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1 Introduction. 

The preferential attachment model gives a growing sequence of random graphs 
in which nodes and edges are added to the network based on probabilistic 
rules, and is used to mimic the evolution of social networks, collaborator and 
citation networks, as well as recommender networks. The probabilistic rule 
depends on the node degree and captures the feature that nodes with larger 
degrees tend to attract more edges. Empirical analysis of social network data 
shows that degree distributions follow power laws and theoretically, this is 
true for linear preferential attachment models. This agreement makes pref-
erential attachment a popular choice for network modeling (Bollobás et al., 
2003; Durrett, 2010; Krapivsky et al., 2001; Krapivsky and Redner, 2001; 
van der Hofstad, 2017). This paper only focuses on the undirected case but 
the preferential attachment mechanism has been applied to both directed and 
undirected graphs. Limit theory for degree counts can be found in Resnick and 
Samorodnitsky (2016), Bhamidi (2007), Krapivsky and Redner (2001) for the 
undirected case and Wang and Resnick (2017), Samorodnitsky et al. (2016), 
Resnick and Samorodnitsky (2015), Wang and Resnick (2016) and Krapivsky 
et al. (2001) for the directed case. 

Estimating the power-law in-
dex of the degree distribution is 
an important way to characterize 
a network. The indices of these 
distributions control the likelihood 
that nodes with large degrees ap-
pear in the data. Data reposito-
ries of large network datasets such 

Fig. 1.1 A snapshot of summary statistics as KONECT (http://konect. 
for the Flickr friendship data. The full list of 

uni-koblenz.de/, Kunegis (2013)) key statistics is available at http://konect.uni-
provide a Hill estimate as one of koblenz.de/networks/flickr-growth. 

the key summary statistics for al-
most all listed networks. Figure 1.1 
displays part of the statistical summaries for the Flickr friendship data given on 
KONECT (http://konect.uni-koblenz.de/networks/flickr-growth), and “power 
law exponent” corresponds to the power-law index Hill estimate of the degree 
frequencies. 

One possible way to obtain the power-law index estimate is to hypothe-
size a generative model and within that model estimate parameters using, say, 
maximum likelihood (MLE). This is done in Gao and van der Vaart (2017) 
who then plug in the estimated parameter into the theoretical formula for the 
power-law tail index and by MLE invariance they obtain the tail index esti-
mate. For the directed case, see Wan et al. (2017a). Although the MLE method 
gives consistent and asymptotically efficient estimates, it requires parametric 
model correctness and no data corruption; this is hard to guarantee outside of 
a simulated network. Wan et al. (2017b) show that the MLE approach is less 
robust against modeling error and data corruption, compared to an estimation 

http://konect.uni-koblenz.de/networks/flickr-growth
http://konect.uni
https://uni-koblenz.de
http://konect
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method that starts with Hill estimation (Hill, 1975) of tail indices coupled with 
minimum distance threshold selection (Clauset et al., 2009). The methodology 
used by KONECT to estimate degree frequency indices uses the Hill estimator 
for each dataset despite the fact that heretofore there has been no theoretical 
justification for the technique. Hill estimator consistency has been proved only 
for data from a stationary sequence of random variables, which is assumed to 
be either iid (Mason, 1982) or satisfy structural or mixing assumptions, e.g. 
(Hsing, 1991; Resnick and Stărică, 1995, 1998; Rootzén et al., 1990). There-
fore, proving the consistency of the Hill estimator for network data is the focus 
of this paper. 

The Hill estimator and other tail descriptors are often analyzed using the 
tail empirical estimator. Using standard point measure notation, let ( 

1, if x ∈ A,
�x(A) = . 

0, if x ∈/ A 

For positive iid random variables {Xi : i ≥ 1} whose distribution has a reg-
ularly varying tail with index −α < 0, we have the following convergence in 
the space of Radon measures on (0, ∞] of the sequence of empirical measures 

nX 
−α�Xi/b(n)(·) ⇒ PRM(να(·)), with να(y, ∞] = y , y > 0, (1.1) 

i=1 

to the limit Poisson random measure with mean measure να(·). Here b(n) 
satisfies P [X1 > b(n)] ∼ 1/n. From (1.1) other extremal properties of {Xn}
follow (Resnick, 1987, Chapter 4.4). See for example the application given in 
this paper after Theorem 6. Further, for any intermediate sequence kn →∞, 
kn/n → 0 as n →∞, the sequence of tail empirical measures also converge to 
a deterministic limit, 

nX1 
ν̂n(·) := �Xi/b(n/kn)(·) ⇒ να(·), (1.2)

kn i=1 

which is one way to prove consistency of the Hill estimator for iid data (Resnick, 
2007, Chapter 4.4). We seek a similar dual pair as (1.1) and (1.2) for network 
models that facilitates the study of the Hill estimator and extremal properties 
of node degrees. 

With this goal in mind, we first find the limiting distribution for the degree 
sequence in a linear preferential attachment model, from which a similar con-
vergence result to (1.1) follows. Embedding the network growth model into a 
continuous time branching process (cf. Athreya (2007); Athreya et al. (2008); 
Bhamidi (2007)) is a useful tool in this case. We model the growth of the de-
gree of each single node as a birth process with immigration. Whenever a new 
node is added to the network, a new birth immigration process is initiated. 
In this embedding, the total number of nodes in the network growth model 
also forms a birth immigration process. Using results from the limit theory of 
continuous time branching processes (cf. Resnick (1992, Chapter 5.11); Tavaré 
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(1987)), we give the limiting distribution of the degree of a fixed node as well 
as the maximal degree growth. Another way to embed the preferential attach-
ment model is exploited in Gao et al. (2017), using the tree model originated 
in Rudas et al. (2007). However, our birth immigration process framework 
gives a more direct way to model the degree growth of each individual node. 

Simulation evidence suggests that the Hill estimator applied to undirected 
network data is consistent, but formally proving the analogue of (1.2) is chal-
lenging and requires showing concentration inequalities for degree counts. We 
establish the concentration results using the embedding techniques assuming a 
particular linear preferential attachment model requiring each new node attach 
to an existing node in the graph. For a more sophisticated model allowing for 
unconnected graph components, extra techniques, e.g. Stein’s method, must 
be employed to prove the consistency. Also, the asymptotic distribution of the 
Hill estimator in the preferential attachment model is not clear and simulation 
evidence (see Drees et al (2018)) does not rule out non-normality. This non-
normality is possibly due to the threshold selection method which chooses the 
“optimal” portion of the data to compute the Hill estimate (Clauset et al., 
2009) but further investigation is left for the future. 

Structure of the paper: We review background on the tail empirical mea-
sure and Hill estimator in the rest of this section. Section 2 gives the linear 
preferential attachment model. Section 3 summarizes facts about pure birth 
and birth-immigration processes. We analyze network degree growth in Sec-
tion 4 using a sequence of birth-immigration processes and give the limiting 
empirical measures of normalized degrees in the style of (1.1). We prove con-
sistency of the Hill estimator for the model in Section 5 and adapt the proof 
for a more complicated model allowing unconnected components in Section 6. 
Simulation results are given in Section 7 and they provide insights on the 
asymptotic behavior of Hill estimators in the preferential attachment model. 

Parameter estimation based on maximum likelihood or approximate MLE 
for directed preferential attachment models is studied in Wan et al. (2017a). 
A comparison between MLE model based methods and asymptotic extreme 
value methods is included in Wan et al. (2017b). 

1.1 Background 

We consider the Hill estimator as a functional of the tail empirical measure so 
we start with necessary background (cf. Resnick (2007, Chapter 3.3.5)). 

For E = (0, ∞], let M+(E) be the set of non-negative Radon measures onP 
E. A point measure m is an element of M+(E) of the form m = �xi . Thei 
set Mp(E) is the set of all Radon point measures of this form and Mp(E) is a 
closed subset of M+(E) in the vague metric. 

For {Xn, n ≥ 1} iid and non-negative with common regularly varying dis-
tribution tail F ∈ RV−α, α > 0, there exists a sequence {b(n)} such that for a 

−αlimiting Poisson random measure with mean measure να and να(y, ∞] = y 
for y > 0, written as PRM(να), we have (1.1) in Mp(0, ∞], and for some 
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kn → ∞, kn/n → 0, we have (1.2) in M+(0, ∞]. Note the limit in (1.1) is 
random while that in (1.2) is deterministic. Define the Hill estimator Hk,n 

based on k upper order statistics of {X1, . . . , Xn} as in Hill (1975) 

kX1 X(i)
Hk,n := log ,

k X(k+1)i=1 

where X(1) ≥ X(2) ≥ . . . ≥ X(n) are order statistics of {Xi : 1 ≤ i ≤ n}. In 
the iid case there are many proofs of consistency (cf. Csörgö et al. (1991a); 
de Haan and Resnick (1998); Hall (1982); Mason (1982); Mason and Turova 
(1994)): For k = kn →∞, kn/n → 0, we have 

P
Hkn,n → 1/α as n →∞. (1.3) 

We consider Hkn,n as a functional of ν̂n as in Resnick (2007, Theorem 4.2) 
who shows (1.3) follows from (1.2) and we follow this approach for the net-
work context. The next section constructs an undirected preferential attach-
ment model and gives behavior of Di(n), the degree of node i at the nth 
stage of construction. Theorem 6 shows that for δ, a parameter in the model 
construction, the degree sequence has empirical measure 

nX 
�Di(n)/n1/(2+δ) (1.4) 

i=1 

that converges weakly to some random limit point measure in Mp(0, ∞]. We 
prove the analogy to (1.2) in the network case, 

nX1 
�Di(n)/b(n/kn) ⇒ ν2+δ, in M+(0, ∞], (1.5)

kn i=1 

with the function b(n) = cn1/(2+δ) and intermediate sequence kn. This leads 
to consistency for 1/(2 + δ) of the Hill estimator Hk,n applied to the data 
D1(n), . . . , Dn(n). 

2 Preferential Attachment Models. 

2.1 Model setup. 

We consider an undirected preferential attachment model initiated from the 
initial graph G(1), which consists of one node 1 and a self loop. Node 1 then 
has degree 2 at stage n = 1. For n ≥ 1, we obtain a new graph G(n + 1) 
by appending a new node n + 1 to the existing graph G(n). The graph G(n) 
consists of n edges and n nodes. Denote the set of nodes in G(n) by [n] := 
{1, 2, . . . , n}. For i ∈ [n], Di(n) is the degree of node i in G(n). Given G(n), 
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for a parameter δ > −f(1), the new node n + 1 is connected to one of the 
existing nodes i ∈ [n] with probability 

f(Di(n)) + δP , (2.1)
(f(Di(n)) + δ)i∈[n] 

where the preferential attachment function f(j), j ≥ 1 is deterministic and 
non-decreasing. In this case, the new node n + 1 for n ≥ 1, is always born with 
degree 1. 

Consider three choices of preferential attachment function: 

1. Linear case: If the preferential attachment function is f(j) = j for j = 
1, 2, . . ., then the model is called the linear preferential attachment model. 
Since every time we add a node and an edge the degree of 2 nodes is in-Pn
creased by 1, we have Di(n) = 2n, n ≥ 1. Therefore, the attachment i=1 
probability in (2.1) become 

Di(n) + δ 
(2 + δ)n

, 

where δ > −1 is a constant. Degree frequencies are power laws. 
2. Super-linear case: If f grows faster than linearly, i.e. f(j) = jβ for β > 1, 

then there is one node connecting to infinitely many nodes. See Oliveira 
and Spencer (2005) for a comprehensive study. 

3. Sub-linear case: If f grows sub-linearly, i.e. f(j) = jβ for 0 < β < 1, then 
the degree distribution is much lighter-tailed compared to the linear case. 
See Bhamidi (2007); Gao et al. (2017); Rudas et al. (2007) for references. 

Due to our interest in power laws, we only consider the linear case. 

2.2 Power-law tails. 

Continuing with f(j) = j, suppose G(n) is a random graph generated after n 
steps. Let Nk(n) be the number of nodes in G(n) with degree equal to k, i.e. 

nX 
Nk(n) := 1{Di(n)=k}, (2.2) 

i=1 P 
then N>k(n) := j>k Nj (n), k ≥ 1, is the number of nodes in G(n) with 
degree strictly greater than k. For k = 0, we set N>0(n) = n. 

It is shown in van der Hofstad (2017, Theorem 8.3) using concentration 
inequalities and martingale methods that for fixed k ≥ 1, as n →∞, 

Nk(n) P Γ (k + δ)Γ (3 + 2δ) Γ (3 + 2δ)
k−(3+δ)→ pk = (2 + δ) ∼ (2 + δ) ; 

n Γ (k + 3 + 2δ)Γ (1 + δ) Γ (1 + δ) 
(2.3) 
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(pk) is a pmf and the asymptotic form, as k → ∞, follows from Stirling’sk≥0 P 
formula. Let p>k = j>k pj be the complementary cdf and by Scheffé’s lemma 
as well as van der Hofstad (2017, Equation (8.4.6)), we have 

N>k(n) P Γ (k + 1 + δ)Γ (3 + 2δ)→ p>k := , (2.4) 
n Γ (k + 3 + 2δ)Γ (1 + δ) 

and again by Stirling’s formula we get from (2.4) as k →∞, 

p>k ∼ c·k−(2+δ) Γ (3 + 2δ) 
, c = . 

Γ (1 + δ) 

In other words, the tail distribution of the asymptotic degree sequence in a 
linear preferential attachment model is asymptotic to a power law with tail 
index 2 + δ. Since the Hill estimator is widely used to estimate this tail index, 
we prove consistency of this estimator. 

3 Preliminaries: Continuous Time Markov Branching Processes. 

We now review two continuous time Markov branching processes. We will em-
bed Di(n), i ∈ [n] in a constructed process and obtain the network asymptotics 
from the constructed process. 

3.1 Linear birth processes. 

A linear birth process {ζ(t) : t ≥ 0} is a continuous time Markov process 
taking values in the set N+ = {1, 2, 3, . . .} and having a transition rate 

qi,i+1 = λi, i ∈ N+ , λ > 0. 

The process {ζ(t) : t ≥ 0} is a mixed Poisson process; see Resnick (1992, 
Theorem 5.11.4), Kendall (1966) and Waugh (1970) among other sources. If 
ζ(0) = 1 then the representation is g �

λt − 1ζ(t) = 1 + N0 W (e , t ≥ 0, (3.1) 

where {N0(t) : t ≥ 0} is a unit rate homogeneous Poisson on R+ with N0(0) = 
0 and W ⊥ N0(·) is a unit exponential random variable independent of N0. 
Since N0(t)/t → 1 almost surely as t →∞, it follows immediately that 

ζ(t) a.s.−→ W, as t →∞. (3.2) 
eλt 

We use these facts in Section 4.2 to analyze the asymptotic behavior of the 
degree growth in a preferential attachment network. 
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3.2 Birth processes with immigration. 

Apart from individuals within the population giving birth to new individuals, 
population size can also increase due to immigration which is assumed inde-
pendent of births. The linear birth process with immigration (B.I. process), 
{BI(t) : t ≥ 0}, having lifetime parameter λ > 0 and immigration parameter 
θ ≥ 0 is a continuous time Markov process with state space N = {0, 1, 2, 3, . . .}
and transition rate 

qi,i+1 = λi + θ. 

When θ = 0 there is no immigration and the B.I. process becomes a pure birth 
process. 

For θ > 0, the B.I. process starting from 0 can be constructed from a 
Poisson process and an independent family of iid linear birth processes (Tavaré, 
1987). Suppose that Nθ(t) is the counting function of homogeneous Poisson 
points 0 < τ1 < τ2 < . . . with rate θ and independent of this Poisson process 
we have independent copies of a linear birth process {ζi(t) : t ≥ 0}i≥1 with 
parameter λ > 0 and ζi(0) = 1 for i ≥ 1. Let BI(0) = 0, then the B.I. process 
is a shot noise process with form 

∞ NXθ (t)X 
BI(t) := ζi(t − τi)1{t≥τi} = ζi(t − τi). (3.3) 

i=1 i=1 

Theorem 1 modifies slightly the statement of Tavaré (1987, Theorem 5) 
summarizing the asymptotic behavior of the B.I. process. 

Theorem 1 For {BI(t) : t ≥ 0} as in (3.3), we have as t →∞, 

∞X 
a.s. 

e −λtBI(t) −→ Wie −λτi =: σ (3.4) 
i=1 

where {Wi : i ≥ 1} are independent unit exponential random variables which 
for each i ≥ 1 are almost sure limits, 

Wi = lim e −tζi(t). 
t→∞ 

The random variable σ in (3.4) is a.s. finite and has a Gamma density given 
by 

1 θ/λ−1 −xf(x) = x e , x > 0. 
Γ (θ/λ) 

The form of σ in (3.4) and its Gamma density is justified in Tavaré (1987). 
It can be guessed from (3.3) and some cavalier interchange of limits and infinite 
sums. Transforming Poisson points {(Wi, τi), i ≥ 1}, summing and recognizing 
a Gamma Lévy process at t = 1 gives the density of σ. 
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Remark 2 For a B.I. process {BI(t)}t≥0 with BI(0) = j ≥ 1, modifying the 
representation in (3.3) gives 

j ∞X X 
BI(t) = ζi(t) + ζi(t − τi)1{t≥τi}. 

i=1 i=j+1 

a.s.
Therefore, e−λtBI(t) −→ σ0 where σ0 has a Gamma density given by g(x) = 
j+θ/λ−1x e−x/Γ (j + θ/λ), x > 0. 

4 Embedding Process. 

Our approach to the weak convergence of the sequence of empirical measures 
in (1.4) embeds the degree sequences {Di(n), 1 ≤ i ≤ n, n ≥ 1} into a process 
constructed from B.I. processes. The embedding idea is proposed in Athreya 
et al. (2008) and we tailor it for our setup finding it flexible enough to accom-
modate the linear preferential attachment model introduced in Section 2.1. 

4.1 Embedding. 

Here is how we embed the network growth model using a sequence of inde-
pendent B.I. processes. 

4.1.1 Model construction. 

Let {BIi(t) : t ≥ 0}i≥1 be independent B.I. processes such that 

BI1(0) = 2, BIi(0) = 1, ∀i ≥ 2. (4.1) 

(i)
Each has transition rate is qj,j+1 = j + δ, δ > −1. For i ≥ 1, let {τ : k ≥ 1}k 

(i)
be the jump times of {BIi(t) : t ≥ 0} and set τ := 0 for all i ≥ 1. For k ≥ 1,0 

(1) (i)
BI1(τ ) = k + 2, BIi(τ ) = k + 1, i ≥ 2.k k 

Therefore, 

(1) (1) (i) (i)
τ − τ ∼ Exp(k + 1 + δ), and τ − τ ∼ Exp(k + δ), i ≥ 2.k k−1 k k−1 

(i) (i)
and {τ − τ : i ≥ 1, k ≥ 1} are independent. k k−1 

Set T1 = 0 and relative to BI1(·) define 

(1)
T2 := τ , (4.2)1 

i.e. the first time that BI1(·) jumps. Start the new B.I. process {BI2(t − T2) : 
t ≥ T2} at T2 and let T3 be the first time after T2 that either BI1(·) or BI2, (·) 
jumps so that, 

(i) (i)
T3 = min{Ti + τ : k ≥ 1, Ti + τ > T2, i = 1, 2}.k k 
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BI1(0) = 2 BI1(T2 
A) = 3 

(1) (2)
T A = 0 T A = τ T A = τ + T A 
1 2 1 3 1 2 · · · 

t 

t 

τ (1) 
2 

· · · 

BI2(0) = 1 τ
(2) 
2 + T A 

2 
· · · 

· · · 

· · · 
t· · · BI1(T3 

A) = 3 

BI2(T A − T2 
A) = 23 

BI3(0) = 1 

(2) (1)
Fig. 4.1 Embedding procedure for Model A assuming τ + T A < τ .1 2 2 

Start a new, independent B.I. process {BI3(t − T3)}t≥T3 at T3. See Figure 4.1, 
(2) (1)

which assumes τ + T2 < τ . Continue in this way. When n lines have been 1 2 
created, define Tn+1 to be the first time after Tn that one of the processes 
{BIi(t − Ti) : t ≥ Ti}1≤i≤n jumps, i.e. 

(i) (i)
Tn+1 := min{Ti + τ : k ≥ 1, Ti + τ > Tn, 1 ≤ i ≤ n}. (4.3)k k 

At Tn+1, start a new, independent B.I. process {BIn+1(t − Tn+1)}t≥Tn+1 . 

4.1.2 Embedding. 

The following embedding theorem is similar to the one proved in Athreya et al. 
(2008) and summarizes how to embed in the B.I. construction. 

Theorem 3 Fix n ≥ 1. Suppose g � 
D(n) := D1(n), . . . , Dn(n) 

is the degree sequence of nodes in the graph G(n) and {Tn}n≥1 is defined as 
in (4.3). For each fixed n, define 

De (n) := (BI1(Tn), BI2(Tn − T2), . . . , BIn−1(Tn − Tn−1), BIn(0)), 

and then D(n) and De (n) have the same distribution in Rn . 

Proof By the model construction, at each Tn, n ≥ 2, we start a new B.I. 
process BIn(·) with initial value equal to 1 and one of BIi, 1 ≤ i ≤ n − 1 also 
increases by 1. This makes the sum of the values of BIi, 1 ≤ i ≤ n, increase 
by 2 so that 

nX 
(BIi(Tn − Ti) + δ) = (2 + δ)n. 

i=1 



���

��� ������

11 Hill Estimator for Network Data 

The rest is essentially the proof of Athreya et al. (2008, Theorem 2.1) which 
we now outline. 

Both {D(n), n ≥ 1} and {De (n), n ≥ 1} are Markov on the state space 
∪n≥1Rn since+ g � g � 

D(n + 1) = D(n), 1 + eJ 
(n 
n 

) 
+1 
, 0 , g � g � 

De (n + 1) = De (n), 1 + e(n) 
, 0 ,Ln+1 

(n)
where for n ≥ 1, e is a vector of length n of 0’s except for a 1 in the j-thj 
entry and 

Dj (n) + δ 
P [Jn+1 = j|D(n)] = , 1 ≤ j ≤ n,

(2 + δ)n 
and Ln+1 records which B.I. process in {BIi(t − Ti) : t ≥ Ti}1≤i≤n is the first 
to have a new birth after Tn. 

When n = 1, 

De (1) = BI1(0) = 2 = D1(1) = D(1), 

so to prove equality in distribution for any n, it suffices to verify that the 
transition probability from De (n) to De (n + 1) is the same as that from D(n) 
to D(n + 1). 

According to the preferential attachment setup, we have � � 
P D(n + 1) = (d1, d2, . . . , di + 1, di+1, . . . , dn, 1) D(n) = (d1, d2, . . . , dn) 

di + δ 
= , 1 ≤ i ≤ n. (4.4)

(2 + δ)n 

At time Tn, there are n B.I. processes and each of them has a population 
size of BIi(Tn − Ti), 1 ≤ i ≤ n. Therefore, Tn+1 − Tn is the minimum of n 

(i)
independent exponential random variables, {En }1≤i≤n, with means 

−1
(BIi(Tn − Ti) + δ) , 1 ≤ i ≤ n, 

which gives for any 1 ≤ i ≤ n,� � 
P Ln+1 = i De (n) = (d1, d2, . . . , dn) � � 
=P De (n + 1) = (d1, d2, . . . , di + 1, di+1, . . . , dn, 1) De (n) = (d1, . . . , dn) � n̂ � 

E(i) E(j) e=P < n D(n) = (d1, d2, . . . , dn)n 
j=1,j 6=i 

BIi(Tn − Ti) + δ di + δ 
= P = .n 

(BIi(Tn − Ti) + δ) (2 + δ)ni=1 

This agrees with the transition probability in (4.4), thus completing the proof. 

Remark 4 This B.I. process construction can also be generalized for other 
choices of the preferential attachment functions f . For example, its applica-
tions to the super- and sub-linear preferential attachment models are studied 
in Athreya (2007). 
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4.2 Asymptotic properties. 

One important reason to use the embedding technique specified in Section 4.1 
is that asymptotic behavior of the degree growth in a preferential attachment 
model can be characterized explicitly. These asymptotic properties then help 
us derive weak convergence of the empirical measure, which is analogous to 
(1.1) in the iid case. 

4.2.1 Branching times. 

We first consider the asymptotic behavior of the branching times {Tn}n≥1, 
which are defined in Section 4.1. 

Proposition 5 For {Tn}n≥1 defined in (4.3), we have 

n a.s.−→ W, W ∼ Exp (1) . (4.5) 
e(2+δ)Tn 

Proof Define a counting processes 

∞X1 
N(t) := BIi(t − Ti)1{t≥Ti}. 2 

i=1 

Then we have 
N(t)1� = n. 

t∈[Tn,Tn+1) 

In other words, {Tn}n≥1 are the jump times of the counting process N(·), with 
the following structure � � 

d Ei{Tn+1 − Tn : n ≥ 1} = , i ≥ 1 , (4.6)
(2 + δ)i 

where {Ei : i ≥ 1} are iid unit exponential random variables. 
From (4.6), we see that N(·) is a pure birth process with N(0) = 1 and 

transition rate 
qi,i+1 = (2 + δ)i, i ≥ 1. 

Replacing t with Tn in (3.2) gives (4.5). 

4.2.2 Convergence of the measure. 

Using embedding techniques, Theorem 6 gives convergence of empirical mea-
sures of scaled node degrees, which is the analogue of (1.1) for the iid case. 

Theorem 6 Suppose that 

(1) {Ti : i ≥ 1}, are distributed as in (4.6). 
(2) W is the limit random variable as given in (4.5). 
(3) {σi}i≥1 is a sequence of independent Gamma random variables specified in 

(4.12) and (4.10) below. 
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Then in Mp((0, ∞]), we have for δ ≥ 0, 

n ∞X X 
�Di(n)/n1/(2+δ) (·) ⇒ �σie−Ti /W 1/(2+δ) (·). (4.7) 

i=1 i=1 

Remark 7 From (4.7) we get for any fixed k ≥ 1, that in Rk 
+, � � �D(k)(n)

�D(1)(n) 
, . . . ⇒ W −1/(2+δ) (σ·e −T· )(k) , (4.8) 

n1/(2+δ) n1/(2+δ) 
−T· )(1), . . . , (σ·e 

where a subscript inside parentheses indicates ordering so that D(1)(n) ≥ · · · ≥ 
D(k) and the limit on the right side of (4.8) represents the ordered k largest 
points from the right side of (4.7). 

To prove Theorem 6, we first show the following lemma, which gives the 
asymptotic limit of the degree sequence. 

Lemma 8 Suppose that 

(1) {Ti : i ≥ 1} are distributed as in (4.6). 
(2) W is the limit random variable as given in (4.5). 

Then the degree sequence {Di(n) : 1 ≤ i ≤ n} satisfies: 

(i) For each i ≥ 1, 

Di(n) σie
−Ti 

⇒ , (4.9) 
n1/(2+δ) W 1/(2+δ) 

where {σi}i≥1 are a sequence of independent Gamma random variables with 

σ1 ∼ Gamma(2 + δ, 1), and σi ∼ Gamma(1 + δ, 1), i ≥ 2. (4.10) 

Furthermore, for i ≥ 1, σi is independent from e−Ti . 
(ii) For δ > −1, 

Di(n) ⇒ W −1/(2+δ) −Timax max σie , (4.11) 
n1/(2+δ)i≥1 i≥1 

where we set Di(n) := 0 for all i ≥ n + 1. 

Proof (i) Applying the results in Remark 2 gives that as t →∞, 

BIi(t − Ti) a.s.−→ σi, i ≥ 1, 
et−Ti 

where {σi}i≥1 are independent Gamma random variables with 

σ1 ∼ Gamma(2 + δ, 1) and σi ∼ Gamma(1 + δ, 1), i ≥ 2. 

Thus as n →∞, 

BIi(Tn − Ti) a.s.−→ σi, i ≥ 1. (4.12) 
eTn−Ti 
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Combining (4.12) with (4.5), we have for fixed 1 ≤ i ≤ n, 

BIi(Tn − Ti) a.s. σie
−Ti 

−→ . 
n1/(2+δ) W 1/(2+δ) 

Then (4.9) follows from Theorem 3. For i ≥ 2, the independence of σi and Ti 

follows from the construction and this completes the proof of (i). 

(ii) For i ≥ n + 1, BIi(Tn − Ti) = 0 so from Theorem 3, it suffices to show 

BIi(Tn − Ti) a.s. σie
−Ti 

max −→ max , 
n1/(2+δ) W 1/(2+δ)i≥1 i≥1 

which is proved in Athreya et al. (2008, Theorem 1.1(iii)). 

Using Lemma 8, we prove Theorem 6. 
Proof of Theorem 6. Note that the limit random variables 

−Ti W −1/(2+δ)σie , i ≥ 1, 

have continuous distributions, so for any y > 0, ! ∞X 
P �σie−Ti /W 1/(2+δ) ({y}) = 0 = 1. 

i=1 

Hence, by Kallenberg’s theorem for weak convergence to a point process on 
an interval (see Kallenberg (2017, Theorem 4.18) and Resnick (1987, Propo-
sition 3.22)), proving (4.7) requires checking 

(a) For y > 0, as n →∞, ! ! 
n ∞X X 

E �Di (n)/n1/(2+δ) (y, ∞] → E �σie−Ti /W 1/(2+δ) (y, ∞] . (4.13) 
i=1 i=1 

(b) For y > 0, as n →∞, ! 
nX 

P �Di(n)/n1/(2+δ) (y, ∞] = 0 
i=1 ! ∞X 
−→ P �σie−Ti /W 1/(2+δ) (y, ∞] = 0 . (4.14) 

i=1 

To show (4.13), first note that for any M > 0, ! 
M M � �X X Di(n)

E �Di (n)/n1/(2+δ) (y, ∞] = P > y 
n1/(2+δ) 

i=1 i=1 

M � �X 
−Ti W −1/(2+δ)−→ P σie > y 

i=1 
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MX 

= E �σie−Ti /W 1/(2+δ) (y, ∞] , 
i=1 

as n →∞. By Chebyshev’s inequality we have for any k > 2 + δ, ! 
n n � �X X Di(n)

E �Di(n)/n1/(2+δ) (y, ∞] = P > y 
n1/(2+δ) 

i=M+1 i=M+1 "� # 
n �kX 

−k Di(n)≤ y E . (4.15) 
n1/(2+δ) 

i=M+1 

Also, we have for δ ≥ 0, "� �k 
# "� �k 

# "� �k 
# 

Di(n) Di(n) + δ σie
−Ti 

E ≤ E ≤ E , 
n1/(2+δ) n1/(2+δ) W 1/(2+δ) 

where the last inequality follows from the result in van der Hofstad (2017, 
Equation (8.7.26)). From van der Hofstad (2017, Equation (8.7.22)), we have "� �k 

# 
1

σie
−Ti Γ (i − ) Γ (k + 1 + δ) 

2+δE = 2+δ ,
W 1/(2+δ) Γ (i + k−1 ) Γ (1 + δ) 

∼ Ck,δi
− k 

2+δ 

for i large and Ck,δ > 0. Hence, continuing from (4.15), we have ! "� # 
n n �kX X 

−k Di(n)
E �Di(n)/n1/(2+δ) (y, ∞] ≤ y E 

n1/(2+δ) 
i=M +1 i=M+1 "� # ∞ �kX −Ti 

−k σie ≤ y E 
W 1/(2+δ) 

i=M+1 

∞ 1 
−k 2+δ 

X Γ (i − ) Γ (k + 1 + δ) 
= y

Γ (i + k−1 ) Γ (1 + δ)
i=M+1 2+δ 

M→∞−→ 0, 

since k/(2 + δ) > 1. This verifies Condition (a). 
To see (4.14), we have ( )

n � �X Di(n)
�Di(n)/n1/(2+δ) (y, ∞] = 0 = ≤ y, 1 ≤ i ≤ n 

n1/(2+δ) 
i=1 � � 

Di(n) 
= max ≤ y . 

n1/(2+δ)1≤i≤n 

Since we set Di(n) = 0 for all i ≥ n + 1, then � � � � 
Di(n) Di(n) 

max ≤ y = max ≤ y . 
n1/(2+δ) n1/(2+δ)1≤i≤n i≥1 
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Similarly,( )∞ � �X −Tiσie 
�σie−Ti /W 1/(2+δ) (y, ∞] = 0 = max ≤ y . 

W 1/(2+δ)i≥1 
i=1 

By (4.11), we have for y > 0, � � � � 
Di(n) σie

−Ti 

P max ≤ y → P max ≤ y , as n →∞, 
n1/(2+δ) W 1/(2+δ)i≥1 i≥1 

which gives (4.14) and completes the proof of (iv). 

5 Consistency of the Hill Estimator. 

We now turn to (1.5) as preparation for considering consistency of the Hill 
estimator. We first give a plausibility argument based on the form of the limit 
point measure in (4.7). However, proving (1.5) requires showing N>k(n)/n 
concentrates on p>k, for all k ≥ 1, which in other words means controlling the 
bias for N>k(n)/n and the discrepancy between E(N>k(n)/n) and p>k. 

5.1 Heuristics. 

Before starting formalities, here is a heuristic explanation for the consistency 
of the Hill estimator when applied to preferential attachment data. Since the 
Gamma random variables σi have light tailed distributions, one may expect 
that {σi : i ≥ 1} will not distort the consistency result and so we pretend the 
σi’s are absent; then what remains in the limit points is monotone in i. Set 
Yi := e−Ti /W 1/(2+δ) and apply the Hill estimator to the Y 0s to get 

k kX � � X1 Yi 1 
Hk,n = log = (Tk+1 − Ti). 

k Yk+1 k 
i=1 i=1 

Recall from (4.6) that 

d
Tn+1 − Tn = En/(n(2 + δ)), 

where En, n ≥ 1 are iid unit exponential random variables. Then 

k k k kXX X X1 1 1 El a.s. 1 
Hk,n = (Tl+1 − Tl) = l(Tl+1 − Tl) = −→ ,

k k k 2 + δ 2 + δ 
i=1 l=i l=1 l=1 

by strong law of large numbers, provided that k →∞. 
There are clear shortcomings to this approach, the most obvious being that 

we only dealt with the points at asymptopia rather than {Di(n), 1 ≤ i ≤ n}. 
Furthermore we simplified the limit points by neglecting the σi’s. We have not 
found an effective way to analyze order statistics of {σie−Ti /W 1/(2+δ) : i ≥ 1}. 

Concentration results for degree counts provide a traditional tool to prove 
(1.5) and we pursue this in the next subsection. 
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5.2 Convergence of the tail empirical measure 

We now analyze the convergence of the tail empirical measure. First consider 
the degree of each node in G(n), 

(D1(n), D2(n), . . . , Dn(n)), 

and let 
D(1)(n) ≥ D(2)(n) ≥ · · · ≥ D(n)(n) 

be the corresponding order statistics. Then the tail empirical measure becomes 

nX1 
ν̂n(·) := �Di(n)/D(kn)(n)(·),kn i=1 

for some intermediate sequence {kn}, i.e. kn →∞ and kn/n → 0 as n →∞. 

Theorem 9 Suppose that {kn} is some intermediate sequence satisfying 

lim inf kn/(n log n)1/2 > 0 and kn/n → 0 as n →∞, (5.1) 
n→∞ 

then 
ν̂n ⇒ ν2+δ, (5.2) 

−(2+δ)in M+((0, ∞]), where ν2+δ(x, ∞] = x , x > 0. 

Proof We proceed in a series of steps. 
Step 1. We first show that with 

1� � 
1Γ (3 + 2δ) 2+δ 

2+δb(n/kn) = (n/kn) ,
Γ (1 + δ) 

we have in M+((0, ∞]), 

1 
nX 

kn 
�Di(n)/b(n/kn) ⇒ ν2+δ , 

i=1 

(5.3) 

and it suffices to justify for any y > 0, 

1 −(2+δ)N>[b(n/kn)y](n) − y
kn 

P→ 0, n → ∞. (5.4) 

The left side of (5.4) is bounded by 

1 −(2+δ)N>[b(n/kn)y](n) − y
kn 

1 ≤ N>[b(n/kn)y](n) − E(N>[b(n/kn)y](n))kn 

1 
+ E(N>[b(n/kn)y](n)) − np>[b(n/kn)y]kn 
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n −(2+δ)+ p>[b(n/kn)y] − y
kn 

=: I + II + III. (5.5) 

Using Stirling’s formula, van der Hofstad (2017, Equation 8.3.9) gives 

Γ (t + a) 
= ta(1 + O(1/t)). 

Γ (t) 

Recall the definition of p>k in (2.4) for fixed k, then we have 

n n Γ (3 + 2δ) Γ ([b(n/kn)y] + 1 + δ) 
p>[b(n/kn)y] = 

kn kn Γ (1 + δ) Γ ([b(n/kn)y] + 3 + 2δ)� � �� 
Γ (3 + 2δ) n −(2+δ) 1 

= (b(n/kn)y) 1 + O 
Γ (1 + δ) kn b(n/kn)� � �� 

1−(2+δ)= y 1 + O . (5.6)
b(n/kn) 

Hence, III → 0 as n →∞. 
Consider I and we have for � > 0, � � 

1 
P N>[b(n/kn )y](n) − E(N>[b(n/kn)y](n)) > � 

kn g � 
= P N>[b(n/kn)y](n) − E(N>[b(n/kn)y](n)) > �kn . 

Following the proof in van der Hofstad (2017, Proposition 8.4), we have for√ 
any C > 2 2, � p � 

P |N>k(n) − E(N>k(n))| ≥ C n log n = o(1/n). 

Since N>k(n) = 0 a.s. for all k > n, then � �p
P max |N>k(n) − E(N>k(n))| ≥ C n log n �k �p 
=P max |N>k(n) − E(N>k(n))| ≥ C n log n 

0≤k≤n Xn � p � 
≤ P |N>k(n) − E(N>k(n))| ≥ C n log n = o(1). (5.7) 

k=1 

Therefore, for {kn} satisfying (5.1), we have g � 
P N>[b(n/kn)y](n) − E(N>[b(n/kn)y](n)) > �kn� � 
≤ P max |N>k(n) − E(N>k(n))| ≥ �kn = o(1), 

k 

P
which gives I → 0. 
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Then we are left to show II → 0 as n →∞. Let Un be a uniform random 
variable on {1, 2, . . . , n}, then 

n 
1 n 1 X 
E(N>[b(n/kn )y](n)) = P(Di(n) > [b(n/kn)y])

kn kn n 
i=1 

n 
= E (P(DUn (n) > [b(n/kn)y])) . 

kn 

Let Ba(p) be a negative binomial integer valued random variable with pa-
rameters a > 0 and p ∈ (0, 1) (abbreviated as NB(a, p)), and the generating 
function of Ba(p) is � � 

Ba (p)E s = (s + (1 − s)/p)−a , 0 ≤ s ≤ 1. 

(i)
Suppose that {B (p) : i ≥ 1} is a sequence of iid NB(1 + δ, p) random 1+δ 
variables and B2+δ (p) is another NB(2 + δ, p) random variable independent 

(i)
from {B (p) : i ≥ 1}. Then by the B.I. process construction, we have for1+δ 
k, t ≥ 0, � g � � 

P(BI1(t) > k) = P 2 + B2+δ e −t > k h ig �(i) −tP(BIi(t) > k) = P 1 + B e > k , i ≥ 2.1+δ 

Therefore, applying the embedding technique gives 

n 
E(P(DUn (n) > [b(n/kn)y]))

kn 
nXn 1 

= P(BIi(Tn − Ti) > [b(n/kn)y])
kn n 

i=1 
n h � � iXn 1 (i) −(Tn−Ti)= P 1 + B e > [b(n/kn)y]

kn n 1+δ 
i=1� h i�1 g �(1) −Tn+ P(BI1(Tn) > [b(n/kn)y]) − P 1 + B e > [b(n/kn)y]

kn 
1+δ � h � � i� n (Un) −(Tn−TUn )= E P 1 + B e > [b(n/kn)y]

kn 
1+δ � h i�1 g � 

+ P(BI1(Tn) > [b(n/kn)y]) − P 1 + B(1) 
e −Tn > [b(n/kn)y] . 

kn 
1+δ 

(5.8) 

The distribution of {Tn+1 − Tn : n ≥ 1} in (4.6) implies ⎧ ⎫ ⎨n−i ⎬X
d 1 Ej{Tn−Ti : i = 1, 2, . . . , n−1} = : i = 1, 2, . . . , n − 1 . (5.9)
2 + δ ⎩ 

j=1 
n − j ⎭ 
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Note that {Tn − Ti : i ≥ 1} is a sequence of non-decreasing random variables, 
(5.9) coincides with the Renyi’s representation for order statistics of iid expo-
nential random variables. Let T be a unit exponential random variable. Then 
we have 

d T 
Tn − TUn = . (5.10)

2 + δ 

(i)
Also because {B (p) : i ≥ 1} are iid, we have 1+δ � h � � i� n (Un) −(Tn−TUn )E P 1 + B e > [b(n/kn)y]

kn 
1+δ � h � � i� n n(1) −T/(2+δ)= E P 1 + B1+δ e > [b(n/kn)y] = p>[b(n/kn)y],kn kn 

(5.11) 

where the last equality follows from the results in van der Hofstad (2017, 
Equation (8.4.10)). Therefore, combining (5.11) with (5.8) gives 

1 h g −Tn 
� i 

(1)
II ≤ P(BI1(t) > [b(n/kn)y]) − P 1 + B e > [b(n/kn)y]

kn 
1+δ 

2 ≤ → 0, as n →∞. 
kn 

This completes the proof of (5.3). 
Step 2. Using (5.3) and inversion (cf. Resnick (2007, Proposition 3.2)), we 

have for y > 0, 

1D([kny])(n) P − 2+δ→ y , in D(0, ∞], (5.12)
b(n/kn) 

Moreover, ! 
nX1 D([kn ])(n)�Di(n)/b(n/kn), ⇒ (ν2+δ, 1) (5.13)

kn b(n/kn)i=1 

in M+((0, ∞]) × (0, ∞). 
Step 3. With (5.13), we use a scaling argument to prove (5.2). Define the 

operator 

S : M+((0, ∞]) × (0, ∞) 7→ M+((0, ∞]) 

by 

S(ν, c)(A) = ν(cA). 

By the proof in Resnick (2007, Theorem 4.2), the mapping S is continuous 
at (ν2+δ, 1). Therefore, applying the continuous mapping S to the joint weak 
convergence in (5.13) gives (5.2). 
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5.3 Consistency of the Hill estimator 

We are now able to prove the consistency of the Hill estimator applied to 
{Di(n) : 1 ≤ i ≤ n}, i.e. 

X1 
kn D(i)(n)

Hkn,n = log . 
kn D(kn+1)(n)i=1 

Theorem 10 Let {kn} be an intermediate sequence satisfying (5.1), then 

P 1 
Hkn ,n → . 

2 + δ 

Proof First observe Z ∞ dy
Hkn,n = ν̂n(y, ∞] . 

y1 RM
Fix M > 0 large and define a mapping f 7→ 

1 f(y) d 
y
y from D(0, ∞] 7→ R+. 

This map is a.s. continuous so Z M Z Mdy P dy
ν̂n(y, ∞] → ν2+δ (y, ∞] , 

y y1 1 

and it remains to show by the second converging together theorem (Resnick, 
2007, Theorem 3.5) that ��Z ∞ dy

lim lim sup P ν̂n(y, ∞] > ε = 0. (5.14)
M →∞ n→∞ yM 

The probability in (5.14) is �Z ∞ � 
dy

P ν̂n(y, ∞] > ε �MZ ∞ 

y � 
dy D(kn)(n)≤ P ν̂n(y, ∞] > ε, − 1 < η 
y b(n/kn)M�Z ∞ � 
dy D(kn)(n) + P ν̂n(y, ∞] > ε, − 1 ≥ η 
y b(n/kn)M !Z ∞ nX1 dy≤ P �Di (n)/b(n/kn)((1 − η)y, ∞] > ε 

M kn y � i=1 � 
D(kn)(n) +P − 1 ≥ η =: A + B. 
b(n/kn) 

By (5.4), B → 0 as n → ∞, and using the Markov inequality, A is bounded 
by !Z ∞ nX1 1 dy

E �Di(n)/b(n/kn)((1 − η)y, ∞]
ε yM kn i=1 
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= E �Di(n)/b(n/kn)(y, ∞]

ε M(1−η) kn y Z i=1 

1 ∞ 1 g � dy≤ E N>[b(n/kn )y](n) . 
ε M(1−η) kn y 

Recall the first step in the proof of Theorem 9. Both II and III converging 
to 0 as n →∞ gives that for y > 0, 

1 g � −(2+δ)E N>[b(n/kn)y](n) → y . (5.15)
kn 

Let U(t) := E(N>[t](n)) and (5.15) becomes: for y > 0, 

1 −(2+δ)U(b(n/kn)y) → y , as n →∞. 
kn 

Since U(·) is a non-increasing function, U ∈ RV−(2+δ) by Resnick (2007, Propo-
sition 2.3(ii)). Therefore, Karamata’s theorem gives Z ∞1 1 g � dy

A ≤ E N>[b(n/kn )y](n) ∼ C(δ, η)M−(2+δ),
ε kn yM(1−η) 

with some positive constant C(δ, η) > 0. Also, M−(2+δ) → 0 as M →∞, and 
(5.14) follows. 

6 Another Preferential Attachment Model. 

In this section, we extend the use of the embedding technique to a variant of 
the model in Section 2.1. In the sequel, we refer to the model introduced in 
Section 2.1 as Model A and the variant studied in this section is called Model 
B. For i ∈ [n], DB (n) is the degree of node i in GB (n). Given graph GB (n),i 
the graph GB (n + 1) is obtained by either: 

– Adding a new node n + 1 and a new edge connecting to an existing node 
i ∈ [n] with probability 

DB (n) + δ DB (n) + δg i iP � = ;n 
DB (n) + δ + 1 + δ (2 + δ)n + 1 + δ

i=1 i 

or 

– Adding a new node n + 1 with a self loop with probability 

1 + δ 1 + δP g � = .n 
DB (n) + δ + 1 + δ (2 + δ)n + 1 + δ

i=1 i 

This is the model studied in van der Hofstad (2017), Chapter 8. All proofs are 
omitted in this section, since they are similar to those for Model A. 
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6.1 Convergence results for Model B. 

The B.I. process framework can still be used for Model B. We keep the inde-
pendent sequence of {BIi(t) : t ≥ 0}i≥1 initialized as in (4.1), as well as the 

(i)
definition of {τ : k ≥ 1} for i ≥ 1.k 

Set T B = T B = 0 and start two B.I. processes BI1(·) and BI2(·) at T B .0 1 
At time T B with n ≥ 1, there exist n + 1 B.I. processes. We define Tn

B 
+1 as then 

first time after Tn
B that one of the processes {BIi(t − Ti

B 
−1) : t ≥ Ti

B 
−1}1≤i≤n+1 

jumps, i.e. 

(i) (i)
T B > T B 
n+1 := min{Ti

B 
−1 + τ : k ≥ 1, Ti

B 
−1 + τ , 1 ≤ i ≤ n + 1}, (6.1)k k n 

and start a new, independent B.I. process {BIn+2(t − Tn
B 
+1)}t≥T B at Tn

B 
+1. n+1 

Under similar arguments as in Theorem 3, we have the following embedding 
results. 

Corollary 11 Let DB (n) := (D1 
B (n), . . . , DB (n)) be the degree sequence in n 

Model B and define 

De B 
(n) := (BI1(T B ), BI2(T B ), . . . , BIn−1(T B − Tn

B 
−2), BIn(T B − Tn

B 
−1)).n n n n 

B 
Then DB D 

The following corollary summarizes the convergence results in Model B, 
which is a slight variant of Proposition 5 and Theorem 6. 

Corollary 12 (i) For a sequence of iid standard exponential random variables 

e (n) have the same distribution in Rn(n) and . 

⎧⎨ ⎩ 
{Bi : i ≥ 1}, the branching times {T B : i ≥ 1} satisfiesi ⎫⎬ ⎭ , 

Xi 
(2 + δ)j − 1 

j=2 

Bjd{T B : i ≥ 2}i : i ≥ 2= 

�� 
a.s.n 3+2δand −→ WB , with WB ∼ Gamma . 

(2+δ)TB 1+δ , 1 
ne 

(ii) In Mp(0, ∞], we have for δ ≥ 0, 

XXn ∞ 

�DB (n)/n1/(2+δ) ⇒ � −TB .1/(2+δ)i σi e i−1 /WB
i=1 i=1 

6.2 Consistency of Hill estimator in Model B. 

Similar to Model A, in order to examine the consistency of the Hill estimator 
in Model B, we first analyze the convergence of the tail empirical measure. Let 

DB (n) ≥ DB (n) ≥ · · · ≥ DB (n)(1) (2) (n) 

be the order statistics for DB (n). 
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Theorem 13 Suppose that {kn} is some intermediate sequence satisfying (5.1), 
then 

1 
n 

�DB (n)/DB (n)(·) ⇒ ν2+δ, 
i (kn)kn i=1 

−(2+δ)in M+((0, ∞]), where ν2+δ(x, ∞] = x , x > 0. 

Proof The proof consists of three steps, similar to Theorem 6. In particular, 
we only need to check the first step and once that has been established, the 
rest follows exactly as in the proof of Theorem 6. Hence, we show (5.4) holds 
also for Model B. 

Recall the three parts in (5.5). Using van der Hofstad (2017, Proposi-
P

tion 8.4) and Stirling’s formula, we know that I → 0 and III → 0, respectively, 
for {kn} satisfying (5.1). So we are left with showing 

1 
E(N>[b(n/kn)y](n)) − np>[b(n/kn )y] → 0, n →∞. 

kn 

Note that in Model B, we have 

X 

⎧⎨ ⎩ : i ≥ 2 

⎫⎬ ⎭ , 
i 

(2 + δ)j − 1 
j=2 

X Bjd{T B : i ≥ 2}i = 

where {Bi : i ≥ 1} is a sequence of iid standard exponential random variables. 
This makes the order statistic argument used to prove (5.10) not applicable 
to Model B. However, we instead use the results in Ross (2013, Theorem 1.2) 
to conclude that for some constant Cδ > 0, �� 
n 1 

E N>[b(n/kn)y](n) − p>[b(n/kn)y]kn n � 
E 

1 
� �n n 

P(DB 
Un 

(n) > x)≤ N>x(n) − p>x − p>xEsup = sup
kn knnx≥0 x≥0 

n log n log n ≤ Cδ = Cδ ,
kn n kn 

and log n/kn → 0 as n → ∞, for {kn} satisfying (5.1). This completes the 
proof of the theorem. 

Now define the Hill estimator for Model B as Xkn 

= log 
DB (n)(i) 

DB 
(kn+1)(n) 

. 
1 

HB 
kn,n kn i=1 

The consistency of HB is a direct result of Theorem 13, after applying thekn,n 
proof machinery for Theorem 6. We omit the proof and only give the statement. 

Corollary 14 Let {kn} be an intermediate sequence satisfying (5.1), then 

P 1 
HB → as n →∞.kn ,n 2 + δ 
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7 Simulation Studies. 

In this section, we use simulations to analyze some unresolved issues with 
regard to the asymptotic distribution of the Hill estimator in the preferential 
attachment model. Further research is needed on these issues. 

Threshold selection or choosing kn is an important problem when comput-
ing the Hill estimator. We adopt the threshold selection method proposed in 
Clauset et al. (2009), which is widely used computer science and network anal-
yses; see the KONECT website (Kunegis, 2013). This method is encoded in the 
plfit script, which can be found at http://tuvalu.santafe.edu/~aaronc/ 
powerlaws/plfit.r). Here is a summary of this method that we refer to as the 
“minimum distance method”. Given a sample of n iid observations, Z1, . . . , Zn 

from a power law distribution with tail index α, the minimum distance method 
suggests using the thresholded data consisting of the k upper-order statistics, 
Z(1) ≥ . . . ≥ Z(k), for estimating α. The tail index is estimated by !−1kX1 Z(i)

H−1 
k,n = α̂(k) := log , k ≥ 1. 

k Z(k+1)i=1 

To select k, we first compute the Kolmogorov-Smirnov (KS) distance between 
the empirical tail distribution of the upper k observations and the power-law 
tail with index α̂(k): 

nX1 −α̂(k)dk := sup 
k

�Zi/Z(k+1) 
(y, ∞] − y , 1 ≤ k ≤ n. 

y≥1 i=1 

Then the chosen k∗ is the one that minimizes the KS distance, i.e. 

k ∗ := argmin dk, 
1≤k≤n 

and we estimate the tail index and threshold by α̂(k∗) and Z(k∗+1) respectively. 
This estimator performs reasonably well if the thresholded portion comes from 
a Pareto tail and also seems effective for social network data (Drees et al, 2018). 

In the iid case, under some second order condition, we know that for some 
intermediate sequence {kn}, p g � 

kn Hkn,n − α−1 ⇒ N(0, α−2), as n →∞, 

(de Haan and Ferreira (2006); Resnick (2007), Chapter 9.1). Is this also true 
in the preferential attachment setup? We only consider Model A. 

We start with the limit distribution of the minimum distance estimator 
α̂(k∗). In other words, we analyze the distribution of 

√ g � 
k∗ α̂(k ∗ ) − α , 

and examine whether it is close to some normal distribution, provided that 
we have a large preferential attachment model. To do this, we chose α = 

http://tuvalu.santafe.edu/~aaronc
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(f) α = 4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

√  � 
Fig. 7.1 QQ plots of k∗ α̂(k∗) − α with n = 105 and α = 1.5, 2, 2.5, 3, 3.5, 4, based on 
500 replications of Model A for each value of α. The red dashed lines are the traditional 
qq-lines used to check normality of the estimates. 
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√  � 
Fig. 7.2 QQ plots of kn α̂(kn) − α with n = 105 and α = 1.5, 2, 2.5, 3, 3.5, 4, based on 
500 replications of Model A for each value of α. The red dashed lines are the traditional 
qq-lines used to check normality of the estimates. 

1.5, 2, 2.5, 3, 3.5 and n = 105 , generated 500 replications of Model A for each √ g � 
value of α and computed k∗ α̂(k∗) − α for each replication. QQ plots cor-
responding to different values of α are given in Figure 7.1. We see that for√ g � 
small values of α, the distribution of k∗ α̂(k∗) − α is close to normal, but 
it becomes more right-skewed as tails become lighter. However, at this point, 
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it is not clear whether this non-normality is due to the non-normality of the 
Hill estimator or the minimum distance method. 

To investigate this further, we chose 

0.55 0.58 0.6 0.65 0.68 0.7kn = (n log n)1/2 , n , n , n , n , n , n . 

Using the 500 replications obtained under different values of α, we computed 
α̂(kn) with kn varied as above. Also, for each value of α, we recorded the MSE 
of α̂(kn) under different choices of kn, picked kn giving the smallest MSE and√ g � 
plotted the distribution of the corresponding kn α̂(kn) − α in Figure 7.2. 
Different from Figure 7.1, most of the QQ plots in Figure 7.2 confirm the√ g � 
normality of kn α̂(kn) − α . This suggests that the non-normality displayed 
in Figure 7.1 is possibly the result of the minimum distance method. Further 
work on the minimum distance method is ongoing in Drees et al (2018). At the√ g � √ g � 
moment, neither the normality of kn α̂(kn) − α nor that of k∗ α̂(k∗) − α 
has been properly analyzed and this requires more investigation. 
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	T. Wang, S.I. Resnick 
	1 Introduction. 
	The preferential attachment model gives a growing sequence of random graphs in which nodes and edges are added to the network based on probabilistic rules, and is used to mimic the evolution of social networks, collaborator and citation networks, as well as recommender networks. The probabilistic rule depends on the node degree and captures the feature that nodes with larger degrees tend to attract more edges. Empirical analysis of social network data shows that degree distributions follow power laws and th
	-

	Estimating the power-law index of the degree distribution is an important way to characterize a network. The indices of these distributions control the likelihood that nodes with large degrees appear in the data. Data repositories of large network datasets such 
	-
	-
	-

	Fig. 1.1 A snapshot of summary statistics 
	as KONECT (. 
	http://konect

	for the Flickr friendship data. The full list of 
	/, Kunegis (2013)) 
	uni-koblenz.de

	key statistics is available at provide a Hill estimate as one of koblenz.de/networks/ﬂickr-growth. the key summary statistics for almost all listed networks. Figure 1.1 displays part of the statistical summaries for the Flickr friendship data given on KONECT (), and “power law exponent” corresponds to the power-law index Hill estimate of the degree frequencies. One possible way to obtain the power-law index estimate is to hypothesize a generative model and within that model estimate parameters using, say, m
	http://konect.uni
	-
	-
	http://konect.uni-koblenz.de/networks/ﬂickr-growth
	-
	-

	Figure
	Hill Estimator for Network Data 
	method that starts with Hill estimation (Hill, 1975) of tail indices coupled with minimum distance threshold selection (Clauset et al., 2009). The methodology used by KONECT to estimate degree frequency indices uses the Hill estimator for each dataset despite the fact that heretofore there has been no theoretical justiﬁcation for the technique. Hill estimator consistency has been proved only for data from a stationary sequence of random variables, which is assumed to be either iid (Mason, 1982) or satisfy s
	-

	The Hill estimator and other tail descriptors are often analyzed using the tail empirical estimator. Using standard point measure notation, let 
	( 
	1, if x ∈ A,
	.x(A)= . 
	0, if x ∈/A 
	For positive iid random variables {Xi : i ≥ 1} whose distribution has a regularly varying tail with index −α< 0, we have the following convergence in the space of Radon measures on (0, ∞] of the sequence of empirical measures 
	-

	n
	X 
	−α
	.X/b(n)(·) ⇒ PRM(να(·)), with να(y, ∞]= y ,y > 0, (1.1) i=1 
	i

	to the limit Poisson random measure with mean measure να(·). Here b(n) satisﬁes P [X>b(n)] ∼ 1/n. From (1.1) other extremal properties of {Xn}follow (Resnick, 1987, Chapter 4.4). See for example the application given in this paper after Theorem 6. Further, for any intermediate sequence kn →∞, kn/n → 0 as n →∞, the sequence of tail empirical measures also converge to a deterministic limit, 
	1 

	n
	X
	1 
	νˆn(·) := .X/b(n/k)(·) ⇒ να(·), (1.2)
	i
	n

	kn 
	kn 

	i=1 
	which is one way to prove consistency of the Hill estimator for iid data (Resnick, 2007, Chapter 4.4). We seek a similar dual pair as (1.1) and (1.2) for network models that facilitates the study of the Hill estimator and extremal properties of node degrees. 
	With this goal in mind, we ﬁrst ﬁnd the limiting distribution for the degree sequence in a linear preferential attachment model, from which a similar convergence result to (1.1) follows. Embedding the network growth model into a continuous time branching process (cf. Athreya (2007); Athreya et al. (2008); Bhamidi (2007)) is a useful tool in this case. We model the growth of the degree of each single node as a birth process with immigration. Whenever a new node is added to the network, a new birth immigratio
	-
	-
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	(1987)), we give the limiting distribution of the degree of a ﬁxed node as well as the maximal degree growth. Another way to embed the preferential attachment model is exploited in Gao et al. (2017), using the tree model originated in Rudas et al. (2007). However, our birth immigration process framework gives a more direct way to model the degree growth of each individual node. 
	-

	Simulation evidence suggests that the Hill estimator applied to undirected network data is consistent, but formally proving the analogue of (1.2) is challenging and requires showing concentration inequalities for degree counts. We establish the concentration results using the embedding techniques assuming a particular linear preferential attachment model requiring each new node attach to an existing node in the graph. For a more sophisticated model allowing for unconnected graph components, extra techniques
	-

	Structure of the paper: We review background on the tail empirical measure and Hill estimator in the rest of this section. Section 2 gives the linear preferential attachment model. Section 3 summarizes facts about pure birth and birth-immigration processes. We analyze network degree growth in Section 4 using a sequence of birth-immigration processes and give the limiting empirical measures of normalized degrees in the style of (1.1). We prove consistency of the Hill estimator for the model in Section 5 and 
	-
	-
	-

	Parameter estimation based on maximum likelihood or approximate MLE for directed preferential attachment models is studied in Wan et al. (2017a). A comparison between MLE model based methods and asymptotic extreme value methods is included in Wan et al. (2017b). 
	1.1 Background 
	1.1 Background 
	We consider the Hill estimator as a functional of the tail empirical measure so we start with necessary background (cf. Resnick (2007, Chapter 3.3.5)). 
	For E = (0, ∞], let M+(E) be the set of non-negative Radon measures on
	P 
	E. A point measure m is an element of M+(E) of the form m = .x. The
	i 

	i 
	set Mp(E) is the set of all Radon point measures of this form and Mp(E) is a closed subset of M+(E) in the vague metric. 
	For {Xn,n ≥ 1} iid and non-negative with common regularly varying distribution tail F ∈ RV−α, α> 0, there exists a sequence {b(n)} such that for a 
	-

	−α
	limiting Poisson random measure with mean measure να and να(y, ∞]= y for y> 0, written as PRM(να), we have (1.1) in Mp(0, ∞], and for some 
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	kn →∞, kn/n → 0, we have (1.2) in M+(0, ∞]. Note the limit in (1.1) is random while that in (1.2) is deterministic. Deﬁne the Hill estimator Hk,n based on k upper order statistics of {X,...,Xn} as in Hill (1975) 
	1

	k
	X
	1 
	X(i)

	Hk,n := log ,kX(k+1)
	i=1 
	where X(1) ≥ X(2) ≥ ... ≥ X(n) are order statistics of {Xi :1 ≤ i ≤ n}. In the iid case there are many proofs of consistency (cf. Cs¨org¨o et al. (1991a); de Haan and Resnick (1998); Hall (1982); Mason (1982); Mason and Turova (1994)): For k = kn →∞,kn/n → 0, we have 
	P
	Hk,n → 1/α as n →∞. (1.3) 
	n

	We consider Hk,n as a functional of νˆn as in Resnick (2007, Theorem 4.2) who shows (1.3) follows from (1.2) and we follow this approach for the network context. The next section constructs an undirected preferential attachment model and gives behavior of Di(n), the degree of node i at the nth stage of construction. Theorem 6 shows that for δ, a parameter in the model construction, the degree sequence has empirical measure 
	n
	-
	-

	n
	X 
	.D(n)/n/(2+δ) (1.4) i=1 
	i
	1

	that converges weakly to some random limit point measure in Mp(0, ∞]. We prove the analogy to (1.2) in the network case, 
	n
	X
	1 
	.D(n)/b(n/k) ⇒ ν2+δ, in M+(0, ∞], (1.5)
	i
	n

	kn 
	kn 

	i=1 
	with the function b(n)= cnand intermediate sequence kn. This leads to consistency for 1/(2 + δ) of the Hill estimator Hk,n applied to the data D(n),...,Dn(n). 
	1
	/(2+δ) 
	1

	2 Preferential Attachment Models. 
	2.1 Model setup. 
	2.1 Model setup. 
	We consider an undirected preferential attachment model initiated from the initial graph G(1), which consists of one node 1 and a self loop. Node 1 then has degree 2 at stage n = 1. For n ≥ 1, we obtain a new graph G(n + 1) by appending a new node n + 1 to the existing graph G(n). The graph G(n) consists of n edges and n nodes. Denote the set of nodes in G(n) by [n] := {1, 2,...,n}. For i ∈ [n], Di(n) is the degree of node i in G(n). Given G(n), 
	T. Wang, S.I. Resnick 
	for a parameter δ> −f(1), the new node n + 1 is connected to one of the existing nodes i ∈ [n] with probability 
	f(Di(n)) + δ
	P , (2.1)
	(f(Di(n)) + δ)
	i∈[n] 
	where the preferential attachment function f(j),j ≥ 1 is deterministic and non-decreasing. In this case, the new node n + 1 for n ≥ 1, is always born with degree 1. 
	Consider three choices of preferential attachment function: 
	1. Linear case: If the preferential attachment function is f(j)= j for j = 1, 2,..., then the model is called the linear preferential attachment model. Since every time we add a node and an edge the degree of 2 nodes is in-
	P
	n
	creased by 1, we have Di(n)=2n, n ≥ 1. Therefore, the attachment 
	i=1 
	probability in (2.1) become 
	(2 + δ)n
	Di(n)+ δ 
	, 

	where δ> −1 is a constant. Degree frequencies are power laws. 
	2. 
	2. 
	2. 
	Super-linear case: If f grows faster than linearly, i.e. f(j)= jfor β> 1, then there is one node connecting to inﬁnitely many nodes. See Oliveira and Spencer (2005) for a comprehensive study. 
	β 


	3. 
	3. 
	Sub-linear case: If f grows sub-linearly, i.e. f(j)= jfor 0 <β< 1, then the degree distribution is much lighter-tailed compared to the linear case. See Bhamidi (2007); Gao et al. (2017); Rudas et al. (2007) for references. 
	β 



	Due to our interest in power laws, we only consider the linear case. 

	2.2 Power-law tails. 
	2.2 Power-law tails. 
	Continuing with f(j)= j, suppose G(n) is a random graph generated after n steps. Let Nk(n) be the number of nodes in G(n) with degree equal to k, i.e. 
	n
	X 
	Nk(n) := 1{D(n)=k}, (2.2) i=1 
	i

	P 
	then N>k(n) := Nj (n), k ≥ 1, is the number of nodes in G(n) with degree strictly greater than k. For k = 0, we set N>0(n)= n. 
	j>k 

	It is shown in van der Hofstad (2017, Theorem 8.3) using concentration inequalities and martingale methods that for ﬁxed k ≥ 1, as n →∞, 
	P 
	Nk(n) 
	Γ (k + δ)Γ (3 + 2δ) Γ (3 + 2δ)

	−(3+δ)
	k

	→ pk = (2+ δ) ∼ (2 + δ); 
	nΓ (k +3+2δ)Γ (1 + δ) Γ (1 + δ) (2.3) 
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	(pk) is a pmf and the asymptotic form, as k →∞, follows from Stirling’s
	k≥0 P formula. Let p>k = pj be the complementary cdf and by Scheﬀ´e’s lemma 
	j>k 

	as well as van der Hofstad (2017, Equation (8.4.6)), we have 
	P 
	N>k(n) 
	Γ (k +1+ δ)Γ (3 + 2δ)

	→ p>k := , (2.4) 
	nΓ (k +3+2δ)Γ (1 + δ) 
	and again by Stirling’s formula we get from (2.4) as k →∞, 
	p
	p
	>k 
	∼ c·k
	−(2+δ) 
	Γ (3 + 2δ) 

	,c = . 
	Γ (1 + δ) 
	In other words, the tail distribution of the asymptotic degree sequence in a linear preferential attachment model is asymptotic to a power law with tail index 2 + δ. Since the Hill estimator is widely used to estimate this tail index, we prove consistency of this estimator. 
	3 Preliminaries: Continuous Time Markov Branching Processes. 
	We now review two continuous time Markov branching processes. We will embed Di(n),i ∈ [n] in a constructed process and obtain the network asymptotics from the constructed process. 
	-

	3.1 Linear birth processes. 
	3.1 Linear birth processes. 
	A linear birth process {ζ(t): t ≥ 0} is a continuous time Markov process taking values in the set N= {1, 2, 3,...} and having a transition rate 
	+ 

	qi,i+1 = λi, i ∈ N, λ> 0. 
	+ 

	The process {ζ(t): t ≥ 0} is a mixed Poisson process; see Resnick (1992, Theorem 5.11.4), Kendall (1966) and Waugh (1970) among other sources. If ζ(0) = 1 then the representation is 
	g.
	λt 
	− 1

	ζ(t)=1+ NW (e ,t ≥ 0, (3.1) 
	0 

	where {N(t): t ≥ 0} is a unit rate homogeneous Poisson on R+ with N(0) = 0 and W ⊥ N(·) is a unit exponential random variable independent of N. Since N(t)/t → 1 almost surely as t →∞, it follows immediately that 
	0
	0
	0
	0
	0

	ζ(t) a.s.
	−→ W, as t →∞. (3.2) 
	e
	e
	λt 

	We use these facts in Section 4.2 to analyze the asymptotic behavior of the degree growth in a preferential attachment network. 
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	3.2 Birth processes with immigration. 
	3.2 Birth processes with immigration. 
	Apart from individuals within the population giving birth to new individuals, population size can also increase due to immigration which is assumed independent of births. The linear birth process with immigration (B.I. process), {BI(t): t ≥ 0}, having lifetime parameter λ> 0 and immigration parameter θ ≥ 0 is a continuous time Markov process with state space N = {0, 1, 2, 3,...}and transition rate 
	-

	qi,i+1 = λi + θ. 
	When θ = 0 there is no immigration and the B.I. process becomes a pure birth process. 
	For θ> 0, the B.I. process starting from 0 can be constructed from a Poisson process and an independent family of iid linear birth processes (Tavar´e, 1987). Suppose that Nθ(t) is the counting function of homogeneous Poisson points 0 <τ<τ< ... with rate θ and independent of this Poisson process we have independent copies of a linear birth process {ζi(t): t ≥ 0}i≥1 with parameter λ> 0 and ζi(0)=1 for i ≥ 1. Let BI(0) = 0, then the B.I. process is a shot noise process with form 
	1 
	2 

	∞ Nθ (t)
	X

	X 
	BI(t) := ζi(t − τi)1{t≥τ} = ζi(t − τi). (3.3) i=1 i=1 
	i

	Theorem 1 modiﬁes slightly the statement of Tavar´e (1987, Theorem 5) summarizing the asymptotic behavior of the B.I. process. 
	Theorem 1 For {BI(t): t ≥ 0} as in (3.3), we have as t →∞, 
	∞
	X 
	a.s. 
	e BI(t) −→ Wie =: σ (3.4) i=1 
	−λt
	−λτ
	i 

	where {Wi : i ≥ 1} are independent unit exponential random variables which for each i ≥ 1 are almost sure limits, 
	Wi = lim e ζi(t). 
	−t

	t→∞ 
	The random variable σ in (3.4) is a.s. ﬁnite and has a Gamma density given by 
	1 
	θ/λ−1 −x
	f(x)= x e, x> 0. 
	Γ (θ/λ) 
	Γ (θ/λ) 

	The form of σ in (3.4) and its Gamma density is justiﬁed in Tavar´e (1987). It can be guessed from (3.3) and some cavalier interchange of limits and inﬁnite sums. Transforming Poisson points {(Wi,τi),i ≥ 1}, summing and recognizing a Gamma L´evy process at t = 1 gives the density of σ. 
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	Remark 2 For a B.I. process {BI(t)}t≥0 with BI(0) = j ≥ 1, modifying the representation in (3.3) gives 
	j ∞
	XX 
	BI(t)= ζi(t)+ ζi(t − τi)1{t≥τ}. i=1 i=j+1 
	i

	a.s.
	Therefore, eBI(t) −→ σwhere σhas a Gamma density given by g(x)= 
	−λt
	0 
	0 

	j+θ/λ−1
	xe/Γ (j + θ/λ), x> 0. 
	−x

	4 Embedding Process. 
	Our approach to the weak convergence of the sequence of empirical measures in (1.4) embeds the degree sequences {Di(n), 1 ≤ i ≤ n, n ≥ 1} into a process constructed from B.I. processes. The embedding idea is proposed in Athreya et al. (2008) and we tailor it for our setup ﬁnding it ﬂexible enough to accommodate the linear preferential attachment model introduced in Section 2.1. 
	-

	4.1 Embedding. 
	4.1 Embedding. 
	Here is how we embed the network growth model using a sequence of independent B.I. processes. 
	-

	4.1.1 Model construction. 
	4.1.1 Model construction. 
	Let {BIi(t): t ≥ 0}i≥1 be independent B.I. processes such that 
	BI(0) = 2, BIi(0) = 1, ∀i ≥ 2. (4.1) 
	1

	(i)
	Each has transition rate is qj,j+1 = j + δ, δ> −1. For i ≥ 1, let {τ : k ≥ 1}
	k 
	(i)
	be the jump times of {BIi(t): t ≥ 0} and set τ := 0 for all i ≥ 1. For k ≥ 1,
	0 
	(1) (i)
	BI(τ )= k +2, BIi(τ )= k +1,i ≥ 2.
	1

	kk 
	Therefore, 
	(1) (1) (i)(i)
	τ − τ ∼ Exp(k +1+ δ), and τ − τ ∼ Exp(k + δ),i ≥ 2.
	kk−1 kk−1 
	(i)(i)
	and {τ − τ : i ≥ 1,k ≥ 1} are independent. 
	kk−1 
	Set T= 0 and relative to BI(·) deﬁne 
	1 
	1

	(1)
	T:= τ, (4.2)
	2 

	1 
	i.e. the ﬁrst time that BI(·) jumps. Start the new B.I. process {BI(t − T): t ≥ T} at Tand let Tbe the ﬁrst time after Tthat either BI(·) or BI, (·) jumps so that, 
	1
	2
	2
	2
	2 
	3 
	2 
	1
	2

	(i)(i)
	T= min{Ti + τ : k ≥ 1,Ti + τ >T,i =1, 2}.
	3 
	2

	kk 
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	BI(0) = 2 BI(T)=3 
	1
	1
	2 
	A

	(1) (2)
	T =0 T = τT = τ + T 
	A 
	A 
	A 
	A 

	1 21 312 ··· 
	t t τ (1) 2 · · · BI2(0) = 1 τ(2) 2 + T A 2 · · · · · · · · · 
	t
	··· 
	BI(T)=3 BI(T − T)=2
	1
	3 
	A
	2
	A 
	2 
	A

	3 BI(0) = 1 
	3

	(2) (1)
	Fig. 4.1 Embedding procedure for Model A assuming τ + T <τ .
	A 

	1 22 
	Start a new, independent B.I. process {BI(t − T)}t≥Tat T. See Figure 4.1, 
	3
	3
	3 
	3

	(2) (1)
	which assumes τ + T<τ . Continue in this way. When n lines have been 
	2 

	12 
	created, deﬁne Tn+1 to be the ﬁrst time after Tn that one of the processes {BIi(t − Ti): t ≥ Ti}≤i≤n jumps, i.e. 
	1

	(i)(i)
	Tn+1 := min{Ti + τ : k ≥ 1,Ti + τ >Tn, 1 ≤ i ≤ n}. (4.3)
	kk 
	At Tn+1, start a new, independent B.I. process {BIn+1(t − Tn+1)}t≥T. 
	n+1 


	4.1.2 Embedding. 
	4.1.2 Embedding. 
	The following embedding theorem is similar to the one proved in Athreya et al. (2008) and summarizes how to embed in the B.I. construction. 
	Theorem 3 Fix n ≥ 1. Suppose 
	g. 
	D(n) := D(n),...,Dn(n) 
	1

	is the degree sequence of nodes in the graph G(n) and {Tn}n≥1 is deﬁned as in (4.3). For each ﬁxed n, deﬁne 
	D(n) := (BI(Tn), BI(Tn − T), . . . , BIn−1(Tn − Tn−1), BIn(0)), 
	e
	1
	2
	2

	and then D(n) and D(n) have the same distribution in R. 
	e
	n 

	Proof By the model construction, at each Tn, n ≥ 2, we start a new B.I. process BIn(·) with initial value equal to 1 and one of BIi,1 ≤ i ≤ n − 1 also increases by 1. This makes the sum of the values of BIi,1 ≤ i ≤ n, increase by 2 so that 
	n
	X 
	(BIi(Tn − Ti)+ δ) = (2+ δ)n. i=1 
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	The rest is essentially the proof of Athreya et al. (2008, Theorem 2.1) which we now outline. 
	Both {D(n),n ≥ 1} and {D(n),n ≥ 1} are Markov on the state space ∪n≥1Rsince
	e
	n 

	+ 
	g .g . 
	D(n +1) = D(n), 1+ e, 0 , 
	J 
	(n 
	n 
	) 
	+1 

	g.g . 
	D(n +1) = D(n), 1+ e, 0 ,
	e
	e
	(n) 

	Ln+1 
	(n)
	where for n ≥ 1, e is a vector of length n of 0’s except for a 1 in the j-th
	j 
	entry and 
	Dj (n)+ δ 

	P [Jn+1 = j|D(n)] = , 1 ≤ j ≤ n,
	(2 + δ)n and Ln+1 records which B.I. process in {BIi(t − Ti): t ≥ Ti}≤i≤n is the ﬁrst to have a new birth after Tn. 
	1

	When n = 1, 
	D(1) = BI(0) = 2 = D(1) = D(1), 
	e
	1
	1

	so to prove equality in distribution for any n, it suﬃces to verify that the transition probability from D(n) to D(n + 1) is the same as that from D(n) to D(n + 1). 
	e
	e

	According to the preferential attachment setup, we have 
	.. 
	P D(n +1) = (d,d,...,di +1,di+1,...,dn, 1) D(n)=(d,d,...,dn) 
	1
	2
	1
	2

	di + δ 
	di + δ 

	= , 1 ≤ i ≤ n. (4.4)
	(2 + δ)n 
	At time Tn, there are n B.I. processes and each of them has a population 
	size of BIi(Tn − Ti), 1 ≤ i ≤ n. Therefore, Tn+1 − Tn is the minimum of n (i)
	independent exponential random variables, {En }≤i≤n, with means 
	1

	−1
	(BIi(Tn − Ti)+ δ) , 1 ≤ i ≤ n, 
	which gives for any 1 ≤ i ≤ n,
	.. 
	P Ln+1 = i D(n)=(d,d,...,dn) 
	e
	1
	2

	.. 
	=P D(n +1) = (d,d,...,di +1,di+1,...,dn, 1) D(n)=(d,...,dn) 
	e
	1
	2
	e
	1

	.^n . (i) (j) e
	E
	E

	=P < D(n)=(d,d,...,dn)
	n 
	1
	2

	n j=1,j6=i 
	BIi(Tn − Ti)+ δ
	di + δ 

	= P = .
	n 
	(BIi(Tn − Ti)+ δ) (2+ δ)n
	i=1 
	This agrees with the transition probability in (4.4), thus completing the proof. 
	Remark 4 This B.I. process construction can also be generalized for other choices of the preferential attachment functions f. For example, its applications to the super-and sub-linear preferential attachment models are studied in Athreya (2007). 
	-
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	4.2 Asymptotic properties. 
	4.2 Asymptotic properties. 
	One important reason to use the embedding technique speciﬁed in Section 4.1 is that asymptotic behavior of the degree growth in a preferential attachment model can be characterized explicitly. These asymptotic properties then help us derive weak convergence of the empirical measure, which is analogous to 
	(1.1) in the iid case. 
	4.2.1 Branching times. 
	4.2.1 Branching times. 
	We ﬁrst consider the asymptotic behavior of the branching times {Tn}n≥1, which are deﬁned in Section 4.1. 
	Proposition 5 For {Tn}n≥1 deﬁned in (4.3), we have 
	n 
	a.s.
	−→ W, W ∼ Exp (1) . (4.5) 
	e
	e
	(2+δ)Tn 

	Proof Deﬁne a counting processes 
	∞
	X
	1 
	N(t) := BIi(t − Ti)1{t≥T}. 
	i

	2 
	i=1 
	Then we have N(t)1= n. 
	. 

	t∈[Tn,Tn+1) 
	In other words, {Tn}n≥1 are the jump times of the counting process N(·), with the following structure 
	.. 
	d 
	Ei

	{Tn+1 − Tn : n ≥ 1} = ,i ≥ 1 , (4.6)
	(2 + δ)i 
	where {Ei : i ≥ 1} are iid unit exponential random variables. From (4.6), we see that N(·) is a pure birth process with N(0) = 1 and transition rate qi,i+1 = (2+ δ)i, i ≥ 1. 
	Replacing t with Tn in (3.2) gives (4.5). 

	4.2.2 Convergence of the measure. 
	4.2.2 Convergence of the measure. 
	Using embedding techniques, Theorem 6 gives convergence of empirical measures of scaled node degrees, which is the analogue of (1.1) for the iid case. 
	-

	Theorem 6 Suppose that 
	(1) 
	(1) 
	(1) 
	{Ti : i ≥ 1}, are distributed as in (4.6). 

	(2) 
	(2) 
	W is the limit random variable as given in (4.5). 

	(3) 
	(3) 
	{σi}i≥1 is a sequence of independent Gamma random variables speciﬁed in 


	(4.12) and (4.10) below. 
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	Then in Mp((0, ∞]), we have for δ ≥ 0, 
	n ∞
	XX 
	./(2+δ) (·) ⇒ .−Ti /(2+δ) (·). (4.7) i=1 i=1 
	D
	i
	(n)/n
	1
	σ
	i
	e
	/W 
	1

	Remark 7 From (4.7) we get for any ﬁxed k ≥ 1, that in R, 
	k 
	+

	.. .
	D(k)(n)
	,... ⇒ W (σ·e )(k) , (4.8) 
	.
	D
	(1)
	(n) 
	−1/(2+δ) 
	−T
	· 

	/(2+δ) /(2+δ) 
	n
	1
	n
	1
	−T
	· 
	)
	(1)
	,..., (σ
	·
	e 

	where a subscript inside parentheses indicates ordering so that D(1)(n) ≥ ··· ≥ D(k) and the limit on the right side of (4.8) represents the ordered k largest points from the right side of (4.7). 
	To prove Theorem 6, we ﬁrst show the following lemma, which gives the asymptotic limit of the degree sequence. 
	Lemma 8 Suppose that 
	(1) 
	(1) 
	(1) 
	{Ti : i ≥ 1} are distributed as in (4.6). 

	(2) 
	(2) 
	W is the limit random variable as given in (4.5). Then the degree sequence {Di(n):1 ≤ i ≤ n} satisﬁes: 

	(i) 
	(i) 
	For each i ≥ 1, 


	Di(n) σie
	−T
	i 

	⇒ , (4.9) 
	n
	n
	1
	/(2+δ) 
	W 
	1
	/(2+δ) 

	where {σi}i≥1 are a sequence of independent Gamma random variables with 
	σ∼ Gamma(2 + δ, 1), and σi ∼ Gamma(1 + δ, 1),i ≥ 2. (4.10) 
	1 

	Furthermore, for i ≥ 1, σi is independent from e. 
	−T
	i 

	(ii) For δ> −1, 
	Di(n) 
	⇒ −1/(2+δ) −Ti
	W 

	max max σie, (4.11) 
	n
	n
	1
	/(2+δ)

	i≥1 i≥1 
	where we set Di(n) := 0 for all i ≥ n +1. Proof (i) Applying the results in Remark 2 gives that as t →∞, BIi(t − Ti) a.s.
	−→ σi,i ≥ 1, 
	t−Ti where {σi}i≥1 are independent Gamma random variables with σ∼ Gamma(2 + δ, 1) and σi ∼ Gamma(1 + δ, 1),i ≥ 2. Thus as n →∞, BIi(Tn − Ti) a.s.
	e
	1 

	−→ σi,i ≥ 1. (4.12) 
	eTn−Ti 
	T. Wang, S.I. Resnick 
	Combining (4.12) with (4.5), we have for ﬁxed 1 ≤ i ≤ n, 
	BIi(Tn − Ti) a.s. σie
	−T
	i 

	−→ . 
	/(2+δ) 
	n
	1
	W 
	1
	/(2+δ) 

	Then (4.9) follows from Theorem 3. For i ≥ 2, the independence of σi and Ti follows from the construction and this completes the proof of (i). 
	(ii) For i ≥ n + 1, BIi(Tn − Ti) = 0 so from Theorem 3, it suﬃces to show 
	a.s. σie
	BIi(Tn − Ti) 
	−T
	i 

	max −→ max , 
	/(2+δ) 
	n
	1
	W 
	1
	/(2+δ)

	i≥1 i≥1 
	which is proved in Athreya et al. (2008, Theorem 1.1(iii)). 
	Using Lemma 8, we prove Theorem 6. Proof of Theorem 6. Note that the limit random variables 
	−Ti −1/(2+δ)
	W 

	σie ,i ≥ 1, 
	have continuous distributions, so for any y> 0, 
	! 
	∞
	X 
	P .−Ti /(2+δ) ({y})=0 =1. 
	σ
	i
	e
	/W 
	1

	i=1 
	Hence, by Kallenberg’s theorem for weak convergence to a point process on an interval (see Kallenberg (2017, Theorem 4.18) and Resnick (1987, Proposition 3.22)), proving (4.7) requires checking 
	-

	(a) For y> 0, as n →∞, 
	!! 
	n ∞
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	i 
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	i=1 i=1 
	(b) For y> 0, as n →∞, 
	! 
	n
	X 
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	X 
	−→ P .−Ti /(2+δ) (y, ∞]=0 . (4.14) 
	σ
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	To show (4.13), ﬁrst note that for any M> 0, 
	! 
	MM ..
	XX 
	Di(n)
	Di(n)
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	−→ P σie >y 
	i=1 
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	! 
	M
	X 
	= E .−Ti /(2+δ) (y, ∞] , 
	σ
	i
	e
	/W 
	1

	i=1 
	as n →∞. By Chebyshev’s inequality we have for any k> 2+ δ, 
	! 
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	Also, we have for δ ≥ 0, 
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	where the last inequality follows from the result in van der Hofstad (2017, Equation (8.7.26)). From van der Hofstad (2017, Equation (8.7.22)), we have 
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	for i large and Ck,δ > 0. Hence, continuing from (4.15), we have 
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	) 

	i=M+1 2+δ 
	M→∞
	−→ 0, 
	since k/(2 + δ) > 1. This veriﬁes Condition (a). To see (4.14), we have 
	()
	n ..
	X 
	Di(n)
	./(2+δ) (y, ∞]=0 = ≤ y, 1 ≤ i ≤ n 
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	Di(n) 
	= max ≤ y. 
	n
	n
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	1≤i≤n 
	Since we set Di(n)=0 for all i ≥ n + 1, then 
	. ... 
	Di(n) Di(n) 
	max ≤ y = max ≤ y. 
	n
	n
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	/(2+δ) 
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	1≤i≤ni≥1 
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	Similarly,
	()
	∞ ..
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	.−Ti /(2+δ) (y, ∞]=0 = max ≤ y. 
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	W 
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	By (4.11), we have for y> 0, 
	... . 
	Di(n) σie
	−T
	i 

	P max ≤ y → P max ≤ y, as n →∞, 
	n
	n
	1
	/(2+δ) 
	W 
	1
	/(2+δ)

	i≥1 i≥1 
	which gives (4.14) and completes the proof of (iv). 
	5 Consistency of the Hill Estimator. 
	We now turn to (1.5) as preparation for considering consistency of the Hill estimator. We ﬁrst give a plausibility argument based on the form of the limit point measure in (4.7). However, proving (1.5) requires showing N>k(n)/n concentrates on p>k, for all k ≥ 1, which in other words means controlling the bias for N>k(n)/n and the discrepancy between E(N>k(n)/n) and p>k. 





	5.1 Heuristics. 
	5.1 Heuristics. 
	Before starting formalities, here is a heuristic explanation for the consistency of the Hill estimator when applied to preferential attachment data. Since the Gamma random variables σi have light tailed distributions, one may expect that {σi : i ≥ 1} will not distort the consistency result and so we pretend the σi’s are absent; then what remains in the limit points is monotone in i. Set Yi := e/W and apply the Hill estimator to the Y s to get 
	−T
	i 
	1
	/(2+δ) 
	0

	kk
	X. . X
	1 1 
	Yi 

	Hk,n =log =(Tk+1 − Ti). 
	kYk+1 k 
	i=1 i=1 
	Recall from (4.6) that 
	d
	Tn+1 − Tn = En/(n(2 + δ)), 
	where En,n ≥ 1 are iid unit exponential random variables. Then 
	kkk k
	XXX X
	1 11 a.s. 1 
	El 

	Hk,n =(Tl+1 − Tl)= l(Tl+1 − Tl)= −→ ,
	k kk 2+ δ 2+ δ 
	i=1 l=il=1 l=1 
	by strong law of large numbers, provided that k →∞. 
	There are clear shortcomings to this approach, the most obvious being that we only dealt with the points at asymptopia rather than {Di(n), 1 ≤ i ≤ n}. Furthermore we simpliﬁed the limit points by neglecting the σi’s. We have not found an eﬀective way to analyze order statistics of {σie/W : i ≥ 1}. 
	−T
	i 
	1
	/(2+δ) 

	Concentration results for degree counts provide a traditional tool to prove 
	(1.5) and we pursue this in the next subsection. 
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	5.2 Convergence of the tail empirical measure 
	5.2 Convergence of the tail empirical measure 
	We now analyze the convergence of the tail empirical measure. First consider the degree of each node in G(n), (D(n),D(n),...,Dn(n)), and let 
	1
	2

	D(1)(n) ≥ D(2)(n) ≥ ··· ≥ D(n)(n) 
	be the corresponding order statistics. Then the tail empirical measure becomes 
	n
	X
	1 
	νˆn(·) := .D(n)/D(n)(·),
	i
	(k
	n
	)
	kn 

	i=1 
	for some intermediate sequence {kn}, i.e. kn →∞ and kn/n → 0 as n →∞. Theorem 9 Suppose that {kn} is some intermediate sequence satisfying 
	lim inf kn/(n log n)> 0 and kn/n → 0 as n →∞, (5.1) 
	1
	/2 

	n→∞ 
	then 
	νˆn ⇒ ν2+δ, (5.2) −(2+δ)
	in M+((0, ∞]), where ν2+δ(x, ∞]= x , x> 0. 
	Proof We proceed in a series of steps. Step 1. We ﬁrst show that with 
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	.. 
	1
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	Γ (3 + 2δ) 
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	2+δ 

	2+δ
	2+δ

	b(n/kn)= (n/kn) ,
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	we have in M+((0, ∞]), 
	we have in M+((0, ∞]), 
	we have in M+((0, ∞]), 

	1 
	1 
	nX 

	kn 
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	.Di(n)/b(n/kn) ⇒ ν2+δ , i=1 
	(5.3) 

	and it suﬃces to justify for any y > 0, 
	and it suﬃces to justify for any y > 0, 

	1 −(2+δ)N>[b(n/kn)y](n) − ykn 
	1 −(2+δ)N>[b(n/kn)y](n) − ykn 
	P→ 0, 
	n → ∞. 
	(5.4) 

	The left side of (5.4) is bounded by 
	The left side of (5.4) is bounded by 
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	T. Wang, S.I. Resnick 
	n 
	−(2+δ)
	+ p>[b(n/kn)y] − y
	kn 
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	=: I + II + III. (5.5) 
	Using Stirling’s formula, van der Hofstad (2017, Equation 8.3.9) gives 
	Γ (t + a) 
	Γ (t + a) 

	= t(1 + O(1/t)). 
	a

	Γ (t) 
	Recall the deﬁnition of p>k in (2.4) for ﬁxed k, then we have 
	n np>[b(n/kn)y] = 
	Γ (3 + 2δ) Γ ([b(n/kn)y]+1+ δ) 
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	.. .. 
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	1
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	Hence, III → 0 as n →∞. Consider I and we have for .> 0, .. 
	1 
	P N>[b(n/k)y](n) − E(N>[b(n/k)y](n)) >. 
	n 
	n
	kn 

	g. 
	= P N>[b(n/k)y](n) − E(N>[b(n/k)y](n)) > .kn . 
	n
	n

	Following thproof in van der Hofstad (2017, Proposition 8.4), we have for
	e 

	√ 
	any C> 2 2, 
	. . 
	p

	P |N>k(n) − E(N>k(n))|≥ Cn log n = o(1/n). 
	Since N>k(n) = 0 a.s. for all k>n, then 
	..
	p
	P max |N>k(n) − E(N>k(n))|≥ C
	n log n 

	..
	k 

	p 
	=P max |N>k(n) − E(N>k(n))|≥ C
	n log n 

	0≤k≤n 
	Xn . p. 
	≤ P |N>k(n) − E(N>k(n))|≥ Cn log n = o(1). (5.7) 
	k=1 
	Therefore, for {kn} satisfying (5.1), we have 
	g. 
	P N>[b(n/k)y](n) − E(N>[b(n/k)y](n)) > .kn
	n
	n

	.. 
	≤ P max |N>k(n) − E(N>k(n))|≥ .kn = o(1), 
	k 
	P
	which gives I → 0. 
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	Then we are left to show II → 0 as n →∞. Let Un be a uniform random variable on {1, 2,...,n}, then 
	n 
	1 n 1 
	X 

	E(N>[b(n/k)y](n)) = P(Di(n) > [b(n/kn)y])
	n 

	n 
	kn kn 

	i=1 
	n 
	= E (P(DU(n) > [b(n/kn)y])) . 
	n 
	kn 

	Let Ba(p) be a negative binomial integer valued random variable with parameters a> 0 and p ∈ (0, 1) (abbreviated as NB(a, p)), and the generating function of Ba(p) is 
	-

	.. 
	Ba (p)
	E s =(s + (1 − s)/p), 0 ≤ s ≤ 1. 
	−a 

	(i)
	Suppose that {B (p): i ≥ 1} is a sequence of iid NB(1 + δ, p) random 
	1+δ variables and B2+δ (p) is another NB(2 + δ, p) random variable independent (i)
	from {B (p): i ≥ 1}. Then by the B.I. process construction, we have for
	1+δ 
	k, t ≥ 0, 
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	Therefore, applying the embedding technique gives 
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	n 1 
	= P(BIi(Tn − Ti) > [b(n/kn)y])
	n 
	kn 

	i=1 
	n h.. i
	X
	n 1 (i) 
	−(T
	n
	−T
	i
	)

	= P 1+ Be > [b(n/kn)y]
	1+δ i=1
	k
	n 
	n 

	. hi.
	1 g.
	(1) −Tn
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	(5.8) 
	The distribution of {Tn+1 − Tn : n ≥ 1} in (4.6) implies 
	⎧⎫ ⎨n−i ⎬
	X
	d 1 
	Ej

	{Tn−Ti : i =1, 2,...,n−1} =: i =1, 2,...,n − 1 . (5.9)
	2+ δ ⎩ n − j ⎭ 
	j=1 

	T. Wang, S.I. Resnick 
	Note that {Tn − Ti : i ≥ 1} is a sequence of non-decreasing random variables, 
	(5.9) coincides with the Renyi’s representation for order statistics of iid exponential random variables. Let T be a unit exponential random variable. Then we have 
	-

	d T 
	Tn − TU= . (5.10)
	n 

	2+ δ 
	(i)
	Also because {B (p): i ≥ 1} are iid, we have 
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	(5.11) 
	where the last equality follows from the results in van der Hofstad (2017, Equation (8.4.10)). Therefore, combining (5.11) with (5.8) gives 
	1 g .
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	(1)
	II ≤ P(BI(t) > [b(n/kn)y]) − P 1+ Be > [b(n/kn)y]
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	1+δ 
	k
	n 

	2 
	≤→ 0, as n →∞. 
	kn 

	This completes the proof of (5.3). 
	Step 2. Using (5.3) and inversion (cf. Resnick (2007, Proposition 3.2)), we have for y> 0, 
	1
	1

	P 
	D([kny])(n) 

	− 
	2+δ
	2+δ

	→ y, in D(0, ∞], (5.12)
	b(n/kn) 
	Moreover, 
	! 
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	.D(n)/b(n/k), ⇒ (ν2+δ, 1) (5.13)
	i
	n

	b(n/kn)
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	i=1 
	in M+((0, ∞]) × (0, ∞). 
	Step 3. With (5.13), we use a scaling argument to prove (5.2). Deﬁne the operator 
	S : M+((0, ∞]) × (0, ∞) 7→ M+((0, ∞]) 
	by 
	S(ν, c)(A)= ν(cA). 
	By the proof in Resnick (2007, Theorem 4.2), the mapping S is continuous at (ν2+δ, 1). Therefore, applying the continuous mapping S to the joint weak convergence in (5.13) gives (5.2). 
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	5.3 Consistency of the Hill estimator 
	5.3 Consistency of the Hill estimator 
	We are now able to prove the consistency of the Hill estimator applied to {Di(n):1 ≤ i ≤ n}, i.e. 
	X
	1 
	k
	n 
	D(i)(n)

	Hk,n = log . D(kn+1)(n)
	n
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	i=1 
	Theorem 10 Let {kn} be an intermediate sequence satisfying (5.1), then 
	P 1 
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	2+ δ 
	Proof First observe 
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	Fix M> 0 large and deﬁne a mapping f 7→ f(y) from D(0, ∞] 7→ R+. This map is a.s. continuous so 
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	M M
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	11 
	and it remains to show by the second converging together theorem (Resnick, 2007, Theorem 3.5) that 
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	M →∞ n→∞ y
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	The probability in (5.14) is 
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	By (5.4), B → 0 as n →∞, and using the Markov inequality, A is bounded by 
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	Recall the ﬁrst step in the proof of Theorem 9. Both II and III converging to 0 as n →∞ gives that for y> 0, 
	1 g. 
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	Let U(t) := E(N>[t](n)) and (5.15) becomes: for y> 0, 
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	Since U(·) is a non-increasing function, U ∈ RV−(2+δ) by Resnick (2007, Proposition 2.3(ii)). Therefore, Karamata’s theorem gives 
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	with some positive constant C(δ, η) > 0. Also, M→ 0 as M →∞, and 
	−(2+δ) 

	(5.14) follows. 
	6 Another Preferential Attachment Model. 
	In this section, we extend the use of the embedding technique to a variant of the model in Section 2.1. In the sequel, we refer to the model introduced in Section 2.1 as Model A and the variant studied in this section is called Model 
	B. For i ∈ [n], D(n) is the degree of node i in G(n). Given graph G(n),
	B 
	B 
	B 

	i the graph G(n + 1) is obtained by either: 
	B 

	– Adding a new node n + 1 and a new edge connecting to an existing node i ∈ [n] with probability 
	D(n)+ δD(n)+ δ
	B 
	B 

	ii
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	P. =;
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	D(n)+ δ +1+ δ (2 + δ)n +1+ δ
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	i=1 i 
	or 
	– Adding a new node n + 1 with a self loop with probability 
	1+ δ 1+ δ
	Pg . = .
	n 
	D(n)+ δ +1+ δ 
	B 
	(2 + δ)n +1+ δ

	i=1 i 
	This is the model studied in van der Hofstad (2017), Chapter 8. All proofs are omitted in this section, since they are similar to those for Model A. 
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	6.1 Convergence results for Model B. 
	6.1 Convergence results for Model B. 
	The B.I. process framework can still be used for Model B. We keep the independent sequence of {BIi(t): t ≥ 0}i≥1 initialized as in (4.1), as well as the 
	-

	(i)
	deﬁnition of {τ : k ≥ 1} for i ≥ 1.
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	At time T with n ≥ 1, there exist n + 1 B.I. processes. We deﬁne Tas the
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	Under similar arguments as in Theorem 3, we have the following embedding results. 
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	The following corollary summarizes the convergence results in Model B, which is a slight variant of Proposition 5 and Theorem 6. 
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	6.2 Consistency of Hill estimator in Model B. 
	6.2 Consistency of Hill estimator in Model B. 
	Similar to Model A, in order to examine the consistency of the Hill estimator in Model B, we ﬁrst analyze the convergence of the tail empirical measure. Let 
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	be the order statistics for D(n). 
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	Theorem 13 Suppose that {kn} is some intermediate sequence satisfying (5.1), then 
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	in M+((0, ∞]), where ν2+δ(x, ∞]= x , x> 0. 
	Proof The proof consists of three steps, similar to Theorem 6. In particular, we only need to check the ﬁrst step and once that has been established, the rest follows exactly as in the proof of Theorem 6. Hence, we show (5.4) holds also for Model B. 
	Recall the three parts in (5.5). Using van der Hofstad (2017, Proposi-
	P
	tion 8.4) and Stirling’s formula, we know that I → 0 and III → 0, respectively, for {kn} satisfying (5.1). So we are left with showing 
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	where {Bi : i ≥ 1} is a sequence of iid standard exponential random variables. This makes the order statistic argument used to prove (5.10) not applicable to Model B. However, we instead use the results in Ross (2013, Theorem 1.2) to conclude that for some constant Cδ > 0, 
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	nkn and log n/kn → 0 as n →∞, for {kn} satisfying (5.1). This completes the proof of the theorem. Now deﬁne the Hill estimator for Model B as 
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	The consistency of His a direct result of Theorem 13, after applying the
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	kn,n 
	proof machinery for Theorem 6. We omit the proof and only give the statement. Corollary 14 Let {kn} be an intermediate sequence satisfying (5.1), then 
	P 1 
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	7 Simulation Studies. 
	In this section, we use simulations to analyze some unresolved issues with regard to the asymptotic distribution of the Hill estimator in the preferential attachment model. Further research is needed on these issues. 
	Threshold selection or choosing kn is an important problem when computing the Hill estimator. We adopt the threshold selection method proposed in Clauset et al. (2009), which is widely used computer science and network analyses; see the KONECT website (Kunegis, 2013). This method is encoded in the plfit script, which can be found at / powerlaws/plfit.r). Here is a summary of this method that we refer to as the “minimum distance method”. Given a sample of n iid observations, Z,...,Zn from a power law distrib
	-
	-
	http://tuvalu.santafe.edu/~aaronc
	1

	!−1
	k
	X
	1 
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	= αˆ(k) := log ,k ≥ 1. kZ(k+1)
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	To select k, we ﬁrst compute the Kolmogorov-Smirnov (KS) distance between the empirical tail distribution of the upper k observations and the power-law tail with index αˆ(k): 
	n
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	−αˆ(k)
	dk := sup .Z/Z(y, ∞] − y, 1 ≤ k ≤ n. 
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	(k+1) 
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	Then the chosen kis the one that minimizes the KS distance, i.e. 
	∗ 

	k 
	∗ 

	:= argmin dk, 1≤k≤n 
	and we estimate the tail index and threshold by αˆ(k) and Z(k∗+1) respectively. This estimator performs reasonably well if the thresholded portion comes from a Pareto tail and also seems eﬀective for social network data (Drees et al, 2018). 
	∗

	In the iid case, under some second order condition, we know that for some intermediate sequence {kn}, 
	pg . 
	kn Hk,n − α⇒ N(0,α), as n →∞, 
	n
	−1 
	−2

	(de Haan and Ferreira (2006); Resnick (2007), Chapter 9.1). Is this also true in the preferential attachment setup? We only consider Model A. 
	We start with the limit distribution of the minimum distance estimator αˆ(k). In other words, we analyze the distribution of 
	∗

	√ g. 
	kαˆ(k ) − α, 
	∗ 
	∗ 

	and examine whether it is close to some normal distribution, provided that we have a large preferential attachment model. To do this, we chose α = 
	T. Wang, S.I. Resnick 
	Figure
	Fig. 7.1 QQ plots of kαˆ(k) − α with n = 10and α =1.5, 2, 2.5, 3, 3.5, 4, based on 500 replications of Model A for each value of α. The red dashed lines are the traditional qq-lines used to check normality of the estimates. 
	Fig. 7.1 QQ plots of kαˆ(k) − α with n = 10and α =1.5, 2, 2.5, 3, 3.5, 4, based on 500 replications of Model A for each value of α. The red dashed lines are the traditional qq-lines used to check normality of the estimates. 
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	Fig. 7.2 QQ plots of kn αˆ(kn) − α with n = 10and α =1.5, 2, 2.5, 3, 3.5, 4, based on 500 replications of Model A for each value of α. The red dashed lines are the traditional qq-lines used to check normality of the estimates. 
	Fig. 7.2 QQ plots of kn αˆ(kn) − α with n = 10and α =1.5, 2, 2.5, 3, 3.5, 4, based on 500 replications of Model A for each value of α. The red dashed lines are the traditional qq-lines used to check normality of the estimates. 
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	1.5, 2, 2.5, 3, 3.5 and n = 10generated 500 replications of Model A for each 
	1.5, 2, 2.5, 3, 3.5 and n = 10generated 500 replications of Model A for each 
	5 
	, 

	√ g. 
	value of α and computed kαˆ(k) − α for each replication. QQ plots corresponding to diﬀerent values of α are ven in Figure 7.1. We see that for
	∗ 
	∗
	-
	gi

	√ g. 
	small values of α, the distribution of kαˆ(k) − α is close to normal, but it becomes more right-skewed as tails become lighter. However, at this point, 
	∗ 
	∗
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	it is not clear whether this non-normality is due to the non-normality of the Hill estimator or the minimum distance method. 
	To investigate this further, we chose 
	0.55 0.58 0.60.65 0.68 0.7
	kn =(n log n),n ,n ,n ,n ,n ,n . 
	1
	/2 

	Using the 500 replications obtained under diﬀerent values of α, we computed αˆ(kn) with kn varied as above. Also, for each value of α, we recorded the MSE of αˆ(kn) under diﬀerent choices of kn, picked kn giving the smallest MSE and
	√ g. 
	plotted the distribution of the corresponding kn αˆ(kn) − α in Figure 7.2. Diﬀerent from Figure 7.1, most of the QQ plots in Figure 7.2 conﬁrm the
	√ g. 
	normality of kn αˆ(kn) − α . This suggests that the non-normality displayed in Figure 7.1 is possibly the result of the minimum distance method. Further work on the minimum distance method is ongoing in Drees et al (2018). At the
	√ g. √ g. 
	moment, neither the normality of kn αˆ(kn) − α nor that of kαˆ(k) − α has been properly analyzed and this requires more investigation. 
	∗ 
	∗

	References 
	K.B. 
	K.B. 
	K.B. 
	Athreya. Preferential attachment random graphs with general weight function. Internet Mathematics, 4(4):401–418, 2007. doi: 10.1080/15427951. 2007.10129150. . 
	http://dx.doi.org/10.1080/15427951.2007.10129150


	K.B. 
	K.B. 
	Athreya, A.P. Ghosh, and S. Sethuraman. Growth of preferential attachment random graphs via continuous-time branching processes. Proceedings Mathematical Sciences, 118(3):473494, August 2008. 
	-


	S. 
	S. 
	Bhamidi. Universal techniques to analyze preferential attachment trees: Global and local analysis. Available: http: // www. unc. edu/ bhamidi/


	~ 
	preferent. pdf , 2007. 
	B. Bollob´as, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, 2003), pages 132–139, New York, 2003. ACM. 
	-

	A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM Rev., 51(4):661–703, 2009. ISSN 0036-1445. doi: 10.1137/070710111. . 
	http://dx.doi.org/10.1137/070710111

	S. Cs¨org¨o, E. Haeusler, and D.M. Mason. The quantile-transform–empiricalprocess approach to limit theorems for sums of order statistics. In Sums, Trimmed Sums and Extremes, volume 23 of Progr. Probab., pages 215–267. Birkh¨auser Boston, Boston, MA, 1991a. 
	-

	L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer-Verlag, New York, 2006. 
	L. de Haan and S.I. Resnick. On asymptotic normality of the Hill estimator. Stochastic Models, 14:849–867, 1998. 
	H. Drees, A. Janßen, T. Wang and S.I. Resnick. Threshold selection by distance minimization. In preparation. 
	R.T. 
	R.T. 
	R.T. 
	R.T. 
	Durrett. Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. 

	T. Wang, S.I. Resnick 

	F. 
	F. 
	Gao and A. van der Vaart. On the asymptotic normality of estimating the aﬃne preferential attachment network models with random initial degrees. Stoch. Process. Appl., 127(11):3754–3775, 2017. ISSN: 0304-4149. 

	F. 
	F. 
	Gao, A. van der Vaart, R. Castro, and R. van der Hofstad. Consistent estimation in general sublinear preferential attachment trees Electron. J. Statist., 11(2):3979–3999, 2017. ISSN: 0304-4149. doi: 10.1214/17-EJS1356 

	P. 
	P. 
	Hall. On some simple estimates of an exponent of regular variation. J. Roy. Statist. Soc. Ser. B, 44(1):37–42, 1982. ISSN 0035-9246. 


	B.M. 
	B.M. 
	B.M. 
	Hill. A simple general approach to inference about the tail of a distribution. Ann. Statist., 3:1163–1174, 1975. 
	-


	T. 
	T. 
	Hsing. On tail estimation using dependent data. Ann. Statist., 19:1547– 1569, 1991. 

	O. 
	O. 
	Kallenberg. Random Measures, Theory and Applications. Springer Series in Probability Theory and Stochastic Modelling. Springer eBooks, 2017. ISBN:978-3-319-41598-7. 


	D.G. Kendall. Branching processes since 1873. J. London Math. Soc., 41: 385–406, 1966. ISSN 0024-6107. . 1.385. 
	https://doi.org/10.1112/jlms/s1-41

	Konect. KONECT -The Koblenz Network Collection. . . 
	http://konect
	uni-koblenz.de

	P. Krapivsky, G. Rodgers, and S. Redner. Degree distributions of growing networks. Phys. Rev. Lett, 86, 2001. doi: 10.1103/PhysRevLett.86.5401. . 
	http://dx.doi.org/10.1103/PhysRevLett.86.5401

	P.L. 
	P.L. 
	P.L. 
	Krapivsky and S. Redner. Organization of growing random networks. Physical Review E, 63(6):066123:1–14, 2001. 

	J. 
	J. 
	Kunegis. Konect: the Koblenz network collection. Proceedings of the 22nd International Conference on World Wide Web, 1343–1350. ACM, 2013. 

	D. 
	D. 
	Mason. Laws of large numbers for sums of extreme values. Ann. Probab., 10:754–764, 1982. 

	D. 
	D. 
	Mason and T. Turova. Weak convergence of the Hill estimator process. In J. Galambos, J. Lechner, and E. Simiu, editors, Extreme Value Theory and Applications, pages 419–432. Kluwer Academic Publishers, Dordrecht, Holland, 1994. 

	R. 
	R. 
	Oliveira and J. Spencer. Connectivity transitions in networks with super-linear preferential attachment. Internet Mathematics, 2(2):121163, 2005. 


	S.I. 
	S.I. 
	S.I. 
	Resnick. Extreme Values, Regular Variation and Point Processes. Springer-Verlag, New York, 1987. 

	S.I. 
	S.I. 
	Resnick. Adventures in Stochastic Processes. Birkh¨auser, Boston, 1992. 

	S.I. 
	S.I. 
	Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. Springer-Verlag, New York, 2007. ISBN: 0-387-24272-4. 

	S.I. 
	S.I. 
	Resnick and G. Samorodnitsky. Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks. Extremes, 18(3):349–367, 2015. doi: 10.1007/s10687-015-0216-2. 
	-
	-


	S.I. 
	S.I. 
	Resnick and G. Samorodnitsky. Asymptotic normality of degree counts in a preferential attachment model. Advances in Applied Probability, 48: 


	Hill Estimator for Network Data 
	283–299, 7 2016. ISSN 1475-6064. doi: . 
	10.1017/apr.2016.56

	S.I. 
	S.I. 
	S.I. 
	Resnick and C. St˘aric˘a. Consistency of Hill’s estimator for dependent data. J. Appl. Probab., 32(1):139–167, 1995. ISSN 0021-9002. 

	S.I. 
	S.I. 
	Resnick and C. St˘aric˘a. Tail index estimation for dependent data. Ann. Appl. Probab., 8(4):1156–1183, 1998. ISSN 1050-5164. 

	H. 
	H. 
	Rootz´en, M.R. Leadbetter, and L. de Haan. Tail and quantile estimation for strongly mixing stationary sequences. Technical Report 292, Center for Stochastic Processes, Department of Statistics, University of North Carolina, Chapel Hill, NC 27599-3260, 1990. 
	-


	N. 
	N. 
	Ross. Power laws in preferential attachment graphs and Stein’s method for the negative binomial distribution. Advances in Applied Probability, 45(3): 876–893, 2013. 

	A. 
	A. 
	Rudas, B. T´oth, and B. Valk´o. Random trees and general branching processes. Random Structures Algorithms, 31(2):186–202, 2007. 
	-


	G. 
	G. 
	Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstandard regular variation of in-degree and out-degree in the preferential attachment model. Journal of Applied Probability, 53(1):146–161, 2016. 

	S. 
	S. 
	Tavar´e. The birth process with immigration, and the genealogical structure of large populations. Journal of Mathematical Biology, 25(2):161–168, 1987. 

	R. 
	R. 
	van der Hofstad. Random Graphs and Complex Networks. Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2017. ISBN 978-1-107-17287-6. doi: 10.1017/ 9781316779422. . 
	-
	-
	http://dx.doi.org/10.1017/9781316779422


	P. 
	P. 
	Wan, T. Wang, R. A. Davis, and S. I. Resnick. Fitting the linear preferential attachment model. Electron. J. Statist., 11(2):3738–3780, 2017. ISSN 19357524. doi: 10.1214/17-EJS1327. 
	-


	P. 
	P. 
	Wan, T. Wang, R. A. Davis, and S. I. Resnick. Are extreme value estimation methods useful for network data? Submitted, 2017. 

	T. 
	T. 
	Wang and S. I. Resnick. Asymptotic normality of in-and out-degree counts in a preferential attachment model. Stochastic Models, 33(2):229– 255, 2017. doi: 10.1080/15326349.2016.1256219. . 1080/15326349.2016.1256219. 
	http://dx.doi.org/10


	T. 
	T. 
	Wang and S.I. Resnick. Multivariate regular variation of discrete mass functions with applications to preferential attachment networks. Methodology and Computing in Applied Probability, pages 1–14, 2016. ISSN 1573-7713. doi: 10.1007/s11009-016-9503-x. / s11009-016-9503-x. 
	-
	http://dx.doi.org/10.1007


	W. 
	W. 
	A. O’N. Waugh. Transformation of a birth process into a Poisson process. J. Roy. Statist. Soc. Ser. B, 32:418–431, 1970. ISSN 00359246. : TOABPI>2.0.CO;2-A&origin=MSN. 
	-
	http://links.jstor.org/sici?sici=0035-9246(1970)32:3<418







