly. 

Throughout Section 3, the underlying distribution F of the iid sequence {Xn} is 
continuous, so the records are Poisson with atomless mean measure R(·) which has 
distribution R(x) = −  log(1 − F(x))  (Resnick 2008, page 166). The assumption 
of continuity could be relaxed as in (Engelen et al. 1988; Shorrock 1974; 1975) 
but results are most striking and elegant when F is continuous and we proceed in 
this setting. We assume F(x) has left endpoint �F and right endpoint uF so that the 
measure F has support [�F , uF ] ⊂ [−∞,∞]. 

3.1 rth  maximum and r-records 

Assume F(x)  <  1 and define 

n 

Rn = 
�

1[Xj≥Xn] = relative rank of Xn among X1, . . . , Xn 

j=1 
= rank of Xn at “birth”. 

The {Rn} are independent random variables and Rn is uniformly distributed (Rényi 
1962) on  {1, . . . , n}; that is,  

P(Rn = i) = 1/n, i = 1, . . . , n.  

Considering {M(r), r  ≥ 1} as an R∞-valued stochastic process, we ask for the 
asymptotic behavior of M(r) and its range as a function of r as r →∞. 
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Define the r-record times of {Xn} by 
(r) (r) 
L = 0, L  = inf{j >  L(r) : Rj = r}.0 n+1 n 

The r-records are {X (r) , n  ≥ 1}. Ignatov’s theorem (Ignatov 1986; Goldie and 
Ln 

Rogers 1984; Engelen et al. 1988; Resnick 2008) says that  
�{X (r) , n  ≥ 1}, r  ≥ 1

�
Ln 

are iid Poisson processes, each with mean measure R(·) on R. A Poisson process 
with mean measure R is denoted PRM(R). 

We list some initial facts about M(r) and its range. 

(r) • For fixed r , M(r) = {Mn , n  ≥ r} jumps at time k ≥ r iff 
Rk  {1, . . . , r}. 

So the events 
{M(r) jumps at time k, k ≥ r} 

are independent events over k and 
r 

P(M(r) jumps at k) = . 
k 

Remark 3.1 This has the implication that if we re-index and set k = r + l for l ≥ 0, 
then for any fixed l, as  r →∞, 

r 
P(M(r) jumps at r + l) = → 1. 

r + l 
So for large r , M(r) jumps at almost every integer. Define the jump indices 

(r) (r) (r) {τ , l  ≥ 0} = {j ≥ 1 : M > Mr+j−1} ∪ {0}.l r+j 
Then in R∞+ , 

(r) {τ , l  ≥ 0} ⇒ {0, 1, 2, . . . }.l 

• For fixed r , let  Rr be the range of M(r); that is, the distinct points without 
(r) repetition in the sequence {Mn , n  ≥ r}. See  Fig.  1. Then, 

r � � �
Rr := X (p) , n  ≥ 1 , (3.1)

Ln 
p=1 

By Ignatov’s theorem (Ignatov 1986; Stam  1985; Goldie and Rogers 1984; Enge-
len et al. 1988; Resnick 2008), this is a sum of r independent PRM(R) processes 
and therefore the range of M(r) is PRM(rR). 

To prove (3.1), suppose Mn
(r) = x for some n ≥ r. Suppose the rth largest of 

X1, . . . , Xn occurs at Xi = x for i ≤ n. If the rank of Xi were > r , it could not 
be the case that Mn

(r) = x. This shows that 
r � � �

range of M(r) ⊂ X (p) , n  ≥ 1 . 
Ln 

p=1 
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(p) Conversely, suppose X (p) = x, so at time Ln , the rank of X (p) is p. Wait until 
Ln Ln 

r − p additional X’s have been observed that exceed x and then the rth largest 
will equal x. 

of M(r) 3.2 Limits for the range Rr 

Although our primary interest is in the behavior of {M(r), r  ≥ 1} as an R∞-valued 
random sequence, it is instructive and helpful to discuss the behavior of the range Rr 
of M(r). 

As a basic result we derive a deterministic limit for Rr . Let  R be the support of 
the measure R(·) which is also the support of F . 

Proposition 3.2 As r → ∞, Rr , the range of M(r), converges as a random closed 
set in the Fell topology (Molchanov 2005; Matheron 1975; Vervaat and Holwerda 
1997) on [�F , uF ] to the non-random limit R: 

Rr ⇒ R. (3.2) 

Proof Since Rr ⊂ R, it suffices to show for any open G with R ∩G �= ∅, that  
P(Rr ∩G �= ∅) → 1. 

However, R ∩G �= ∅ implies R(G) > 0 and therefore, 

P(Rr ∩G �= ∅) = 1 − P(PRM(rR(G)) = 0) 
−rR(G) → 1, (r  →∞)= 1 − e 

since R(G) > 0. 

The set convergence in Eq. 3.2 is to a deterministic limit. Since Rr is a PRM(rR) 
point process, we can get a random limit if we center and scale the {Xn} so that the 
mean measure rR  converges to a Radon measure. Recall R(x) = − log ¯ F(x). 

Assume there exist ar > 0 and  br  R and a non-decreasing limit function g(x) 
with more than one point of increase such that 

rR(arx − br) → g(x), (r →∞). (3.3) 

For x such that g(x) > 0, we must have R(arx − br) → 0 and thus arx − br 
converging to the left endpoint of F (and R) to counteract r →∞. We now explain 

−R ¯why e −g is related to an extreme value distribution. Remembering that e = F , 
Eq. 3.3 is equivalent to 

−g(x) ( ¯ ))r )} → eF (arx − br = exp{−rR(arx − br 
or 

r �∧ 1Xi + br −g(x) P i= > x  → e . (3.4) 
ar 





�




�
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−gSo we recognize e as the survivor function of an extreme value distribution 
of minima of iid random variables. Expressing this in terms of maxima by setting 
Yi = −Xi we get Eq. 3.4 equivalent to 

r �∨ 1Yi − bri= −g(x) P ≤ −x → e = Gγ (−x), (3.5) 
ar 

for some γ  R, where  Gγ (x) = exp{−(1 + γ x)−1/γ }, 1 + γ x  >  0 is the shape  
parameter family of extreme value distributions for maxima (Resnick 2008; de Haan 
and Ferreira 2006). So in Eq. 3.3, g(x) = gγ (x) = − log Gγ (−x). The equivalent 
way to write (3.5) is  

�
rP  Y1 > ar(−x) + br → g(x), ∀x s.t. g(x) > 0, 

and Eq. 3.3 is equivalent to 

rF (arx − br) → g(x), ∀x s.t. g(x) > 0. (3.6) 

In particular, apart from centering, we have the cases: 

(1) Gumbel case: γ = 0. Then 
x g0(x) = e , x   R. 

(2) Reverse Weibull case: γ <  0: Then 1 + γ (−x) > 0 iff  x >  −1/|γ | and 
1/|γ |gγ (x) = (1 + |γ |x) , x >  −1/|γ |. 

Adjusting the centering and scaling by taking br = 0, we find R is regularly 
varying at 0 and 

1/|γ |rR(arx) → x , x >  0. 

(3) Frechet´ case: γ >  0. Then 1 + γ (−x) > 0 iff  x <  1/γ and 
−1/γgγ (x) = (1 − γ x)  , x <  1/γ. 

Adjusting the centering and scaling so the support is (−∞, 0), we get  
−1/γrR(arx) → |x| , x <  0, 

which implies regular variation at 0 from the left. 

We can apply this analysis to get convergence of Rr after centering and scaling. 
Recall Rr is PRM(rR). A family of Poisson point measures converges weakly iff the 
mean measures converge (eg. Resnick (2007)). So replacing 

Xi + br 
Xi → 

ar 

rescales the points of the range to be Poisson with mean measure given by the left 
side of Eq. 3.3. Let  

suppγ = {x : 1 − γ x  >  0} (3.7) 

and mγ (·) be the measure with density g � (x), x   suppγ . Let M+(suppγ ) be the γ 
space of Radon measures on suppγ , topologized by vague convergence. Then Eq. 3.3 
implies the vague convergence 

� v 
rR  ar(·) − br → mγ (·) 
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in M+(suppγ ), and thus on M+(suppγ ) we have 

(Rr + br)/ar ⇒ PRM(mγ ). (3.8) 
�iWe may realize PRM(mγ ) as follows: Let �i = j=1 Ej be a sum of iid standard 

exponential random variables. The {�i } are points of a homogeneous Poisson process 
rate 1 on [0, ∞). The measure mγ has distribution 

gγ : suppγ → (0, ∞), 
with inverse 

g ← : (0, ∞) → suppγ .γ 

The transformation theory for Poisson processes (Resnick 2007, Section 5.1)) means 
←that if we map homogeneous Poisson points {�i, i  ≥ 1} to {g (�i), i ≥ 1}, theseγ 

become the points of PRM(mγ ) on  suppγ . For instance, if γ = 0, supp0 = R, 
g0(x) = ex, x    R, and g0 

←(y) = log y, y > 0, then PRM(m0) has points 
{log �i, i  ≥ 1}. 

3.3 Weak convergence of the rth maxima sequence M(r) 

Having understood how to get the range Rr of M(r) to converge, we turn to con-
vergence of M(r) itself. We continue to suppose the minimum domain of attraction 
condition, so that R satisfies (3.3), and recall M+(suppγ ) is the space of Radon mea-
sures on suppγ , topologized by vague convergence. Point measures in M+(suppγ ) 
are denoted by 

�
(·) where �x(·) is the Dirac measure placing mass 1 at x.i �xi 

We start with a preliminary result on the empirical measures generated by {Xi }
that will be needed to study the weak convergence of {M(r)}. 

Proposition 3.3 Assume (3.3). If  N is a random element of M+(suppγ ) which is 
PRM(mγ ), then for any j ≥ 0, 

r+j ∞ �
�(Xi +br )/ar ⇒ N =

�
(�i ) = PRM(mγ ), (3.9)�g← 

γ 

i=1 i=1 
in M+(suppγ ) and, in fact, jointly for any k ≥ 0, 

r+j �
�(Xi +br )/ar ; 0 ≤ j ≤ k

�
⇒ (N, . . . , N)  (3.10) 

i=1 
in M+(suppγ ) × · · · ×M+(suppγ ). 

Proof We have Eq. 3.10 following from Eq. 3.9 since with respect to the vague 
distance d(·, ·) on M+(suppγ ) (see, eg. (Resnick 2007, page 51)) 

r r+j �
�(Xi +br )/ar ,

�
�(Xi +br )/ar 

�
⇒ 0d 

i=1 i=1 



� �

� �
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for any j >  0. To verify this, let f be positive and continuous with compact support 
on suppγ and from Eq. (3.14) of (Resnick 2007, p.51), it suffices  to show  

� r r+j �� � � �
E�
� 

f (Xi + br)/ar − f (Xi + br)/ar �
� → 0. 

i=1 i=1 
The difference is 

r+j j � � � �
E f (Xi + br)/ar = E f (Xi + br)/ar 
i=r+1 i=1 

and assuming the support of f is a compact set K in suppγ , this is bounded above by 

sup f (x)jP  [X1   arK − br ] →  0, 
x≥0 

since for x   K , arx − br converges to the left endpoint of F , and, under (3.3), there 
cannot be an atom at this left endpoint. 

The result in Eq. 3.9 follows by a small modification of the proof of Theorem 5.3 
in (Resnick 2007, p.138) since (3.3) is equivalent to Eq. 3.6. 

Now we turn to R∞-convergence of the rth maximum sequence. Continue to sup-
pose (3.3). Without normalization, the sequence M(r) converges to a sequence all of 
whose entries are the left endpoint of F . In order to get M(r) to converge, we must 
have Mr

(r) = ∧ri=1Xi converge and this helps explain why a domain of attraction 
condition for minima is relevant. The condition (3.3) produces a non-trivial limit. 

Proposition 3.4 Suppose the domain of attraction condition (3.3) holds. Then in R∞ , 

(r) 
M(r) + br M + br � �

r+j= , j  ≥ 0 ⇒ gγ 
←(�l), l ≥ 1 (r →∞), (3.11) 

ar ar 

where {�l, l  ≥ 1} are the points of a homogeneous Poisson process on R+. 

Proof Fix j ≥ 0 and observe for x   suppγ , 

(r) r+j r+j �M + br � �� � �� �
r+j 

>x  = �(Xi +br )/ar (x, ∞) ≥ r = �(Xi +br )/ar ((−∞, x])≤j ar 
i=1 i=1 

and therefore 
(r) r+j �M � �� �+ brr+j ≤ x = �(Xi +br )/ar ((−∞, x]) > j  . 
ar 

i=1 
For a non-decreasing sequence {xj } of real numbers in suppγ , 

k 
r
(r) 
+j  � k �r+j  ���M + br � �

P ≤ xj = P �(Xi +br )/ar ([−∞, xj ]) > j  
ar

j=0 j=0 i=1 



 

�



�

�
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and applying (3.10) yields that the RHS converges to 

k � ∞ �
P 

�
[N((−∞, xj ]) > j ] = P 

�
�g←(�i )(−∞, xj ] > j ; j = 0, . . . , k
γ 

j=0 i=1 
� ←= P g (�j+1) ≤ xj ; j = 0, . . . , k  .γ 

This yields the announced result (3.11). 

To summarize: Without normalization, the random set consisting of the range of 
M(r) converges to the deterministic limit consisting of the support of F . To get a ran-
dom limit requires the minimum domain of attraction condition and then the centered 
and scaled range converges to a limit Poisson process. Likewise, convergence in dis-
tribution of the R∞-valued random elements M(r) as r → ∞ requires the minimal 
domain of attraction condition. 

4 Continuous time rth-order extremal processes 

This section transitions to continuous time problems. The treatment is parallel to 
what we gave for discretely indexed processes but here the processes are generated by 
two-dimensional Poisson processes on R+ ×R and correspond to rth order extremal 
processes. One example of an rth order extremal process is obtained by taking the 
rth largest jump of a Lévy process up to time t > 0. 

The continuous time case differs from the discrete index case, in that there are 
always infinitely many values below your present position. This necessitates differ-
ences in treatment. In continuous time we obtain modifications of Brownian motion 
limits whereas in discrete time we obtain Poisson limits for the rth order extremes. 

The setup is as follows. Given a infinite measure  (·) on an interval (� , u ) 
satisfying −∞ ≤ �  < u  ≤ ∞,  (� , u ) = ∞ and Q(x) :=  (x, u ) <  ∞ 
for �  < x  < u . Let  �

N = �(tk,jk), (4.1) 
k 

be Poisson random measure on R+ × (� , u ), with mean measure Leb × , where  
Leb(·) is Lebesgue measure on R+. Recall �(t,x)(·) is a Dirac measure with mass 
1 at the point (t, x). Sometimes we write (tk, jk)   supp(N) to indicate the point 
(tk, jk) is charged by N . We assume �  and u  are not atoms of   and in fact, to 
make results most elegant we assume  (·) is atomless. (Otherwise, results would be 
stated in terms of simplifications of point processes; see Engelen et al. (1988).) Our 
assumptions mean that 

(1) The function Q(x) satisfies Q(u ) = 0 and  Q(� ) = ∞ so Q : (� , u ) → 
(0,∞) and Q(x) is non-increasing. �

(2) For any t >  0 and  u  ≥ x > �  : N �[0, t] × (x, u ) <∞ almost surely. 
(3) For any t >  0 and  u  ≥ x > �  : N [0, t] × (� , x] = ∞ almost surely. 

Traditionally, the (first-order) extremal process is defined by Resnick (2008), 
Deheuvels (1983), Deheuvels (1982), Dwass (1974), Dwass (1966), Dwass (1964), 



�

� �

�

�

�
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Resnick (1975), Resnick and Rubinovitch (1973), Resnick (1974), Shorrock (1975), 
and Weissman (1975), 

Y (t)  = Y (1)(t) = jk, 0 < t <  ∞, 
tk ≤t 

the largest jk whose tk coordinate is at or before time t . Alternatively we may write 

Y (t)  = inf{x > �  : N
�[0, t]×(x, u ) = 0} = inf{x > �  : N

�[0, t]×(x, u ) < 1}. 
We develop the analogs of Propositions 3.2 and 3.4 as r → ∞ for the continuous 
time rth order extremal process Y (r) := {Y (r)(t), 0 < t <  ∞} defined as, 

Y (r)(t) := inf{x > �  : N
�[0, t] × (x, u ) < r}, t >  0. (4.2) 

This means for t >  0, u  ≥ x > � , 
{Y (r)(t) > x} = {N�[0, t] × (x, u ) ≥ r}, 

and therefore, 
{Y (r)(t) ≤ x} = {N�[0, t] × (x, u ) < r}. (4.3) 

Alternative ways of considering Y (r) are in (Engelen et al. 1988). 
What is the behavior of {Y (r), r  ≥ 1}, considered as a sequence of random ele-

ments of c` ag space D(� , u ), as  r → ∞? Unlike in Section 3.3, here there areadl` 
always infinitely many points below your current position and thus the left tail con-
dition (3.6) used for  M(r) must be different when considering Y (r). We analyze the 
range of Y (r) and for the weak limit behavior of Y (r), instead of relying on Poisson 
behavior, we rely on asymptotic normality. 

of Y (r) 4.1 The range Rr 

Let Rr be the unique values in the set {Y (r)(t), t > 0}. As in the discrete time case 
(3.1), we have 

r � � �
Rr = jk : (tk, jk)  supp(N), N([0, tk] × [jk, u )) = p . (4.4) 

p=1 

To verify (4.4) suppose x   Rr . There exists t >  0 such that Y (r)(t) = x, and 
therefore there exists (tk, x)   supp(N) such that tk ≤ t . If  N([0, tk] × [x, u )) > r , 
then Y (r)(t) > x, giving a contradiction. Thus x is in the right side of Eq. 4.4. 
Conversely, suppose jk satisfies that there exists tk such that (tk, jk)  supp(N) and 
N([0, tk] × [jk, u )) = p for some p ≤ r . Then there exists t > tk such that 
N
�
(tk, t] × [jk, u ) = r − p and thus Y (r)(t) = jk . Therefore, jk belongs to the 

left side of Eq. 4.4. Note that the sets (s, t] × [j, u ) are all continuity sets of the 
intensity and therefore t → N((tk, t] × [jk, u )) jumps by 1 with probability one. 

When   is atomless, the range of Y (t)  = Y (1)(t) is known to be a Poisson process 
with mean measure determined by the monotone function S(x) := − log Q(x) = 
− log  (x, u ), x > � . This is discussed, for example, in (Resnick 2008, page  
183). In fact, from (Engelen et al. 1988, Theorem 6.2, page 234), the p-records of 
N are iid in p, and each sequence of p-records forms PRM(S). (A p-record of N 
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is a point jk such that there exists tk making (tk, jk)   supp(N) and N([0, tk] ×
[jk, u )) = p.) This and Eq. 4.4 allow us to conclude that Rr is a Poisson process 
with mean measure rS(·). This achieves the continuous time analog of the discrete 
time discussion at the beginning of Section 3.2, and without any normalization we 
have 

Rr ⇒ supp(S), (r →∞), 
in the Fell topology of closed subsets of (� , u ). 

Paralleling the discrete time analysis, we proceed to obtain a non-degenerate limit 
for Rr . We have to be more careful in the continuous case. The reason is that Rr 
is PRM with mean measure rS(·) and S is Radon on (� , u ), and it may allocate 
infinite mass to a neighborhood of both �  and u . Recall S(x) satisfies S(� ) = 
−∞ and S(u ) = ∞. 

Assume without loss of generality that �  < 0 < u . (If this is not the case, 
choose an arbitrary point between �  and u .) We make a treatment parallel to the 
discrete one by splitting the Poisson points of Rr into those above 0 and those below. 
So write �

= R+ R−Rr r r 

where R+ are the positive Poisson points of Rr and R− are the negative points of Rr . r r 
The two Poisson processes R± are independent because their points are in disjoint r 
regions. Define the two non-decreasing functions on R+, 

+S (x) = S(0, x] = S(x) − S(0), 0 < x  ≤ u  (4.5) 
−S (x) = S[−x, 0) = S(0) − S(−x), 0 < x  ≤ −� . (4.6) 

Assume there exist a ±(t) > 0, b±(t)  R and infinite Radon measures S∞± on R+ 
such that as t →∞, 

tS+(a+(t)x − b+(t)) → S∞+ (x), (4.7) 

tS−(a−(t)x − b−(t)) → S∞− (x). (4.8) 

¯The form of S∞± is determined by defining probability distribution tails H ±(x) by 

¯ −S+(x) H +(x) = e , 0 < x  < u , (4.9) 
−S−(x) H ¯ −(x) = e , 0 < x <  −� . (4.10) 

−S±(0)Note H ¯ ±(0) = e = e −0 = 1 and  H̄+(u ) = e −S+(u ) = e −∞ = 0 and  
H ¯ −(−� ) = 0, similarly. Then, as in the discussion following (3.3), we find for 
γ ±  R that 

−S±(x) e = Gγ ±(−x), 
where Gγ (x) has a form given after (3.5). Note, if we want 

a +(t) = a −(t) and b+(t) = b−(t) 
up to convergence of types, we would need (Resnick 1971), −�  = u  and 

−H̄+(x) ∼ H̄ (x) (x → u ). 

We now summarize. 



 

�
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Theorem 4.1 The two Poisson processes R± are independent with Rr = R+ ∪R− 
r r r 

where R+ has mean measure rS+ on R+ and −R− has mean measure rS− on R+ so r r 
that R− are points on (−∞, 0). As r →∞, the range centered and scaled converges r 
to a limiting Poisson process, 

R+ −R− � �+ b+(r) + b−(r) r r ∞, −R− , ⇒ R+ ∞ , a+(r) a−(r) 

where the limits are independent Poisson processes on R+ with mean measures S∞± . 
So if Eqs. 4.7 and 4.8 hold, centering positive and negative range points appropri-
ately leads to a limiting Poisson process such that positive points have mean measure 
S∞+ (·) and negative range points made positive by taking absolute values have mean 
measure S∞− (·). 

4.2 Finite dimensional convergence of Y (r) as random elements of D(��, u�) 

In this subsection, we give a left-tail condition on  (·) guaranteeing finite dimen-
sional convergence of Y (r) to a transformed Brownian motion. 

Suppose there exist normalizing functions a(r) > 0, b(r)    R, and a non-
decreasing limit function h(x)  R with at least two points of increase such that for 
a(r)x + b(r)  (� , u ), 

�
r −Q a(r)x + b(r) 

lim √ = h(x). (4.11) 
r→∞ r 

Implications: 
√ 

(1) If we divide in Eq. 4.11 by r instead of r , the limit will be 0 and therefore, 
�

Q a(r)x + b(r) ∼ r, (r →∞). (4.12) 
�

Therefore, since r → ∞, we must have that Q a(r)x + b(r) → ∞ and 
(� , u ) � a(r)x + b(r) → � . 

(2) For any t >  0, 
� � �r − tQ  a(r/t)x + b(r/t) r/t −Q a(r/t)x + b(r/t) √ = t √ √ 

r r/t t √ → th(x), (r →∞). (4.13) 
√ √ √ √ 

(3) If we write r −Q = ( r − Q)( r + Q) and use Eq. 4.12, we get  

√ ! 1 
r − Q(a(r)x + b(r)) → h(x). (4.14)

2 

Remember that Q is non-increasing and define a probability distribution func-√ 
tion G(x) by G(x) := exp{− Q(x)}, so that  G concentrates on (� , u ). 
Then exponentiate in Eq. 4.14 to get 

√ √ 1 r − Q(a(r)x+b(r)) → e 2 h(x) e e , (r  →∞) 



�
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√ 
ror, after a change of variables s = e , 

√ 
1� 2 2 − Q(a((log s)2)x+b((log s)2)) → e 2 h(x) sG a((log s) )x + b((log s) ) = se , 
(4.15)√ 

as s → ∞. So we conclude that G(x) := e − Q(x) is in a domain of attraction 
of an extreme value distribution for minima. This technique is essentially the 
same as the one used to study limit laws for record values in Resnick (1973) or  
Resnick (2008). 

(4) Form of h(x): As we saw following (3.6), if exp{ 12 h(x)} plays the role of g(x) 
then h(x) must be of the form 

1 
2 h(x) = − log Gγ (−x), e 

where Gγ is an extreme value distribution for maxima of the form 

Gγ (x) = exp{−(1 + γ x)−1/γ }, γ   R, 1 + γ x  >  0. 

So 
�

1 −
γ 
1 log(1 − γ x),  if γ �= 0, 1 − γ x  >  0,

h(x) = (4.16)
2 x, if γ = 0, x   R. 

Observe that h : suppγ → R and h← : R → suppγ . Recalling the definition of 
suppγ from Eq. 3.7, we have  

⎧
⎪ (− 1 ⎨ |γ | , ∞), if γ <  0, 

1suppγ = {x  R : 1 − γ x  >  0} =  (−∞,
γ | ), if γ >  0, 

⎪ |
⎩
R, if γ = 0. 

We apply these findings to obtain a marginal limit distribution for Y (r)(t) under 
the left tail condition. Assume (4.11). We show that, for fixed t , Y (r)(t) has a limit 
distribution as r → ∞, after centering and norming. This relies on an elementary 
fact: if {Nn} is a family of Poisson random variables with E(Nn) →∞ then 

Nn − E(Nn)√ ⇒ N(0, 1), (n →∞). (4.17)
Var(Nn) 

From Eq. 4.3, we have  

Y (r)(t) − b(r/t) 
P ≤ x

� 
= P(N([0, t] × (a(r/t)x + b(r/t), ∞)) < r) 

a(r/t) 
N([0, t] × (a(r/t)x + b(r/t), ∞)) − tQ(a(r/t)x + b(r/t)) = P √ 

r 
�r − tQ(a(r/t)x + b(r/t)) 

< √ . 
r 

√ 
From Eq. 4.12, r is asymptotic to the standard deviation of the Poisson random 
variable and so the left side random variable converges to a N(0, 1) random variable. 



 �



  

�

�
�

� �
� �

�
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√ 
Using (4.13), the right side converges to th(x). We therefore conclude that under 
the left tail condition (4.11), for any fixed t >  0, 

Y (r)(t) − b(r/t) � �√ 
lim P ≤ x = � th(x)  , x   suppγ , (4.18) 
r→∞ a(r/t) 

where �(x) is the standard normal cdf. 
Now we can prove the following finite dimensional convergence. 

Proposition 4.2 Assume (4.11) holds with h(x) given in Eq. 4.16. Let  {B(t), t ≥ 0}
be standard Brownian motion. Then as r →∞, 

�Y (r)(t) − b(r/t) B(t) ⇒ h← , (4.19)
a(r/t) t 

in the sense of convergence of finite dimensional distributions for t >  0. 

Proof We illustrate the proof by showing bivariate pairs converge for two values of 
t . So suppose 0 < t1 < t2 and x1 < x2 are in suppγ and we show as r →∞, 

� � �Y (r)(ti) − b(r/ti) ← B(ti)P ≤ xi ; i = 1, 2 → P h ≤ xi ; i = 1, 2 
a(r/ti) ti �= P B(ti) ≤ tih(xi); i = 1, 2 . (4.20) 

We express the statements about Y (r) in terms of the Poisson counting measure and 
consider: 
# � $
N �[0, t1] × (a(r/t1)x1 + b(r/t1), ∞) 
N 
#
[0 
� 
, t2] × (a(r/t2)x2 + b(r/t2), ∞) 

� $
N [0 � , t1] × (a(r/t1)(x1, x2] + b(r/t1), ∞) + � N [0, t1] × (a(r/t1)x2 + b(r/t1), ∞)= 

# 
N [0, t  

$ 
1] × (a(r/t2)x2 + b(r/t2), ∞) +N (t1, t2] × (a(r/t2)x2 + b(r/t2), ∞) 

N1 +N2= 
N3 +N4 

. 

Consider the four terms Ni, i  = 1, . . . ,  4, in turn. 

(1) The term N1 appropriately normed converges to 0: 

N
�[0, t1]×(a(r/t1)(x1, x2] + b(r/t1), ∞) − t1 (a(r/t1)(x1, x2] + b(r/t1))√ ⇒ 0. 

r 
(4.21) 

The reason is that the centering is 

t1 (a(r/t1)(x1, x2]) t1Q(ax1 + b) − t1Q(ax2 + b)√ = √ 
r r 

r − t1Q(ax2 + b) r − t1Q(ax1 + b) = √ − √ 
r r √ → t1(h(x2) − h(x1)) > 0. 





�

�

�

�

�

�

�

⊥
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√ √ 
So the left side of Eq. 4.21 is of the form (Nr −λr)/ r where λr/ r → c >  0 
and thus 

√ 
r
�

Var (Nr − λr )/ = λr /r → 0, 

which verifies the convergence to 0 in Eq. 4.21. 
(2) The term N2 becomes asymptotically normal. Let Z1 be a standard normal 

random variable and apply (4.17) and  (4.12) to get  

N
�[0, t1]×(a(r/t1)x2 + b(r/t1), ∞) − t1Q(a(r/t1)x2 + b(r/t1)) √ √ ⇒ t1Z1. 

r 

(3) For N3, despite its dependence on the variable t2, we also find 

N
�[0, t1]×(a(r/t2)x2 + b(r/t2), ∞) − t1Q(a(r/t2)x2 + b(r/t2)) √ √ ⇒ t1Z1. 

r 

This result uses a combination of the reasoning that was used for N1, N2. 
(4) The term N4 is independent of N1, N2, N3 so there is a standard normal variable 

Z2 ⊥ Z1 and 

N
�
(t1, t2] ×  (a(r/t2)x2 + b(r/t2), ∞) − (t2 − t1)Q(a(r/t2)x2 + b(r/t2))√ 

r √ ⇒ t2 − t1Z2. 

We conclude from this carving that 

�[0, t1] ×  (a(r/t1)x1 + b(r/t1), ∞) − t1Q(a(r/t1)x1 + b(r/t1))√
⎛ 

⎜
⎜
⎝ 

⎞ 

⎟
⎟
⎠ 

N 

r �[0, t2] ×  (a(r/t2)x2 + b(r/t2), ∞) − t2Q(a(r/t2)x2 + b(r/t2))√ 
N 

r 
√ 
t1Z1√ √

# $

⇒ , 
t2 − t1Z2t1Z1 + 

as r →∞. Use (4.3) to write, 

P

# 
⎛ 

⎜
⎜
⎝ 

Y (r)(t1) − a(r/t1) 

b(r/t1) 
Y (r)(t2) − a(r/t2) 

⎞ 

⎟
⎟
⎠ ≤

# $$
x1 
x2 

b(r/t2) 
⎛ 

⎜
⎜
⎝ 

N
�[0, t1]×(a(r/t1)x1 + b(r/t1), ∞) − t1Q(a(r/t1)x1 + b(r/t1))√

⎞ 

⎟
⎟
⎠ 

#
r =P 

N
�[0, t2]×(a(r/t2)x2 + b(r/t2), ∞) − t2Q(a(r/t2)x2 + b(r/t2))√ 

r 



�

�
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≤ 

⎛ 

⎜
⎜
⎝ 

r − t1Q(a(r/t1)x1 + b(r/t1))√ 
r

$ 
⎞ 

⎟
⎟
⎠ 

�√ 

r − t2Q(a(r/t2)x2 + b(r/t2))√ 
r √ √ 

t1Z1 ≤ t1h(x1), t1Z1 + t2 − t1Z2 ≤ t2h(x2) (as r →∞)→ P 

= P �B(t1) B(t2)≤ h(x1), ≤ h(x2) 
t1 t2 

←�B(t1) ←�B(t2) = P h ≤ x1, h  ≤ x2 . 
t1 t2 

This verifies (4.20). 

5 Final thoughts 

The results of this paper suggest some obvious questions the answers to which have 
so far eluded us. Is there a jump process limit – presumably some sort of extremal 
process – in Eq. 4.19 corresponding to some sort of Poisson limit regime as opposed 
to the Brownian motion limit regime? In Proposition 4.2 is a stronger form of con-
vergence – say in the J1-topology – possible? And so far, the mathematics of proving 
in a nice way that {Y (r), r  ≥ 1} is Markov in the càdlàg space D(0, ∞) has not 
cooperated. 
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