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Abstract 

One of the central objectives of modern risk management is to find 
a set of risks where the probability of multiple simultaneous catas-
trophic events is negligible. That is, risks are taken only when their 
joint behavior seems sufficiently independent. This paper aims to help 
to identify asymptotically independent risks by providing additional 
tools for describing dependence structures of multiple risks when the 
individual risks can obtain very large values. 
The study is performed in the setting of multivariate regular varia-

tion. We show how asymptotic independence is connected to properties 
of the support of the angular measure. Secondly, we present an asymp-
totically consistent estimator of the support. The estimator generalizes 
to any dimension N ≥ 2 and requires no prior knowledge of the sup-
port. The validity of the support estimate can be rigorously tested 
under mild assumptions by an asymptotically normal test statistic. 

2010 MSC: Primary 62E20 60G70, Secondary 62G05 60G57 

1 Introduction 

This paper aims to contribute in answering to two questions: How can one 
decide if random variables are asymptotically independent and how can their 
dependence structure be analyzed in practice? In our approach the data is 
first thresholded based on the magnitudes of sample vectors and then divided 
into two parts. The first part is used to establish a grid based approximation 
of the asymptotic support. The remaining data is used to test the validity 
of the support estimate using an asymptotically normal test statistic. 

∗ Sidney Resnick was partially supported by US ARO MURI grant W911NF-12-1-0385. 
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In our view, the applied fields of finance and insurance, in particular, 
could benefit from having more robust tools for understanding extremal de-
pendence. In finance, one of the central tasks of risk management is to 
identity which assets do not depend on others. The joint behavior of indi-
vidual assets affects portfolio allocation strategies and ultimately determines 
which equities are chosen to a portfolio. One approach for reducing total 
risk is to select equities to be as independent as possible. In this way it is 
unlikely to experience many large shocks at once. 
In insurance, large claims are a source of major concern because they can 

cause insolvency. The concern may become even more serious if there is a 
reasonable possibility of multiple lines of business accumulating large claims 
at the same time. Furthermore, successful pricing of insurance contracts 
as well as negotiations with reinsurance providers depend on having solid 
understanding of the worst case risks. For this reason, it is necessary to 
have an accurate observation based dependence model especially for the 
large claims. 
We assume that all of the risks are heavy-tailed. A real valued random 

variable X is (right) heavy-tailed if it has no finite exponential moments, 
sX )that is E(e = ∞ for all s > 0. More precisely, we focus on a subclass 

of heavy-tailed distributions where the marginal distributions are regularly 
varying. We work under the assumptions that the sample is coming from a 
multivariate regularly varying, in short MRV, source. Properties of regularly 
varying and MRV distributions are comprehensively discussed in [22]. 
The problem of modeling extremal dependence structures has been stud-

ied in the past using various techniques. In the bivariate case it is common to 
use copulas and the index of tail dependence to quantify asymptotic depen-
dence [9, 19]. The study of asymptotic dependence structures using MRVs 
is emphasised in particular in [2, 5, 6, 14, 17, 24]. Some approaches concen-
trate on modeling even finer properties such as the second order behavior 
of the limiting measure [3, 4, 16, 20]. Beyond the MRV setting, similar top-
ics have been discussed from more extreme value theoretical viewpoint, see 
e.g. [8, Section 6] and its ample references. Finally, there exists an increasing 
number of publications which emphasise using the knowledge of dependence 
structures for the purposes of dimension reduction techniques [7,10,12]. One 
of the key differences between our method and most of the previous research 
is that we concentrate on approximating the asymptotic support, not the 
limiting measure. This goal seems to be more easily achievable with real 
data sets. 
The core message of this paper is that there are applications in which 

some of the conventional risk measures are not adequate. Typically, the 
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dependence structure of large observations determines the risk in the worst 
case scenario. In contrast, small observations might not have a significant 
impact even if they were highly dependent. Consider the following example 
to see why the most widely used risk statistic, correlation, might lead to 
counter-intuitive results. 

Example 1.1. Let α > 2 and l > 1. Suppose X, Z and B are independent 
−αrandom variables such that P(X > x) = P(Z > x) = x for x ≥ 1 and 1 

otherwise. Let P(B = 0) = 1 − P(B = 1) = 1/2. Set 

Y1 := X1(X ≤ l) + lZB1(X > l) 

and 
Y2 := Z1(X ≤ l, Z ≤ l) + X1(X > l). 

Suppose the pairs (X, Z) and (X, Yi), i = 1, 2, denote risks to a company 
where the components of vectors correspond to different lines of businesses. 
The aim of the company is to avoid insolvency. From this viewpoint the 
pair (X, Y1) should not be considered more risky than (X, Z) because the 
probability of two simultaneous catastrophic realizations is lower. On the 
other hand, the pair (X, Y2) is much more risky than (X, Y1) or (X, Z), 
because Y2 = X when X > l, resulting in two catastrophic realizations for 
sure when one line of business suffers a large loss. However, one would reach 
contradicting conclusions if correlation was used to quantify riskiness. 
More precicely, Corr(X, Z) = 0 due to independence of X and Z. How-

ever, Corr(X, Y1) → 1, as l → ∞. In addition, the pair (X, Y2) is asymp-
totically fully dependent for all l > 1 using the terminology of [4]. Yet, 
Corr(X, Y2) → 0, as l → ∞. So, using correlation as a measure of risk in 
this example leads to overestimation of insignificant risk as well as underes-
timation of potentially catastrophic risk. 

The failure of risk quantification in Example 1.1 is due to the fact that 
correlation, among other popular risk metrics, has only a limited capability 
of describing dependence of rare events. Similar phenomena as in the arti-
ficial Example 1.1 have been observed in nature. In [23], the authors study 
meteorological data in order to model extreme ground level ozone events. 
The study depicts cases where the etremal observations have significantly 
different dependence structure than small observations, see e.g. Figure 1 
of [23]. 
In conclusion, modeling dependence structures with emphasis on accu-

racy of tail behavior requires different tools than modeling systems as a 

3 



whole. The methods presented in Sections 2 and 3 cover some of the short-
comings of previous approaches. In particular, they allow practitioners to 
verify which risks fulfill the goals of risk management in finance and insur-
ance when the MRV framework is applicable. 

1.1 Structure of the paper 

The rest of Section 1 is used to define concepts and definitions. In Section 
2, the grid based asymptotic support estimator for multivariate heavy-tailed 
data is presented. Consistency and related properties are proved in Section 
2.2. The definition of asymptotic independence as well as the new connec-
tions with limiting behavior of MRVs are discussed in Section 3. Specifically, 
the test for asymptotic normality is introduced in Section 3.3. In Section 4, 
the techniques developed in Sections 2-3 are illustrated by means of simu-
lated and real examples. 

1.2 Basic definitions 

Suppose (Ω, B, P) is a probability space where all the subsequent random 
variables are defined. Throughout the paper random variables take values 
in a metric space (RN , T , d). Here N ≥ 2 is the dimension of the space, 
T is the Euclidean topology and d = dRN is the L2 or Euclidean distance. 

(1) (2)That is, for all elements x, y ∈ RN , where x = (x , x , . . . , x(N)) and 
(1) (2)y = (y , y , . . . , y(N)), vuutXN 

i=1 

Euclidean distances are used in mappings that project sets into lower di-
mensional spaces in a way that does not distort the image. However, unless 
otherwise stated, all norms denoted by || · || are L1-norms, where 

d(x, y) = (x(i) − y(i))2 . 

XN 

||x|| = |x(i)|. 
i=1 

The choice of L1 norm instead of some other Lp norm is natural because in 
applications the total risk is typically the sum of marginal risks. So, any 
condition on the size of the L1 norm can be directly viewed as a condition 
on the total risk. Upper indices are used to identify components of vectors. 
Lower indices are reserved for order statistics. For 1 ≤ i ≤ N , the ith largest 
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component of x is x(i). All inequalities and operations involving vectors are 
understood componentwise way as in Section 1.2 of [20]. 
The collections of open, closed and compact sets are denoted by G,F 

and K, respectively. For a set A ⊂ RN the whole space can be partitioned 
as RN = int(A) ∪ ext(A) ∪ ∂A to topological interior, exterior and boundary 
of the set A. The ball with center x ∈ RN and radius δ > 0 is B(x, δ). In 
addition, the diameter of A is denoted by diam(A). The notation := is used 
when the left hand side is defined by the right hand side of the equation. 

1.3 Multivariate regular variation 

We follow the standard definition of multivariate regular variation as de-
fined in [22, Theorem 6.1]. In our case, however, the definition is slightly 
modified to take into account possible negative values of components. Note 
that normalizing all components using the same function b implies that the 
components must be tail equivalent, see [22, Remark 6.1.]. 

Definition 1.1. Suppose Z = (Z(1), Z(2), . . . , Z(N)) is an random vector 
in RN . Set E := [−∞, ∞]N \{0}. We say that Z is standard multivariate 
regularly varying with limit measure ν if there exist a function b(t) ↑ ∞, as 
t →∞, such that � � 

Z v
(1.1) tP ∈ · → ν 

b(t) 
v

in M+(E). Notation → stands for vague convergence of measures. 

Multivariate regular variation has an equivalent definition via measure S, 
called the angular measure, spectral measure or limiting measure in different 
sources, defined on 

CN(1.2) := {z ∈ RN : ||z|| = 1}. 

In this formulation, Z is said to be standard multivariate regularly varying 
if there exist a function b(t) ↑ ∞, as t →∞, such that for � � 

Z 
(R, Θ) := ||Z||, 

||Z|| 
we have �� � � 

R v
(1.3) tP , Θ ∈ · → cνα × S 

b(t) 

in M+((0, ∞] × CN ), as t →∞, where c > 0, S is a probability measure on 
CN −αand να((x, ∞]) = x . The number α > 0 is called the tail index of the 
multivariate regularly varying distribution. 
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1.4 N-simplex and simplex mappings 

In Section 2, the aim is to identify the support of the limiting measure S 
based on data. To this end, we present a support estimation method in 
which the support of S on L1 sphere is approximated by a set consisting of 
equally sized rectangles. The locations of rectangles are determined based 
on concentrations of probability mass of the empirical version of the limiting 
measure S. This is in contrast to [4], where the range of thresholded data 
itself is used to indicate the location of the support. However, to our expe-
rience in working with data sets, finding the sets of highest concentration 
provide a way to eliminate noise arising from unlikely observations that lie 
outside of the asymptotic support. 
Suppose m ≥ 2 is an integer and N ≥ 2 is the dimension of the data. 

Now, m determines the resolution of the asymptotic support estimate. The 
idea is to map the N -dimensional simplex into [0, 1]N−1 one face at a time. 
The image on is partitioned into mN−1 smaller sets. The partition is called a 
grid and the sub squares are called cells. Some of the grid cells are accepted 
as part of the support while the rest are rejected based on a rule described 
in Section 2. 
In addtion to the N -simplex in L1 , we set 

(1) (2) (N)CN := {z ∈ RN : z + z + . . . + z = 1}+ + 

to denote the part of simplex CN where all coordinates are non-negative. If 
A ⊂ {1, 2, . . . , N} is a set of indices we define the faces by formula 

(i)CN (A) := {z ∈ CN : z = 0, when i ∈/ A}. 

Definition 1.2 (Support of measure in RN ). Let E = (RN , T , d) be a 
topological space where T is the smallest sigma algebra containing all open 
balls in metric d which is the Euclidean metric. Suppose µ is a measure on 
(RN , T ). 
Then the support supp(µ) of measure µ is the set defined as � 

(1.4) supp(µ) := x ∈ RN : µ(B(x, δ)) > 0 for all δ > 0 . 

Equivalently, it is the complement of the union of open balls with measure 
zero. In particular, supp(µ) is the smallest closed set in the sense that \ 

supp(µ) = A. 
A∈F 

µ(Ac)=0 
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+The part of the support of S on simplex CN is denoted by supp .+ 

Definition 1.3. Let N ≥ 2. Suppose T is a bijective mapping T : CN →+ 
[0, 1]N−1 with property 

dRN (x, y) = adRN −1 (T (x), T (y)) 

for all x, y ∈ CN and some constant a > 0. Such a mapping T is called+ 
simplex mapping associated with C+ 

N . 

Mapping T can be chosen in a number of ways. So, the grid position-
ing can be adjusted with respect to observed data if necessary. By shifting 
the grid one can avoid concentration of points directly onto a grid bound-
aries. The positive simplex is mapped into a lower dimensional space for 
clarity. Specifically, when N = 3, all analysis can be performed in the two 
dimensional plane. 

Example 1.2. a) If N = 2, one can set �� �� 
z1T = z1. z2 

b) If N = 3, setting 

T 

⎡⎣ ⎛⎝ ⎞⎠ ⎤⎦ = 

#" 
1 
2 (z2 √ 

− z1 + 1) z1 

z2 3 z32z3 

gives T that maps C+
3 into [0, 1]2 . The image T (C+

3 ) is a region in√[0, 1]
2 

inside an equilateral triangle with edges on (0, 0), (1, 0) and (1/2, 3/2). 
Mapping T has an inverse T −1 : T (C3 ) → C3 given by + + 

�� �� 
T −1 z1 = 

⎡ ⎢⎣ 
⎤ ⎥⎦ . 

1 − z1 − √z2 

3 
√z2z1 − 

z2 2√z2 

3 

3 

Mappings of Example 1.2 can be used in computer programs that require 
explicit formulas for projections. 

2 Support estimation 

In this section the grid based estimator is defined and its asymptotic con-
sistency is shown under general assumptions. 
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2.1 Support estimator and related quantities 

Suppose Z is a multivariate regularly varying vector in RN . Let s ∈ {−1, 1}N 

be a vector. We define � � 
Z 

(2.1) U := T 
||Z|| 

and more generally, ! 
(i)Z(i))N(s i=1U(s) := T 
||Z|| 

to denote the transformed angular component of facet s in T (CN ) ⊂ [0, 1]N−1 .+ 
Most of the proofs can be formulated in terms of U, which corresponds to 
the positive facet. For example if N = 3, then U = U((1, 1, 1)). 
The space [0, 1]N−1 can be covered by separate cells. Given a vector 

x ∈ [0, 1]N−1 and a number m ≥ 2, we define a cell M(x,m) ⊂ RN−1 by 
formula 

(2.2) M(x,m) := x + [0, 1/m)N −1 . 

Cell M(x,m) can be viewed as a shift by vector x. Explicitly, M(x,m) is 
the set h � h � h �1 1 1(1) (1) (2) (2) (N−1) (N−1)x , x + × x , x + × . . . × x , x + . 

m m m 

The aim is to rasterize projected observations in order to produce an 
estimate for the asymptotic support. This is done by partitioning the set 
T (CN ) by grid cells.+ 

Definition 2.1 (Support estimator). Let Z1, Z2, . . . , Zn be i.i.d. multivari-
ate regularly varying vectors. Suppose k and m are natural numbers such 
that k ≥ 1 and m ≥ 2. Define Gm to be the set of corner points of cells at 
resolution m by � � � � 

1 2 m − 1(i) ∈Gm := x ∈ RN −1 : x 0, , , . . . , , 1 , i = 1, 2, . . . , N − 1 . 
m m m 

For q ∈ [0, 1] and facet s ∈ {−1, 1}N , support estimator A(s) = Ak,m,q(s) 
is a set defined as � P n �[ 1(Ui(s) ∈ M(x,m), ||Zi|| ≥ ||Z(k)||)
A(s) := M(x,m) : i=1 > q . 

k 
x∈Gm 

The estimator corresponding to the positive facet s = 1 = (1, 1, . . . , 1) is 
denoted by Ak,m,q := Ak,m,q(1). 
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Support estimator Ak,m,q is a random set formed based on a random 
sample Z1, Z2, . . . , Zn. It has three parameters: k, m and q. Parameter 
k = k(n) is the number of order statistics used from the sample. For the 
asymptotic analysis we assume that n/k(n) →∞, as n →∞. Parameter m 
denotes the resolution at which the estimate is formed. In asymptotic results 
resolution grows so that cell size decreases. One can think of parameter q as 
a rejection threshold. It determines how many observations are needed in a 
single grid cell for the cell to be accepted as part of the support estimate. In 
practice it helps to reject unlikely observations and noise. If p observations 
are required in a given sample of n one can set q = p/k(n). 
Support estimators in Definition 2.1 are decreasing in q. For fixed k and 

m the inclusion Ak,m,q2 ⊂ Ak,m,q1 holds for 0 < q1 < q2 < 1. Furthermore, 
limiting behavior as m → ∞ can be studied in a sequence of nested grids 
by considering dyadic resolutions m = 2s , where s = 1, 2, . . . . However, in 
applications the geometric convergence of cell diameters may turn out to be 
too fast which is why m is allowed to be any positive integer, not only a 
power of, say, number 2. 

Definition 2.2. (Rasterized support) The smallest grid set with resolution 
+m that contains supp is called the rasterised support and defined by [

+ supp := {M(x,m) : x ∈ Gm, S(M(x,m)) > 0} .m 

2.2 Consistency of the grid based support estimator 

Lemma 2.1. Suppose Z1, Z2, Z3, . . . are i.i.d random vectors with a common 
multivariate regularly varying distribution. Assume further that n →∞ and 
n/k → ∞. Recall from ... that Gm is the grid corresponding to resolution 
m. 

If ST (Gm) = 0, then n o 
# i ≤ n : Ui ∈ m(m1,m2), ||Zi|| ≥ ||Z(k)|| P

(2.3) → ST (m(m1,m2)),
k 

as n →∞ for all sets m(m1,m2), where 1 ≤ m1,m2 ≤ m. 

Proof. (Sketch of Proof) Suppose 1 ≤ m1,m2 ≤ m and denote A := 
T −1(m(m1,m2)). The set A is a continuity set of measure S by assumption 
ST (Gm) = 0, that is, S(∂A) = 0. Note that the left hand side of (2.3) can 
be written as 

nX1 
1(||Zi|| > ||Z(k+1)||, Zi > ||Z(k+1)|| ∈ A). 

k 
i=1 
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Proposition 6.2 of [2, p. 158] states that in this case 

nX1ˆ(2.4) Sn(·) := 1(||Zi|| > ||Z(k+1)||)�Zi/||Zi||(·) ⇒ S 
k 

i=1 

in P(C2), the space of probability measures on C2. This implies 

Ŝ 
n(A) ⇒ S(A), 

as n →∞. The distributional limit is a constant, which is why convergence 
takes place also in probability and (2.3) holds. 

Proposition 2.1 (Consistency of the grid estimator). Suppose assumptions 
of Lemma 2.1 hold. Let k = k(n) be such that k(n) →∞ and n/k(n) →∞, 
as n →∞. Assume further that m ≥ 2 and 

(2.5) q ∈ (0, 1)\{ST (m(m1,m2)) : 1 ≤ m1 ≤ m, 1 ≤ m2 ≤ m}. 

Let Ak,m,q be defined as in Definition 2.1. 
Then, it holds for a fixed pair (m1,m2) that � � 

+(2.6) P Ak,m,q(m1,m2) = supp (m1,m2) → 1,m,q 

as n →∞. 

+Proof. Suppose first that ST (m(m1,m2)) > q so that supp (m1,m2) = 1.m,q 
Then the probability in Equation (2.6) can be written as ⎛ n o ⎞ 

# i : Ui ∈ m(m1,m2), ||Zi|| ≥ ||Z(k)||
P ⎝ > q⎠ . 

k 

By Lemma 2.1, n o 
# i : Ui ∈ m(m1,m2), ||Zi|| ≥ ||Z(k)|| P→ ST (m(m1,m2))

k 

and ST (m(m1,m2)) > q by assumption. This shows (2.6). 
+If ST (m(m1,m2)) < q so that supp (m1,m2) = 0, the proof is similarm,q 

as in the first case, but the studied probability is ⎛ n o ⎞ 
# i : Ui ∈ m(m1,m2), ||Zi|| ≥ ||Z(k)||

P ⎝ ≤ q⎠ . 
k 
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Example 2.1. In Equation (2.5) of Theorem 2.1 finitely many values for q 
are excluded. This is necessary, because... two points, oscillation of proba-
bility mass around q in one of them. 

Corollary 2.1. Suppose assumptions of Theorem 2.1 hold. Then 

1. For fixed m ≥ 2, support supp+ is an eventual subset of the estimating 
grid in the sense that 

(2.7) P 

⎛⎝supp + ⊂ 
[ 

Ak,m,q 

⎞⎠→ 1, 
q>0 

as n →∞. 

2. For fixed m and q, � 
+(2.8) P Ak,m,q = suppm,q → 1, 

as n →∞. 

Proof. Proof of Part 1: Denote 

q̂  := min{ST (m(m1,m2)) > 0 : (m1,m2) ∈ B + }. suppm 

+Since supp+ ⊂ supp , it holds thatm 

P(supp + ⊂ ∪q>0Ak,m,q) 
+≥ P(suppm ⊂ ∪q>0Ak,m,q) 
+≥ P(suppm ⊂ Ak,m,q̂/2) 

(2.9) = q/2(m1,m2) = 1 for all (m1,m2) ∈ B + ).P(Ak,m,ˆ suppm 

Events in (2.9) are not independent, but each of them will have probability 
1 in the limit n → ∞ by Theorem 2.1. Since the number of events is at 
most m2 and thus finite, the claim holds. 
Proof of Part 2: Probability in (2.8) is 

+P(Ak,m,q(m1,m2) = supp for all 1 ≤ m1 ≤ m, 1 ≤ m2 ≤ m)m,q 

and consists of events that have probability 1 in the limit n →∞ similarly 
as in the proof of Part 1. 
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Proposition 2.2. Suppose assumptions of Theorem 2.1 hold. 
Then, for fixed m, 

+(2.10) P(Ak(n),m = supp ) → 1,m 

as n →∞. 

Sketch of proof. If supp+(m1,m2) = 1 the proof is similar to the first part 
of Theorem 2.1. So, in order to prove (2.10) it suffices to concentrate on the 
case where supp+(m1,m2) = 0 and show that 

P(Ak,m(m1,m2) = 0) → 1, 

as n → ∞. To do this, one can estimate probability P(Ak,m(m1,m2) = 1) 
by an upper bound that converges to 0. Now, for a fixed n, 

(2.11) P(Ak,m(m1,m2) = 1) = P(Ŝ 
n(m(m1,m2)) > 0), 

where Ŝ(·) is the empirical measure defined in (2.4). Since ST (m(m1,m2)) = 
0 and m(m1,m2) is a continuity set of ST by assumption, the quantity in 
(2.11) converges to 0, as n →∞. 

Theorem 2.1 (Consistency). Suppose assumptions of Proposition 2.2 hold. 
In addition, assume that m : N → N is a function such that m(n) ↑ ∞, as 
n →∞. 

+Then Ak(n),m(n) → supp in the sense that 

P
(2.12) D(Ak(n),m(n), supp +) → 0, 

as n →∞ where D is the Hausdorff distance. 
Equivalently, for any δ > 0, 

(2.13) P(Ak(n),m(n) ⊂ (supp +)δ) → 1, n →∞ 

and 

(2.14) P(supp + ⊂ Aδ ) → 1, n →∞.k(n),m(n) 

Proof. (Sketch of proof) Proof of Equation (2.13): Suppose δ > 0 is fixed. 
Let mδ be so large that diam(mδ(1, 1)) < δ/4. Set [ 

C1 := mδ(m1,m2). 
m1,m2: 

+)δ/2mδ (m1,m2)\(supp 6=∅ 
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+)δ/2Now C1 is a collection of cells at resolution mδ that do not touch (supp , 
but yet ((supp+)δ)c ⊂ C1. 
Since diam(mδ(1, 1)) < δ/4, it must hold that d(C1, supp+) > 0. In 

+particular, C1 ∩ supp = ∅, which implies ST (C1) = 0 and ST (∂C1) = 0. 
The latter equality follows from the fact that C1 is a finite union of cells 
that are assumed to be continuity sets of ST . 
So, if n is so large that diam(m(n)(1, 1)) < δ/4, then � 
#{i ≤ n : Ui ∈ C1, ||Zi|| ≥ ||Z(k)||} = 0 ⊂ {Ak(n),m(n) ⊂ (supp +)δ}. 

This implies (2.13) because P(Ak(n),m(n) ⊂ (supp+)δ) is now bounded from 
below by a probability that converges to 1 by Proposition 2.2, as n →∞. 
Proof of Equation (2.14): Suppose δ > 0 is fixed. Let mδ be so large 

that diam(mδ(1, 1)) < δ/2. Define [ 
C2 := mδ(m1,m2). 

m1,m2: 
+int(mδ (m1,m2))∩supp 6=∅ 

The set C2 is the collection of cells at resolution mδ that contains all proba-
bility mass of the limit measure ST . This follows from the fact that all cells 
are assumed to be continuity sets of ST . 
Note first that the δ-swelling of even a single point in a cell of C2 contains 

the cell itself due to assumption diam(mδ(1, 1)) < δ/2. Suppose then that 
+there is at least one observation in each cell of C2. In this case supp ⊂ 

Aδ This is due to the fact that the possible boundary points ink(n),m(n). 

supp+\C2 must be boundary points of some cell that does belong to C2 

and thus are included in the δ-swelling. In conclusion, one way in which 
+the inclusion supp ⊂ Aδ can hold is that there is at least onek(n),m(n) 

observation in each cell of C2. So, � 
Ak(n),mδ 

(m1,m2) = 1 for all cells in C2 ⊂ {supp + ⊂ Ak
δ 
(n),m(n)}. 

+This implies (2.14) because P(supp ⊂ Aδ ) is now bounded from k(n),m(n) 
below by a probability that converges to 1 by Proposition 2.2, as n →∞. 

Remark 2.1. Convergence in the sense of Theorem 2.1 does not guarantee 
that the approximation covers the support. In fact, if m grows rapidly with 
respect to k, the approximation may have zero Lebesgue measure. One 
would need to set bounds for the growth of m in order to get such result. 
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3 Asymptotic independence 

The concept of asymptotic independence is wider than independence. If a 
random vector has asymptotically independent components, one large com-
ponent of the vector reveals no information from the other components. It 
admits all dependence structures as long as they cannot produce realiza-
tions of vectors where multiple components obtain large values at the same 
time. From practical viewpoint asymptotically independent components are 
as harmless as independent components. So, omitting asymptotically inde-
pendent components from analysis is a way to reduce dimension of a studied 
system. Doing so increases the accuracy of estimates of asymptotic support 
when only a fixed amount of data is available. The topic of dimension re-
duction in models with extremal dependence is also discussed in [10, 24]. 
Our definition of asymptotic independence is compatible with existing 

litterature. In particular, it follows the definition given in [22, p 195]. The 
new property is that several groups of components can be handled at once. 
The closest results in this field are, to our knowledge, the method of ex-
tremograms discussed in e.g. [14,17] and the sparcity approach to dimension 
reduction presented in [10]. 
Definition 3.1 below would not be suitable if the marginals were not 

heavy-tailed. The behavior of vectors composed of sufficiently light-tailed 
i.i.d. components would be different. In fact, the conditional probability 
distribution ST,l might concentrate on the centers of simplex faces, as l →∞. 
This is in contrast to the i.i.d. heavy-tailed setting where the concentration 
would take place at the extremal points of the simplex. See [15] for details 
in the two dimensional case. 

3.1 Definition of asymptotic independence of MRV 

Definition 3.1. [Asymptotic independence for MRV] Suppose Z ≥ 0 has 
regularly varying multivariate distribution with scaling function b. Let 
A1, A2 ⊂ {1, 2, . . . , N} and suppose #A1 = N1 and #A2 = N2. We say 
that component ZA1 := (Z(i))i∈A1 is asymptotically independent of compo-
nent ZA2 := (Z(i))i∈A2 if � � 
(3.1) tP 

ZA1 

b(t) 
ZA2∈ B1, 
b(t) 

∈ B2 → 0 

holds for all B1 ⊂ RN1 and B2 ⊂ RN2 such that d(B1, 0) > 0 and d(B2, 0) > 
0, as t →∞. 
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Remark 3.1. It may be assumed without loss of generality that the sets 
B1 and B2 in (3.1) are N1 and N2 dimensional rectangles. The statement is 
made more precise in Part 1 of Theorem 3.1. 

Next, we define projections and methods that can be used to combine 
multiple components of random vectors into a single group. It enables the 
study of two groups in a simple setting even though the original data set is 
high dimensional. 

Definition 3.2. Let A1, A2 ⊂ {1, 2, . . . , N}, A1 ∩ A2 = ∅ and suppose 
#A1 = N1 and #A2 = N2, where N1, N2 ≥ 1 and N1 + N2 = N . Define 
vectors a1, a2 ∈ CN by formulas+ ( 

(i) 1/N1, i ∈ A1 
a = 1 

0, i ∈/ A1 

and ( 
(i) 1/N2, i ∈ A2 

a = 2 
0, i ∈/ A2. 

Vectors a1 and a2 are called the midpoints of faces CN (A1) and CN (A2), 
respectively. 

Midpoints a1 and a2 are linearly independent vectors in RN . For this 
reason the subspace Wa1,a2 := span(a1, a2) spanned by the midpoints is a 
plane. We can thus define orthogonal projections onto the subspace Wa1,a2 

via projection matrix Qa1,a2 := M(MT M)−1MT , where M is the N × 2 
matrix M = [a1, a2]. 
In our case, where the subspace is spanned by midpoints, the projection 

matrix Qa1,a2 is of particularly simple form. It can be seen by a direct 
calculation that 

(3.2) Qa1,a2 = [c1, c2, . . . , cN ], 

where ( 
(i)

a1, a1 =6 0 
ci = (i)

a2, a2 =6 0. 

Example 3.1. Suppose N = 5, A1 = {1, 2, 4} and A2 = {3, 5}. Now 
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1 1 1 1 a1 = [3
1 , 3 , 0, 3 , 0]

T , a2 = [0, 0, 2 , 0, ]
T and2 

Qa1,a2 = 

⎡ ⎢⎢⎢⎢⎣ 
⎤ ⎥⎥⎥⎥⎦ . 

1 1 10 03 3 3 
1 10 0 02 2 

1 1 10 03 3 3 
1 1 10 03 3 3 

1 10 0 02 2 

Orthogonally projected points are connected to linear combinations of 
midpoints a1 and a2. An orthogonally projected point x ∈ R+ has presen-
tation ⎛⎝X 

(i) 

⎞⎠ ⎛⎝X 
(i) 

⎞⎠(3.3) Qa1,a2 x = x a1 + x a2. 
i∈A1 i∈A2 

Next, we will define projections that allow projection of multidimensional 
data onto a line. The projected points can be used to inspect validity of 
asymptotic independence. 

Definition 3.3. Let A1 and A2 be as in Definition 3.2 and Qa1,a2 as in 
(3.2). 
Mappings h1 : RN \{0} → C+ 

N , h2 : RN → RN and h3 : {(1 − t)a1 + ta2 :+ + + 
t ∈ [0, 1]} → [0, 1] are defined as 

x 
h1(x) := ,

||x|| 

h2(x) := Qa1,a2 x 

and 
h3(x) := h−1(x),4 

where h4 is the linear interpolation h4(t) = (1 − t)a1 + ta2, t ∈ [0, 1]. We 
define projection proj : RN \{0} → [0, 1] bya1,a2 + 

(3.4) proj (x) := h3(h2(h1(x))).a1,a2 

Function proj (x) projects points of R+\{0} first onto L1 simplexa1,a2 

and then orthogonally onto the line connecting midpoints a1 and a2. The 
order of projections h1 and h2 can be switched. 

Lemma 3.1. Suppose x ∈ R+\{0}. Let A1 A2, h1 and h2 be as in Definition 
3.3. 

Then 

(3.5) h2(h1(x)) = h1(h2(x)). 
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Proof. We note first that Qa1,a2 x ∈ R+\{0} so that the function h1(h2(x)) 
is well defined. Furthermore, because Qa1,a2 = QT , it holds thata1,a2 

N1 N2 NX X X 
(i)(3.6) ||Qa1,a2 x|| = a1 · x + a2 · x = x = ||x||. 

i=1 i=1 i=1 

Now, using linearity of h2 and Equation (3.6) we get 

x Qa1,a2 x Qa1,a2 x 
h2(h1(x)) = Qa1,a2 = = = h1(h2(x)). ||x|| ||x|| ||Qa1,a2 x|| 

Lemma 3.1 states that the mapping proj of Definition 3.3 can bea1,a2 

viewed in two different ways. This is relevant in the proof of the following 
result. 

3.2 Connection between asymptotic independence and the 
limit measure 

Theorem 3.1. Suppose Z ≥ 0 is a multivariate regularly varying random 
vector. Let Z, ZA1 and ZA2 be as in Definition 3.1 and A1 ∩ A2 = ∅. 

Then the following are equivalent with (3.1): 

1) Suppose B1 ⊂ RN and B2 ⊂ RN are Borel sets bounded away from 0. 
Assume further that the sets B1 and B2 can be presented as 

(1) (2) (N) (i)
B1 = B × B × . . . × B , where B = R for all i ∈ A21 1 1 1 

and 

(1) (2) (N) (i)
B2 = B × B × . . . × B , where B = R for all i ∈ A1.2 2 2 2 

Then � � 
Z 

tP ∈ B1 ∩ B2 → 0, t →∞. 
b(t) 

2) Suppose i ∈ A1, j ∈ A2 and c > 0. 

Then ! 
Z(i) Z(j) 

(3.7) tP > c, > c → 0, t →∞. 
b(t) b(t) 
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3) Angular measure S is concentrated to faces corresponding to A1 and A2, 

(3.8) S(CN (A1)) + S(CN (A2)) = 1. 

Proof. (3.1) ⇔ 1: Suppose sets B1 ⊂ RN1 and B2 ⊂ RN2 are bounded away + + 
from 0. Define sets Dk,c ⊂ RN 

+ , where k = 1, 2, . . . , N and c > 0 by 

(1) (2) (N)
(3.9) = D × D × . . . × DDk,c k,c k,c k,c , 

where ( 
(i) [c, ∞), i = k 

D :=k,c R+, i =6 k. 

Since the sets B1 and B2 are bounded away from 0, there must be numbers 
c1 > 0 and c2 > 0 so that � � � � 

ZA1 ZA2 Z 
tP ∈ B1, ∈ B2 ≤ tP ∈ (∪k∈A1 Dk,c1 ) ∩ (∪k∈A2 Dk,c2 )b(t) b(t) b(t) � �N1 N2X X Z 
(3.10) ≤ tP ∈ Dk1,c1 ∩ Dk2,c2 . 

b(t)
k1=1 k2=1 

Each term on the right hand side of (3.10) converges to 0, as t → ∞ by 
Condition 1. This shows 1 ⇒ (3.1). The remaining direction is clear because 
product sets are special cases of sets in (3.1). 
1 ⇔ 2: Suppose 2 holds. Since B1 and B2 are bounded away from 0 

there must be indices k1 ∈ A1, k2 ∈ A2 and a number c > 0 such that 
B1 ⊂ Dk1,c and B2 ⊂ Dk2,c, where the sets Dk1,c and Dk2,c are defined as in 
(3.9). Then � � � � 

Z Z 
tP ∈ B1 ∩ B2 ≤ tP ∈ Dk1,c ∩ Dk2,c ,

b(t) b(t) 

where the right hand side converges to 0, as t → ∞ by Condition 2. The 
remaining direction is clear because the sets in 2 are special cases of sets in 
1. 
3 ⇒ 2: Suppose first that Condition 2 does not hold. Then there exist 

indices k1 ∈ A1, k2 ∈ A2 and c > 0 such that (3.7) does not hold, i.e. the 
limit does not exist or the limit exists but is not 0. Even if the set in (3.7) 
is a not a continuity set of the limit measure ν, we may choose a smaller 
number c0 ∈ (0, c) so that the right hand side of 

{Z(k1) > cb(t), Z(k2) > cb(t)} ⊂ {Z(k1) > c 0b(t), Z(k2) > c 0b(t)} 
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is a continuity set. So, when c is replaced by c0 in (3.7) the limit given by 
limit measure ν exists, as t →∞. Since the limit is not 0 by assumption, it 
must be positive. So, ν(Dk1,c ∩Dk2,c) > 0, where the sets Dk1,c and Dk2,c are 
as in (3.9). Because the set Dk1,c ∩ Dk2,c gets positive value under measure 
ν, the image under h1 of this set must have positive angular measure, where 
h1 is as in Definition 3.3. Specifically, 

(3.11) S(h1(Dk1,c ∩ Dk2,c)) > 0. P P 
x(i) > 0 and i∈A2 

x(i) > 0. So,If x ∈ h1(Dk1,c ∩ Dk2,c), then i∈A1 

(3.12) h1(Dk1,c ∩ Dk2,c) ∩ CN (A1) = ∅ 

and 

(3.13) h1(Dk1,c ∩ Dk2,c) ∩ CN (A2) = ∅. 

Since S is a probability measure and some of the probability mass is concen-
trated outside of the faces CN (A1) and CN (A2) by (3.11), (3.12) and(3.13), 
we have that 

S(CN (A1)) + S(CN (A2)) < 1. 

So, Condition 3 does not hold. 
(3.1) ⇒ 3: Suppose Condition 3 does not hold. Then there exist a set 

B ⊂ CN such that S(B) > 0,+ 

B ∩ CN (A1) = ∅ 

and 
B ∩ CN (A2) = ∅. 

Since B does not intersect either simplex, there are numbers c1, c2 ∈ (0, 1) 
so that the set 

Bc1,c2 := 

⎧⎨ ⎩ XX 
(i) (i)x ∈ B : x > c1, x > c2 

⎫⎬ ⎭ 
i∈A1 i∈A2 

has positive angular measure, that is S(Bc1,c2 ) > 0. Define D ⊂ RN using 
Bc1,c2 

XX ⎧⎨ ⎩ 
by D := {cx : c ≥ 1, x ∈ Bc1,c2 }. Now ν(D) > 0. Furthermore, 

> c2 

⎫⎬ ⎭ .(i) (i)x ∈ RN : x > c1, x(3.14) D ⊂ 
i∈A1 i∈A2 
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(i) (i)So, when B1 = x ∈ RN1 : i x > c1 and B2 = x ∈ RN2 : i x > c2 

in (3.1) we have that � � � � 
ZA1 ZA2 Z 

tP ∈ B1, ∈ B2 ≥ tP ∈ D ,
b(t) b(t) b(t) 

where the right hand side does not converge to 0, but to ν(D) > 0. This 
shows that (3.1) does not hold. 

Remark 3.2. Part 2 of Theorem 3.1 admits sets that have zeros in some 
of their components. For example, if N = 3, A1 = {1, 3} and A2 = {2}, then� � 
B1 can be {0}×R×[1, ∞). This is why the condition tP Z/b(t) ∈ [c, ∞)N → 
0, as t →∞ for all c > 0 is not equivalent with asymptotic independence. 

The following result can be used to reduce multidimensional dependence 
structures into two dimensional setting by considering sums of components. 

Proposition 3.1. Suppose Z = (Z(1), Z(2), . . . , Z(N)) is a non negative 
MRV random vector and N ≥ 2. Let A1, A2 ⊂ {1, 2, . . . , N}, A1 ∩ A2 = ∅ 
and suppose #A1 = N1 and #A2 = N2, where N1, N2 ≥ 1 and N1 +N2 = N . 

Then the non negative two dimensional random vector ⎛ ⎞ X X 
Z(i) Z(i)(Y1, Y2) := ⎝ , ⎠ 

i∈A1 i∈A2 

is also MRV. Furthermore, ZA1 and ZA2 are asymptotically independent if 
and only if Y1 and Y2 are asymptotically independent. 

Proof. The fact that (Y1, Y2) is MRV follows from Proposition 5.5 found 
from [22, p. 142]. 
For the latter claim, observe first using (3.3) that if x ∈ C+ 

N , then for 
j = 1, 2, Qa1,a2 (x) = aj if and only if x ∈ C(Aj ). So, it follows that 
S(C(A1)) + S(C(A1)) = 1 if and only if SY ((0, 1)) + SY ((1, 0)) = 1, where 
SY denotes the angular measure of (Y1, Y2). Using Part 3 of Theorem 3.1 
completes the proof. 

3.3 Asymptotic normality of the validation statistic 

We start by defining an auxiliary function g function in Definition 3.4 for 
Theorem 3.2. Function g is used to fix a set on simplex C2 . It is then tested 
if the asymptotic support is included in the fixed set. Different choices for 

20 



g yield tests for different dependence structures. These structures include 
asymptotic independence introduced in Section 3, but the construct allows 
other choices as well. The most commonly encountered structures are illus-
trated in Figure 1. 

Definition 3.4. Suppose [a1, b1], [a2, b2], . . . , [am, bm] are separate subinter-
vals of [0, 1], where m ≥ 2. 
Let g : [0, 1] → R be a function defined by conditions ( 

0, a1 > 0 
g(0) = 

1 
2 , a1 = 0, 

1 i − 1 
g(ai) = g(bi) = + , i = 1, 2, . . . , m, 

2 2(m − 1) 

1 
g((bi + ai+1)/2) = g(bi) − , i = 1, 2, . . . ,m − 1 

2 
and (

1 
2 , bm < 1 

g(1) = 
1, bm = 1 

and whose values are given by linear interpolation between the defined points 
on the rest of the interval [0, 1]. 

The function g enables the user to add small buffers in which the support 
must lie. The feature is added because, to our experience, it is challenging 
to detect asymptotic independence from real data. The task can be made 
easier if one admits small deviation from true asymptotic independence by 
widening the search for support measures S that concentrate near the axes 
but not necessarily on the axes themselves. Such support structures can 
still convey useful information. This is because they imply that some of the 
components can not obtain large values at the same time which is precicely 
the needed information in many applications. Similar approaches for find-
ing sufficiently independent groups of variables exist in the literature, for 
example in [10]. 
In practice, the most frequently searched dependence structures corre-

spond to asymptotic independence and strong asymptotic dependence. Tests 
for these are presented in Remarks 3.3 and 3.4 below. We prove first a more 
general result from which the others follow. The results are formulated for 
positive vectors for notational simplicity. 
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(a) (b) (c) 

Figure 1: Graphs of function g for different test scenarios. On the left, 
g corresponds to a setting where asymptotic independence is tested with 
buffers. Values at end points differ in order to avoid zero variance of L in 
(3.16) under asymptotic independence. In the middle, g could be used to test 
if the asymptotic support is covered by two intervals. In addition, similar 
g could arise when testing if the support is covered by a single interval 
after the sample is processed using the method described in Remark 3.4. 
On the right, g tests if the support is covered by three separate intervals. 
Such dependence structure might arise e.g. in the search of hidden regular 
variation after the first order cone is removed from data. 

Theorem 3.2 (Asymptotic normality of test statistic). Let Z1, Z2, . . . be 
i.i.d MRV random vectors in R2

+. Suppose (Ri, θi) ∈ R+ × C2 is the polar + 
coordinate representation of Zi, where Ri = ||Zi|| and θi = Zi/||Zi||. Let 

= (θ1 , θ2 ) = (θ1 ) be the angular component of theθ(i:n) (i:n) (i:n) (i:n), 1 − θ(
1 
i:n) 

ith largest vector in L1 norm out of a sample whose size is n. Suppose 
m ≥ 2 and g is as in Definition 3.4. Let S1 be a probability measure on 
[0, 1] obtained as a push forward measure from the angular measure S via 
mapping (x, y) 7→ x. Assume S1(∪i[ai, bi]) = 1. 

Denote Z m � �1 X 1 i − 1 
µg := g(x) S1(dx) = + S1([ai, bi])

2 2(m − 1)0 i=1 

and Z m � �21 X 1 i − 1 
σ2 := (g(x) − µg)

2 S1(dx) = + − µg S1([ai, bi]).g 2 2(m − 1)0 i=1 

If p � � 
(3.15) k(n) E(g(θ1 )) − µg → 0(k(n):n) 
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and k(n)/n → 0, as n →∞, then Pk(n) 
� � 
g(θ1 ) − µgi=1 (i:n) dˆ(3.16) T := 1 → N(0, 1), 

(k(n)) 2 σg 

as n →∞. 

Proof. The proof is similar to the proof of Theorem 3 of [21] and follows 
from it with minor modifications. 

Remark 3.3. If m = 2, a1 = b1 = 0 and a2 = b2 = 1 in Theorem 3.2, then 
(3.16) is a test statistic for asymptotic independence. 

Remark 3.4. If the limiting measure S is concentrated into a single interval 
[a, b] ( [0, 1], Theorem 3.2 can not be directly applied because it requires 
the limiting variable L to have a non zero variance. However, the case where 
the asymptotic support is an interval can be reduced to the setting of two 

(1) (2)
intervals by first transforming the sample (Z , Z )n 

i i i=1. 
We can assume the sample size n is even. If it is not, we can leave out 

the observation with the smallest L1 norm, because it has no effect to the 
subsequent analysis. When i is odd, transform the two dimensional data 
using mapping (x, y) 7→ (x/2, x/2 + y). If i is even, use mapping (x, y) 7→ 
(x + y/2, y/2) instead. Then permute the order of observations to obtain 
i.i.d MRV random vectors. The limiting measure of the transformed sample 
replaces the original with two smaller copies. In addition, supp+ ⊂ [a, b] if 
and only if the asymptotic support of the transformed sample is covered by 
[a/2, b/2] ∪ [(a + 1)/2, (b + 1)/2]. 

Remark 3.5. Since it is assumed in Proposition 3.2 that all probability 
mass of S is concentrated into intervals [a1, b1], [a2, b2], . . . , [am, bm] and g is 
constant on those intervals, the random variable L can obtain at most m 
different values. In practice probabilities P(L = g(ai)), i = 1, 2, . . . ,m need 
to be estimated. 

3.3.1 Discussion on the choice of g in Definition 3.4 

The purpose of Function g in Definition 3.4 is to identify when the sets 
[a1, b1], [a2, b2], . . . , [am, bm], called the test intervals, eventually cover the 

+support supp , as n → ∞. Selecting a function with best performance 
in terms of a pre set benchmark depends from the way and rate at which 
convergence to the limit measure takes place. In practical scenarios such 
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information is not usually available. Our suggestion for g is chosen by em-
pirical testing with different data sets. 
While there are multiple ways to define such functions, the construction 

of a limiting result corresponding to Proposition 3.2 sets some requirements 
that restrict the set of possible choices. The rationale for choosing g as it is 
defined in Definition 3.4 is the following. Function g must be set to a con-
stant value on all separate intervals that are believed to contain probability 
mass of S. One might be tempted to use a symmetric function around 1/2 so 
that the values in both endpoints of [0, 1] would be the same. The problem 
with this is that it would also imply zero variance for a variable analogous 
to L in Theorem 3.2 in the case of asymptotic independence, making it un-
clear how the test quantity should be scaled for a non-degenerate limiting 
distribution. Once it is established that the function cannot be symmetric, 
the different values in endpoints are not significant since the system can be 
scaled and shifted to the values set in Definition 3.4. 
The remaining question is then how the function g should behave be-

tween the regions of constant value. Firstly, Function g should be able to 
separate desirable distributions from the ones with support that is not con-
centrated on the test intervals. A way to do this is to make the quantity |T̂ |
of (3.16) as large as possible in the presence of unwanted limiting behavior. 
On the other hand, the thresholded data may contain pre-limit observations 

+whose projections are not in supp even when all limiting probability mass 
on simplex is covered by the test intervals. So, observations close to the re-
gions of constant value should not change the value of |T̂ | too dramatically. 
In conclusion, the choice of g in Definition 3.4 seems to be a reasonable 
compromise between the two opposing goals. It is chosen from the class of 
piece-wise linear functions for computational simplicity. 

4 Examples with simulated and real data 

In this section, we illustrate how the theoretical results concerning support 
estimation in Section 2 and support testing in Section 3 can be used in 
practice. We begin with a simulated dataset in Example 4.1 to show how the 
grid based support estimator performs in a controlled environment. Example 
4.2 studies daily stock returns. The emphasis is on the fact that stocks in the 
same field tend to be dependent, but one can find at least asymptotically 
independent assests among ordinarily listed equities. In Example 4.3, a 
natural scenario for emergence of asymptotic independence is given using 
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rainfall data1 . Finally, in Example 4.4 daily returns of gold and silver are 
used to show how the support estimates can be used to obtain inequalities 
for sizes of large fluctuations. 
Typically, multivariate datasets require some amount of processing be-

fore they can reasonably be thought to satisfy assumptions of multivari-
ate regular variation given in Definition 1.1. In particular, tail indices of 
marginal distrtibutions must to be the same for the asymptotic theory to 
work. To this end, one needs to estimate tail indices. Estimation of tail 
index is a classical topic which is discussed e.g. in [1,22,25] or more recently 
in [13]. If it is decided that the marginals do not have the same index, then 
the data needs to be transformed before proceeding further. 
Multiple methods exist for transforming datasets to fit the scope of mul-

tivariate regular variation. Usual methods include power transformations of 
marginals or the rank transform, see [22, Section 9.2] and [11]. 

4.1 Simulated data 

Support estimator of Section 2 is applied to simulated data. The data set 
consists of 3 dimensional observations Z1, Z2, . . . , Zn, where n = 150000. 
Observations are generated by fixing a region A ⊂ C3 and then sampling+ 
uniformly 50000 samples from A. The samples on the simplex are then as-
signed a radial component independently from Pareto(2) distribution. So, 
by definition, the angular and radial components of the observations are 
independent. Additionally, 100000 observations are added to the sample 
depicting noise by sampling uniformly from the entire simplex C3 and as-+ 
signing them with an exponentially distributed radial components. Finally, 
we put the simulated samples into a random order so that they form an i.i.d 
sample from a mixture distribution that is MRV. 
Figure 2 Illustrates how well the grid based support estimate is able to 

find the location of the set A. The dots in figures 2a and 2c are projected 
k = 10000 largest observations in L1. The dark dense region is the set A, 
which is a circle in 2a and a triangle in 2c. In figures 2b and 2d the set A is 
estimated by forming the support estimator Ak,m,q using parameter values 
k = 10000, m = 36 and q = 0.01. Rejecting some of the points by positive 
q produces clearly visible rasterised version of A with no misidentified cells. 
This is due to the fact that our simulated data fits perfectly to the MRV 
framework. The following examples show that real data produces far less 
conclusive results. 

1Special thanks are due to Sebastian Engelke who suggested that asymptotic indepen-
dence could be found from rainfall data in a personal communication. 
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(a) (b) (c) (d) 

Figure 2: Figures present projected and estimated supports of simulated 
data. The large red triangles indicate the boundaries of the image of C3 

+ 
under a simplex mapping T discussed in Section 1.4. 

4.2 Stock data vs. catastrophe fund 

Stock market dependencies are studied using a data set consisting of daily 
prices of 6 stocks and a catastrophe fund. The studied equities and their 
ticker symbol abbreviations are: Google (GOOG), Microsoft (MSFT), Apple 
(AAPL), Chevron (CVX), Exxon (XOM), British Petrol (BP) and CATCo 
Reinsurance Opportunities Fund (CAT.L). Observations range from Decem-
ber 20, 2010 to 10 July, 2018. The data set was downloaded via R package 
Quantmod. 
Observations were processed by the taking logarithm and calculating dif-

ferences. The resulting components of the data set have similar tail indices 
with positive and negative tails. However, the index of CAT.L was substan-
tially smaller than the others, making it necessary to use rank transform 
when comparing it against the other equities. 
In Figure 3, the strength of pairwise dependence is calculated using the 

largest k = 200 observations in L1 projected to C+
2 , denoted z1, z2, . . . , z200,Pkby formula (1 − d2(1/2, zi)/k). That is, the observations that have i=1 

the largest distance to the midpoint (1/2, 1/2) of simplex C2 are assigned+ 
small values and observations near the midpoint large values. All pairwise 
dependencies that exceed the level 0.46 are drawn as edges in Figure 3. 
The level was obtained empirically by gradually lowering the required level 
and observing which connections appeared on the graph first, that is, which 
dependencies are the strongest. 
Figure 3 suggests that companies within the same financial sector, oil or 

technology, might not be asymptotically asymptotically independent. How-
ever, the catastrophe fund might be asymptotically independent from stocks. 
In Figure 4, projected and estimated supports of positive orthants are 
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Figure 3: A graph illustrating the strongest preliminary pairwise asymptotic 
dependencies. 

depicted for oil and tech stocks. Parameter values are k = 200, m = 12 and 
q = 0.01. Estimated grid based supports in subfigures 4b and 4d suggest 
that the groups of stocks are not asymptotically independent, but possibly 
quite dependent. However, based on Figure 3 oil and tech sectors might be 
asymptotically independent and CAT.L could be asymptotically indepen-
dent of all the studied stocks. 
Asymptotic independence was tested using absolute values of observa-

tions. Function g was defined using choices m = 2, a1 = 0, b1 = 0.1, a2 = 0.9 
and b2 = 1, i.e. asymptotic independence was tested with buffers. It was 
assumed that S1([0, 0.1]) = S1([0.9, 1]) = 1/2. Observations from oil and 
tech fields were added together in order to form a two dimensional vec-
tors. The empirical test statistic t̂  corresponding to T̂  of (3.16) was cal-

ˆculated: t ≈ 0.73. So, under null hypothesis P(T̂  > |t̂|) ≈ 0.31 and thus 
the test statistic is consistent with the idea that oil and tech sectors could 
be asymptotically independent. Similar test was performed pairwise with 
CAT.L against all 6 stocks. There was not enough evidence based on the 
test statistics corresponding to (3.16) to reject the idea of asymptotic inde-
pendence. 
In conclusion, the test statistic developed in Section 3 supports what is 

seen in the preliminary dependence graph, in Figure 3. 
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(a) (b) (c) (d) 

Figure 4: Projected largest k = 200 observations and the estimated sup-
ports for tech stocks, in Figures 4a-4b, and for oil stocks, in Figures 4c-4d, 
respectively. 

(a) (b) (c) (d) 

Figure 5: Projected and estimated supports of tech stocks. 

4.3 FMI data 

Daily rainfall data was downloaded from Finnish Meteorological Institute 
from 3 separate locations. Only observations from summer months June, 
July and August were taken into consideration to reduce seasonal effects. 
Two of the locations, Kouvola and Savonlinna were close to each other 
where as the last one, Sodankyla, was further away. Rainfalls in the nearby 
locations showed high dependence. The rainfalls of the further location were 
not entirely independent of the two others, but exhibited independence in 
the largest observations. The total number of observations in the data is 
n = 3864. 
In figure 6, projected and estimated supports of rank transformed rainfall 

vectors are presented using k = 300 larges observations. In the support 
estimate, parameter values m = 12 and q = 0.01 were used. The rainfall 
data seems to support the idea that locations in close proximity are fully 
dependent and locations far away from each other are independent. Between 
the two extreme cases when the distance of the studied locations is suitable, 
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(a) (b) 

Figure 6: Projected and estimated supports of daily rainfall data recorded 
in 3 locations in Finland. 

rainfalls become asymptotically independent. 

4.4 Gold vs Silver price data 

In this section we analyze daily gold and silver price data. The data is 
gathered from London Bullion Market Association and it is downloaded via 
R package Quandl. In the data, the price of one ounce of gold or silver 
is recorded each day during a time period ranging from December 3, 1973 
to January 15, 2014. Only complete cases where the price information was 
available from both gold and silver were accepted as part of the data set. 
There were three days where price information was incomplete. Large price 
fluctuations did not occur during the omitted days and thus ignoring them 
has no effect to the resulting asymptotic analysis. 
The daily price data was transformed by logarithmic differentiation in 

order to obtain a sample which is better suited with the i.i.d. assumption of 
the model. The individual positive and negative marginals of gold and silver 
seemed to be reasonably in line with the assumption of regular variation. No 
power or rank transformations were performed to the data set. The resulting 
sample of n = 10323 was thresholded by the k = 200 largest observations in 
L1 norm and then projected onto C2 to produce the diamond plot presented 
in Figure 7. 
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Figure 7: Diamond plot of daily price data of gold and silver after logdiff 
transformation. Horizontal axis corresponds to gold and vertical axis to 
silver. 

Figure 7 shows that the largest fluctuations in gold and silver prices 
tend to occur to the same direction. In addition, it seems that the points 
do not fill the positive or negative quadrant of the C2 simplex evenly, but 
concentrate on intervals. The estimation of asymptotic support in the nega-
tive quadrant was chosen as a suitable example, analysis of other quadrants 
could be performed similarly. So, only the part of data where both compo-
nents are negative was used. The n = 3951 observations were multiplied by 
−1 to obtain a data set int the positive quadrant. 
The one dimensional grid based estimator was obtained using the first 

1975 observations sampled uniformly without replacement from the data. 
The points were projected using a simplex mapping T : C2 → [0, 1] defined+ 
by T (x, y) = x. Since gold is on the horizontal axis, the projected values 
on [0, 1] close to 0 correspond to silver and values near 1 to gold. The grid 
based support estimator with parameter values n = 1975, k = 100, m = 15 
and q = 0.02 suggests that the asymptotic support should be covered by 
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interval [0, 0.65]. 

(a) (b) (c) (d) 

Figure 8: In Figure 8a, the data set transformed using method of Remark 
3.4. The transformed observations are presented in Figure 8c. Figures 8b 
and 8d show the diamond plot of the k = 100 largest obervations in L1 

norm. 

The validity of the support estimate was tested using the remaining 
1976 observations. Function g was formed using the method discussed in 
Remark 3.4. The process is illustrated in Figure 8. The aim is to test if 
the asymptotic support of the transformed data is covered by [0, 0.325] ∪ 

ˆ[0.5, 0.825]. The null hypothesis is that in our sample T ∼ N(0, 1) where 
T̂  is as in Equation (3.16). The empirical test statistic t̂  corresponding 
ˆto T quantity was calculated from the remaining observations with result 

t̂ ≈ 0.074. Under null hypothesis P(T̂  > |t̂|) ≈ 0.398. So, the value of t̂  gives 
no reason to think the null hypothesis is wrong and the asymptotic support 
of the original sample could well be covered by the set [0, 0.65]. 
As a practical application we immediately obtain inequalities for large 

fluctuations in gold and silver prices. Denote the daily logarithmic decrease 
in prices with x for gold and y for silver. If a very large decrease is observed 
for gold, i.e. x is large, then the support estimate implies x/(x+y) ≤ 0.65 so 
that y ≥ 0.53x. In other words, the support estimate says it is unlikely for 
the decrease in logarithmic silver price to be less than 0.53x. The method 
allows estimation of quantities that are unknown in the presence of extremal 
circumstances. 

4.5 Final thoughts 

Based on the previous examples, the methods presented in Sections 2 and 
3 seem to be usable in some scenarios. However, the use of asymptotic 
support estimation has its limitations. For one, it is challenging to find a 
large sample of vectors with tail equivalent marginals that satisfies the i.i.d. 

31 



assumption. With time series, larger number of observations may lead to 
poor results because the underlying mechanisms that produce observations 
may change when the data is gathered during a long time. So, the initial 
data needs to be normalized to fit the theoretical framework. In financial 
context, one popular method is de-GARCHing, see [12, Sec 2.1.]. The choice 
of pre processing method adds a new source of uncertainty to the model. 
Additional problems arise when the marginals are not tail equivalent 

and especially when the rank transform is used. If the original sample has 
MRV distribution, it is known that the rank transformed sample should 
produce the same asymptotic support as the original sample in the limit 
as the number of observations grows. However, it is not known to the 
authors how the support estimate based on a finite rank transformed sample 
differs from the true asymptotic support. This raises the question about the 
sufficient number of observations needed for the asymptotical analysis to be 
reasonable. A related problem is discussed in [18]. 
The proposed method in Sections 2 and 3 has an exploratory component 

involved, as the support estimate is based on parameters whose values need 
to be chosen. In practice usual plotting methods turned out to be inefficient 
in the choice of parameters. This is why a dedicated software is being 
developed for the purpose of asymptotic support identification and testing. 
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	1.1 Structure of the paper 
	1.1 Structure of the paper 
	The rest of Section 1 is used to deﬁne concepts and deﬁnitions. In Section 2, the grid based asymptotic support estimator for multivariate heavy-tailed data is presented. Consistency and related properties are proved in Section 
	2.2. The deﬁnition of asymptotic independence as well as the new connections with limiting behavior of MRVs are discussed in Section 3. Speciﬁcally, the test for asymptotic normality is introduced in Section 3.3. In Section 4, the techniques developed in Sections 2-3 are illustrated by means of simulated and real examples. 
	-
	-


	1.2 Basic deﬁnitions 
	1.2 Basic deﬁnitions 
	Suppose (Ω, B, P) is a probability space where all the subsequent random variables are deﬁned. Throughout the paper random variables take values in a metric space (R, T ,d). Here N ≥ 2 is the dimension of the space, T is the Euclidean topology and d = dN is the Lor Euclidean distance. 
	N 
	R
	2 

	(1) (2)
	That is, for all elements x, y ∈ R, where x =(x ,x ,...,x) and 
	N 
	(N)

	(1) (2)
	y =(y ,y ,...,y), 
	(N)

	vuut
	X
	N 
	i=1 
	Euclidean distances are used in mappings that project sets into lower dimensional spaces in a way that does not distort the image. However, unless otherwise stated, all norms denoted by || · || are L-norms, where 
	-
	1

	d(x, y)= 
	(x
	(i) − y(i))
	2 

	. 
	X
	N 
	||x|| = |x|. i=1 
	(i)

	The choice of Lnorm instead of some other Lp norm is natural because in applications the total risk is typically the sum of marginal risks. So, any condition on the size of the Lnorm can be directly viewed as a condition on the total risk. Upper indices are used to identify components of vectors. Lower indices are reserved for order statistics. For 1 ≤ i ≤ N, the ith largest 
	The choice of Lnorm instead of some other Lp norm is natural because in applications the total risk is typically the sum of marginal risks. So, any condition on the size of the Lnorm can be directly viewed as a condition on the total risk. Upper indices are used to identify components of vectors. Lower indices are reserved for order statistics. For 1 ≤ i ≤ N, the ith largest 
	1 
	1 

	component of x is x. All inequalities and operations involving vectors are understood componentwise way as in Section 1.2 of [20]. 
	(i)


	The collections of open, closed and compact sets are denoted by G,F and K, respectively. For a set A ⊂ Rthe whole space can be partitioned as R= int(A) ∪ ext(A) ∪ ∂A to topological interior, exterior and boundary of the set A. The ball with center x ∈ Rand radius δ> 0 is B(x,δ). In addition, the diameter of A is denoted by diam(A). The notation := is used when the left hand side is deﬁned by the right hand side of the equation. 
	N 
	N 
	N 


	1.3 Multivariate regular variation 
	1.3 Multivariate regular variation 
	We follow the standard deﬁnition of multivariate regular variation as deﬁned in [22, Theorem 6.1]. In our case, however, the deﬁnition is slightly modiﬁed to take into account possible negative values of components. Note that normalizing all components using the same function b implies that the components must be tail equivalent, see [22, Remark 6.1.]. 
	-

	Deﬁnition 1.1. Suppose Z =(Z,Z,...,Z) is an random vector in R. Set E := [−∞, ∞]\{0}. We say that Z is standard multivariate regularly varying with limit measure ν if there exist a function b(t) ↑∞, as t →∞, such that 
	(1)
	(2)
	(N)
	N 
	N 

	.. 
	Z v
	(1.1) tP ∈· → ν 
	b(t) 
	b(t) 

	v
	in M+(E). Notation → stands for vague convergence of measures. 
	Multivariate regular variation has an equivalent deﬁnition via measure S, called the angular measure, spectral measure or limiting measure in diﬀerent sources, deﬁned on 
	C
	C
	N

	(1.2) := {z ∈ R: ||z|| =1}. 
	N 

	In this formulation, Z is said to be standard multivariate regularly varying if there exist a function b(t) ↑∞, as t →∞, such that for 
	.. 
	Z 
	(R, Θ) := ||Z||, 
	||Z|| 
	||Z|| 

	we have 
	.. .. 
	R v
	(1.3) tP , Θ ∈· → cνα × S 
	b(t) 
	b(t) 

	in M+((0, ∞] × C), as t →∞, where c> 0, S is a probability measure on N −α
	N 
	C

	and να((x, ∞]) = x . The number α> 0 is called the tail index of the multivariate regularly varying distribution. 

	1.4 N-simplex and simplex mappings 
	1.4 N-simplex and simplex mappings 
	In Section 2, the aim is to identify the support of the limiting measure S based on data. To this end, we present a support estimation method in which the support of S on Lsphere is approximated by a set consisting of equally sized rectangles. The locations of rectangles are determined based on concentrations of probability mass of the empirical version of the limiting measure S. This is in contrast to [4], where the range of thresholded data itself is used to indicate the location of the support. However, 
	1 
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	Suppose m ≥ 2 is an integer and N ≥ 2 is the dimension of the data. Now, m determines the resolution of the asymptotic support estimate. The idea is to map the N-dimensional simplex into [0, 1]one face at a time. The image on is partitioned into msmaller sets. The partition is called a grid and the sub squares are called cells. Some of the grid cells are accepted as part of the support while the rest are rejected based on a rule described in Section 2. 
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	to denote the part of simplex Cwhere all coordinates are non-negative. If A ⊂{1, 2,...,N} is a set of indices we deﬁne the faces by formula 
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	C(A) := {z ∈ C: z =0, when i ∈/A}. 
	N 
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	Deﬁnition 1.2 (Support of measure in R). Let E =(R, T ,d) be a topological space where T is the smallest sigma algebra containing all open balls in metric d which is the Euclidean metric. Suppose µ is a measure on (R, T ). 
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	N 
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	Then the support supp(µ) of measure µ is the set deﬁned as 
	. 
	(1.4) supp(µ) := x ∈ R: µ(B(x, δ)) > 0 for all δ> 0 . 
	N 

	Equivalently, it is the complement of the union of open balls with measure zero. In particular, supp(µ) is the smallest closed set in the sense that 
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	The part of the support of S on simplex Cis denoted by supp .
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	Deﬁnition 1.3. Let N ≥ 2. Suppose T is a bijective mapping T : C→
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	for all x, y ∈ Cand some constant a> 0. Such a mapping T is called
	N 

	+ 
	simplex mapping associated with C. 
	+ 
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	Mapping T can be chosen in a number of ways. So, the grid positioning can be adjusted with respect to observed data if necessary. By shifting the grid one can avoid concentration of points directly onto a grid boundaries. The positive simplex is mapped into a lower dimensional space for clarity. Speciﬁcally, when N = 3, all analysis can be performed in the two dimensional plane. 
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	Example 1.2. a) If N = 2, one can set 
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	gives T that maps Cinto [0, 1]. The image T (C) is a region in[, 1]inside an equilateral triangle with edges on (0, 0), (1, 0) and (1/2, 3/2). Mapping T has an inverse T : T (C) → Cgiven by 
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	Mappings of Example 1.2 can be used in computer programs that require explicit formulas for projections. 
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	2 Support estimation 
	2 Support estimation 
	In this section the grid based estimator is deﬁned and its asymptotic consistency is shown under general assumptions. 
	-

	2.1 Support estimator and related quantities 
	2.1 Support estimator and related quantities 
	Suppose Z is a multivariate regularly varying vector in R. Let s ∈ {−1, 1}be a vector. We deﬁne 
	N 
	N 

	.. 
	Z 
	(2.1) U := T 
	||Z|| 
	||Z|| 

	and more generally, 
	! 
	(i)(i)N
	Z
	)

	(s 
	(s 
	i=1

	U(s) := T 
	||Z|| 
	to denote the transformed angular component of facet s in T (C) ⊂ [0, 1].
	N 
	N−1 

	+ 
	Most of the proofs can be formulated in terms of U, which corresponds to the positive facet. For example if N = 3, then U = U((1, 1, 1)). 
	The space [0, 1]can be covered by separate cells. Given a vector x ∈ [0, 1]and a number m ≥ 2, we deﬁne a cell M(x,m) ⊂ Rby formula 
	N−1 
	N−1 
	N−1 

	(2.2) M(x,m) := x + [0, 1/m). 
	N −1 

	Cell M(x,m) can be viewed as a shift by vector x. Explicitly, M(x,m) is the set 
	h.h.h .
	11 1
	(1) (1) (2) (2) (N−1) (N−1)
	x ,x + × x ,x + × ... × x ,x + . 
	mm m 
	The aim is to rasterize projected observations in order to produce an estimate for the asymptotic support. This is done by partitioning the set T (C) by grid cells.
	N 

	+ 
	Deﬁnition 2.1 (Support estimator). Let Z, Z,..., Zn be i.i.d. multivariate regularly varying vectors. Suppose k and m are natural numbers such that k ≥ 1 and m ≥ 2. Deﬁne Gm to be the set of corner points of cells at resolution m by 
	1
	2
	-

	.. .. 
	12 m − 1
	(i) ∈
	Gm := x ∈ R: x 0, , ,..., , 1 ,i =1, 2,...,N − 1 . 
	N −1 

	mm m 
	For q ∈ [0, 1] and facet s ∈ {−1, 1}, support estimator A(s)= Ak,m,q(s) is a set deﬁned as 
	N 

	.P n .
	[ 1(Ui(s) ∈ M(x,m), ||Zi|| ≥ ||Z||)
	(k)

	A(s) := M(x,m): >q . 
	i=1 

	k 
	x∈Gm 
	The estimator corresponding to the positive facet s = 1 = (1, 1,..., 1) is denoted by Ak,m,q := Ak,m,q(1). 
	Support estimator Ak,m,q is a random set formed based on a random sample Z, Z,..., Zn. It has three parameters: k, m and q. Parameter k = k(n) is the number of order statistics used from the sample. For the asymptotic analysis we assume that n/k(n) →∞, as n →∞. Parameter m denotes the resolution at which the estimate is formed. In asymptotic results resolution grows so that cell size decreases. One can think of parameter q as a rejection threshold. It determines how many observations are needed in a single 
	1
	2

	Support estimators in Deﬁnition 2.1 are decreasing in q. For ﬁxed k and m the inclusion Ak,m,q⊂ Ak,m,qholds for 0 <q<q< 1. Furthermore, limiting behavior as m →∞ can be studied in a sequence of nested grids by considering dyadic resolutions m =2, where s =1, 2,.... However, in applications the geometric convergence of cell diameters may turn out to be too fast which is why m is allowed to be any positive integer, not only a power of, say, number 2. 
	2 
	1 
	1 
	2 
	s 

	Deﬁnition 2.2. (Rasterized support) The smallest grid set with resolution 
	+
	m that contains supp is called the rasterised support and deﬁned by 
	[
	+ 
	supp := {M(x,m): x ∈ Gm, S(M(x,m)) > 0} .
	m 

	2.2 Consistency of the grid based support estimator 
	2.2 Consistency of the grid based support estimator 
	Lemma 2.1. Suppose Z, Z, Z,... are i.i.d random vectors with a common multivariate regularly varying distribution. Assume further that n →∞ and n/k →∞. Recall from ... that Gm is the grid corresponding to resolution m. 
	1
	2
	3

	If ST (Gm)=0, then 
	no 
	# i ≤ n : Ui ∈ m(m,m), ||Zi|| ≥ ||Z|| 
	1
	2
	(k)

	P
	(2.3) → ST (m(m,m)),
	1
	2

	k as n →∞ for all sets m(m,m), where 1 ≤ m,m≤ m. 
	1
	2
	1
	2 

	Proof. (Sketch of Proof) Suppose 1 ≤ m,m≤ m and denote A := T (m(m,m)). The set A is a continuity set of measure S by assumption ST (Gm) = 0, that is, S(∂A) = 0. Note that the left hand side of (2.3) can be written as 
	1
	2 
	−1
	1
	2

	n
	X
	1 
	1(||Zi|| > ||Z||, Zi > ||Z|| ∈ A). 
	(k+1)
	(k+1)

	k 
	i=1 
	Proposition 6.2 of [2, p. 158] states that in this case 
	n
	X
	1
	ˆ
	(2.4) ni(k+1)Zi/||Zi||
	S
	(·) := 1(||Z
	|| > ||Z
	||).
	(·) ⇒ S 

	k 
	i=1 in P(C), the space of probability measures on C. This implies Sn(A) ⇒ S(A), as n →∞. The distributional limit is a constant, which is why convergence takes place also in probability and (2.3) holds. Proposition 2.1 (Consistency of the grid estimator). Suppose assumptions of Lemma 2.1 hold. Let k = k(n) be such that k(n) →∞ and n/k(n) →∞, as n →∞. Assume further that m ≥ 2 and 
	2
	2
	ˆ 

	(2.5) q ∈ (0, 1)\{ST (m(m,m)) : 1 ≤ m≤ m, 1 ≤ m≤ m}. 
	1
	2
	1 
	2 

	Let Ak,m,q be deﬁned as in Deﬁnition 2.1. Then, it holds for a ﬁxed pair (m,m) that 
	1
	2

	Ł. 
	+
	(2.6) P Ak,m,q(m,m)= supp (m,m) → 1,
	1
	2
	1
	2

	m,q 
	as n →∞. 
	+
	Proof. Suppose ﬁrst that ST (m(m,m)) >q so that supp (m,m) = 1.
	1
	2
	1
	2

	m,q 
	Then the probability in Equation (2.6) can be written as 
	⎛n o⎞ 
	# i : Ui ∈ m(m,m), ||Zi|| ≥ ||Z||P >q. 
	1
	2
	(k)
	⎝ 
	⎠

	k 
	By Lemma 2.1, 
	no 
	# i : Ui ∈ m(m,m), ||Zi|| ≥ ||Z|| 
	1
	2
	(k)

	P
	→ ST (m(m,m))
	1
	2

	k 
	and ST (m(m,m)) >q by assumption. This shows (2.6). +
	1
	2

	If ST (m(m,m)) <q so that supp (m,m) = 0, the proof is similar
	1
	2
	1
	2

	m,q 
	as in the ﬁrst case, but the studied probability is 
	⎛n o⎞ 
	# i : Ui ∈ m(m,m), ||Zi|| ≥ ||Z||P ≤ q. 
	1
	2
	(k)
	⎝ 
	⎠

	k 
	Example 2.1. In Equation (2.5) of Theorem 2.1 ﬁnitely many values for q are excluded. This is necessary, because... two points, oscillation of probability mass around q in one of them. 
	-

	Corollary 2.1. Suppose assumptions of Theorem 2.1 hold. Then 
	1. For ﬁxed m ≥ 2, support suppis an eventual subset of the estimating grid in the sense that 
	+ 

	(2.7) 
	P 
	⎛⎝
	supp 
	+ ⊂ 
	[ 
	Ak,m,q 
	⎞⎠
	→ 1, 
	q>0 
	as n →∞. 
	2. For ﬁxed m and q, 
	. 
	+
	(2.8) P Ak,m,q = suppm,q → 1, 
	as n →∞. 
	Proof. Proof of Part 1: Denote 
	qˆ := min{ST (m(m,m)) > 0:(m,m) ∈ B + }. 
	1
	2
	1
	2

	suppm 
	+
	Since supp⊂ supp , it holds that
	+ 

	m 
	P(supp ⊂∪q>0Ak,m,q) 
	+ 

	+
	≥ P(supp⊂∪q>0Ak,m,q) 
	m 

	+
	≥ P(supp⊂ A
	≥ P(supp⊂ A
	m 
	k,m,ˆ

	q/2
	) 


	(2.9) = (m,m)=1 for all (m,m) ∈ B + ).
	q/2
	1
	2
	1
	2

	k,m,ˆ supp
	P(A

	m 
	Events in (2.9) are not independent, but each of them will have probability 1 in the limit n →∞ by Theorem 2.1. Since the number of events is at most mand thus ﬁnite, the claim holds. 
	2 

	Proof of Part 2: Probability in (2.8) is 
	+
	P(Ak,m,q(m,m)= supp for all 1 ≤ m≤ m, 1 ≤ m≤ m)
	1
	2
	1 
	2 

	m,q 
	and consists of events that have probability 1 in the limit n →∞ similarly as in the proof of Part 1. 
	Proposition 2.2. Suppose assumptions of Theorem 2.1 hold. Then, for ﬁxed m, 
	+
	(2.10) P(A= supp ) → 1,
	k(n),m 

	m 
	as n →∞. 
	Sketch of proof. If supp(m,m) = 1 the proof is similar to the ﬁrst part of Theorem 2.1. So, in order to prove (2.10) it suﬃces to concentrate on the case where supp(m,m) = 0 and show that 
	+
	1
	2
	+
	1
	2

	P(Ak,m(m,m) = 0) → 1, 
	1
	2

	as n →∞. To do this, one can estimate probability P(Ak,m(m,m) = 1) by an upper bound that converges to 0. Now, for a ﬁxed n, 
	1
	2

	(2.11) 
	(2.11) 
	(2.11) 
	(2.11) 
	P(Ak,m(m,m) = 1) = P(Sn(m(m,m)) > 0), 
	1
	2
	ˆ 
	1
	2


	where S(·) is the empirical measure deﬁned in (2.4). Since ST (m(m,m)) = 0 and m(m,m) is a continuity set of ST by assumption, the quantity in 
	ˆ
	1
	2
	1
	2


	(2.11) 
	(2.11) 
	converges to 0, as n →∞. 


	Theorem 2.1 (Consistency). Suppose assumptions of Proposition 2.2 hold. In addition, assume that m: N → N is a function such that m(n) ↑∞, as n →∞. 
	+
	Then A→ supp in the sense that 
	k(n),m(n) 

	P
	(2.12) D(A, supp ) → 0, 
	k(n),m(n)
	+

	as n →∞ where D is the Hausdorﬀ distance. Equivalently, for any δ> 0, 
	(2.13) P(A⊂ (supp )) → 1,n →∞ 
	k(n),m(n) 
	+
	δ

	and 
	(2.14) P(supp ⊂ A) → 1,n →∞.
	+ 
	δ 

	k(n),m(n) 
	Proof. (Sketch of proof) Proof of Equation (2.13): Suppose δ> 0 is ﬁxed. Let mδ be so large that diam(mδ(1, 1)) < δ/4. Set 
	[ 
	C:= mδ(m,m). 
	1 
	1
	2

	m,m: +δ/2
	1
	2
	)

	mδ (m,m)\(supp 6=∅ 
	1
	2

	+δ/2
	)

	Now Cis a collection of cells at resolution mδ that do not touch (supp , but yet ((supp))⊂ C. 
	1 
	+
	δ
	c 
	1

	Since diam(mδ(1, 1)) < δ/4, it must hold that d(C, supp) > 0. In 
	1
	+

	+
	particular, C∩ supp = ∅, which implies ST (C)=0 and ST (∂C) = 0. The latter equality follows from the fact that Cis a ﬁnite union of cells that are assumed to be continuity sets of ST . 
	1 
	1
	1
	1 

	So, if n is so large that diam(m(n)(1, 1)) < δ/4, then 
	. 
	#{i ≤ n : Ui ∈ C, ||Zi|| ≥ ||Z||} =0 ⊂{A⊂ (supp )}. 
	1
	(k)
	k(n),m(n) 
	+
	δ

	This implies (2.13) because P(A⊂ (supp)) is now bounded from below by a probability that converges to 1 by Proposition 2.2, as n →∞. 
	k(n),m(n) 
	+
	δ

	Proof of Equation (2.14): Suppose δ> 0 is ﬁxed. Let mδ be so large that diam(mδ(1, 1)) < δ/2. Deﬁne 
	[ 
	C:= mδ(m,m). 
	2 
	1
	2

	m,m: +
	1
	2

	int(mδ (m,m))∩supp 6=∅ 
	1
	2

	The set Cis the collection of cells at resolution mδ that contains all probability mass of the limit measure ST . This follows from the fact that all cells are assumed to be continuity sets of ST . 
	2 
	-

	Note ﬁrst that the δ-swelling of even a single point in a cell of Ccontains the cell itself due to assumption diam(mδ(1, 1)) < δ/2. Suppose then that 
	2 

	+
	there is at least one observation in each cell of C. In this case supp ⊂ AThis is due to the fact that the possible boundary points in
	2
	δ 

	k(n),m(n)supp\Cmust be boundary points of some cell that does belong to Cand thus are included in the δ-swelling. In conclusion, one way in which 
	. 
	+
	2 
	2 

	+
	the inclusion supp ⊂ Acan hold is that there is at least one
	δ 

	k(n),m(n) observation in each cell of C. So, 
	2

	. 
	A(m,m) = 1 for all cells in C⊂{supp ⊂ A}. 
	k(n),m
	δ 
	1
	2
	2 
	+ 
	k
	δ 
	(n),m(n)

	+
	This implies (2.14) because P(supp ⊂ A) is now bounded from 
	δ 

	k(n),m(n) 
	below by a probability that converges to 1 by Proposition 2.2, as n →∞. 
	Remark 2.1. Convergence in the sense of Theorem 2.1 does not guarantee that the approximation covers the support. In fact, if m grows rapidly with respect to k, the approximation may have zero Lebesgue measure. One would need to set bounds for the growth of m in order to get such result. 


	3 Asymptotic independence 
	3 Asymptotic independence 
	The concept of asymptotic independence is wider than independence. If a random vector has asymptotically independent components, one large component of the vector reveals no information from the other components. It admits all dependence structures as long as they cannot produce realizations of vectors where multiple components obtain large values at the same time. From practical viewpoint asymptotically independent components are as harmless as independent components. So, omitting asymptotically independen
	-
	-
	-
	-

	Our deﬁnition of asymptotic independence is compatible with existing litterature. In particular, it follows the deﬁnition given in [22, p 195]. The new property is that several groups of components can be handled at once. The closest results in this ﬁeld are, to our knowledge, the method of extremograms discussed in e.g. [14,17] and the sparcity approach to dimension reduction presented in [10]. 
	-

	Deﬁnition 3.1 below would not be suitable if the marginals were not heavy-tailed. The behavior of vectors composed of suﬃciently light-tailed 
	i.i.d. components would be diﬀerent. In fact, the conditional probability distribution ST,l might concentrate on the centers of simplex faces, as l →∞. This is in contrast to the i.i.d. heavy-tailed setting where the concentration would take place at the extremal points of the simplex. See [15] for details in the two dimensional case. 
	3.1 Deﬁnition of asymptotic independence of MRV 
	3.1 Deﬁnition of asymptotic independence of MRV 
	Deﬁnition 3.1. [Asymptotic independence for MRV] Suppose Z ≥ 0 has regularly varying multivariate distribution with scaling function b. Let A,A⊂{1, 2,...,N} and suppose #A= Nand #A= N. We say that component ZA:= (Z)i∈Ais asymptotically independent of component ZA:= (Z)i∈Aif 
	1
	2 
	1 
	1 
	2 
	2
	1 
	(i)
	1 
	-
	2 
	(i)
	2 

	. 
	. 
	. 
	. 

	(3.1) 
	(3.1) 
	tP 
	ZA1 b(t) 
	ZA2∈ B1, b(t) 
	∈ B2 
	→ 0 


	holds for all B⊂ Rand B⊂ Rsuch that d(B, 0) > 0 and d(B, 0) > 0, as t →∞. 
	1 
	N
	1 
	2 
	N
	2 
	1
	2

	Remark 3.1. It may be assumed without loss of generality that the sets Band Bin (3.1) are Nand Ndimensional rectangles. The statement is made more precise in Part 1 of Theorem 3.1. 
	1 
	2 
	1 
	2 

	Next, we deﬁne projections and methods that can be used to combine multiple components of random vectors into a single group. It enables the study of two groups in a simple setting even though the original data set is high dimensional. 
	Deﬁnition 3.2. Let A,A⊂{1, 2,...,N}, A∩ A= ∅ and suppose #A= Nand #A= N, where N,N≥ 1 and N+ N= N. Deﬁne vectors a, a∈ Cby formulas
	1
	2 
	1 
	2 
	1 
	1 
	2 
	2
	1
	2 
	1 
	2 
	1
	2 
	N 

	+ 
	( 
	(i) 1/N,i ∈ A
	1
	1 

	a = 
	1 
	0,i ∈/A
	1 

	and ( 
	(i) 1/N,i ∈ A
	2
	2 

	a = 
	2 
	0,i ∈/A. 
	2

	Vectors aand aare called the midpoints of faces C(A) and C(A), respectively. 
	1 
	2 
	N 
	1
	N 
	2

	Midpoints aand aare linearly independent vectors in R. For this reason the subspace Wa,a:= span(a, a) spanned by the midpoints is a plane. We can thus deﬁne orthogonal projections onto the subspace Wa,avia projection matrix Qa,a:= M(MM)M, where M is the N × 2 matrix M =[a, a]. 
	1 
	2 
	N 
	1
	2 
	1
	2
	1
	2 
	1
	2 
	T 
	−1
	T 
	1
	2

	In our case, where the subspace is spanned by midpoints, the projection matrix Qa,ais of particularly simple form. It can be seen by a direct calculation that 
	1
	2 

	(3.2) Qa,a=[c, c,..., cN ], 
	1
	2 
	1
	2

	where ( 
	(i)
	a, a=6 0 
	1
	1 

	ci = 
	(i)
	a, a=6 0. 
	2
	2 

	Example 3.1. Suppose N = 5, A= {1, 2, 4} and A= {3, 5}. Now 
	1 
	2 

	11 1
	1 

	a=[, , 0, , 0], a= [0, 0, , 0, ]and
	1 
	3
	1 
	3 
	3 
	T 
	2 
	2 
	T 

	2 
	Qa,a
	1
	2 

	= 
	⎡ ⎢⎢⎢⎢⎣ 
	⎤ ⎥⎥⎥⎥⎦ 
	. 
	1 11
	1 11

	00
	3 33 
	11
	11

	0 00
	22 
	1 11
	1 11

	0 
	0
	3 
	33 
	1 11
	1 11

	00
	3 33 
	11
	11

	0 00
	22 
	Orthogonally projected points are connected to linear combinations of midpoints aand a. An orthogonally projected point x ∈ R+ has presentation 
	1 
	2
	-

	⎛⎝
	X 
	(i) 
	⎞⎠ 
	⎛⎝
	X 
	(i) 
	⎞⎠
	(3.3) Qa,a
	1
	2 

	x = 
	x 
	a+ 
	1 

	x 
	a. 
	2

	i∈Ai∈A
	1 
	2 

	Next, we will deﬁne projections that allow projection of multidimensional data onto a line. The projected points can be used to inspect validity of asymptotic independence. 
	Deﬁnition 3.3. Let Aand Abe as in Deﬁnition 3.2 and Qa,aas in (3.2). 
	1 
	2 
	1
	2 

	Mappings h: R\{0}→ C, h: R→ Rand h: {(1 − t)a+ ta:
	1 
	N 
	+ 
	N 
	2 
	N 
	N 
	3 
	1 
	2 

	+ ++ 
	t ∈ [0, 1]}→ [0, 1] are deﬁned as 
	x 
	h(x) := ,
	1

	||x|| 
	||x|| 

	h(x) := Qa,ax 
	2
	1
	2 

	and h(x) := h(x),
	3
	−1

	4 where his the linear interpolation h(t) = (1 − t)a+ ta, t ∈ [0, 1]. We deﬁne projection proj : R\{0}→ [0, 1] by
	4 
	4
	1 
	2
	N 

	a,a+ 
	1
	2 

	(3.4) proj (x) := h(h(h(x))).
	3
	2
	1

	a,a
	1
	2 

	Function proj (x) projects points of R+\{0} ﬁrst onto Lsimplex
	1 

	a,a
	1
	2 

	and then orthogonally onto the line connecting midpoints aand a. The order of projections hand hcan be switched. 
	1 
	2
	1 
	2 

	Lemma 3.1. Suppose x ∈ R+\{0}. Let AA, hand hbe as in Deﬁnition 3.3. 
	1 
	2
	1 
	2 

	Then 
	(3.5) h(h(x)) = h(h(x)). 
	2
	1
	1
	2

	Proof. We note ﬁrst that Qa,ax ∈ R+\{0} so that the function h(h(x)) is well deﬁned. Furthermore, because Qa,a= Q, it holds that
	1
	2 
	1
	2
	1
	2 
	T 

	a,a
	1
	2 

	NNN
	1 
	2 

	XXX 
	(i)
	(3.6) ||Qa,ax|| = a· x + a· x = x = ||x||. 
	1
	2 
	1 
	2 

	i=1 i=1 i=1 
	Now, using linearity of hand Equation (3.6) we get 
	2 

	x Qa,ax Qa,ax 
	1
	2 
	1
	2 

	h(h(x)) = Qa,a== = h(h(x)). 
	2
	1
	1
	2 
	1
	2

	||x|| ||Qa,ax|| 
	||x|| 
	1
	2 

	Lemma 3.1 states that the mapping proj of Deﬁnition 3.3 can be
	a,a
	1
	2 

	viewed in two diﬀerent ways. This is relevant in the proof of the following result. 

	3.2 Connection between asymptotic independence and the limit measure 
	3.2 Connection between asymptotic independence and the limit measure 
	Theorem 3.1. Suppose Z ≥ 0 is a multivariate regularly varying random vector. Let Z, ZAand ZAbe as in Deﬁnition 3.1 and A∩ A= ∅. 
	1 
	2 
	1 
	2 

	Then the following are equivalent with (3.1): 
	1) Suppose B⊂ Rand B⊂ Rare Borel sets bounded away from 0. Assume further that the sets Band Bcan be presented as 
	1 
	N 
	2 
	N 
	1 
	2 

	(1) (2) (N)(i)
	B= B × B × ... × B, where B = R for all i ∈ A
	1 
	2

	111 1 
	and 
	(1) (2) (N)(i)
	B= B × B × ... × B, where B = R for all i ∈ A.
	2 
	1

	222 2 
	Then .. 
	Z 
	tP ∈ B∩ B→ 0,t →∞. 
	1 
	2 

	b(t) 
	b(t) 

	2) Suppose i ∈ A, j ∈ Aand c> 0. 
	1
	2 

	Then 
	! 
	(i) (j) 
	Z
	Z

	(3.7) tP >c, >c → 0,t →∞. 
	b(t) b(t) 
	b(t) b(t) 

	3) Angular measure S is concentrated to faces corresponding to Aand A, 
	1 
	2

	(3.8) S(C(A)) + S(C(A)) = 1. 
	N 
	1
	N 
	2

	Proof. (3.1) ⇔ 1: Suppose sets B⊂ Rand B⊂ Rare bounded away 
	1 
	N
	1 
	2 
	N
	2 

	++ 
	from 0. Deﬁne sets Dk,c ⊂ R, where k =1, 2,...,N and c> 0 by 
	N 
	+ 

	(1) (2) (N)
	(3.9) = D × D × ... × D
	k,c k,c k,c k,c 
	D
	, 

	where ( 
	(i) [c, ∞),i = k 
	D :=
	R+,i =6 k. 
	k,c 

	Since the sets Band Bare bounded away from 0, there must be numbers c> 0 and c> 0 so that 
	1 
	2 
	1 
	2 

	... . 
	ZAZAZ 
	1 
	2 

	tP ∈ B, ∈ B≤ tP ∈ (∪k∈ADk,c) ∩ (∪k∈ADk,c)
	1
	2 
	1 
	1 
	2 
	2 

	b(t) b(t) 
	b(t) 

	..
	NN
	1 
	2

	XX 
	Z 
	(3.10) ≤ tP ∈ Dk,c∩ Dk,c. 
	1
	1 
	2
	2 

	b(t)
	b(t)

	k=1 k=1 
	1
	2

	Each term on the right hand side of (3.10) converges to 0, as t →∞ by Condition 1. This shows 1 ⇒ (3.1). The remaining direction is clear because product sets are special cases of sets in (3.1). 
	1 ⇔ 2: Suppose 2 holds. Since Band Bare bounded away from 0 there must be indices k∈ A, k∈ Aand a number c> 0 such that B⊂ Dk,c and B⊂ Dk,c, where the sets Dk,c and Dk,c are deﬁned as in (3.9). Then 
	1 
	2 
	1 
	1
	2 
	2 
	1 
	1
	2 
	2
	1
	2

	... . 
	ZZ 
	tP ∈ B∩ B≤ tP ∈ Dk,c ∩ Dk,c ,
	1 
	2 
	1
	2

	b(t) b(t) 
	b(t) b(t) 

	where the right hand side converges to 0, as t →∞ by Condition 2. The remaining direction is clear because the sets in 2 are special cases of sets in 1. 
	3 ⇒ 2: Suppose ﬁrst that Condition 2 does not hold. Then there exist indices k∈ A, k∈ Aand c> 0 such that (3.7) does not hold, i.e. the limit does not exist or the limit exists but is not 0. Even if the set in (3.7) is a not a continuity set of the limit measure ν, we may choose a smaller number c∈ (0,c) so that the right hand side of 
	1 
	1
	2 
	2 
	0 

	{Z> cb(t),Z> cb(t)}⊂{Z>c b(t),Z>c b(t)} 
	(k
	1
	) 
	(k
	2
	) 
	(k
	1
	) 
	0
	(k
	2
	) 
	0

	is a continuity set. So, when c is replaced by cin (3.7) the limit given by limit measure ν exists, as t →∞. Since the limit is not 0 by assumption, it must be positive. So, ν(Dk,c ∩Dk,c) > 0, where the sets Dk,c and Dk,c are as in (3.9). Because the set Dk,c ∩ Dk,c gets positive value under measure ν, the image under hof this set must have positive angular measure, where his as in Deﬁnition 3.3. Speciﬁcally, 
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	(3.11) S(h(Dk,c ∩ Dk,c)) > 0. 
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	(3.13) h(Dk,c ∩ Dk,c) ∩ C(A)= ∅. 
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	Since S is a probability measure and some of the probability mass is concentrated outside of the faces C(A) and C(A) we have that 
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	S(C(A)) + S(C(A)) < 1. 
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	So, Condition 3 does not hold. 
	(3.1) ⇒ 3: Suppose Condition 3 does not hold. Then there exist a set B ⊂ Csuch that S(B) > 0,
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	Since B does not intersect either simplex, there are numbers c,c∈ (0, 1) so that the set 
	1
	2 

	Bc,c:= 
	1
	2 

	⎧⎨ ⎩ 
	X
	X 
	(i)(i)
	x ∈ B : x >c,x 
	x ∈ B : x >c,x 
	1

	>c
	2 


	⎫⎬ ⎭ 
	i∈Ai∈A
	1 
	2 
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	where the right hand side does not converge to 0, but to ν(D) > 0. This shows that (3.1) does not hold. 
	Remark 3.2. Part 2 of Theorem 3.1 admits sets that have zeros in some of their components. For example, if N = 3, A= {1, 3} and A= {2}, then
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	Ł. 
	Bcan be {0}×R×[1, ∞). This is why the condition tP Z/b(t) ∈ [c, ∞)→ 0, as t →∞ for all c> 0 is not equivalent with asymptotic independence. 
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	The following result can be used to reduce multidimensional dependence structures into two dimensional setting by considering sums of components. 
	Proposition 3.1. Suppose Z =(Z,Z,...,Z) is a non negative MRV random vector and N ≥ 2. Let A,A⊂{1, 2,...,N}, A∩ A= ∅ and suppose #A= Nand #A= N, where N,N≥ 1 and N+N= N. 
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	Then the non negative two dimensional random vector 
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	is also MRV. Furthermore, ZAand ZAare asymptotically independent if and only if Yand Yare asymptotically independent. 
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	Proof. The fact that (Y,Y) is MRV follows from Proposition 5.5 found from [22, p. 142]. 
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	For the latter claim, observe ﬁrst using (3.3) that if x ∈ C, then for j =1, 2, Qa,a(x)= aj if and only if x ∈ C(Aj ). So, it follows that S(C(A)) + S(C(A)) = 1 if and only if SY ((0, 1)) + SY ((1, 0)) = 1, where SY denotes the angular measure of (Y,Y). Using Part 3 of Theorem 3.1 completes the proof. 
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	3.3 Asymptotic normality of the validation statistic 
	3.3 Asymptotic normality of the validation statistic 
	We start by deﬁning an auxiliary function g function in Deﬁnition 3.4 for Theorem 3.2. Function g is used to ﬁx a set on simplex C. It is then tested if the asymptotic support is included in the ﬁxed set. Diﬀerent choices for 
	We start by deﬁning an auxiliary function g function in Deﬁnition 3.4 for Theorem 3.2. Function g is used to ﬁx a set on simplex C. It is then tested if the asymptotic support is included in the ﬁxed set. Diﬀerent choices for 
	2 

	g yield tests for diﬀerent dependence structures. These structures include asymptotic independence introduced in Section 3, but the construct allows other choices as well. The most commonly encountered structures are illustrated in Figure 1. 
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	Deﬁnition 3.4. Suppose [a,b], [a,b],..., [am,bm] are separate subintervals of [0, 1], where m ≥ 2. 
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	Let g : [0, 1] → R be a function deﬁned by conditions 
	( 
	0,a> 0 
	1 

	g(0) = ,a=0, 
	1 
	2 
	1 

	1 i − 1 
	g(ai)= g(bi)= + ,i =1, 2, . . . , m, 
	2 
	2(m − 1) 

	1 
	g((bi + ai+1)/2) = g(bi) − ,i =1, 2,...,m − 1 
	2 and (
	1 
	,bm < 1 
	2 

	g(1) = 
	g(1) = 
	1,bm =1 

	and whose values are given by linear interpolation between the deﬁned points on the rest of the interval [0, 1]. 
	The function g enables the user to add small buﬀers in which the support must lie. The feature is added because, to our experience, it is challenging to detect asymptotic independence from real data. The task can be made easier if one admits small deviation from true asymptotic independence by widening the search for support measures S that concentrate near the axes but not necessarily on the axes themselves. Such support structures can still convey useful information. This is because they imply that some o
	-

	In practice, the most frequently searched dependence structures correspond to asymptotic independence and strong asymptotic dependence. Tests for these are presented in Remarks 3.3 and 3.4 below. We prove ﬁrst a more general result from which the others follow. The results are formulated for positive vectors for notational simplicity. 
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	Figure
	(a) (b) (c) 
	Figure 1: Graphs of function g for diﬀerent test scenarios. On the left, g corresponds to a setting where asymptotic independence is tested with buﬀers. Values at end points diﬀer in order to avoid zero variance of L in 
	(3.16) under asymptotic independence. In the middle, g could be used to test if the asymptotic support is covered by two intervals. In addition, similar g could arise when testing if the support is covered by a single interval after the sample is processed using the method described in Remark 3.4. On the right, g tests if the support is covered by three separate intervals. Such dependence structure might arise e.g. in the search of hidden regular variation after the ﬁrst order cone is removed from data. 
	Theorem 3.2 (Asymptotic normality of test statistic). Let Z, Z,... be 
	1
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	i.i.d MRV random vectors in R. Suppose (Ri,θi) ∈ R+ × Cis the polar 
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	coordinate representation of Zi, where Ri = ||Zi|| and θi = Zi/||Zi||. Let =(θ,θ)=(θ) be the angular component of the
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	(i:n)(i:n)(i:n)(i:n)(i:n) ith largest vector in Lnorm out of a sample whose size is n. Suppose m ≥ 2 and g is as in Deﬁnition 3.4. Let Sbe a probability measure on [0, 1] obtained as a push forward measure from the angular measure S via mapping (x, y) 7→ x. Assume S(∪i[ai,bi]) = 1. 
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	as n →∞. 
	Proof. The proof is similar to the proof of Theorem 3 of [21] and follows from it with minor modiﬁcations. 
	Remark 3.3. If m = 2, a= b= 0 and a= b= 1 in Theorem 3.2, then 
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	(3.16) is a test statistic for asymptotic independence. 
	Remark 3.4. If the limiting measure S is concentrated into a single interval [a, b] ( [0, 1], Theorem 3.2 can not be directly applied because it requires the limiting variable L to have a non zero variance. However, the case where the asymptotic support is an interval can be reduced to the setting of two 
	(1) (2)
	intervals by ﬁrst transforming the sample (Z ,Z )
	n 

	i ii=1We can assume the sample size n is even. If it is not, we can leave out the observation with the smallest Lnorm, because it has no eﬀect to the subsequent analysis. When i is odd, transform the two dimensional data using mapping (x, y) 7→ (x/2, x/2+ y). If i is even, use mapping (x, y) 7→ (x + y/2, y/2) instead. Then permute the order of observations to obtain 
	. 
	1 

	i.i.d MRV random vectors. The limiting measure of the transformed sample replaces the original with two smaller copies. In addition, supp⊂ [a, b] if and only if the asymptotic support of the transformed sample is covered by [a/2, b/2] ∪ [(a + 1)/2, (b + 1)/2]. 
	+ 

	Remark 3.5. Since it is assumed in Proposition 3.2 that all probability mass of S is concentrated into intervals [a,b], [a,b],..., [am,bm] and g is constant on those intervals, the random variable L can obtain at most m diﬀerent values. In practice probabilities P(L = g(ai)), i =1, 2,...,m need to be estimated. 
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	3.3.1 
	3.3.1 
	3.3.1 
	Discussion on the choice of g in Deﬁnition 3.4 

	The purpose of Function g in Deﬁnition 3.4 is to identify when the sets [a,b], [a,b],..., [am,bm], called the test intervals, eventually cover the 
	1
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	support supp , as n →∞. Selecting a function with best performance in terms of a pre set benchmark depends from the way and rate at which convergence to the limit measure takes place. In practical scenarios such 
	support supp , as n →∞. Selecting a function with best performance in terms of a pre set benchmark depends from the way and rate at which convergence to the limit measure takes place. In practical scenarios such 
	information is not usually available. Our suggestion for g is chosen by empirical testing with diﬀerent data sets. 
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	While there are multiple ways to deﬁne such functions, the construction of a limiting result corresponding to Proposition 3.2 sets some requirements that restrict the set of possible choices. The rationale for choosing g as it is deﬁned in Deﬁnition 3.4 is the following. Function g must be set to a constant value on all separate intervals that are believed to contain probability mass of S. One might be tempted to use a symmetric function around 1/2 so that the values in both endpoints of [0, 1] would be the
	-
	-

	The remaining question is then how the function g should behave between the regions of constant value. Firstly, Function g should be able to separate desirable distributions from the ones with support that is not concentrated on the test intervals. A way to do this is to make the quantity |T|of (3.16) as large as possible in the presence of unwanted limiting behavior. On the other hand, the thresholded data may contain pre-limit observations 
	-
	-
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	+
	whose projections are not in supp even when all limiting probability mass on simplex is covered by the test intervals. So, observations close to the regions of constant value should not change the value of |T| too dramatically. In conclusion, the choice of g in Deﬁnition 3.4 seems to be a reasonable compromise between the two opposing goals. It is chosen from the class of piece-wise linear functions for computational simplicity. 
	-
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	4 Examples with simulated and real data 
	4 Examples with simulated and real data 
	In this section, we illustrate how the theoretical results concerning support estimation in Section 2 and support testing in Section 3 can be used in practice. We begin with a simulated dataset in Example 4.1 to show how the grid based support estimator performs in a controlled environment. Example 
	4.2 studies daily stock returns. The emphasis is on the fact that stocks in the same ﬁeld tend to be dependent, but one can ﬁnd at least asymptotically independent assests among ordinarily listed equities. In Example 4.3, a natural scenario for emergence of asymptotic independence is given using 
	4.2 studies daily stock returns. The emphasis is on the fact that stocks in the same ﬁeld tend to be dependent, but one can ﬁnd at least asymptotically independent assests among ordinarily listed equities. In Example 4.3, a natural scenario for emergence of asymptotic independence is given using 
	rainfall data. Finally, in Example 4.4 daily returns of gold and silver are used to show how the support estimates can be used to obtain inequalities for sizes of large ﬂuctuations. 
	1 


	Typically, multivariate datasets require some amount of processing before they can reasonably be thought to satisfy assumptions of multivariate regular variation given in Deﬁnition 1.1. In particular, tail indices of marginal distrtibutions must to be the same for the asymptotic theory to work. To this end, one needs to estimate tail indices. Estimation of tail index is a classical topic which is discussed e.g. in [1,22,25] or more recently in [13]. If it is decided that the marginals do not have the same i
	-
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	Multiple methods exist for transforming datasets to ﬁt the scope of multivariate regular variation. Usual methods include power transformations of marginals or the rank transform, see [22, Section 9.2] and [11]. 
	-

	4.1 Simulated data 
	4.1 Simulated data 
	Support estimator of Section 2 is applied to simulated data. The data set consists of 3 dimensional observations Z, Z,..., Zn, where n = 150000. Observations are generated by ﬁxing a region A ⊂ Cand then sampling
	1
	2
	3 

	+ 
	uniformly 50000 samples from A. The samples on the simplex are then assigned a radial component independently from Pareto(2) distribution. So, by deﬁnition, the angular and radial components of the observations are independent. Additionally, 100000 observations are added to the sample depicting noise by sampling uniformly from the entire simplex Cand as
	-
	3 
	-

	+ 
	signing them with an exponentially distributed radial components. Finally, we put the simulated samples into a random order so that they form an i.i.d sample from a mixture distribution that is MRV. 
	Figure 2 Illustrates how well the grid based support estimate is able to ﬁnd the location of the set A. The dots in ﬁgures 2a and 2c are projected k = 10000 largest observations in L. The dark dense region is the set A, which is a circle in 2a and a triangle in 2c. In ﬁgures 2b and 2d the set A is estimated by forming the support estimator Ak,m,q using parameter values k = 10000, m = 36 and q =0.01. Rejecting some of the points by positive q produces clearly visible rasterised version of A with no misidenti
	1

	Special thanks are due to Sebastian Engelke who suggested that asymptotic independence could be found from rainfall data in a personal communication. 
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	Figure
	(a) (b) (c) (d) 
	Figure 2: Figures present projected and estimated supports of simulated data. The large red triangles indicate the boundaries of the image of C
	3 
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	under a simplex mapping T discussed in Section 1.4. 

	4.2 Stock data vs. catastrophe fund 
	4.2 Stock data vs. catastrophe fund 
	Stock market dependencies are studied using a data set consisting of daily prices of 6 stocks and a catastrophe fund. The studied equities and their ticker symbol abbreviations are: Google (GOOG), Microsoft (MSFT), Apple (AAPL), Chevron (CVX), Exxon (XOM), British Petrol (BP) and CATCo Reinsurance Opportunities Fund (CAT.L). Observations range from December 20, 2010 to 10 July, 2018. The data set was downloaded via R package Quantmod. 
	-

	Observations were processed by the taking logarithm and calculating differences. The resulting components of the data set have similar tail indices with positive and negative tails. However, the index of CAT.L was substantially smaller than the others, making it necessary to use rank transform when comparing it against the other equities. 
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	In Figure 3, the strength of pairwise dependence is calculated using the largest k = 200 observations in Lprojected to C, denoted z,z,...,z,
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	200

	Pk
	by formula (1 − d(1/2,zi)/k). That is, the observations that have 
	2

	i=1 the largest distance to the midpoint (1/2, 1/2) of simplex Care assigned
	2 

	+ 
	small values and observations near the midpoint large values. All pairwise dependencies that exceed the level 0.46 are drawn as edges in Figure 3. The level was obtained empirically by gradually lowering the required level and observing which connections appeared on the graph ﬁrst, that is, which dependencies are the strongest. 
	Figure 3 suggests that companies within the same ﬁnancial sector, oil or technology, might not be asymptotically asymptotically independent. However, the catastrophe fund might be asymptotically independent from stocks. 
	-

	In Figure 4, projected and estimated supports of positive orthants are 
	In Figure 4, projected and estimated supports of positive orthants are 
	Figure 3: A graph illustrating the strongest preliminary pairwise asymptotic dependencies. 

	Figure
	depicted for oil and tech stocks. Parameter values are k = 200, m = 12 and q =0.01. Estimated grid based supports in subﬁgures 4b and 4d suggest that the groups of stocks are not asymptotically independent, but possibly quite dependent. However, based on Figure 3 oil and tech sectors might be asymptotically independent and CAT.L could be asymptotically independent of all the studied stocks. 
	-

	Asymptotic independence was tested using absolute values of observations. Function g was deﬁned using choices m =2,a=0,b=0.1,a=0.9 and b= 1, i.e. asymptotic independence was tested with buﬀers. It was assumed that S([0, 0.1]) = S([0.9, 1]) = 1/2. Observations from oil and tech ﬁelds were added together in order to form a two dimensional vectors. The empirical test statistic tˆ corresponding to Tof (3.16) was cal
	-
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	1
	-
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	ˆ
	culated: t ≈ 0.73. So, under null hypothesis P(T> |tˆ|) ≈ 0.31 and thus the test statistic is consistent with the idea that oil and tech sectors could be asymptotically independent. Similar test was performed pairwise with CAT.L against all 6 stocks. There was not enough evidence based on the test statistics corresponding to (3.16) to reject the idea of asymptotic independence. 
	ˆ 
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	In conclusion, the test statistic developed in Section 3 supports what is seen in the preliminary dependence graph, in Figure 3. 
	Figure
	(a) (b) (c) (d) 
	Figure 4: Projected largest k = 200 observations and the estimated supports for tech stocks, in Figures 4a-4b, and for oil stocks, in Figures 4c-4d, respectively. 
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	Figure
	(a) (b) (c) (d) 
	Figure 5: Projected and estimated supports of tech stocks. 

	4.3 FMI data 
	4.3 FMI data 
	Daily rainfall data was downloaded from Finnish Meteorological Institute from 3 separate locations. Only observations from summer months June, July and August were taken into consideration to reduce seasonal eﬀects. Two of the locations, Kouvola and Savonlinna were close to each other where as the last one, Sodankyla, was further away. Rainfalls in the nearby locations showed high dependence. The rainfalls of the further location were not entirely independent of the two others, but exhibited independence in
	In ﬁgure 6, projected and estimated supports of rank transformed rainfall vectors are presented using k = 300 larges observations. In the support estimate, parameter values m = 12 and q =0.01 were used. The rainfall data seems to support the idea that locations in close proximity are fully dependent and locations far away from each other are independent. Between the two extreme cases when the distance of the studied locations is suitable, 
	Figure
	(a) (b) 
	Figure 6: Projected and estimated supports of daily rainfall data recorded in 3 locations in Finland. 
	rainfalls become asymptotically independent. 

	4.4 Gold vs Silver price data 
	4.4 Gold vs Silver price data 
	In this section we analyze daily gold and silver price data. The data is gathered from London Bullion Market Association and it is downloaded via R package Quandl. In the data, the price of one ounce of gold or silver is recorded each day during a time period ranging from December 3, 1973 to January 15, 2014. Only complete cases where the price information was available from both gold and silver were accepted as part of the data set. There were three days where price information was incomplete. Large price 
	The daily price data was transformed by logarithmic diﬀerentiation in order to obtain a sample which is better suited with the i.i.d. assumption of the model. The individual positive and negative marginals of gold and silver seemed to be reasonably in line with the assumption of regular variation. No power or rank transformations were performed to the data set. The resulting sample of n = 10323 was thresholded by the k = 200 largest observations in Lnorm and then projected onto Cto produce the diamond plot 
	1 
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	Figure
	Figure 7: Diamond plot of daily price data of gold and silver after logdiﬀ transformation. Horizontal axis corresponds to gold and vertical axis to silver. 
	Figure 7 shows that the largest ﬂuctuations in gold and silver prices tend to occur to the same direction. In addition, it seems that the points do not ﬁll the positive or negative quadrant of the Csimplex evenly, but concentrate on intervals. The estimation of asymptotic support in the negative quadrant was chosen as a suitable example, analysis of other quadrants could be performed similarly. So, only the part of data where both components are negative was used. The n = 3951 observations were multiplied b
	2 
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	The one dimensional grid based estimator was obtained using the ﬁrst 1975 observations sampled uniformly without replacement from the data. The points were projected using a simplex mapping T : C→ [0, 1] deﬁned
	2 

	+ 
	by T (x, y)= x. Since gold is on the horizontal axis, the projected values on [0, 1] close to 0 correspond to silver and values near 1 to gold. The grid based support estimator with parameter values n = 1975, k = 100, m = 15 and q =0.02 suggests that the asymptotic support should be covered by 
	interval [0, 0.65]. 
	Figure
	(a) (b) (c) (d) 
	Figure 8: In Figure 8a, the data set transformed using method of Remark 
	3.4. The transformed observations are presented in Figure 8c. Figures 8b and 8d show the diamond plot of the k = 100 largest obervations in Lnorm. 
	1 

	The validity of the support estimate was tested using the remaining 1976 observations. Function g was formed using the method discussed in Remark 3.4. The process is illustrated in Figure 8. The aim is to test if the asymptotic support of the transformed data is covered by [0, 0.325] ∪ 
	ˆ
	[0.5, 0.825]. The null hypothesis is that in our sample T ∼ N(0, 1) where Tis as in Equation (3.16). The empirical test statistic tˆ corresponding 
	ˆ 

	ˆ
	to T quantity was calculated from the remaining observations with result ˆ
	t ≈ 0.074. Under null hypothesis P(T> |tˆ|) ≈ 0.398. So, the value of tˆ gives no reason to think the null hypothesis is wrong and the asymptotic support of the original sample could well be covered by the set [0, 0.65]. 
	ˆ 

	As a practical application we immediately obtain inequalities for large ﬂuctuations in gold and silver prices. Denote the daily logarithmic decrease in prices with x for gold and y for silver. If a very large decrease is observed for gold, i.e. x is large, then the support estimate implies x/(x+y) ≤ 0.65 so that y ≥ 0.53x. In other words, the support estimate says it is unlikely for the decrease in logarithmic silver price to be less than 0.53x. The method allows estimation of quantities that are unknown in

	4.5 Final thoughts 
	4.5 Final thoughts 
	Based on the previous examples, the methods presented in Sections 2 and 3 seem to be usable in some scenarios. However, the use of asymptotic support estimation has its limitations. For one, it is challenging to ﬁnd a large sample of vectors with tail equivalent marginals that satisﬁes the i.i.d. 
	assumption. With time series, larger number of observations may lead to poor results because the underlying mechanisms that produce observations may change when the data is gathered during a long time. So, the initial data needs to be normalized to ﬁt the theoretical framework. In ﬁnancial context, one popular method is de-GARCHing, see [12, Sec 2.1.]. The choice of pre processing method adds a new source of uncertainty to the model. 
	Additional problems arise when the marginals are not tail equivalent and especially when the rank transform is used. If the original sample has MRV distribution, it is known that the rank transformed sample should produce the same asymptotic support as the original sample in the limit as the number of observations grows. However, it is not known to the authors how the support estimate based on a ﬁnite rank transformed sample diﬀers from the true asymptotic support. This raises the question about the suﬃcien
	The proposed method in Sections 2 and 3 has an exploratory component involved, as the support estimate is based on parameters whose values need to be chosen. In practice usual plotting methods turned out to be ineﬃcient in the choice of parameters. This is why a dedicated software is being developed for the purpose of asymptotic support identiﬁcation and testing. 
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