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Abstract. Preferential attachment is widely used to model power-law behavior of degree 
distributions in both directed and undirected networks. In a directed preferential attach-
ment model, despite the well-known marginal power-law degree distributions, not much 
investigation has been done on the joint behavior of the in- and out-degree growth. Also, 
statistical estimates of the marginal tail exponent of the power-law degree distribution often 
use the Hill estimator as one of the key summary statistics, even though no theoretical jus-
tification has been given. This paper focuses on convergence of the joint empirical measure 
for in- and out-degrees and proves the consistency of the Hill estimator. To do this, we 
first derive the asymptotic behavior of the joint degree sequences by embedding the in- and 
out-degrees of a fixed node into a pair of switched birth processes with immigration and 
then establish the convergence of the joint tail empirical measure. From these steps, the 
consistency of the Hill estimators is obtained. 
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1. Introduction. 

The preferential attachment model generates a growing sequence of random graphs based 
on the assumption that popular nodes with large degrees attract more edges. Nodes and 
edges are added to the graph following probabilistic rules. Such mechanism provides a 
basis for studying the evolution of social networks, collaborator and citation networks, as 
well as recommender networks, and is applicable to both directed and undirected graphs. 
Mathematical formulations of the undirected preferential attachment model are available in 
[2, 7, 22], and those of the directed model can be found in [3, 13]. This paper only considers 
the directed model where at each stage, a new node is born and either it points to one of the 
existing nodes or one of the existing nodes attaches to the new node. Results on the degree 
growth in the undirected case are investigated in [1, 27]. 
Empirical studies on social network data often reveal that in- and out-degree distribu-

tions marginally follow power laws. Theoretically, this is also true for linear preferential 
attachment models, which makes preferential attachment appealing in network modeling; 
see [3, 12, 13] for references. Also, the empirical joint degree frequency converges to the 
probability mass function (pmf) of a pair of limit random variables that are jointly regularly 
varying (cf. [13, 19, 20, 26]). However, questions related to joint degree growth and index 
estimation still remain unresolved. In this paper, we focus on three main problems: 
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(1) For a fixed node in a linear preferential attachment graph, what is the joint behavior 
of in- and out-degree as the graph size grows? 

(2) What are the convergence properties of the tail empirical joint measure of in- and 
out-degrees indexed by node? 

(3) When estimating the marginal power-law indices of in- and out-degree, can we use 
the Hill estimator as a consistent estimator? 

What is the justification for interest in Hill estimation of power-law indices for net-
work data? Repositories of large network datasets such as KONECT (http://konect.uni-
koblenz.de/, [14]) provide summary statistics for all the archived network datasets and among 
the summary statistics are estimates of degree indices computed with Hill estimators, despite 
the fact that evidence for Hill estimator consistency is scant for network data [27]. 
Another justification is robust parameter estimation methods in network models based 

on extreme value techniques. In [23], we couple the Hill estimation of marginal degree 
distribution tail indices with a minimum distance threshold selection method introduced in 
[4] and compare this method with the parametric estimation approaches used in [24]. The 
Hill estimation is more robust against modeling errors and data corruptions. Therefore, an 
affirmative answer to the third question helps justify all of these inference methodologies. 
In the directed case, consistency of the two marginal Hill estimators results from resolving 

the first two questions, since in a similar vein to [27], we consider the Hill estimator as a 
functional of the marginal tail empirical measure. So convergence results of marginal tail 
empirical measures lead to the consistency of Hill estimators by a mapping argument. 
To answer the first question about degree behavior of fixed nodes as graph size grows, we 

mimic in- and out-degree growth of a fixed node using pairs of switched birth processes with 
immigration (SBI processes). The SBI processes use Bernoulli switching between pairs of 
independent birth processes with immigration (BI processes). We embed the directed network 
growth model into a sequence of paired SBI processes. Whenever a new node is added to the 
network, a new pair of SBI processes is initiated. Using convergence results for BI processes 
(cf. [17, Chapter 5.11], [21, 27]), we give the joint limits of the in- and out-degrees of a 
fixed node as well as the joint maximal degree growth. Proving the convergence of the tail 
empirical joint measure in the second question requires showing concentration results for 
degree counts compared with expected degree counts. With embedding techniques, we prove 
the limit distribution of the empirical joint degree frequencies in a way that is different from 
the one used in [20], and then justify the concentration results. 
Our paper is structured as follows. In the rest of this section, we review background 

on the tail empirical measure and Hill estimator. Section 2 sets up the linear preferential 
attachment model and formulates the power-law phenomena in network degree distributions. 
Section 3 summarizes facts about BI processes and introduces the SBI process, which is the 
foundation of the embedding technique. We analyze the joint in- and out-degree growth in 
Section 4 by embedding it into a sequence of paired SBI processes and derive convergence 
results of the in- and out-degrees for a fixed node. Results on the convergence of the joint 
empirical measure are given in Section 5 and the consistency of Hill estimators for both in-
and out-degrees is proved in Section 6. Useful concentration results are collected in Section 7. 

https://koblenz.de
http://konect.uni
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1.1. Background. Our approach to the Hill estimator considers it as a functional of the 
tail empirical measure so we start with necessary background and review standard results 
(cf. [18, Chapter 3.3.5 and 6.1.4]). 

1.1.1. Non-standard regular variation. Let M+([0, ∞]2\{0}) be the set of Radon measures on 
[0, ∞]2+ \{0}. Then a random vector (X, Y ) is non-standard regularly varying on [0, ∞]2 \{0}+ 
if there exist scaling functions bi(t) →∞, i = 1, 2 such that as t →∞, �� � � 

X Y v
(1.1) tP , ∈ · −→ ν(·), in M+([0, ∞]2 \ {0}),

b1(t) b2(t) 

v
where ν(·) ∈ M+([0, ∞]2 \{0}) is called the limit or tail measure [19, 20], and “−→” denotes 
the vague convergence of measures in M+([0, ∞]2 \ {0}). The phrasing in (1.1) implies the 
marginal distributions have regularly varying tails. 

1.1.2. Hill Estimator. For x ∈ (0, ∞], define the measure �x(·) on Borel subsets A of (0, ∞] 
by ( 

1 x ∈ A,
�x(A) = for A ∈ E . 

0 x ∈/ A, 

Let M+((0, ∞]) be the set of non-negative Radon measures on (0, ∞]. A point measure m 
is an element of M+((0, ∞]) of the form X 
(1.2) m = �xi . 

i 

For {Xn, n ≥ 1} iid and non-negative with common regularly varying distribution tail 
F ∈ RV−ι, ι > 0, there exists a sequence {b(n)} satisfying P [X1 > b(n)] ∼ 1/n, such that 
for any kn →∞, kn/n → 0, X1 n 

(1.3) �Xi/b(n/kn) ⇒ νι, in M+((0, ∞]),
kn i=1 

where the limit measure νι satisfies νι(y, ∞] = y−ι , y > 0. 
Define the Hill estimator Hk,n based on k upper order statistics of {X1, . . . , Xn} as [10] 

kX1 X(i)
(1.4) Hk,n := log ,

k X(k+1)i=1 

where X(1) ≥ X(2) ≥ . . . ≥ X(n) are order statistics of {Xi : 1 ≤ i ≤ n}. In the iid case there 
are many proofs of consistency [5, 6, 9, 15, 16]: For k = kn →∞, kn/n → 0, we have 

P
(1.5) Hkn,n −→ 1/ι as n →∞. 

The treatment in [18, Theorem 4.2] approaches consistency by showing (1.5) follows from 
(1.3) and we follow this approach for the network context where the iid case is inapplicable. 
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1.1.3. Node degrees. The next section constructs a directed preferential attachment model, � � 
Din(n), Doutand gives behavior of v v (n) , the in- and out-degrees of node v at the nth stage of 

construction. These degrees when scaled by appropriate powers of n (see (4.12)) have limits� � 
Din(n), Doutand Theorem 5.4 shows that the degree sequences v v (n) have a joint tail 

1≤v≤n 
empirical measure 

1 �(1.6) 
X 

�� 
Din(n)/b1(n/kn),Dout(n)/b2(n/kn)v vkn v 

that converges weakly to some limit measure in M+([0, ∞]2 \ {0}), where b1(n), b2(n) are 
appropriate power law scaling functions and kn is some intermediate sequence such that 

kn/n → 0, kn →∞, as n →∞. 

It also follows from (1.6) that for some tail indices ιin, ιout, and intermediate sequence kn, X1 
(1.7) �Dv 

in(n)/b1(n/kn) ⇒ νιin , in M+((0, ∞]),
kn X v 

1 
(1.8) �Dv 

out(n)/b2(n/kn) ⇒ νιout , in M+((0, ∞]). 
kn v 

This leads to consistency of the Hill estimator for ιin and ιout. 

2. Preferential Attachment Models. 

2.1. Model setup. Consider {G(n), n ≥ 1}, a growing sequence of preferential attachment 
graphs. The graph G(n) consists of n nodes, denoted by [n] := {1, 2, . . . , n}, and n directed 
edges; the set of edges of G(n) consisting of ordered pairs of nodes in [n] is denoted by E(n). 
The initial graph G(1) consists of one node, labeled node 1, with a self loop. Thus node 1 
has in- and out-degrees both equal to 1. For n ≥ 1, we obtain a new graph G(n + 1) by 
appending a new node n + 1 and a new directed edge to the existing graph G(n) according to 
probabilistic rules described below. For v ∈ [n], (Dv 

in(n), Dv 
out(n)) are the in- and out-degree 

of node v in G(n). The direction of the new edge in G(n + 1) is determined by flipping a 
2-sided coin, which has probabilities α ∈ (0, 1) and 1 − α ≡ γ, such that given G(n) and two 
positive parameters δin, δout > 0 (not necessarily equal): 

• If the coin comes up heads with probability α, direct the new edge from the new 
node n + 1 to the existing node v ∈ [n] with probability depending on the in-degree 
of v in G(n): 

Din(n) + δin
(2.1) P(v ∈ [n] is chosen) = v . 

(1 + δin)n 

• If the coin comes up tails with probability γ, direct the new edge from an existing 
node v ∈ [n] to the new node n + 1, with probability depending on the out-degree of 
v in G(n): 

Dout 
v (n) + δout

(2.2) P(v ∈ [n] is chosen) = . 
(1 + δout)n 

We refer the two scenarios as α- and γ-schemes, respectively. 
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2.1.1. Model construction. One way to formally construct the model which helps with proofs 
is by using independent exponential random variables (r.v.’s). Define derived parameters 

α γ 
(2.3) cin = and cout = ,

1 + δin 1 + δout 
and for n ≥ 1, we will recursively define what corresponds to the in- and out-degree sequences 
as random elements of (N2

+)
∞ ,� � 

(Din(2.4) D(n) := (n), Dout(n)), . . . , (Din(n), Dout(n)), (0, 0), . . .1 1 n n 

with initialization � � 
(2.5) D(1) = (1, 1), (0, 0), . . . 

corresponding to assuming G(0) has a single node with a self loop. For k ≥ 1, the recursive 
definition of {D(n)} uses the variables 
(2.6) e in 

k := ((0, 0), . . . , (0, 0), (1, 0) , (0, 0), . . .),| {z } 
k-th entry 

out(2.7) ek := ((0, 0), . . . , (0, 0), (0, 1) , (0, 0), . . .),| {z } 
k-th entry 

and relies on competitions from exponential alarm clocks based on {E(n) 
: k ≥ 1, n ≥ 1},k 

a sequence of iid standard exponential r.v.’s. Assuming D(n) has been given, D(n + 1) 
requires D(n) and the 2n variables {E(n)

, j = 1, . . . , 2n} which are independent of D(n)j 

(which can be checked recursively) and we define 
(n) 

(n) E 
E := k , k = 1, . . . , n, k cin (Din 

k (n) + δin)cin+cout 

(n) 
(n) E 

E := k , k = n + 1, . . . , 2n.k cout (Dout 
k (n) + δout)cin+cout 

Conditionally on D(n), use the {E(n) 
: k = 1, . . . , 2n} to create a competition between k 

exponentially distributed alarm clocks. For δin, δout > 0 and n ≥ 1, define choice variables 
n 2nX X 
l1n o + l1n oLn+1 = (n) V2n (n) (n) V2n (n) . 

E < E , 1≤l≤n E < E ,n+1≤l≤2nl k=1,k 6=l k l k=1,k 6=l k 
l=1 l=n+1 

(n)
So Ln+1 is the index of the minimum of {E , 1 ≤ k ≤ 2n} indicating the winner of thek 
competition. Also, for n ≥ 1, define the Bernoulli random variable 

oBn+1 := 1nV n (n) V2n (n) = 1{Ln+1>n},E > Ek=1 k k=n+1 k 

and given D(n), we have 
in out in out(2.8) D(n + 1) = D(n) + (1 − Bn+1)e + (1 − Bn+1)eLn+1 

+ Bn+1eLn+1−n + Bn+1en+1 n+1. 

This increments the Ln+1-st pair by (1, 0) if Bn+1 = 0 and the (Ln+1 − n)-th pair by (0,1) 
if Bn+1 = 1; the first case corresponds to an increase of in-degree and the second case to an 
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increase of out-degree. The recursion also assigns to pair n+1 either (1, 0) or (0, 1) depending 
on the case. This construction expresses D(n + 1) as a function of D(n) and something 
independent, namely {E(n)

, j = 1, . . . , 2n} and therefore the process {D(n), n ≥ 1} is anj 

(N2
+)
∞-valued Markov chain. Also, because of the initialization (2.5), a simple induction 

argument applied to (2.8) gives the sum of the components satisfies X X 
Din Dout(2.9) j (n) = j (n) = n, n ≥ 1. 

j j 

Then using (2.3), (2.9) and standard calculations with exponential rv’s, we have for v ∈ [n], � � 
in outP D(n + 1) = D(n) + e + e |D(n)) = P(Ln+1 = v D(n)v n+1! 

2n̂ α(Din 
(n) (n) v (n) + δin)

(2.10) =P Ev < Ek D(n) = ,
(1 + δin)n 

k=1,k 6=v 

and likewise � � 
out inP D(n + 1) = D(n) + ev + en+1 D(n) = P(Ln+1 = n + v|D(n))! 

2n̂ γ(Dout 
(n) (n) v (n) + δout)

(2.11) =P E < E D(n) = .n+v k (1 + δout)n 
k=1,k 6=n+v 

These probabilities agree with the attachment probabilities (2.1), (2.2) in α- and γ-schemes, 
respectively. 

2.2. Power-law tails. Suppose G(n) is a random graph generated by the dynamics above 
after n steps. Let Ni,j (n) be the number of nodes in G(n) with in-degree i and out-degree 
j, i.e. X 
(2.12) Ni,j (n) := 1�� 

Din 
� � , 

(n),Dout(n) =(i,j) 
v∈[n] v v P P 

N inthen N in(n) := Ni,j (n) and N in (n) := (n) are the number of nodes in G(n) with i j >i k>i k 

in-degree equal to and strictly greater than i, respectively. A similar definition also appliesP P 
Noutto out-degrees: Nout(n) := Ni,j (n) and Nout(n) := (n).j i >j k>j k 

It is shown in [3, Theorem 3.2] using concentration inequalities and martingale methods 
that for as n →∞, 

Ni,j (n) P
(2.13) −→ pij , 

n 

where pij is a probability mass function (pmf) and [19, 20, 26] show that pij is jointly regularly 
varying and so is the associated joint measure. The analytical form of pij is given in [3], but 
later in Section 5.1, we give another proof using Section 4’s embedding technique. 
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From [3, Theorem 3.1], the scaled marginal degree counts Ni 
in(n)/n and Nj 

out(n)/n, i, j ≥ 
0, also converge: 

(2.14) 
N in Nout(n) P α (n) P γ0 in 0 out−→ p0 = , −→ p0 = , 

n 1 + cinδin n 1 + coutδout 
(2.15) � � 
N in −1(n) P Γ(i + δin) Γ(1 + δin + c ) αδin γi in in−→ pi = −1 + , i ≥ 1, 

n Γ(i + 1 + δin + cin ) Γ(1 + δin) 1 + cinδin cin 

(2.16) � � 
Nout −1(n) Γ(j + δout) Γ(1 + δout + c ) γδout αj P out out−→ pj = −1 + , j ≥ 1. 

n Γ(j + 1 + δout + cout) Γ(1 + δout) 1 + coutδout cout � � � � 
in outBoth pi and p are pmf’s and the asymptotic form follows from Stirling’s formula: 

i≥0 j j≥0 

−1in · i−(1+c pi ∼ CIN in ), i →∞, 
−1out · j−(1+c )pj ∼ COUT out , j →∞. P P

in in out outLet p = p and p = p be the complementary cdf’s and by Scheffé’s>i k>i k >j k>j k 

lemma as well as [22, Equation (8.4.6)], we have 

(2.17) 
N in −1 � � 

(n) P Γ(i + 1 + δin) Γ(1 + δin + c ) αδin γ>i in in−→ p>i := cin + , 
n Γ(i + 1 + δin + c − 

in
1) Γ(1 + δin) 1 + cinδin cin 

(2.18) � � 
Nout −1 

>j (n) P Γ(j + 1 + δout) Γ(1 + δout + cout) γδoutout α −→ p>j := −1 cout + , 
n Γ(j + 1 + δout + cout) Γ(1 + δout) 1 + coutδout cout 

so again by Stirling’s formula we get from (2.17) and (2.18) that 

in · i−ιininp ∼ C 0 · i−c −1 

=: C 0 , i →∞,>i IN IN 

out ∼ C 0 · j−c · j−ιoutoutp>j 

−1 

=: C 0 , j →∞.OUT OUT 

In other words, the marginal tail distributions of the asymptotic in- and out-degree sequences 
in a directed linear preferential attachment model are asymptotic to power laws with tail 

−1 −1indices ιin ≡ c out, respectively. in and ιout ≡ c 

3. Preliminaries: Switched Birth Immigration Processes. 

In this section, we introduce a pair of switched birth immigration processes (SBI processes). 
This lays the foundation for Section 4, where we embed the in- and out-degree sequences 
of a fixed network node into a pair of SBI processes and derive the asymptotic limit of the 
degree growth. 
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3.1. Birth immigration processes. We start with a brief review of the birth immigration 
process. A linear birth process with immigration (BI process), {Z(t) : t ≥ 0}, having lifetime 
parameter λ > 0 and immigration parameter θ ≥ 0 is a continuous time Markov process 
with state space N = {0, 1, 2, 3, . . .} and transition rate 

q Z = λk + θ, k ≥ 0.k,k+1 

When θ = 0 there is no immigration and the BI process becomes a pure birth process and 
in such cases, the process usually starts from 1. 
For θ > 0, the BI process starting from 0 can be constructed from a Poisson process and 

an independent family of iid linear birth processes [21]. Suppose that Nθ(t) is the counting 
function of homogeneous Poisson points 0 < τ1 < τ2 < . . . with rate θ and independent of 
this Poisson process we have independent copies of a linear birth process {ζi(t) : t ≥ 0}i≥1 

with parameter λ > 0 and ζi(0) = 1 for i ≥ 1. The BI process Z(t), t ≥ 0 is a shot noise 
process with Z(0) = 0 and for t ≥ 0, 

∞ NXθ(t)X 
(3.1) Z(t) := ζi(t − τi)1{t≥τi} = ζi(t − τi). 

i=1 i=1 

Theorem 3.1 modifies slightly the statement of [21, Theorem 5] summarizing the asymp-
totic behavior of the BI process. This is also reviewed in [27]. 

Theorem 3.1. For {Z(t) : t ≥ 0} as in (3.1), we have as t →∞, 

∞X 
a.s.−λtZ(t) −λτi(3.2) e −→ Wie =: σ 

i=1 

where {Wi : i ≥ 1} are independent unit exponential random variables satisfying a.s. for 
each i ≥ 1, 

Wi = lim e −tζi(t). 
t→∞ 

The random variable σ in (3.2) is a.s. finite and has a Gamma density given by 

1 θ/λ−1 −xf(x) = x e , x > 0. 
Γ(θ/λ) 

Remark 3.2. The form of σ in (3.2) and its Gamma density is justified in [21, 27]. For a 
BI process {Z 0(t)}t≥0 with Z 0(0) = j ≥ 1, modifying the representation in (3.1) gives 

j ∞X X 
Z 0(t) = ζi(t) + ζi(t − τi)1{t≥τi}. 

i=1 i=j+1 

a.s.−λtZ 0(t) j+θ/λ−1Therefore, e −→ σ0 where σ0 has a Gamma density given by g(x) = x e−x/Γ(j+ 
θ/λ), x > 0. 
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Process I(0)(t) I(1)(t) O(0)(t) O(1)(t) 
t = 0 0 1 1 0 
Rate (1 − p)(k + δ1) p(k + δ2) 

Table 1. Ingredients for a pair of switched BI processes. 

3.2. Switched birth immigration processes. A switched birth immigration (SBI) pro-
cess uses a Bernoulli choice variable to choose randomly from two independent BI processes 
with the same linear transition rates with one starting from 1 at t = 0 and the other starting 
from 0. A pair of SBI processes takes two SBI processes which are linked through the same 
Bernoulli choice variable. 
Suppose that J is a Bernoulli switching random variable with 

P(J = 1) = p = 1 − P(J = 0), 

and {I(0)(t) : t ≥ 0}, {I(1)(t) : t ≥ 0}, {O(0)(t) : t ≥ 0}, {O(1)(t) : t ≥ 0} are four independent 
BI processes (also independent of J) with I(0)(0) = O(1)(0) = 0, I(1)(0) = O(0)(0) = 1 and 
transition rates 

I(0) O(1) 
q = (1 − p)(k + δ1), q = p(k + δ2), for k ≥ 0,k,k+1 k,k+1 

I(1) O(0) 
q = (1 − p)(k + δ1), q = p(k + δ2), for k ≥ 1, δ1, δ2 > 0.k,k+1 k,k+1 � � 

See Table 1 for quick reminders. Then we construct a pair of SBI processes { I(J)(t), O(J)(t) : 
t ≥ 0} using five independent ingredients: � � � � � � 

I(0)(t), O(0)(t) I(1)(t), O(1)(t)(3.3) I(J)(t), O(J)(t) := (1 − J) + J , t ≥ 0. � � −ptO(J)(t)We then consider the convergence of the pair of SBI processes, e−(1−p)tI(J)(t), e , 
as t →∞. Write a Gamma random variable X with density fX (x) = baxa−1e−bx/Γ(a), x > 0 
and a, b > 0, as X ∼ Γ(a, b). Then from Theorem 3.1, Remark 3.2 and (3.3), we have with 
X(0), Y (0), X(1), Y (1) being four independent Gamma random variables and X(0) ∼ Γ(δ0, 1), 
Y (0) ∼ Γ(1 + δ1, 1), X(1) ∼ Γ(1 + δ0, 1), Y (1) ∼ Γ(δ1, 1), as t →∞, � � a.s.−ptO(J)(t)(3.4) e −(1−p)tI(J)(t), e −→ (1 − J)(X(0), Y (0)) + J(X(1), Y (1)) =: (X(J), Y (J)). 

Also, (X(J), Y (J)) has joint density 
δ0−1 −x δ1 e−y δ0 e−x δ1−1 −yx e y x y e 

(3.5) fX(J),Y (J) (x, y) = (1 − p) + p , x, y > 0. 
Γ(δ0) Γ(1 + δ1) Γ(1 + δ0) Γ(δ1) 

4. Embedding Process. 

In order to prove the weak convergence of the sequence of empirical measures in (1.6), we � � 
need to embed the in- and out-degree sequences { Din(n), Dout(n) , v ∈ [n], n ≥ 1} into av v 
process constructed from pairs of SBI processes, as specified in Section 3. The embedding 
idea is proposed in [1] and has been used in [27] to model two different undirected linear 
preferential attachment models. 
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4.1. Embedding. Here we discuss how to embed the directed network growth model into 
a process constructed from an infinite sequence of SBI pairs. 

4.1.1. Directed network model and SBI processes. The building blocks of the embedding 
procedure is an infinite family of independent BI processes � 

I1(t), O1(t), I
(0)(t), I(1)(t), Ov 

(0)(t), O(1)(t) : v ≥ 2, t ≥ 0 ,v v v 

defined on the same probability space and satisfying: 
(0) (0) (1) (1)

(i) (I1(0), O1(0)) = 1, (Iv (0), Ov ) = (0, 1) and (Iv (0), Ov (0)) = (1, 0), for each 
v ≥ 2. 

(ii) Any process labeled with an I is a BI process with transition rates 

I cin 
q = (k + δin), δin > 0,k,k+1 cin + cout 

and any process labeled with an O is a BI process with transition rates 

O cout 
q = δout > 0.k,k+1 (k + δout) 

cin + cout 
These hold for k ≥ 0 when v ≥ 2 and k ≥ 1 for I1, O1. 

On (N2)∞ , define n�� � o� 
Z(1) (1)

= {Z : t ≥ 0} := I1(t), O1(t) , (0, 0), . . . : t ≥ 0t n o 
(1) (1)

and the σ-algebra Ft := σ Zt : 0 ≤ s ≤ t so that Z(1) is strong Markov with respect 
(1) (1)

to {F }. Set T1 = 0 and define the stopping time T2 with respect to {F , t ≥ 0} ast t n o 
(1)

(4.1) T2 := inf t ≥ 0 : Zt jumps . 

Then T2 is the minimum of two independent exponential r.v.’s with means � �−1 � �−1 
cin cout

(1 + δin) and (1 + δout) . 
cin + cout cin + cout 

From (2.3), we have 
−(cin+cout)−1tP[T2 > t] = e , t > 0. 

Let J2 := 1{O1 jumps first} so that P[J2 = 1] = γ. Also, let Le 2 be index of the (I, O)-pair that� � 
jumps first at T2 which in this case is 1. However, note that Le 2, J2 determines which one of � � 
I1 and O1 will jump at T2, and T2 is independent of Le 2, J2 by the property of independent 

(1)
exponential r.v.’s (cf. [17, Exercise 4.45(a)]). In addition, we also have T2, Le 2, J2 ∈ FT2 

, 
(1)

that is, measurable with respect to FT2 
. 

(0) (0) (1) (1)
Now use the independent quantities J2, (I2 , O2 ), (I2 , O2 ) to define a pair of SBI pro-� � � �(J2) (J2) (J2) (J2)cesses (I2, O2) = (I , O as in (3.3). Let z2(t) := (0, 0), (I (t), O (t)), (0, 0), . . .2 2 2 2 

and n o 
Z(2) (2) (1)

= {Z : t ≥ 0} := Z + z2(t) : t ≥ 0 .t t+T2 



� 
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Define the σ-algebra n o_
(2) 

Z(2) (1)Ft+T2 
:= σ s : 0 ≤ s ≤ t FT2 

, 

so that Z(2) is strong Markov with respect to {F (2) 
, t ≥ 0}. Also, lett+T2 n o 

τ3 := inf t ≥ 0 : Z(2) 
t jumps , T3 := T2 + τ3, 

and J3 := 1n 
(J2) 

o . Denote the index of the (I, O)-pair that jumps
One of O1(T2 + ·), O2 (·) jumps first 

(1)F (1)
T2at T3 by Le 3 and write P (·) := P(·|FT2 

), Pz(Zt ∈ ·) := P(Zt ∈ ·|Z0 = z). Then by the 
strong Markov property, we have 

(1) � � � � 
F (2) (1)

P T2 Z ∈ · = P (1) Z + z2(t) ∈ · .tt Z +z2(0)T2 

(1) 

Therefore, with respect to PFT2 , τ3 is the minimum of 4 independent exponential r.v.’s� �−1 � �−1 � �−1 
cin cout cinwith means (I1(T2) + δin) , (O1(T2) + δout) , (J2 + δin) and 

cin+cout cin+cout cin+cout� �−1 
cout (1 − J2 + δout) . Note that (I1(T2), O1(T2)) = (2 − J2, 1 + J2). We then have the 

cin+cout 

following: 

F(1) 
−2(cin+cout)−1t(1) P T2 (τ3 > t) = e , t > 0. 

(1) (1) 
T2 T2(2) PF (J3 = 1) = γ and τ3 is independent of (Le 3, J3) with respect to PF . 

(2) (2)
(3) The random variables T3, Le 3, J3 ∈ F = F .T3 τ3+T2 

(0) (0)
Continue in this way to use the conditionally independent quantities J3, (I , O ) and� 3 3 
(1) (1) (J3) (J3)(I , O ) to define a pair of SBI processes (I3, O3) = I , O as in (3.3). In general,3 3 3 3 

for n ≥ 3, set �� � � �(n) (J2) (J2)Zt := I1(Tn + t), O1(Tn + t) , I2 (Tn − T2 + t), O2 (Tn − T2 + t) , � � � 
I(Jn). . . , n (t), On 

(Jn)(t) , (0, 0), . . . , t ≥ 0, n oW(n) 
Z(n) (n−1) (n)F := σ : 0 ≤ s ≤ t F , τn+1 := inf{t ≥ 0 : Zt jumps} and Tn+1 := Tn +t+Tn s Tn 

τn+1. Also, define 

• Jn+1 := 1n 
(Jk ) 

o , and 
One of O1(Tn + ·), Ok (Tn − Tk + ·), k = 2, . . . , n jumps first 

• Le n+1 is the index of the (I, O)-pair that jumps first among (I1(Tn + t), O1(Tn + 
t)), (Ik(Tn − Tk + t, Ok(Tn − Tk + t), k = 2, . . . , n. 

Note that with ⎛ ⎞ � �⎜ ⎟
I(Jn)zn(t) := ⎝(0, 0), . . . , (t), O(Jn)(t) , (0, 0), . . .⎠ ,| n {z n } 

n-th pair 
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(n) (n−1)
we have Zt = Zτn+t + zn(t). Using the strong Markov property gives! 

n� � X(n−1) (n) (1)
PFTn Z ∈ · = P (n−1) Z + .tt Z +zn(0) 

zk(t) ∈ · 
τn 

k=2 

(n−1)
Then with respect to FTn 

, τn+1 is the minimum of 2n independent exponential r.v.’s with 
means � �−1 � �−1 

cin cout
(I1(Tn) + δin) , (O1(Tn) + δout) , 

cin + cout cin + cout� �−1 � �−1 
cin (Jk) cout (Jk )(Ik (Tn − Tk) + δin) , (Ok (Tn − Tk) + δout) , k = 2, . . . , n. 

cin + cout cin + cout 

This implies: 
(n−1) 
Tn(1) The random variable τn+1 is independent of (Le n+1, Jn+1) with respect to PF . 

(2) The random variables Tn+1, Le n+1, Jn+1 ∈ F (n) 
.Tn+1 

Set τ2 := T2. Then from this construction follow properties of the distribution of {τn}n≥2 

and {Jn}n≥2. 

Lemma 4.1. Suppose {Tn}n≥1, {τn}n≥2 and {Jn}n≥2 are defined as above. Then: 

(i) The sequence {Jn} is independent of {τn}. 
(ii) The sequence {Jn} is a sequence of iid Bernoulli random variables with 

(4.2) P(Jn = 1) = γ = 1 − P(Jn = 0), n ≥ 2. 

(iii) The sequence {τn}n≥2 satisfies � � 
d En

(4.3) {τn+1 : n ≥ 1} = , n ≥ 1 ,
(cin + cout)−1n 

where {En : n ≥ 1} is a sequence of iid unit exponential random variables. So {Tn}
are the birth times of a linear birth process with birth rate (cin + cout)−1 . 

Proof. For brevity of notation, write λI1 = cin (I1(Tn)+ δin), λO1 = cout (O1(Tn)+ δout)n cin+cout n cin+cout 

and for 2 ≤ k ≤ n, n ≥ 2, 
cin (Jk)λIk 

n = (Ik (Tn − Tk) + δin), 
cin + cout 

cout (Jk)λOk 
n = (Ok (Tn − Tk) + δout). 

cin + cout 
At each Tn, n ≥ 2, we start a new pair of SBI processes (In(·), On(·)) with initial value 

(Jn, 1−Jn) and one of (Ik(·), Ok(·)), 1 ≤ k ≤ n−1 increases by (1−Jn, Jn). This corresponds 
in the network, for instance if Jn = 1, to one of the existing n−1 nodes having an out-degree 
increase by 1 and a new node n with in-degree 1 and out-degree 0. Therefore (cf. (2.9)), 

n nX X 
(Jk) (Jk)(4.4) I1(Tn) + Ik − Tk) = O1(Tn) + O (Tn − Tk) = n.(Tn k 

k=2 k=2 
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Hence, for n ≥ 2, tl > 0 and jl ∈ {0, 1} for l = 2, . . . , n + 1, ! " !# 
n+1 n\ (n−1) \ 

TnP [τl > tl, Jl = jl] = E PF τn+1 > tn+1, Jn+1 = jn+1, {τl > tl, Jl = jl 
l=2 l=2h i 

(n−1) 
Tn(4.5) = E 1T 

l
n 
=2{τl>tl,Jl =jl}P

F (τn+1 > tn+1, Jn+1 = jn+1) , 

(n−1)(n−1)
since (τl, Jl, l = 2, . . . , n) ∈ FTn 

. Also, we know that with respect to PFTn , τn+1 is the 
minimum of 2n independent exponential r.v.’s and Jn+1 is independent of τn+1. Therefore, 

(n−1) (n−1) (n−1) 
Tn Tn Tn(4.6) PF (τn+1 > tn+1, Jn+1 = jn+1) = PF (τn+1 > tn+1) P

F (Jn+1 = jn+1) . 

Note that ( 
n 

) 
(n−1) X� � 
TnPF (τn+1 > tn+1) = exp −tn+1 λI

n 
k + λO

n 
k 

� k=1 

(4.7) = exp −tn+1(cin + cout)
−1 n , 

and assuming jn+1 = 1, we have P n 
(n−1) λOk 

PF k=1 nTn(4.8) (Jn+1 = 1) = P n = γ. 
(λIk + λOk 

n n ) 

So (4.5) becomes (continuing to suppose jn+1 = 1), 
k=1 

! ! 
n+1 n\ � \ 

P [τl > tl, Jl = jl] = γ exp −tn+1(cin + cout)
−1 n P [τl > tl, Jl = jl] . 

l=2 l=2 

If jn+1 = 0, γ is replaced by α on the right side. This is sufficient for the proof of the 
Lemma. � 

4.1.2. Embedding. The following embedding theorem is similar to those proved in [1, 27] and 
summarizes how to embed in the paired SBI process constructions. 

Theorem 4.2. Suppose that {Tn}n≥1 and {Z(n) 
: t ≥ 0} are as defined in Section 4.1.1.t 

Then in ((N2)∞)∞ , n o 
{D(n), n ≥ 1} = 

d 
Z0

(n)
, n ≥ 1 . 

Proof. The proof relies on both {D(n), n ≥ 1} and {Z(n)
, n ≥ 1} being Markov chains with0 

the same transition probabilities. It is similar to that of [1, Theorem 2.1] and [27, Theorem 
2] which we now outline. 
Define ⎛ ⎞ 

de j (Jn) := ⎝(0, 0), . . . , (1 − Jn, Jn), (0, 0), . . . , (0, 0), (Jn, 1 − Jn), (0, 0), . . .⎠ | {z } | {z } 
j-th pair n-th pair 

Recall that Le n+1 is the index of the (I, O)-pair that jumps at Tn+1. Then we have 

(n+1) (n) (Jn+1)
(4.9) Z =Z + de Le 

n+1 
.0 0 
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(n+1) (n−1)
This expresses Z0 as a function of FTn 

-measurable random elements and random 
(n−1)

elements independent of FTn 
, namely: 

(n) (n−1)
(1) Z0 ∈ FTn 

; 
(n−1)

(2) Jn+1 which is independent of FTn 
(by Lemma 4.1; see (4.8)); 

(n−1)
(3) Le n+1 which is a function of (λIk + λOk , k = 2, . . . , n) ∈ F and conditionally onn n Tn 

(n−1) (n−1)F , 2n i.i.d exponential r.v.s which are independent of F .Tn Tn 

Hence, both {D(n), n ≥ 1} and {Z(n)
, n ≥ 1} are Markov on the state space (N2)∞ .0 

When n = 1, � 
(1) 

�� � � � 
Z0 = I1(0), O1(0) , (0, 0), . . . = (1, 1), (0, 0), . . . �� �� 

Din = 1 (1), D1
out(1) , (0, 0), . . . = D(1), 

so to prove equality in distribution for any n, it suffices to verify that the transition proba-
(n) (n+1)

bility from Z0 to Z0 is the same as that from D(n) to D(n +1) which is given in (2.10) 
and (2.11). In the SBI setup, applying Lemma 4.1 gives for any 2 ≤ v ≤ n, � � � � 

(n−1) (n−1)(n+1) (n) in outTn TnPF Z0 =Z0 + ev + en+1) = PF Jn+1 = 0, Le n+1 = v 

(Jv )cin (I
(Jv) − Tv) + δin) v (Tn ) + δincin+cout 
v (Tn I − Tv 

= = α ,
(cin + cout)−1n (1 + δin)n� � � � 

(n−1) (n−1) 

PF (n+1) (n) in out eTn TnZ0 =Z0 + en+1 + ev ) = PF Jn+1 = 1, Ln+1 = v 

(Jv )cout (Jv )(Ov (Tn − Tv) + δout) Ov (Tn − Tv) + δoutcin+cout = = γ . 
(cin + cout)−1n (1 + δout)n 

For 2 ≤ v ≤ n, this agrees with the transition probabilities in (2.10) and (2.11) respectively; 
the case for v = 1 is similar. � 

4.2. Asymptotic properties. With the embedding technique specified in Section 4.1, the 
asymptotic behavior of the in- and out-degree growth in a preferential attachment model 
can be characterized explicitly. These asymptotic properties then help us derive weak con-

(Jv ) (Jv )vergence of the empirical measure. For brevity of notation, we will write Iv , Ov as Iv, 
Ov, v ≥ 2, in the rest of this paper. 

4.2.1. Convergence of the in- and out-degrees for a fixed node. We first consider the asymp-
totic behavior of the in- and out-degrees for a fixed node, i.e. (Dv 

in(n), Dv 
out(n)) for a fixed 

v. To do this, we make use of the embedding results in Theorem 4.2, which translates the�� � 
convergence of the degrees to the setting of Iv(t − Tv), Ov(t − Tv) : t ≥ Tv . Results 

1≤v≤n 
are summarized in Theorem 4.3. 

Theorem 4.3. Suppose that {Tn : n ≥ 1} and {Jn : n ≥ 2} are as defined in Section 4.1.1. 
Then: 
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(i) The birth times {Tn}n≥1 satisfy that as n →∞, 
a.s.−(cin+cout)−1Tn(4.10) n · e −→ W and W ∼ Exp(1). 

(ii) Let (σ1 
in, σ1 

out) be a pair of independent Gamma random variables with densities 
δin e−x δout e−xx x 

fσin (x) = and fσout (x) = , x > 0, respectively, 
1 Γ(1 + δin) 1 Γ(1 + δout)� � 

σinand for each v ≥ 2, v , σv 
out have joint density 

δin−1 −x δout e−y δin e−x δout−1 −yx e y x y e 
(4.11) f� �(x, y) = α + γ , x, y > 0. 

σin,σout 
v v Γ(δin) Γ(1 + δout) Γ(1 + δin) Γ(δout) 

Then for a fixed v ≥ 1, we have, with W defined as in (4.10), !� � cin cout 

Din Dout σin − Tv σout − Tvcin+cout cin+cout(n) (n) e ev v v v(4.12) , ⇒ , n →∞. 
ncin ncout W cin W cout 

(n) = 0 = DoutAlso, setting Dv 
in 

v (n) for all v ≥ n + 1, we get as n →∞, !cin cout� � 
Din Dout σin − Tv σout − Tvcin+cout cin+cout(n) (n) e ev v v v(4.13) max , max ⇒ max , max . 

v≥1 ncin v≥1 ncout v≥1 W cin v≥1 W cout 

Here Tv, (σv 
in, σv 

out) and W are independent for all v ≥ 2. 

Remark 4.4. According to the embedding results in Theorem 4.2, (4.12) also implies that 
(1) (2)

there exists random variables Dv , Dv , v ≥ 1, on the space of (Dv 
in(n), Dv 

out(n))v≥1 satisfying 
cin cout(1) d − Tv (2) d − Tv = W −cin σin = W −cout σoutDv v e cin+cout and Dv v e cin+cout , v ≥ 1, such that as n →∞, � � 

Din Dout 
v (n) v (n) a.s. � 

D(1), D(2) 
� 

, −→ v v . 
ncin ncout 

Proof. (i) From Lemma 4.1(i), {Tn : n ≥ 1} are jump times of a pure birth process starting 
from 1 and transition rate 

qj,j+1 = (cin + cout)
−1j, j ≥ 1. 

Therefore, (4.10) follows from applying the known convergence results of linear birth pro-
cesses; see [17, Theorem 5.11.4] and [11, 28], among other sources. 

(ii) By Theorem 4.2, to show (4.12), it suffices to show that as n →∞, !cin cout� � 
σin − Tv σout − TvIv(Tn − Tv) Ov(Tn − Tv) a.s. v e cin+cout 

v e cin+cout 

(4.14) , −→ , , . 
ncin ncout W cin W cout 

With (4.10) available, we prove (4.14) by showing the convergence of � � cin cout− (t−Tv ) − (t−Tv )cin+coute Iv(t − Tv), e cin+cout Ov(t − Tv) , 
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as t → ∞. According to the construction of the processes { Iv(t − Tv), Ov(t − Tv) : t ≥� 
Tv }v≥1, we know that (I1(0), O1(0)) = (1, 1). Then applying the convergence result of a BI� � 
process in Remark 3.2, we have for independent (σ1

in, σ1
out) ∼ Γ(1 + δin, 1), Γ(1 + δout, 1) ,� � cin cout− t − t a.s. 

e cin+cout I1(t), e cin+cout Ov(t) −→ (σ1
in, σ1

out), t →∞. 

Moreover, it follows from (3.4) and (3.5) that � �cin cout− (t−Tv) − (t−Tv) a.s. 
cin+cout(4.15) e (t − Tv), e cin+cout (t − Tv) −→ (σin, σout), t →∞,Iv Ov v v 

with σv 
in and σv 

out having the joint density as in (4.11). 
Replacing t with Tn in (4.15) gives � � 

Iv(Tn − Tv) Ov(Tn − Tv) a.s. 
� 
σin − 

cin Tv − cout Tv 
� 

cin+cout cin+cout(4.16) , −→ e , σout e , as n →∞.cin cout v vTn Tn cin+cout cin+coute e 
Therefore, combining (4.10) and (4.16) gives (4.12). For v ≥ 2, the independence of (σv 

in, σv 
out) 

and Tv follows from the construction and the independence from W follows from [17, p. 443]; 
this completes the proof of (4.14). 

(iii) We verify (4.13) by showing that as n →∞, 
(4.17)� � � � 

cin 

max , max −→ max e cin+cout , max e cin+cout . 
Iv(Tn − Tv) Ov(Tn − Tv) 

σin Tv σout − cout Tva.s. − 
cin cout v v 

v≥1 Tn v≥1 Tn v≥1 v≥1cin+cout cin+coute e 
Then combining (4.17) with (4.10) gives the result. We use the proof machinery in [1, 
Proposition 3.1] to show (4.17), which is summarized in the following lemma. 

Lemma 4.5. Let an,i : 1 ≤ i ≤ n n≥1 be a double array of non-negative numbers such that 

(1) For all i ≥ 1, limn→∞ an,i = ai < ∞, 
(2) supn≥1 an,i ≤ bi < ∞ and 
(3) limi→∞ bi = 0. 

Then max1≤i≤n an,i → maxi≥1 ai, as n →∞. 

First note that for each v ≥ 1, 
cin cin− (Tn−Tv ) − t 

cin+cout cin+coutIv(Tn − Tv)e ≤ sup Iv(t)e =: Ie v, 
t≥0 

cout cout− (Tn−Tv ) − t 
cin+coutOv(Tn − Tv)e ≤ sup Ov(t)e cin+cout =: Oe v. 

t≥0 

cin cout− Tn − TnLet aI := Iv(Tn − Tv)e cin+cout , aO := Ov(Tn − Tv)e cin+cout for 1 ≤ v ≤ n, andn,v n,v 
cin cout− Tv − TvbIv := Ie ve cin+cout , bOv := Oe ve cin+cout for v ≥ 1. Then Lemma 4.5(1) is satisfied by (4.16). 

Also, for each v ≥ 1, sup I ≤ bI and sup O ≤ bO , which satisfies the criterion inn≥1 an,v v n≥1 an,v v 

Lemma 4.5(2). 
Following the proof of [1, Theorem 1.1], we check the condition in Lemma 4.5(3) by proving 

the claim that almost surely, for all � > 0, e e ≤ �vcout(4.18) Iv ≤ �vcin , and Ov , for all large v. 
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Then as � is arbitrary, it follows from (4.10) that bv
I → 0 and bv

O → 0 a.s. as v → ∞. This 
completes checking the three criteria in Lemma 4.5 and therefore leads to (4.13). 
To show (4.18), we use Markov’s inequality: for any r, r0 > 0 and v ≥ 2, 

Ir rcin ),P(Ie v ≥ �vcin ) ≤ E(e 2 )/(�
r v 

0 0 0 ≥ �vcout ) ≤ E(Oer r cout ),P(Oe v 2 )/(�
r v 

since Iv, Ov, v ≥ 2 are iid SBI processes. Hence, if we have 
−1 0 −1(4.19) E(Ie 2 

r) < ∞ and E(Oe 2 
r) < ∞, for r > cin , r > cout, respectively, 

then by Borel-Cantelli, the claim in (4.18) is justified. To prove (4.19), let 
cin cing (0) − t g (1) − t 

cin+coutI(0)2 := sup I2 (t)e cin+cout , I(1)2 := sup I2 (t)e , 
t≥0 t≥0 

cout(0) − cout t (1) − t
O(1)Og(0)

2 := sup O2 (t)e cin+cout , g
2 := sup O2 (t)e cin+cout , 

t≥0 t≥0 � � 
then by the construction of I2(·), O2(·) , we have 

E(Ier I(0) I(1)2 ) = αE(gr 

2) + γE(gr 

2) < ∞, 
0 0 

Ir O(0) O(1)E(e 2 
0 
) = αE( g 2 

r 
) + γE( g 2 

r 
) < ∞, 

(0) (1) (0) (1)
using the assumption that I2 , I2 , O2 and O2 are independent BI processes so that results 
in [1, Proposition 2.6] are still applicable here. This completes the proof of (4.17). � 

5. Convergence Results on Joint Degree Distributions. 

5.1. Convergence of the joint degree counts. Now we analyze the convergence of the� � 
joint empirical distribution of the in- and out-degrees { Din(n), Dout(n) : v ∈ [n]}, usingv v 

the SBI embedding technique. Let B(a, p) be a negative binomial integer valued random 
variable with parameters a > 0 and p ∈ (0, 1) (abbreviated as NB(a, p)), and the generating 
function of B(a, p) is � � 

B(a,p)E s = p a(1 − (1 − p)s)−a , 0 ≤ s ≤ 1. 

We also use the notation B(a, Z) to represent a r.v. having a mixture distribution such that 
the second parameter of the negative binomial r.v. is randomized by an independent r.v. Z. 

Theorem 5.1. Let Ni,j (n) be the number of nodes with in-degree i and out-degree j in graph 
G(n), then we have 

Ni,j (n) P � � 
(5.1) −→ P (I, O) = (i, j) , as n →∞. 

n 
The limit pair (I, O) can be represented in distribution as: 

(5.2) (I, O) = 
d 
(1 − J)(X1, 1 + Y1) + J(1 + X2, Y2), 

where 

(i) J is a Bernoulli switching variable with P(J = 1) = 1 − P(J = 0) = γ. 



���� ����
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(ii) Suppose {B(1)(δ1, p) : p ∈ (0, 1)}, {B(2)(δ1 
0 , p) : p ∈ (0, 1)}, {Be(1)(δ2, p) : p ∈ (0, 1)}

and {Be(2)(δ2 
0 , p) : p ∈ (0, 1)}, δ1, δ1 

0 , δ2, δ2 
0 > 0, are four independent families of 

negative binomial variables, then� � �� 
B(1) B(1) −coutT(5.3a) (X1, Y1) = δin, e −cinT , e 1 + δout, e , � � �� 
B(2) −cinT Be(2) −coutT(5.3b) (X2, Y2) = 1 + δin, e , δout, e , 

with T being an exponential random variable with unit mean, independent of J , B(1), 
B(2), Be(1) and Be(2). 

Remark 5.2. Theorem 5.1 coincides with the known results proven in [19, 20], since ecinT 

coutTis a Pareto random variable on [1, ∞) with index cin 
−1 , denoted by Z, and e = Za , with 

a := cout/cin. 

Proof. The proof of [25, Lemma 3.1] verifies that 

Ni,j (n) E(Ni,j (n)) P− −→ 0, as n →∞. 
n n � � 

Hence, we are left to examine the difference |E(Ni,j (n))/n − P (I, O) = (i, j) |. By the 
embedding results in Theorem 4.2, we have ⎧ ⎫ 
E(Ni,j (n)) 

⎨ 1 X 
1�� � ⎬ 1 X �� 

Din(n), Dout 
� � 

= E 
Din 

= P v (n) = (i, j) 
n ⎩n v (n),Dv 

out(n) =(i,j) ⎭ n v 

v∈[n] v∈[n] 
n

1 X �� � � 
(5.4) = P Iv(Tn − Tv), Ov(Tn − Tv) = (i, j) . 

n 
v=1 

(1) (2) (1)
Suppose that {Bv (δin, p) : v ≥ 1}, {Bv (1 + δin, p) : v ≥ 1}, {Be v (1 + δout, p) : v ≥ 1}

and {Be v 
(2)
(δout, p) : v ≥ 1} are four independent sequences of negative binomial r.v.’s with 

given parameters. Then by the distribution of a BI process (cf. [21, Equation (2.2)] and [8, 
Theorem 3.11]), we have for any v ≥ 2, t ≥ 0 and k ≥ 0,h � � icin 

P(I(0) B(1) − t 
cin+cout(5.5a) v (t) = k) = P v δin, e = k , h � � icin 

P(I(1) 1 + B(2) cin+cout(5.5b) v (t) = k) = P v 1 + δin, e − t 
= k , h � � i 

P(O(0) B(1) − t 
cin+cout(5.5c) v (t) = k) = P 1 + e v 1 + δout, e 

cout 

= k , h � � i cout 

P(O(1) B(2) − t
(5.5d) v (t) = k) = P e v δout, e cin+cout = k , � � 
and note the quantities on the right do not depend on v. Also, recall that Iv(t), Ov(t) v≥2, 
t ≥ 0, are identically distributed such that, 

)I(0) I(1) )O(0) O(1)Iv(t) = (1 − Jv v (t) + Jv v (t), (t) = (1 − Jv v (t) + Jv (t).Ov v 
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(0) (1) (0) (1)
Since for v ≥ 2, the processes Iv , Iv , Ov and Ov are independent from each other, we 
then define for any v ≥ 2, 

B(n) )B(1) −(Tn−Tv )),v := (1 − Jv v (δin, e −(Tn−Tv )) + Jv(1 + Bv 
(2)(1 + δin, e � 

B(1) B(2) −(Tn−Tv )(1 − Jv)(1 + e v (1 + δout, e −(Tn−Tv )) + Jv( e v (δout, e , 

and (5.4) becomes, 

n
1 1 X �� � � 
E(Ni,j (n)) = P Iv(Tn − Tv), Ov(Tn − Tv) = (i, j) 

n n 
v=1 

n
1 X � � 1 � �� � � h i� 

B(n) (n)
(5.6) = P v = (i, j) + P I1(Tn), O1(Tn) = (i, j) − P B1 = (i, j) . 

n n 
v=1 

The last step is necessitated by the construction since (I1(t), O1(t)) is a pair of independent 
BI processes, which is different from the rest of the (Iv(·), Ov(·))v≥2 pairs. Here this difference 
is inconsequential because as n →∞, h i1 �� � � 2 

P I1(Tn), O1(Tn) = (i, j) − P B1
(n) 
= (i, j) ≤ → 0. 

n n 

So we only need to consider the first term in (5.6). Let Un be a random variable uniformly 
distributed on [n − 1] and independent of the rest. Then 

n
1 X � � 

B(n)P v = (i, j) n 
v=1 

nX h� cout � i1 
B(1) − (Tn−Tv ) B(1) (Tn−Tv )cin+cout=α P v (δin, e cin+ 

cin 
cout ), 1 + e v (1 + δout, e − 

) = (i, j) 
n 

v=1 
nX h� i cin cout1 − (Tn−Tv ) B(2) − (Tn−Tv )

� 
cin+cout+ γ P 1 + Bv 

(2)(1 + δin, e cin+cout ), e v (δout, e = (i, j) 
n � v=1 

1 
� h� cin cout � i 

(1) − (Tn−TUn ) (1) − (Tn−TUn )=α 1 − P B1 (δin, e cin+cout ), 1 + Be 1 (1 + δout, e cin+cout ) = (i, j) 
n� 
1 
� h� cin cout � i 

(2) − (Tn−TUn ) (2) − (Tn−TUn )+ γ 1 − P 1 + B1 (1 + δin, e cin+cout ), Be 1 (δout, e cin+cout = (i, j) 
n 

1 � � 
B(n)+ P n = (i, j) , n 

(1) (1) (2) (1)
since the distributions of Bv , Be v , Bv , Be v do not depend on v. Let T be a unit exponential 
random variable that is independent of Iv, Ov, v ≥ 1. A variant of the Renyi representation 
for exponential order statistics (see [8, Theorem 3.14] for details) gives 

d T 
(5.7) Tn − TUn = . 

(cin + cout)−1 



���� ����

20 TIANDONG WANG AND SIDNEY I. RESNICK 

(1) (2) (1) (2)
Define a Bernoulli random variable J that is independent from T , B1 , B1 , Be 1 and Be 1 
with P(J = 1) = γ = 1 − P(J = 0). Then applying (5.7) therefore gives 

n
1 X � � 

B(n)P v = (i, j) n 
v=1� � h� i1 �(1) (1) −coutT )=α 1 − P B1 (δin, e −cinT ), 1 + Be 1 (1 + δout, e = (i, j) 

n� � h� � � �(2) (2)
+ γ 1 − 

1 
P 1 + B (1 + δin, e −cinT ), Be (δout, e −coutT = (i, j) 

i 
+
1 B(n) = (i, j)1 1 n n n� � h1 � �(1) (1) −coutT )= 1 − P (1 − J) B1 (δin, e −cinT ), 1 + Be 1 (1 + δout, e 

n i� � 1 � �(2) −cinT ), e(2) B(n)−coutT+J 1 + B (1 + δin, e B (δout, e = (i, j) + = (i, j)1 1 n n� � �� � � � � 
= 1 − 

1 
P I, O = (i, j) +

1 Bn 
(n) = (i, j) . 

n n 

Therefore, 
1 �� � � 4 
E [Nij (n)] − P I, O = (i, j) ≤ , 

n n 
which leads to (5.2) and (5.3) as n →∞. � 

Remark 5.3. This argument also shows that for x > 0, y > 0, 

1 � � 
(5.8) EN>x,>y(n) = P (I, O) ∈ (x, ∞] × (y, ∞] + �n(x, y), 

n 
where 

4 
sup |�n(x, y)| ≤ . 

x>0,y>0 n 

5.2. Convergence of the joint empirical measure. In this section, we investigate the 
convergence of the joint empirical measure: X1 n 

�� �(·),
Din(n)/b1(n/kn), Dout 

i i (n)/b2(n/kn)kn 
k=1 

with scaling functions bi(·), i = 1, 2, and some intermediate sequence kn such that kn/n → 0 
and kn →∞ as n →∞. From (5.1), we have 

1 X �� � P � � 
(5.9) �� {(i, j)} −→ P (I, O) = (i, j) , n →∞. 

Din(n),Dout(n) 
v∈[n] 

v vn 

Moreover, [20, Theorem 2] shows that the limit pair (I, O) is non-standard regularly varying, 
i.e. �� � � 

I O v
(5.10) nP , ∈ · −→ γV1(·) + αV2(·), n →∞, 

ncin ncout 
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in M+([0, ∞]2 \{0}) and Vi(·), i = 1, 2, concentrate on (0, ∞)2 with Lebesgue densities given 
below in (5.14) and (5.15). It is also shown in [26] that the density of the limit measure 
is jointly regularly varying, and the relationship between the regular variation of the limit 
measure and that of the limit density has been explored. 
Let b1(t) = tcin and b2(t) = tcout , then heuristically, combining (5.9) and (5.10) gives �� � � 

1 n I O 
(5.11) 

X 
�� �(·) ≈ P , ∈ · 

kn Din(n)/(n/kn)cin , Dout(n)/(n/kn)cout kn (n/kn)cin (n/kn)coutv v 
v∈[n] 

⇒ γV1(·) + αV2(·), n →∞ 

in M([0, ∞]2 \ {0}). We justify the approximation in (5.11) and the convergence result is 
summarized in the following theorem. 

Theorem 5.4. Suppose that {kn} is an intermediate sequence satisfying 

(5.12) lim inf kn/(n log n)1/2 > 0 and kn/n → 0 as n →∞, 
n→∞ 

and recall a = cout/cin. Then we have 

1 
n 

(5.13) 
X 

�� �(·) ⇒ γV1(·) + αV2(·),
Din(n)/(n/kn)cin , Dout(n)/(n/kn)cout v vkn 

v∈[n] 

in M+([0, ∞]2 \ {0}), where V1 and V2 concentrate on (0, ∞)2 with Lebesgue densities Z ∞δin yδout−1x −(2+1/cin+δin+aδout) −x/z+y/za 
(5.14) f1(x, y) = z e dz, 

cinΓ(1 + δin)Γ(δout) 0 

and Z ∞δin−1 δoutx y −(1+a+1/cin+δin+aδout) −x/z+y/za 
(5.15) f2(x, y) = z e dz, 

cinΓ(δin)Γ(1 + δout) 0 

respectively. 

Proof. Proving (5.13) requires using concentration results for degree counts Ni,j (n) which 
compare counts with expected counts; these are collected in Section 7. In this section we 
show for x, y > 0, � �1 n P
(5.16a) E N cout (n) − p −→ 0,cin cin cout >( n ) x, >( n ) y >( n ) x, >( n ) ykn kn kn kn kn kn � � 

1 n P
N in in(5.16b) 

kn 
E cin (n) − 

kn 
p cin −→ 0,

>( n ) x >( n ) x
kn kn � � 

1 
Nout n out P

(5.16c) 
kn 

E cout (n) − 
kn 

p cout −→ 0. 
>( n ) y >( n ) y

kn kn 

We give a proof for (5.16a) and (5.16b) and (5.16c) follows from a similar argument. 
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Adopting the notation from the proof of Theorem 5.1, and using (5.8) we have � �1 n 
E N cin cout (n) − p cin cout >( n ) x, >( n ) y >( n ) x, >( n ) ykn kn kn kn kn kn � � � �X Din Doutn 1 (n) (n) n I O 
= P v > x, v > y − P > x, > y

)cin )cout )cin )coutkn n (n/kn (n/kn kn (n/kn (n/kn 
v∈[n] 

n 
n 1 X � � � � �� 

B(n) )cin )cout= P v ∈ (n/kn x, ∞ × (n/kn y, ∞ 
kn n 

v=1 � � 
n I O − P > x, > y
kn (n/kn)cin (n/kn)cout � � 

Din Dout1 (n) (n)
+ P 1 > x, 1 > y

kn (n/kn)cin (n/kn)cout � � � � �� (n) 
)cin )cout−P B1 ∈ (n/kn x, ∞ × (n/kn y, ∞ � � 2 

)cin )cout≤ �n (n/kn x, (n/kn y + → 0,
kn 

as n →∞. 
Combining concentration results in (7.1), (7.5) and (7.6) with (5.16) implies that for any 

intermediate sequence {kn} satisfying (5.12) and x, y > 0, as n →∞, 
1 P

(5.17a) N cout (n) − n p cout −→ 0,cin cin>( n ) x, >( n ) y >( n ) x, >( n ) y
kn kn kn knkn 

1 P
N in in(5.17b) (n) − n p −→ 0,cin cin>( n ) x >( n ) x

kn knkn 

P1 
Nout out(5.17c) cout (n) − n p cout −→ 0. 

kn >( n ) y >( n ) y
kn kn 

Define the vague metric ρ(·, ·) on M+([0, ∞]2 \ {0}) (cf. [18, Chapter 3.3]) as follows. There 
exists some sequence of continuous functions on [0, ∞]2 \ {0} with compact supports, fi : 
[0, ∞]2 \ {0} 7→ R+, i ≥ 1, and for µ1, µ2 ∈ M+([0, ∞]2 \ {0}), X∞ |µ1(fi) − µ2(fi)| ∧ 1 

ρ(µ1, µ2) = ,
2i 

i=1 R 
where µj (fi) := fi(x)µj (dx), j = 1, 2, i ≥ 1. Then results in (5.17) imply: as

[0,∞]2\{0}
n →∞, 
(5.18)⎛ ⎞ 

n �� � � 
1 n I O� ⎠ P

ρ ⎝ X 
�� , P , ∈ · −→ 0. 

kn Din(n)/(n/kn)cin , Dout(n)/(n/kn)cout kn (n/kn)cin (n/kn)coutv v 
v∈[n] 
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Then (5.13) follows from combining (5.18) and the vague convergence in (5.10), with (5.14) 
and (5.15) being specified in [20, Theorem 2]. � 

6. Consistency of the Hill Estimator 

In practice, the growth rates of in- and out-degrees are often estimated by Hill estimators 
as defined in (1.4). However, despite its wide use, there is no theoretical justification for 
such estimates and the consistency has been proved only for a simple undirected preferential 
attachment model in [27]. We now turn to (1.7) and (1.8) as preparations for considering 
consistency of the Hill estimator. 

Proposition 6.1. Suppose that {kn} is some intermediate sequence satisfying (5.12). Define � �−1 ��cinΓ(1 + δin + c ) αδin γin tcinb1(t) = cin + ,
Γ(1 + δin) 1 + cinδin cin� −1 � ��coutΓ(1 + δout + cout) γδout α 

tcoutb2(t) = cout + ,
Γ(1 + δout) 1 + coutδout cout 

then X1 
(6.1) �Din(n)/b1(n/kn) ⇒ ν −1 , in M+((0, ∞]),

kn 
v cin 

v∈[n] X1 
(6.2) 

kn 
�Dv 

out(n)/b2(n/kn) ⇒ ν c −1 , in M+((0, ∞]). 
out 

v∈[n] 

Proof. Marginalizing the results in (5.13) gives X −1 � � 
1 Γ(1 + δin + cin ) αδin γ 

� Din(n) ⇒ cin + ν , in M+((0, ∞]),
kn (n/k

v
n)cin Γ(1 + δin) 1 + cinδin cin 

c −1 
in 

v∈[n] X −1 � � 
1 Γ(1 + δout + c ) αout γδout

� Dv 
out(n) ⇒ cout + ν c −1 , in M+((0, ∞]). 

outkn (n/kn)cout Γ(1 + δout) 1 + coutδout cout 
v∈[n] 

Scaling both sides by the constant appearing in the limit measure gives (6.1) and (6.2). � 

With Proposition 6.1 available, we now prove the consistency of Hill estimators for in- and 
out-degrees. 

Theorem 6.2. Let 

Din (n) ≥ Din · ≥ Din(n) ≥ · · (n),(1) (2) (n) 

Dout(n) ≥ Dout · ≥ Dout(n) ≥ · · (n),(1) (2) (n) 

be order statistics for in- and out-degrees {Din(n)}v∈[n], {Dout(n)}v∈[n], respectively. Definev v 

the Hill estimators for {Din(n)}v∈[n] and {Dout(n)}v∈[n] asv v 

k Din k Dout
1 X (n) 1 X (n) 

H in (i) 
Hout (i) 

k,n := log 
Din , k,n := log 

Dout . 
k (n) k (n)(k+1) (k+1)i=1 i=1 
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Then for some intermediate sequence {kn} satisfying (5.12), we have as n →∞, 
P P

H in Hout(6.3) kn,n and −→ cout.−→ cin, kn,n 

Proof. From (6.1) and (6.2), we conclude by inversion and [18, Proposition 3.2] that in 
D(0, ∞] 

Din Dout(n)([knt]) P ([knt])
(n) P−cin −cout−→ t and −→ t . 

b1(n/kn) b2(n/kn) 
Therefore, ⎛ ⎞ 

1 X 
(kn)
(n) � � 

(6.4) ⎝ �Din(n)/b1(n/kn),
Din ⎠⇒ ν c −1 , 1 in M+((0, ∞]) × (0, ∞),

kn 
v b1(n/kn) in 

v∈[n]⎛ ⎞ 
1 X 

(kn)
(n) � � 

(6.5) ⎝ �Dout(n)/b2(n/kn),
Dout ⎠⇒ ν −1 , 1 in M+((0, ∞]) × (0, ∞). 

outkn 
v b2(n/kn) 

c 

v∈[n] 

Define the operator 

S : M+((0, ∞]) × (0, ∞) 7→ M+((0, ∞]) 
by 

S(ν, c)(A) = ν(cA). 
By the proof in [18, Theorem 4.2], the mapping S is continuous at (ν c , 1), i = 1, 2. There-−1 

i 

fore, applying the continuous mapping S to the joint weak convergence in (6.4) and (6.5) 
gives X1 �� 

Din Din ⇒ ν −1 , in M+((0, ∞]),c(n) (n) in 

v∈[n] 
kn v (kn) X1 �� 

Dout Dout ⇒ ν −1 , in M+((0, ∞]). c(n) (n) out 

v∈[n] 
kn v (kn) 

Then the rest of the proof is similar to arguments in the proof of [27, Theorem 11]. Here 
we only include proofs for the consistency H in and that for Hout follows from the samekn,n kn,nP 

ν in 1 �argument. Define ˆn (·) := v∈[n] � Din Din (·). First observe 
kn (n) 

(kn)
(n)v Z ∞ dy

H in ν in = ˆ (y, ∞] .kn,n n 
1 RM 

y 

Then fix M > 0 large and define a mapping f 7→ 
1 f(y)d 

y
y from D(0, ∞] 7→ R+. This map 

is a.s. continuous so Z ZM dy P
M dy

ν inˆn (y, ∞] −→ ν c −1 (y, ∞] , 
iny y1 1 

and it remains to show by the second converging together theorem (cf. [18, Theorem 3.5]) 
that �Z ∞ � 

dy
ν in(6.6) lim lim sup P ˆn (y, ∞] > ε = 0. 

M→∞ n→∞ yM 



 �����
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The probability in (6.6) is !�Z ∞ � Z ∞ Din (n)dy dy (kn)ν in ν inP ˆ (y, ∞] > ε ≤ P n (y, ∞] > ε, − 1 < ηn ˆ 
M y M y b1(n/kn) Z ∞ dy Din (n) 

! 
ν in (kn)+ P ˆn (y, ∞] > ε, − 1 ≥ η 

M y b1(n/kn) !Z n∞ X1 dy≤ P �Din(n)/b1(n/kn)((1 − η)y, ∞] > ε 
kn 

i yM !i=1 

Din (n)(kn)+P − 1 ≥ η =: A + B. 
b1(n/kn) 

By (6.4), B → 0 as n →∞, and using the Markov inequality, A is bounded by !Z ∞ nX1 1 dy
E �Din(n)/b1(n/kn)((1 − η)y, ∞]

ε M kn 
v y

v=1 !Z n Z∞ X ∞ �1 1 dy 1 1 � dy
N in = E �Dv 

in(n)/b1(n/kn)(y, ∞] ≤ E >[b1(n/kn)y]
(n) . 

ε kn y ε kn yM(1−η) M(1−η)v=1 

Using Stirling’s formula, (5.17b) gives that for y > 0, 

1 � � −1 

N in −cin(6.7) E (n) → y .>[b1(n/kn)y]kn 

Let U(t) := E(N in (n)) and (6.7) becomes: for y > 0,>t 

1 −1 
inU(b1(n/kn)y) → y −c , as n →∞. 

kn 

−1 
in 

Since U(·) is a non-increasing function, U ∈ RV−c by [18, Proposition 2.3(ii)]. Therefore, 
Karamata’s theorem gives 

1 
Z ∞ 1 � 

N in 
� dy 

inA ≤ E >[b1(n/kn)y]
(n) ∼ C(δ, η)M−c −1 

,
ε M(1−η) kn y 

inwith some positive constant C(δ, η) > 0. Also, M−c −1 → 0 as M →∞, and (6.6) follows. � 

7. Concentration of degree counts 

In this section, we collect concentration results for the degree counts that are useful in the 
proofs in Theorem 5.4. P 
Lemma 7.1. Define N>i,>j (n) := v∈[n] 1{Dv 

in(n)>i,Dv 
out(n)>i}. Then for δin > 0, there exists 

a constant C > 6 such that as n →∞,� �� p � 
(7.1) P max |N>i,>j (n) − E(N>i,>j (n))| ≥ C 1 + n log n = o(1). 

i,j 
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Proof. The proof of (7.1) follows from a similar argument as in the proof of [22, Proposition 
8.4]. We include it here to make it self-contained. Define a martingale � � X � � 

Mm := E N>i,>j (n)|G(m) = P Dv 
in(n) > i,Dv 

out(n) > j|G(m) , m ≤ n. 
v∈[n] 

For m ≥ 2, we define a new graph G0(s) by G0(s) = G(s) for s ≤ m − 1, while s 7→ G0(m) 
evolves independently of {G(s) : s ≥ m−1}, following the preferential attachment rule given 

(n), (Dout)0in Section 2.1. Denote the in- and out-degrees of the node v in G0(n) by (Din)0 v v(n), 
we then have X � � 

(Din)0 (n) > i, (Dout)0(7.2) Mm−1 = P v(n) > j|G(m − 1) .v 

v∈[n] 

Since the evolution of s 7→ G0(s) is independent of that of {G(s) : s ≥ m − 1} for s ≥ m − 1, 
it makes no difference whether we condition on G(m − 1) or G(m) in (7.2). Hence, we have 

(7.3) 

Mm−Mm−1X� � � � �� 
Din (Din)0 (n) > i, (Dout)0 = P (n) > i,Dout(n) > j G(m) − P (n) > j G(m) .v v v v 

v∈[n] � � � � 
Din DinSince the evolution of n 7→ (n), Dout(n) for n ≥ m only depends on (m), Dout(m) ,v v v v 

then � � � � �� 
Din Din DinP (n) > i,Dout(n) > j G(m) = P (n) > i,Dout(n) > j (m), Dout(m) ,v v v v v v� � 
(Din)0 (n) > i, (Dout)0P v v(n) > j G(m) n o� � �� 

(Din)0 (n) > i, (Dout)0 (Din)0 (m), (Dout)0 = E P v v(n) > j v v(m) G(m) . 

Then (7.3) becomes 

(7.4) Mm − Mm−1 X n � � �� 
Din Din = E P (n) > i,Dout(n) > j (m), Dout(m)v v v v 

v∈[n] o� � �� 
(Din)0 (n) > i, (Dout)0 (Din)0 (m), (Dout)0−P v v(n) > j v v(m) G(m) . 

It is important to note that � � �� 
Din(n) > i,Dout Din(m), DoutP (n) > j (m)v v v v� � �� 

(Din)0 (n) > i, (Dout)0 (Din)0 (m), (Dout)0 = P v v(n) > j v v(m) , � � � � 
Din(m), Dout (Din)0 (m), (Dout)0as long as v v (m) = v v(m) , because the two graphs are con-

structed based on the same preferential attachment rule. Thus, � � �� 
Din DinP (n) > i,Dout(n) > j (m), Dout(m)v v v v � � �� 

(Din)0 (n) > i, (Dout)0 (Din)0 (m), (Dout)0− P v v(n) > j v v(m) 



�� ��
�� ����� ����� ������

�� ��
�� ��
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≤1�� � � �� . 
Din(m),Dout (Din)0 (m),(Dout)0 vvvv (m) 6= (m) 

So we conclude that (7.4) is bounded by: 

|Mm − Mm−1|X n � � �� 
Din Din(m), Dout≤ E P (n) > i,Dout(n) > j (m)v v v v 

v∈[n] o� � �� 
(Din)0 (n) > i, (Dout)0 (Din)0 (m), (Dout)0−P v v(n) > j v v(m) G(m) !X 
1�� � � �� G(m)≤ E 

Din(m),Dout (Din)0 (m),(Dout)0 vvvv (m) 6= (m) 

v 

v∈[n] ⎛ ⎞ X 
= E ⎝ 1�� � � �� G(m)⎠ 

Din(m),Dout (m),(Dout)0 vv 

. 
(m) 6= 0in(D )v (m) 

v∈[n] � � � � 
Din(m − 1), Dout (Din)0 (m − 1), (Dout)0Note that (m − 1) =6 (m − 1) for all 1 ≤ v ≤ m − 1v v v v 

by construction, and since changing an edge will change the in- and out-degrees for at most 
3 nodes, then 

|Mm − Mm−1| ≤ 3. 

Next, we use the Azuma-Hoeffding inequality to prove (7.1). Since N>i,>j (n) = 0 for 
i, j > n, then � �p

P max |N>i,>j (n) − E(N>i,>j (n))| ≥ C n log n 
i,j 

n−1 n−1 � �XX p
≤ P |N>i,>j (n) − E(N>i,>j (n))| ≥ C n log n 

i=0 j=0 � � 
C2 log n2 −(C2/18−2)≤ n · 2 exp − = 2n . 
2 · 32 

Therefore, (7.1) follows from taking C > 6. � 

Results in Lemma 7.2 also follows from the argument in [22, Proposition 8.4] Since the 
details of this proof machinery has been given in the proof of Lemma 7.1, they are omitted 
here. 

√ 
Lemma 7.2. For δin, δout > 0, there exist constants Cin, Cout > 3 2, such that as n →∞,� �p

N in (n) − E(N in(7.5) P max >i >i(n)) ≥ Cin(1 + n log n) = o(1), 
i≥0 

and � �p
Nout 

>j (n) − E(Nout(7.6) P max >i (n)) ≥ Cout(1 + n log n) = o(1). 
j≥0 
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	Another justiﬁcation is robust parameter estimation methods in network models based on extreme value techniques. In [23], we couple the Hill estimation of marginal degree distribution tail indices with a minimum distance threshold selection method introduced in 
	[4] and compare this method with the parametric estimation approaches used in [24]. The Hill estimation is more robust against modeling errors and data corruptions. Therefore, an aﬃrmative answer to the third question helps justify all of these inference methodologies. 
	In the directed case, consistency of the two marginal Hill estimators results from resolving the ﬁrst two questions, since in a similar vein to [27], we consider the Hill estimator as a functional of the marginal tail empirical measure. So convergence results of marginal tail empirical measures lead to the consistency of Hill estimators by a mapping argument. 
	To answer the ﬁrst question about degree behavior of ﬁxed nodes as graph size grows, we mimic in-and out-degree growth of a ﬁxed node using pairs of switched birth processes with immigration (SBI processes). The SBI processes use Bernoulli switching between pairs of independent birth processes with immigration (BI processes). We embed the directed network growth model into a sequence of paired SBI processes. Whenever a new node is added to the network, a new pair of SBI processes is initiated. Using converg
	Our paper is structured as follows. In the rest of this section, we review background on the tail empirical measure and Hill estimator. Section 2 sets up the linear preferential attachment model and formulates the power-law phenomena in network degree distributions. Section 3 summarizes facts about BI processes and introduces the SBI process, which is the foundation of the embedding technique. We analyze the joint in-and out-degree growth in Section 4 by embedding it into a sequence of paired SBI processes 
	1.1. Background. Our approach to the Hill estimator considers it as a functional of the tail empirical measure so we start with necessary background and review standard results (cf. [18, Chapter 3.3.5 and 6.1.4]). 
	1.1.1. Non-standard regular variation. Let M+([0, ∞]\{0}) be the set of Radon measures on [0, ∞]\{0}. Then a random vector (X, Y ) is non-standard regularly varying on [0, ∞]\{0}
	2
	2
	+ 
	2 

	+ 
	if there exist scaling functions bi(t) →∞, i =1, 2 such that as t →∞, 
	.. .. 
	XY v
	(1.1) tP , ν(), in M+([0, ∞]\{0}),
	∈· −→ 
	·
	2 

	b
	b
	1
	(t) b
	2
	(t) 

	v
	where ν(·) ∈ M+([0, ∞]\{0}) is called the limit or tail measure [19, 20], and “−→” denotes the vague convergence of measures in M+([0, ∞]\{0}). The phrasing in (1.1) implies the marginal distributions have regularly varying tails. 
	2 
	2 

	1.1.2. Hill Estimator. For x ∈ (0, ∞], deﬁne the measure .x(·) on Borel subsets A of (0, ∞] by 
	( 
	1 x ∈ A,
	.x(A) = for A ∈E. 
	0 x ∈/ A, 
	Let M+((0, ∞]) be the set of non-negative Radon measures on (0, ∞]. A point measure m is an element of M+((0, ∞]) of the form 
	X 
	(1.2) x. i 
	m = .
	i 

	For {Xn,n ≥ 1} iid and non-negative with common regularly varying distribution tail ∈ RV−ι, ι> 0, there exists a sequence {b(n)} satisfying P [X>b(n)] ∼ 1/n, such that for any kn →∞, kn/n → 0, 
	F 
	1 

	X
	1 
	n 

	(1.3) .X/b(n/kn) ⇒ νι, in M+((0, ∞]),
	i
	kn 

	i=1 
	where the limit measure νι satisﬁes νι(y, ∞]= y, y> 0. Deﬁne the Hill estimator Hk,n based on k upper order statistics of {X,...,Xn} as [10] 
	−ι 
	1

	k
	X
	1 X(i)
	(1.4) k,n := log ,kX(k+1)
	H

	i=1 
	where X(1) ≥ X(2) ≥ ... ≥ X(n) are order statistics of {Xi :1 ≤ i ≤ n}. In the iid case there are many proofs of consistency [5, 6, 9, 15, 16]: For k = kn →∞,kn/n → 0, we have 
	P
	(1.5) Hk,n −→ 1/ι as n →∞. 
	n

	The treatment in [18, Theorem 4.2] approaches consistency by showing (1.5) follows from 
	(1.3) and we follow this approach for the network context where the iid case is inapplicable. 
	1.1.3. Node degrees. The next section constructs a directed preferential attachment model, 
	1.1.3. Node degrees. The next section constructs a directed preferential attachment model, 
	Ł. 
	inout
	D
	(n),D

	and gives behavior of (n) , the in-and out-degrees of node v at the nth stage of construction. These degrees when scaled by appropriate powers of n (see (4.12)) have limits
	vv 

	Ł. 
	inout
	D
	(n),D

	and Theorem 5.4 shows that the degree sequences (n) have a joint tail 
	vv 

	1≤v≤n 
	empirical measure 1 
	.
	(1.6) Ł 
	X 
	.

	inout
	D
	(n)/b
	1
	(n/k
	n
	),D

	(n)/b(n/kn)
	2

	vv
	kn 
	v 
	that converges weakly to some limit measure in M+([0, ∞]\{0}), where b(n),b(n) are n is some intermediate sequence such that 
	2 
	1
	2
	appropriate power law scaling functions and k

	kn/n → 0,kn →∞, as n →∞. 
	It also follows from (1.6) that for some tail indices ιin, ιout, and intermediate sequence kn, 
	X
	1 
	(1.7) .Din(n)/b(n/kn) ⇒ νιin , in M+((0, ∞]),
	v 
	1
	kn 

	v 
	X 

	1 
	(1.8) .Dout(n)/b(n/kn) ⇒ νιout , in M+((0, ∞]). 
	v 
	2
	kn 

	v 
	This leads to consistency of the Hill estimator for ιin and ιout. 
	2. Preferential Attachment Models. 
	2.1. Model setup. Consider {G(n),n ≥ 1}, a growing sequence of preferential attachment graphs. The graph G(n) consists of n nodes, denoted by [n] := {1, 2,...,n}, and n directed edges; the set of edges of G(n) consisting of ordered pairs of nodes in [n] is denoted by E(n). The initial graph G(1) consists of one node, labeled node 1, with a self loop. Thus node 1 has in-and out-degrees both equal to 1. For n ≥ 1, we obtain a new graph G(n + 1) by appending a new node n + 1 and a new directed edge to the exis
	v 
	in
	v 
	out
	positive parameters δ

	• If the coin comes up heads with probability α, direct the new edge from the new node n + 1 to the existing node v ∈ [n] with probability depending on the in-degree of v in G(n): 
	in
	D

	(n)+ in
	δ

	(2.1) P(v ∈ [n] is chosen) = . 
	v 

	in)n 
	(1 + δ

	• If the coin comes up tails with probability γ, direct the new edge from an existing node v ∈ [n] to the new node n + 1, with probability depending on the out-degree of v in G(n): 
	out 
	D

	(n)+ δout
	v 

	(2.2) P(v ∈ [n] is chosen) = . 
	out)n 
	(1 + δ

	We refer the two scenarios as α-and γ-schemes, respectively. 
	2.1.1. Model construction. One way to formally construct the model which helps with proofs is by using independent exponential random variables (r.v.’s). Deﬁne derived parameters 
	αγ 
	(2.3) in = and cout = ,
	c

	and for n ≥ 1, we will recursively deﬁne what corresponds to the in-and out-degree sequences as random elements of (N),
	1+ δin 1+ δout 
	2
	+
	∞ 

	Ł. 
	in
	(D

	(2.4) outinout
	D(n):= (n),D
	(n)),..., (D
	(n),D
	(n)), (0, 0),...

	11 nn 
	with initialization 
	Ł. 
	(2.5) D(1)= (1, 1), (0, 0),... 
	corresponding to assuming G(0) has a single node with a self loop. For k ≥ 1, the recursive deﬁnition of {D(n)} uses the variables 
	(2.6) e := ((0, 0),..., (0, 0), (1, 0) , (0, 0),...),
	in 
	k 

	|{z} 
	k-th entry 
	out
	(2.7) e:= ((0, 0),..., (0, 0), (0, 1) , (0, 0),...),
	k 

	|{z} 
	k-th entry 
	and relies on competitions from exponential alarm clocks based on {E: k ≥ 1,n ≥ 1},
	(n) 

	k 
	a sequence of iid standard exponential r.v.’s. Assuming D(n) has been given, D(n + 1) requires D(n) and the 2n variables {E,j =1,..., 2n} which are independent of D(n)
	(n)

	j 
	(which can be checked recursively) and we deﬁne 
	(n) 
	(n) 
	(n) E 

	E := ,k =1, . . . , n, 
	k 

	kcin in 
	(D

	(n)+ δin)
	k 

	cin+cout (n) 
	(n) E 
	E := ,k = n +1,..., 2n.
	k 

	kcout out 
	(D

	(n)+ δout)
	k 

	cin+cout 
	Conditionally on D(n), use the {E: k =1,..., 2n} to create a competition between 
	(n) 

	k exponentially distributed alarm clocks. For δin,δout > 0 and n ≥ 1, deﬁne choice variables 
	n 2n
	XX 
	no no
	l1
	+ l1

	Ln+1 = (n) Vn (n)(n) Vn (n) . 
	2
	2

	E< E, 1≤l≤n E< E,n+1≤l≤2n
	lk=1,k6=lk lk=1,k6=lk 
	l=1 l=n+1 
	(n)
	So Ln+1 is the index of the minimum of {E, 1 ≤ k ≤ 2n} indicating the winner of the
	k 
	competition. Also, for n ≥ 1, deﬁne the Bernoulli random variable 
	o
	Bn+1 := 1V n (n) Vn (n) = 1{L>n},
	n
	2
	n+1

	E> E
	k=1 kk=n+1 k 
	and given D(n), we have 
	in out in out
	(2.8) (n +1) = (n) + (1 Bn+1)e + (1 − Bn+1)e
	D
	D
	− 

	Ln+1 n+1Ln+1−n n+1n+1 n+1
	+ B
	e
	+ B
	e
	. 

	This increments the Ln+1-st pair by (1, 0) if Bn+1 = 0 and the (Ln+1 − n)-th pair by (0,1) if Bn+1 = 1; the ﬁrst case corresponds to an increase of in-degree and the second case to an 
	increase of out-degree. The recursion also assigns to pair n+1 either (1, 0) or (0, 1) depending on the case. This construction expresses D(n + 1) as a function of D(n) and something independent, namely {E,j =1,..., 2n} and therefore the process {D(n),n ≥ 1} is an
	(n)

	j 
	(N)-valued Markov chain. Also, because of the initialization (2.5), a simple induction argument applied to (2.8) gives the sum of the components satisﬁes 
	2
	+
	∞

	XX 
	in out
	D
	D

	(2.9) (n)= (n)= n, n ≥ 1. jj 
	j 
	j 

	Then using (2.3), (2.9) and standard calculations with exponential rv’s, we have for v ∈ [n], 
	Ł. 
	in out
	P D(n +1) = D(n)+ e + e |D(n)) = P(Ln+1 = v D(n)
	vn+1
	! 
	2n
	^ in 
	α(D

	(n)(n) (n)+ δin)
	v 

	(2.10) =P E<ED(n)= ,
	v 
	k 

	in)n 
	(1 + δ

	k=1,k6=v 
	and likewise 
	Ł. 
	out in
	P D(n +1) = D(n)+ e+ eD(n)= P(Ln+1 = n + v|D(n))
	v 
	n+1 

	! 
	2n
	^ out 
	γ(D

	(n)(n) v (n)+ δout)
	(2.11) =P E< E D(n)= .
	n+vk 
	out)n 
	(1 + δ

	k=1,k6=n+v 
	These probabilities agree with the attachment probabilities (2.1), (2.2) in α-and γ-schemes, respectively. 
	2.2. Power-law tails. Suppose G(n) is a random graph generated by the dynamics above after n steps. Let Ni,j (n) be the number of nodes in G(n) with in-degree i and out-degree j, i.e. 
	X 
	(2.12) Ni,j (n) := 1, 
	.
	Ł 
	D
	in 
	. 
	. 

	out
	(n),D

	(n) =(i,j) v∈[n] 
	vv 
	PP 
	in
	N

	then N(n) := Ni,j (n) and N(n):= (n) are the number of nodes in G(n) with 
	in
	in 

	i j >i k>i k 
	in-degree equal to and strictly greater than i, respectively. A similar deﬁnition also applies
	PP 
	out
	N

	to out-degrees: N(n) := Ni,j (n) and N(n):= (n).
	out
	out

	j i >j k>j k 
	It is shown in [3, Theorem 3.2] using concentration inequalities and martingale methods that for as n →∞, 
	P
	Ni,j (n) 

	(2.13) ij , 
	−→ 
	p

	n 
	where pij is a probability mass function (pmf) and [19, 20, 26] show that pij is jointly regularly ij is given in [3], but later in Section 5.1, we give another proof using Section 4’s embedding technique. 
	varying and so is the associated joint measure. The analytical form of p

	From [3, Theorem 3.1], the scaled marginal degree counts N(n)/n and N(n)/n, i, j ≥ 0, also converge: 
	i 
	in
	j 
	out

	(2.14) 
	in out
	N
	N

	(n) P α (n) P γ
	in out
	0 
	0 

	−→ p= , −→ p= , 
	0 
	0 

	n 1+ cinδin n 1+ coutδout (2.15) 
	.. 
	in −1
	N

	(n) P Γ(i + δin) Γ(1 + δin + c ) αδin γ
	in 
	i 
	in

	−→ p= + ,i ≥ 1, 
	i 
	−1 

	n Γ(1 + δin) 1+ cinδin cin (2.16) 
	Γ(i +1+ δin + c
	in 
	) 

	.. 
	out −1
	N

	(n) Γ(j + δout) Γ(1 + δout + c ) γδout α
	P out 
	j
	out

	−→ p= + ,j ≥ 1. 
	j 
	−1 

	n Γ(1 + δout) 1+ coutδout cout 
	Γ(j +1+ δout + c
	out
	) 

	Ł. Ł. 
	in out
	Both pand p are pmf’s and the asymptotic form follows from Stirling’s formula: 
	i 

	i≥0 jj≥0 
	−1
	in −(1+c 
	· i

	p∼ CIN ,i →∞, 
	i 
	in 
	)

	−1
	out −(1+c )
	· j

	p∼ COUT ,j →∞. 
	j 
	out 

	PP
	in in out out
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	3. Preliminaries: Switched Birth Immigration Processes. 
	In this section, we introduce a pair of switched birth immigration processes (SBI processes). This lays the foundation for Section 4, where we embed the in-and out-degree sequences of a ﬁxed network node into a pair of SBI processes and derive the asymptotic limit of the degree growth. 
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	Deﬁne the vague metric ρ(·, ·) on M+([0, ∞]\{0}) (cf. [18, Chapter 3.3]) as follows. There exists some sequence of continuous functions on [0, ∞]\{0} with compact supports, fi : [0, ∞]\{0} 7→ R+, i ≥ 1, and for µ,µ∈ M+([0, ∞]\{0}), 
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	Then (5.13) follows from combining (5.18) and the vague convergence in (5.10), with (5.14) and (5.15) being speciﬁed in [20, Theorem 2]. . 
	6. Consistency of the Hill Estimator 
	In practice, the growth rates of in-and out-degrees are often estimated by Hill estimators as deﬁned in (1.4). However, despite its wide use, there is no theoretical justiﬁcation for such estimates and the consistency has been proved only for a simple undirected preferential attachment model in [27]. We now turn to (1.7) and (1.8) as preparations for considering consistency of the Hill estimator. 
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	Scaling both sides by the constant appearing in the limit measure gives (6.1) and (6.2). . 
	With Proposition 6.1 available, we now prove the consistency of Hill estimators for in-and out-degrees. 
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	7. Concentration of degree counts 
	In this section, we collect concentration results for the degree counts that are useful in the proofs in Theorem 5.4. 
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	Results in Lemma 7.2 also follows from the argument in [22, Proposition 8.4] Since the details of this proof machinery has been given in the proof of Lemma 7.1, they are omitted here. 
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