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ABSTRACT ARTICLE HISTORY
Preferential attachment in a directed scale-free graph is an often Received October 2015
used paradigm for modeling the evolution of social networks. Accepted October 2016

Social network data is usually given in a format allowing recov-
ery of the number of nodes with in-degree i and out-degree j.
Assuming a model with preferential attachment, formal statistical
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Anticipating the statistical need for such node-based methods, preferential attachment;

we prove asymptotic normality of the node counts. Our approach random graphs

is based on a martingale construction and a martingale central

limit theorem. MATHEMATICS SUBJECT
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1. Introduction

Preferential attachment for both undirected and directed scale-free graphs has been
introduced as a model for the growth of social networks (cf. Refs.[>**!11) and has
been suggested for contexts such as the web graph, citation graph, co-author graph,
etc. Data examples and analyses are given at http://konect.uni-koblenz.de/networks/
and https://snap.stanford.edu/data/. Attention is focused on the directed case where
nodes typically have at least two characteristics, namely in- and out-degree. More
characteristics are possible, as for example, in recommender networks such as slash-
dot (https://slashdot.org) but we confine our attention to in- and out-degree.

In preferential attachment networks, nodes with large in-degrees tend to attract
more followers from new nodes, whereas existing nodes with large out-degrees tend
to become followers of new nodes. Although this model is relatively naive and not
guaranteed to fit real data, preferential attachment captures features of a real social
networks and is a useful paradigm on which to test statistical and computational
methodology.

Social network data is often formatted as lines of text giving a time and an ordered
pair of nodes from which a directed edge is inferred. For example, this is one of the
preferred formats of the R-package igraph [ and from this format, one can compute
the number of nodes with given in- and out-degree. Let N, (i, j) be the number of
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nodes with in-degree i and out-degree j in a directed preferential attachment model
(cf. Ref.[3]) at the nth step of the growth of the network. Under simple preferential
attachment assumptions, Bollobds et al.*] showed that N, (i, j)/n — p;; for fixed
i and j, and provided an explicit form of (p;). Under the same assumptions, we
also know that the limiting degree sequence (p;;) has both marginally and jointly
regularly varying tails (cf. Refs.[>1315:17]),

The goal of this paper is to examine the asymptotic normality of N, (i, j) with
the idea that this asymptotic normality can justify statistical estimation methods
in practice. Since data from social networks are node based, which in nature are
nothing like those collected from independent repeated sampling, the natural tool
is the martingale central limit theorem. We will show asymptotic normality of
(N, (i, j)/n — py) for fixed (i, j) as well as jointly over (i, j). This will imply
that the empirical estimator N, (i, j)/n is consistent and asymptotically normal. We
defer an exploration of more formal statistical inference for our preferential attach-
ment model that relies on node-based data and asymptotic normality.

The directed preferential attachment model that we study is outlined in Section 2
and our main results on normality are summarized in Section 3. Proofs are collected
in Section 4.

2. The preferential attachment model

We somewhat simplify the model used in Refs.[>13!°), At each step of the construc-
tion, a node is added; we exclude the possibility of adding only a new edge between
existing nodes. The model evolves according to the following dynamics. Choose
strictly positive parameters «, y, A and u such that o + y = 1, and we assume in
addition that &, ¥ < 1 to avoid trivial cases.

We initiate the algorithm with a simple case: A graph G; with one single node
(labeled 1) with a self-loop so that both its in and out degrees are 1, denoted by
D;(1) = (1, 1). At stage n, we have a directed random graph G, = (V,,, E,). If a
node v is from V,,, use Di, (v) and Doy (v) to denote its in- and out-degree, respec-
tively, (dependence on # is suppressed) and write D, (v) = (Din(v), Doyt (v)). Then,
G, 1 is obtained from G, as follows.

(i) With probability o a new node w is born and we add an edge leading from

w to an existing node v € V,,. The existing node v is chosen with probability
according to its in-degree:

Din(l)) + A

(1+Mn @1

P(v € V, is chosen) =

(ii) With probability y a new node w is born and we add an edge leading from

an existing node v € V, to w. The existing node v is chosen with probability
according to its out-degree:

Doy
P(v € V, is chosen) = M (2.2)

(I+wu)n
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The construction makes G, a directed graph with n nodes (i.e., V, = {1, 2, ..., n})
and n — 1 edges; the self-loop in G is not counted as an edge. Note that

Y Din(®) = Y Dou(v) =,
veV, vev,

so the attachment probabilities in (2.1) and (2.2) add to 1.

3. Statement of results

Fori, j > 0,let N, (i, j) denote the number of nodes with in-degree i and out-degree
jin Gy, ie.,

N,(, j) = Z Ip,w=ijy m=1),

veV,

and set v, (i, j) = E(N,(i, j)). An analogue of Lemma 3.1 below has been proved
in Ref.l®], where only the marginal in-degree distribution is considered. See also
Ref.[1], We extend the result to the joint distribution of both in- and out-degrees,
which extends Theorem 3.2 in Ref.[3] and implies that for each i and j there are
non-random constants (p;;) such that

Nu(i, )
n

— pjja.s.asn — o0. (3.1)

Clearly, poo = 0. We also take N, (i, j) and pj; to be zero if either i or j is —1. The
explicit form of the limiting degree distribution (p;) is given in Ref.*]. By the model
assumptions in Section 2, up to stage n, i + j < n+ 1 for all (4, j), since at each
stage we can only increase either the in- or out-degree of one particular node by 1.
Therefore, with probability 1, N, (i, j) = 0fori+ j > n+ 1.

Lemma 3.1. Foreachi, j =0,1,2,...,

max  |v,(i, j) — np;| <1, forVn > 1, (3.2)
and for any C > 6,

@i, j):i+j<n+1
logn 1

P max >C +—] =o0(1), asn — oo, (3.3)
@i j)i+j<n+1 n n

where the pj; satisfy [3, p. 138, eqn. 6.13]

Nalii j)
n

i

pij = ol =) T ¥l =0y t i =1+ 2)piy
+e(j— 14+ wpij-1— 8;py (3.4)

Here, we have

= — = (i ) (j+nw) (3.5)
, C , di=cli+A)+c + w). 3.5
14+ A 2 14+ v ! 24

[
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As astochastic processin (i, j), the centered proportion of nodes with in-degree i
and out-degree j converges in distribution to a centered Gaussian process. Asymp-
totic normality relies on a standard multivariate martingale central limit theorem
(cf. Proposition 2.2 outlined in Ref.l!*); a statement is given in Proposition 4.1 in
Section 4.2 and see also Refs.!*7$1%] and Ref.!® “h#-8])_ For our problem, the nor-
mality results are summarized in the next theorem.

Theorem 3.1. Fix positive integers I, O. In the normality statement, matrices X0 and
Ko are specified in (4.43) and (4.44), respectively. Provided that Kjo is invertible, we
have in RU+D(O+D

(\/;(N"("’j)_p,-j):05i51,05j50)=>N(0K Zi0Kio') - (3.6)

n

In particular, for non-random constants §, | @1 defined as

1 if k=i, 1=j;
(DT, 24 fo<k<i—1,1=j
i) (—l)j_ll_[éfi’%f if k=i, 0<1<j—1;
i =) (ak+h) c(z+u) y
1 gk(+]1)l L S,f,i)l if0<k<i—1,
8ij — Ou 8,]
0 otherwise,
we have
i ..
N b
Var | V/n 5(1 ) < (i, j) Pij) N M, as n — oo,
k=0 1=0 1+2‘Sij
where

1

j 2
Z Pklé(l ]))

k=0 1=0

SG, ) = (@ + crkpon) ( “’)) + (v + capro) ( (‘”) —(

oo o0

.. o\ 2
'y {C1(r+)»)Prq (540, + &5 — £547)

q=0 r=

(i.j) G e\
+Cz(q + M)prq (Sr,q.ﬂ + S r.q )

[Z > pu (Gu+ DES” — eitk+ gL, — ol + wES)

k=0 1=0
2

(ozg(’ ) +y%-11J))j|
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4. Proofs

4.1. ProofofLemma 3.1.

By the construction of our model, at the initial stage we have N;(1,1) =1,
N1 (i, j) = 0 for (i, j) # (1, 1). Let F,, be the o-field of information accumulated
by watching the graph grow until stage n. We have

E(Nut1G, PDIFn) = Nu(i, j) + EWyp1 (i, j) — Nu(iy )| F)
= Nu(i, j) + ol p=o.0) T ¥ L@ p=.0)
+P(anewedgefromn+1tov € VD, (v) = (i — 1, j)|.F,)
+ P(anew edge fromo € V,ton 4+ 1;D,(v) = (i, j — 1)|F,)
—P(anewedge fromn+ 1too € V,;;D,(v) = (i, j)|Fy)
— P(anew edge from v € V, ton + 1;D,(v) = (i, j)|F,)

= Nu(i, j) + alii =01 + ¥ i h=0,0))

+a(i—1 +A)—N”(i; LD +o(-1 +u)—N"(i’i —D
(@) e+ (4.)
Taking expectations and recalling that v, (i, j) := E(N, (i, j)), we get
Vni1 (s J) = @y =0y + ¥ LG j=.0))
T (1 - %) wi p+ LI )
LelUz1dvm G, (4.2)

Define ¢,(i, j) = v,(i, j) — np;. Since N,(i, j)/n — pjj as. as n— oo and
N, (i, j)/n < 1forall (i, j), it follows that

e (LD = 11— pul <1, lea(i, )l = 10— pyl< Lfor (i, j) # (1, 1). (43)
Also, forn > 1
(1-2) (1-%)
en1(0,1) = (1= 2 )6,00,1), e1(1,0) = (1—=22)e,(1,0),
n n
and further for (4, j) ¢ {(0, 1), (1,0)}

eng1(i, j) = Vg1 (i, j) — (n+ 1) pj
_ (1 _ ‘5_> enli, j) + al=1+4) 1, j)
n n
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i~ 1+
Lelzltm, qio.

Then, (3.2) is true for (i, j) = (0, 1) by simple induction on #: if |¢,(0, 1)| <1,
then

601
|3n+1(0, ]-)| S ‘1 - 5 1’
n

because 8y = ﬁ(l + 1) + 7554 < @ +y = L Similar arguments give that (3.2)
also holds for (i, j) = (1, 0). For (i, j) ¢ {(0, 1), (1, 0)}, our induction assumption

max jyitj<nt1l€x (i, j)I < 1 (which is true for n = 1 by (4.3)) gives that

Sji i— 14+ A
lener (o )] = '(1 _ ;J) (i ) + %enu— 1)

+ e(-1+u _nl + M)Sn(i, j— 1)‘

g 1_@+c1(i—1+x)+cz(j—1+u)‘
n n n
='1_C1+62 <1,
n

by noting that ¢; + ¢; < o + y = 1. Hence,

. max |€n41(, j)I
(i, j)ii+ j<n+1

= max {|8n+1(07 ]-)|9 |8ﬂ+1(1’ 0)|7 |8n+1(ia ])l} =< 1.

max
(. )¢{(0,1),(1,0) }:i+ j<n+1
This verifies (3.2).
Next fix (i, j) and n and define the uniformly integrable martingale
Y. (i, j) = E(N,(, j)|Fm), m=0,1,...,n,
with difference sequence
dm(is ]) = Ym(l, ]) - Ym—l(is ])

Given F,,, determining G, requires the identification of which old vertices are
involved at each stage and there are at most 2n such choices. Under proper redistri-
bution, changing one of these choices (say from node u to node v) at some stage m
will alter the degrees of u and v in the final graph. Also, the future degree of the new
node created at stage m will be changed if we switch between “edge from the new
node” to “edge to the new node” Hence,

|dm(, )l <3, m=0,1,...,n
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Also, Yo (i, j) = E(Nu(i, j)|Fo) = vu(i, j), and
NG, j) = valiy j) = ) di(i, ).
k=1

Then, by the Azuma-Hoeffding’s inequality!!], for any C > 0,

Cnlogn) 2
2n - 32 Y eyith

P(N, (. j) — va(i, )] = Cy/nlogn) < 2exp <_

Therefore,

(i, j):i+j<n+1

P( max  |N,(, j) —v,(i, j)| > C\/nlogn>

<n* max P(Nu(i, j) — va(i, j)| = Cy/nlogn)
(i, j)ii+j<n+l
< 2n7(C2/1872).

In other words, for C2/18 — 2 > 0 or C > 6, we have

P( max  |N,(, j) —v,(i, j)| > C\/nlogn) = o(1). (4.4)

(i, j)ii+j<n+1

Now, (3.2) and (4.4) together imply that
N, (i, j
P( max B

(i, jiitj<n+1

n
and this gives (3.3) for C > 6.

— Pij

> % (CW+ 1)) = o(1),

4.2. Proofof Theorem 3.1.

4.2.1. Sketch of the proof
The key to prove Theorem 3.1 is to use the martingale central limit theorem, and we
include a multivariate version of it in Proposition 4.1. The martingale we are going
to consider is of the form

j i
M, G ) =Y > b (Na(k, 1) = va(k, D)),

I=0k=0

where b,(;l] ,)1 are some non-random constants.

In order to specify the limiting scaling matrix Kjo, we first investigate the lim-
its of the ratio b,(;lj Zl / bfl/i as n — 00, and Kjp consists of these limits. Next, we
compute the asymptotic conditional covariances of properly scaled martingale
differences which will lead to the limiting covariance matrix ¥;p, according to
Proposition 4.1. Also, we check the two assumptions of Proposition 4.1 in the end
to verify that the martingale central limit theorem is applicable here. Then, the con-
centration inequality proved in Lemma 3.1 allows replacement of expectations by

the p;’s and gives us the desired results.
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4.2.2. Preliminary: Martingale central limit theorem
We use a multivariate martingale central limit theorem, Proposition 4.1, to prove
Theorem 3.1. See Proposition 2.2 in Ref.!'* and also Refs.[*7:%1% and Ref.[® Chap-81),

Proposition 4.1. Let {X,m, Gums 1 <m <1}, Xpm = Kpmits -+ o> Xoma) L, be a
d-dimensional square-integrable martingale difference array. Consider the d x d
non-negative definite random matrices

Gn,m = (E(Xn,m,an,m,jlgn,m—l), i, ] = 17 27 ey d) ) Vn = Z Gn,my

m=1

and suppose (A,) is a sequence of | x d matrices with a bounded supremum norm.
Assume that
(i) A,V,AT L2y as no oo for some deterministic (automatically
non-negatively definite) matrix X.
(i) Y pen B2 (20| Gum1) — Oasn — oo foralli=1,2,...,dand
€>0.
Then, inR!, as n — oo

n
> AXum =X, (4.5)

m=1

a centered I-dimensional Gaussian vector with covariance matrix 2.

4.2.3. The martingale
We start with constructing a martingale for fixed i and j. Suppose that our martin-
gale takes the form

j i
Mu(i, j) =YY b (N (k. 1) — vy (k. 1)), (4.6)

I=0 k=0

where b;{i’l]: ’)1 are some non-random constants. We investigate what properties b,(:’lj 1)1
must satisfy in order that M, (i, j) is a martingale in the index .

Using (4.1) and (4.2), we see that in order to make M, (i, j) a martingale, we must
have

j i i . 8

By )IF) = 3360 [(1 - f) (N (6, 1) — vk, 1)
1=0 k=0
FAEZIED (v 1 — vk -1,

MGk D NN A SIS 1))]
n
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j i
=Y b Nk D) — vk, D) = MG, ),

1=0 k=0

where the last equality follows from the martingale assumption. Thus, it is sufficient

for the coefficients b/, 0 <k <1i,0 <1 < jto satisty the following recursions:

k,,n’

b(’ 27 (1 _ 8 ) b(’ 7 (4 7)
i,j,n+1 n i,j,n’ .
(i, ) (i,7) a (k + )‘) (i,) .

bk]n-‘rl (1__) bk+1]n+lT_bk]n’ O<k=<i—1, (4.8)
@) plisd) o+ () .

bl I,n+1 1 > 1l+1 n+1 n - bll ) 0 S l 5 ] - 1, (49)

o)) (1 5kl) 4 bl ak+2) 4 bl o+ w) _ i)

k,l,n+1 k+1,1,n+1 n k,14+1,n+1 n k,1,n’

0<k<i 0<l<j-1L (4.10)

The recursions (4.7)-(4.10) will not have a straightforward solution if 8;; = m for
some m < n. If §;; = m, then from the definition of §; in (3.5), we have

« o y y
=8, = __c L __r
m=0j =t 1—|—k+ PR
o
=Y -+ D 4l<iti-1
1 )+1+u(] )+ <itJ

However, a particular node » with in-degree i and out-degree j cannot exist before

stage i + j — 1 and therefore, almost surely, N, (i, j) = Oforallm < i+ j — 1. The

same arguments hold forall0 < k <i,0 <[ < jrelevant for (4.8) and (4.9). Hence,

for solving the recursions, we set b,(;l] 3” =0forallm < k41— 1and b;(’l] ,)c o =L
Solving (4.7) gives

n S -1
bf’]’iﬂ— I1 <1_E’1> . (4.11)

m=i+j—1
Also, (4.8) yields
S\ 8k; cik+ 1)
Gy _ kj ()] kj )] 1
bk] n+1 = l—— bk,j,n - (1 - 7) bk—i—l j.n+1 n

8\ Ok; (i.j)
1‘7) [(“m bijn-t
_(1— 8k] - b(lj) Cl(k+)\.)

n—1 ktlLjn 1

i\ G, 7) Cl(k—f—)x)
1- _> bk+]1 jon+l

n
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-

m=k+j—1
n n —1
) ak+21) Skj
- Z bk+1,j,m+1 m 1_[ 1- d : (4.12)
m=k+j—1 d=m

Similarly, we obtain from (4.9) and (4.10) that

. " 84\ ! " . o+ p) 84\ !
Gj il (i, /) 2 w il
bi,l,n+1 - l_[ (1 o ;) - Z bi,l+1,m+1 m 1_[ (1 - E) )

m=i+I—1 m=i+I—1 d=m
and that
n —1 n n —1
i i ) . ci(k+ 1) b
4,5 _ ki @,7) 1 ki
bk,l,n+1 - l_[ (1 - ;) - Z bk+1,l,m+1 m l_[ 1 - 4
m=k+I1—1 m=k+I1—1 d=m
n n —1
plid) o+ w) 1 Oul
- Z k41, m+1 m l_[ T4 :
m=k+I—1 d=m

(4.13)

4.2.4. Properties of the coefficients bg: ,"’)n 1
For the calculation of the asymptotic form of conditional covariances of martingale
differences, we will need the asymptotic forms of the ratio b,(;’] ) / b7 for all

ILn+1/ 7i, j,n+1
k <i,l < j,asn — oo and we set

()]

@3 = fjm kL — 0,1 jand ] =0, 1 ' 4.14
P ngEObgf}.{;H’ ,1,...,ian NS T B (4.14)

We begin with the case I = j. Using (4.11) and (4.12), we know that for 0 < k <
i—1,

—1
(i.)) n _ %
bk,j,n+1 Hm:k+j—1 (1 m

bi’}ffm l—[21=i+j—1 (1 _ %)—1
ool iz (1 - %)il
- > R+ ) Sor. (415)
m=k+j—1 [Tizit i (1 — 7’)

and from (4.15), we claim that
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) b
Jjintl @, J) i—k

iy~ &y =D H( d) (4.16)
bl j.n+1

For the first term on the right of (4.15), we have by Stirling’s formula

-1
e L S -
m=k+j—1 " 2 m om— g
= X

—= I [1
i m — 8 m — 8
[T, i m=k+j-1 Ko m=itj kj

m=i+j—1 m

B Fi+j—1)/Tk+j—1)

i+ j—1—=8;)/Tk+j—1-5;
T 1—-8)/TG+j—1—8)
F(n+1_8k]/r(l+]_1_8k])

T+ 1-8) T(k+j—8) Ti+j—1)

T T+ 1—8) D(i+j—8;) Dk+j—1)
T4+ j—8) T+ j—
—(i—k)¢, (.+J. ki) F(l_f—]. 1)—>O,(4.17)

Fi+j—6; I'k+j—1)

as n — 00, because i — k > 1. Hence, proving (4.16) requires showing

n b}(c_gl)]m_’_lcl(k—k)\)l—[(l_%)_ — (- 1)1kl_[()\+d)

o Z pli-) m o d
(4.18)

m=k+j—1 i,j,n+1

and we prove this by induction on k < i. For k = i — 1, using (4.11), we have

n b(l _ RN
i.jm+1c1(i—1+2) Si1.j
_ 1 — —/
> I .

(@, 7)
b m d=m

m=i+j—2 “i,jn+1
-1
8i—1,j
n l_[d m - d

=—ali-1+1 Y — e
Hd m+l( _l>

mt+]2

L - F(n+1—268)/T(m+1—24;)
AG=140 D, R R =y

. L'(n+1-6;) -
 —143) (m), (4.19)
1 F(n+1—236;-1;) m:,;_zg
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where
['(m— 51’—1,]‘)

8 = S 18y

Stirling’s formula gives as n — oo,

Cot1-8) 5,
F(ﬂ +1-— (S,'_Lj)

—C
=n 1’

and also

g(n) ~ nl (n— o00).

So the function g(n) is regularly varying and hence by Karamata’s theorem on inte-
gration (see, for example, Ref.[!2}), we have

n

> glm) ~n /e,

m=i+j—2
and thus (4.19) is asymptotic to
—ci—14+Mn"n" /e, =—@G—1+A).

This verifies the base case for (4.18) and thus (4.16) is also true when k =i — 1.

For the next step in the induction argument, we suppose that (4.18) holds for .
Then, because of (4.17), the claim in (4.16) holds for k — 1. We then evaluate the
left side of (4.18) with k + 1 replaced by k — 1. Using (4.11), I'(t + 1) = tI'(t) and
calculations similar to what was just done, we get

n b;j’j)

_ Z —1,j,m+1 C1 (k -2+ )\') ﬁ 1— (sk—z,j -
bgi’j) m d=m d

m=k+j—3 i,j,n+1

-1
(i.)) . s
n bk_Jl,j,nH-l ak—24+21) nd:m (1 - TJ>

>

(i,j) Si: -1
m=i+j—1 bi,j,m-H e ]_[Z:m-‘rl <1 - Ej)
i+j-2 i+j—2 -1
yion  ak—2+1) Y
- Z k—1,j,m+1 m l_[ 4
m=k+j—3 d=m

X

AN
| | A\ 1
d=itj—1 (1 - %’)

B T(n41-35;) "
__Cl(k_2+’\)r(n+1—sk_2,j) > h(m)

m=i+j—1
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D+ j—1) ”f o Tom=beap) o0
Plitj—1=8 & Wm0 Tm+n |70
where
b e e—2 4+ ) [lim (1 - 5"}2’1>_1 T(n+1—58s1)
h(m) = (i,};’mﬂ : N T _k 2]
bi,j,m—H m HZ:mH (1 _ %) (n+1-—24y)

_ bl(ci’—jl),j,m-i-l C(m+1—68k2;) 1 491
T W TOnE IS moy e

Since the induction assumption means that (4.16) holds for k, we have, as m —
00, that h is regularly varying with index (i — k 4+ 2)c; — 1, i.e,,

i—1

h(m),\,m(i—k+2)C1—l(_l)i—k-i-l 1—[ <)L + d) ) (4.22)

i—d
d=k—1

Again, using Karamata’s theorem, we have from (4.20)

n

r 1 -6
k24 )L %) h(m)
F(n +1- 6k—2,j) m=i+j—1
. k—2+)\ i—1 )\‘_|_d . il )\.+d
_1)i—k+2 i Z ) = (=1)iTk? :

d=k—1 d=k—2

Also, note that the second term in the bracket in (4.20) is finite and I'(n + 1 —
8i)/T(n+1— 8y ;) ~n 7%2a — 0asn — oo by Stirling’s formula. Hence,
we conclude that (4.18) holdsforallk =0, 1, ..., i — 1. With sk(”'}f) defined in (4.14),
we have verified (4.16).

Similarly, as n — oo,

(i j) j—1

bi,l,n+1 -1 M Ay
—Lomtl _ (—1) ]_[ — ) =0 (4.23)
b(z,]) j—r [

i,j,n+1 r=k

For0 <k<i—1,0<I<j—1land(kI) # (0,0), we claim that

(@, 7) (@, 7) (i 7)
bk,l,nJrl o |:C1 (k+ 1) « bk+1,l,n+1 ol +mw) y bk,l+1,n+l:|
@, j) - ()] - ()]
bi,j,n+1 8’1 O bi,j{n+1 8” O bi,lj,]n—&-l
atk+ir) 4y  old+w i) ()
- — | — %x &V —— X & =& 7. (424
|: 51.]. _ 8kl gk+1,l 81‘]‘ _ 8kl Sk,l-&-l g’:k,l ( )
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Recall (4.13), and following a similar argument as in (4.17), we conclude that

S\ —1
Hnm:k-‘rl—l ( B ﬁ)
Mo (4)
m:i+j—1 m

Also, the same arguments as in (4.20), (4.21) and (4.22) give

—> 0, asn— o0.

n b(i’j)

. Z ket 1.0m41 C1(k+X) ﬁ 1— % -
ptd) m ; d

m=k+1-1 Vi jn+1

n (@i, )) n S\~ 1
_ _ Z bk+1,l,m+1 atk+1) [l (1 - #)
- (i. ) A\ 1
meiti—1 Ui jm1 " | — (1 - %)
i+j—2

c(k+2) 5 s\ oy (%)
- Z bl(cl-‘rjl),l,m-i-l 1 m l_[ (1_?> 1_[ ; —1
d=m d 7’)

m=k+1—1 =it+j—1 (1 —

C(n+1—68;) .

=—ak+r)——— H(m)
1 Fm+hmnm§%
L i+j—2
n ri+j;—-1) IZJ: Bl ['(m — )
PGi+j—1-8) <= MLLmtl P4+ 1) )
where
@)
H(m) = KL Lol y 'm+1—-06y) 1
bg;’{:n—i-l F(m+1—268;) m—dy
~ m‘s"f'*‘sklflélf_i;{)’l, as m — 00.

Using Karamata’s theorem, we have as n — oo

_Cl(k+)\)w Z H(m)_>_C1(k+)\)€:(i,j)

Con+1=6u), = e
Meanwhile,
. . i+j—2
ki) F(n+1-96;) T@{+j—1) Z oD '(m—6y)
- 1 . .
Fn+1—-308) TG+ j—1—3y) = k+1,1,m+1 T(m+1)
i+j—2

TG+j—1)

~ —c(k+ A\ n—(51j—3k1) .
(k4 L(i+j—1—8)

Z (i) ['(m — ) N

k+1,1,m+1
m=k+I—1 F(m+1)
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Therefore, we conclude that

. b(l]u ci(k+2) S\ ! atk+M) aj
. m+1 C1 _ ﬂ 1 @)
Z b(z ) m 1_[ <1 d ) - 8,] — 8y Ek+1,l'

m=k+I1—1 i,j,n+1 d=m

Similarly,
- bl(cll+1 y1 0+ S\ " _al+w
— m Tk i,7)
Z pli-D) m 1_[ (1 d) - 8 — Su s kb

m=k+I—1 i,j,n+1 d=m

Hence, the claim in (4.24) is verified.
Weseté(l 7 =1, "g‘(' D=0, andnotethaté(”) = O if eitherk > iorl > j.

4.2.5. Martingale differences
Now we are ready to consider the martingale difference:

Mn+1(iv ]) - Mn(i’ ])

J
=2 2 (B Naa (ks D = B NGk D)

1=0 k=0

j i

-y (bgl ek, 1) = b0 0, (k, l)) . (4.25)

I=0 k=0

Consider the second double sum on the right side of (4.25). Recall that v, (i, j)
satisfies the recursion in (4.2), and this together with the properties of b(l ! ) in
(4.7)-(4.10) give

i
S5 (B vner (ko 1) = B, k. 1)
1=0

=0 k=0
j i
i S va(k — 1,1
ZZ [biz%l((l—;) v (k, l)+c1(k—1+x)(7)
1=0 k=0

Wk, 1 —1
+Cz(l—1+M)V(T)

+ali =) + y1{<,-,j>=(1,0)})

)

and identifying summands corresponding to (k,I) = (i, j), (k, 1) = (i —
1, j), (k,I) = (i, j — 1) and then the rest down to (k, ) = (0, 1), (k,I) = (1,0)
yields

8ij =1,
_ bfl]J:,Jrl (vn(i, 7) (1 — —) +eaG—14+ A)u
n

(- 14wl )>
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Gi) . o
_bi”j{nvn(l, 7)

. 81 v (i —
+wﬂgHJQML—Lp<1—’;”)+qa—2+xyﬂ_;__

+a(j—1+np)

=L i=D\ ap
e )>_b§’{),j,nvn(1—1,1>

- 8i i
+ 0 (vn(i, i=D (1 - 1) +tal—1+2)
. Un(iv j — 2) i, ] ..
o2 +u)+> — b vl j— 1)
) do1 )
+ "'+b0,1‘n+1 a+v,(0,1)|1— 7 —bo’l’nvn(o,l)

- 810 -
+b$ﬁﬁ10/+vALo)(1—7;>>-—M%LW(LO)

_ (@i, ) ()] .. (@, j) i ()]
= aby i Vb |:Vn(l’ ) (bi,j,n+1 (1 B n) - bi,j,n>

2, j)

=0 by (4.7)
i—1
;s Oki - alk+ 1) >
. (%)) kj (i, f) 1 (. )
+ Zvn(k7 ) (bk’j’yH»l ( - 7) + bk+l,j,n+lT - bk,j,”
k=0
=0 by (4.8)

j—1

g Sy ap  ol+R) G

. (i, ) il (i, ) 2 (i, )

+ Z Va (i, 1) (bi,l,n+1(1 - 7) + bi,l+1,n+1 - bi,l,n
1=0

n

=0 by (4.9)

n

vai—1,j—1)
n

. 5 o ak+r oy ol o
(i j) Kl (@, 1) 1 (i, j) 2 ()]
X (bk,l,n—H <1 - 7) + b " +bi1nn — b,

=0 by (4.10)
A ()] ()
=abyi 1+ Vb
So, (4.25) now becomes

] 1

My ) = MaGi, ) = D2 3 (B N (. D) = 7

=0 k=0
()] (@ j)
- (abo,l,n+1 + Vbl,o,n+1) .

M&J»

(4.26)
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4.2.6. Conditional covariances
In order to use Proposition 4.1, the multivariate martingale central limit theorem,
we need to calculate the asymptotic form of the following quantity:

E

My iy §) — My (i, ) (Mn+1<s, £) — M, (s, t)
A\ L n ¢\ L
[Tizit (1 — %) i (1= %)

for fixed pairs (i, j) and (s, t). From (4.26), we know that we need to consider in
particular

) Ful, (4.27)

b)) Nosa (kD) = b N (K, 1)

=b"7 Ny (k1)

k,,n+1
y S\ Lap  ak+r) ey al+p)
(i, ) Kl (i, 7) 1 (i, ) 2
- (bk,l,nﬂ (1 - n >+bk+1,l,n+1 n + bkl,l]+1,n+1 n Ny (k, D)

(where we applied (4.10))

= b)) (Naa (k. 1) — Ny (k. 1)
N, (k, 1
YD

(b7, = ol + by = 0+ B, Ly, ) - (428)

Recall (3.1) gives N, (k, ) /n — py a.s.as n — 00. So dealing with (4.27) means we
must calculate the asymptotic form of the conditional moments of

Apy1 (i, j) = Npy1 (0, j) = Nu (@, ).

Observe that
1 w.p. o,
AnJrl (O, 1) = —1 W.p. 801 W, (429)
0 otherwise;
1 W.p. ¥,
Ani1(1,0) = 3 =1 wp. ;o0 (4.30)

0 otherwise;

1 wp.o(k—1+42)MELD g1 4 ) Nl
Appi(k, 1) = (-1 wp. 5](1%“), (4.31)
0 otherwise,

for (k, 1) ¢ {(0, 1), (1,0)}. For instance, to justify (4.29), we create a (0, 1)-node
when node n 4 1 isborn and attaches to V,, but we destroya (0, 1)-node if either n 4
1 is born and attaches to a (0, 1)-node or v € V,, attaches to n + 1 and has degree
(0, 1). Then, using (3.1), (3.4) and (4.29)-(4.31), for each pair (k, I), we have

E(A,+1(k, D|Fy) = pu, a.s.asn— oo. (4.32)
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Therefore, from (4.11)
M1 (s j) = M (i, )~ Mu (s j) — My (i, j)
n 8ii -1 (i, ])
]_[d:i-‘rj—l (1 — j) bz jon+l
and applying (4.26) and then (4.28), we have as n — 00

i (l 7 (i, ) (. )
Nu(k, D) [ biiin bt b i1t
ZZ{ duriy  —ak+Ho G el u- 65—

=0 k=0 i,j,n+1 i,j,n+1 i,j,n+l

+

(@, j) (5) (@, 7)
bk,l,n+1 &1 | — (“bo,l,n+1 + Y015 041)
) ntl ) :
i j.ntl ij.n+l

By the fact that N, (k,I)/n — pix a.s. as n — 0o, the above is asymptotically
equivalent to

j i
> Y b (Bug — e+ gL, — U+ W) + 65 A (kD

1=0 k=0
< @, J) + J/%'(l J)) ’

according to (3.1) and definition of & 9 given in (4.14), (4.23) and (4.24).
Recall (4.32), we see that as n — 0o the conditional expectation in (4.27) is
equivalent to

jooi
E{ [Z Z{Pkl <5kl§k(’iij) —alk+0ES), — e+ /v‘)fk(,iii)l)
1=0 k=0
+ é_—(l ])An—i-l(ka l)} _ (O[%'(l 9 + )/S(I ])):|
t s
S {onr (0085 — i+ 20850 — o f + w1, )

=0 h=0
fn]»

and evaluate the product as four terms, then the above is equivalent to

+§(S t)AnJrl(h’ f)} (ago(s Doy VS(S t))]

j i
{Z > o (8 — erk+ gL, — e+ gl ) — @& + v, ”)}
1=0 k=0
t s o
X | 20D pug (0usE — i+ 0ESY - o (f + gL, )

f=0 h=0
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t t
— (@& + &)

J i
[Z > pu (8uss” — e+ 00, - 60+ wel))

I=0 k=0

(015(1 Dy )/S(l ]))

< | 20D & pur

f=0 h=0

t s
- Z Z Phy (&fff}t) —a(h+ k)é;fitl),f —a(f+ M)é;ff’f]il>

| f=0 h=0
( (st)+y;§(st))]
i ( )
x (Z kll] Pkl)
=0 k=0
[ J ! t s }
+E (ZZS,f’ D A (k, l)) 50 Apia (b, ) || T
1=0 k=0 =0 h=0 i
- A(l’ _]757 )
] ) t s N
+E (Z £ A (k, 1)) YD ETD Auah ) || F (4.33)
1=0 k=0 f=0 h=0

= AG jos, 0+ Y ETESE[Awni (kDA (hy PIF].
(kD) (h, f)

Hence, we need the asymptotic form of the sum

> &0 G E[ Ak DA B, )] T, (4.34)
(k.) (h. f)

and we divide the summation in (4.34) into two different cases.
(1) Case I: With probability ¢, (r + A)N,(, q) /n, a new edge from n + 1 to some
existing node v € V,, with D, (v) = (r, q) is created and this necessitates

Ayy1(r,q) = —1, since an (r, q)-node is destroyed,
Aupi(r+1,q9) =1, sincean (r + 1, g)-node is created,

Ap1(0,1) =1, sincea (0, 1)-node is created.

The other case follows by a similar reasoning:
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(2) Case II: With probability ¢, (g + ()N, (r, 9)/n, a new edge from some exist-
ing node v € V,, (with D,,(v) = (r, q)) to n + 1 is created such that
An+1(T, q) = —1, An+1(1’,q+1) = 1, An+1(1,0) = 1.

Take Case I as an example, we see that

App1(k, DAy (R, )

1 it ((k, D), (h, £)) € {((r, ), (r, ), (r+1, q), (r+1, 9)),
((0, 1), (0, 1)), ((r+1, q), (0, 1)), ((0, 1), (r+1,9))};

=1-1 if ((k. D), (h, ) € {((r+1, 9, (r.9)), ((r, ), (0, 1)),

((r, @), (r+1, 9)), ((0, 1), (r,g)};

0 otherwise.

(4.35)

Let El(r’q) denote the event described in Case I where node n + 1 attaches

tov € V, with D,(v) = (r, q). Then, on the event &; := U(r’q) El(r’q), (4.35)
gives that asymptotically,

S Y & E L E[Ara (e DA (h, 1| F]

(k1) (h, f)
_ ZP(El(r,q)) <$r(l+{)q +§(l 7 S(l 1)) <€r(ii)q +$(s 1) S(St))
(r,q)
n( ) j i, j
_Zch(r—l—k) iz (Eﬁi{)ﬁé(”) r(,'qj))
q=0 r=0
« (Sfi’?q +§(st> £G t)>. (4.36)

Define &, in the same way with respect to Case II, ie., & := U(r’q) Ez(r,q)’

with Ez(r’q) being the event described in Case II, where node n+ 1 attaches
to v eV, with D,(v) = (r,q). Then, similar calculations to (4.36) give
Y wn S i G E[Anii(k, DAL (h, )| Fy; &] for i=2. Also, (429)
and (4.30) show that E [(An+1 (0, 1))* }]—“n] and E [(Anﬂ (1,0))* |]-"n] take different
forms from the other cases (cf. (4.31)), so we still need to compensate for this.
Considering the case where (k, ) = (h, f) = (0, 1), we have by (4.29)

S ESDE[(Api1 (0, 1))?]F]
; N,(0, 1)
=& &) (05+501 - " )

g N, (0, 1 N, (0, 1
= £ DElSD <a+c1A ”(n ) 4o+ ”(n )).
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Note that & (@:) (S t)cz (1 4 p) 2O (0 D has been covered while calculating (4.34) with

(i) (st) 0{+C)\N(01)

respect to 52, so we only need to add & ; ) to our computa-

tion. Similar arguments also apply to (k, I) = (h, f) = (1, 0), but instead we add

<)/ P ACKO! 0)) (i.j)
Taking all these 1nto account, we get

Z Z Ek(l ) (S t)E n+1(k, DAy (h, f)i}—"]
(kD) (h. f)

= (a +ar——— > o1 ot + (V +on— 1o €L

+Zz{cl<r+x>N"(;"” (650, + &5 - 657 (850, + &3 - £50)

q=0 r=0

51(5 )V for compensation.

N 1,] 1, 1, S, S, S,
rar 0D (60D 48 - ) (55 + 5 - 550) |

(i, j)

Here, we also adopt the convention that & ;" = 0 if either k > i or [ > j, and that

N, (r, q) = 0 whenever either both r and g are 0 or one of them is n + 1.
Now applying (3.1) again, we write

YN e EPE[ A (kDA (h, )] F]
(k1) (h, f)
— (o + c1Apor) & ¢ 1)50(5 Y+ (v + capio) 1(,161) 1(,560
o0 o0
+ Z Z {Cl (T + )\)prq (é_—r(i{)q + E(l . 7) 5(1 ])) (%—r(j:i)q + 5(5 .t) S(S t))

q=0 r=0

+er(@+ 1 (650 + 68— 657) (850 + 65 - £50) | = B s,

(4.37)

a.s.asn — 0o. Putting (4.33) and (4.37) together, we conclude that, with probability
I,

M G ) = Ma ) (M”“(S’ ) M”(s’_tl)) Fol = Ca,jis, ),
n 8jj n 1— ‘Sﬁ)
]_[d:l.ﬂ._1 (1 — 7’) | - ( d

(4.38)

where C(i, j, s, t) := A(i, j,s, t) + B(i, j, s, t).

Recall that bl(zjjzlﬂ = [1_,( — &;/d)~". By Stirling’s formula, as n — 00

S _ l—[ d C(n4+1)/T3(+j—1)
d

i,j,n+1 — - . N
Jnt i =8 Tm+1-=8;)/T(+j—1—26

DG+ =18y
Fi+j—1)

) (4.39)
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so that as a function of n, b,(l]]ZH_

becomes

E |:<Mn+l(iv ]) - Mn(iv ])) <Mn+1(5, t) - Mn(S, t))

ndi ns

| is regularly varying with index §;;. Therefore, (4.38)
FG+j—1-=8)T(s+t—1—258yg)

J—'n]
TGi+j—1)  T(s+t—1)
= 7(i, j. 5. 1). (4.40)

—> C(, j, s, t)

4.2.7. Applying the martingale central limit theorem
We now have the material necessary to verify the conditions in Proposition 4.1. Fix
non-negative integers I, O € {0, 1,2, ...} and defineforIVO+1 <m <n

M (i, j) — M1 (i, j)
Wi t1/2 ’

Xn,m,i,j: OSISI’OSjSOa

and with (s, t) satisfying 0 < s <1, 0 <t < O, also define
Gum (i, j, 8, 1) = E(Xypm,i, jXn,ms.t| Fm—1)
— = OrFDE[(M, (i, /)
~Mp—1(i, ) (M (s, 1) — My—1 (s, 1)) [ Frn—1]-
We know from (4.40) that
nGy (i, j,s,t) = t(i, j,s,t), asn— 0o, (4.41)

and that

i+
Gn,m(l’ _]7 57 t) - n1+5ij+6$f mcm,m(la ]’ S’ t)'

Hence, by Karamata’s theorem on integration of regularly varying functions, using
(4.41), we have

n n 8+ G (G
PR . . Z =] Om ! m,m(l’ _]557 t)
Vn(ls ]7 S, t)' = Z Gn,m(l’ ]’ S, t) = = nl-‘r(s,j-i-ﬁst

m=IvO+1

n-ntta G Gojost) TG, g, s )
(14 8+ 8o)n" 0t 1+ 8+ 8y

~

=02(, j, s, t). (4.42)

So the ((I +1)x(O0O+1)x I+1)x (O+ 1)) dimensional matrix converges
<Vn(i, Jos,1);0<i,s<I, 0<j,t< O) — T = (0%, j,s,t)), (4.43)

as required by Propositon 4.1. For each pair (i, j) suchthat 0 <i<I,0< j <O,
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from the definition of M,, (i, j) in (4.6)

M, (. j) bl Ny, 1) = vk, 1)
a,]+1/J2 ZZ kl,; < Jn )

I=0 k=0

_DG+j—1-8) @) (Nn(k, 1) — vu(k, 1)>
F(i+J— 1) ZZ Jn

I=0 k=0

and this lets us write the matrix equation (with 0,(1) terms dropped)

Witz

. (Nn(k, D) — vu(k, 1)
wherewethinkof((Nn(k, D —v,k,)//n,0<k<I1,0<I< O) asa(I+1) x

(O + 1) dimensional column vector. Relation (4.44) results from the definitions of
((5))
&

T
:05k§1,0§l§0> , (4.44)

hm b,(('l]i/bfl/i S(' D asn — oo,

@, J)

provided that we set b,/ = 0 if either k =i+ 1 or [ = j + 1. Then, similar to

(4.39)

n—1 . . . .
B _ 1_[ d__ L(n)/T(i+j—1) Nnaijl“(z—i-]—l—é,-j)’
B d — & [(n—08;)/T(i+j—1—36;) ri+j;—-1

d=i+j—1

thus giving the equivalence relationship in (4.44).
In order to apply Proposition 4.1 to conclude (4.5), we must verify conditions (i)
and (ii) of the Proposition. Condition (i) of Proposition 4.1 is already satisfied by

(4.42), so we just need to consider condition (ii). Since by (4.29)-(4.31) the differ-
ences are bounded, i.e.,

|(Nﬂ(1v _]) - Vn(i’ ])) - (Nn—l(iv _]) - Vn—l(i’ ]))l =< 2 for aH (17 J)v

then we claim that for n large enough, the events {|X;, ;i j| > €} become the empty
set for all m < n and all (i, j). This can be observed from the following. For some
constant i,

1 Xmijl > €} = {IM(i. j) = My—a (i )| > en® /%)
- {IK,-]-Im‘S"f > enditl/2)
C {lkyln® > en®*172),
which becomes the empty set for large n. Therefore, as n — 0o

P(l{lxn.m.i.j|>£} g O) — 1'

This verifies the second condition.
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Recall that calculations in (4.42) and (4.43) gives the covariance matrix Xjo.
Applying Proposition 4.1 yields

Ko <Nn(i, j)szn(i’ )

in RUFDOFD 1f we assume further that Kjo is invertible, then the convergence in

T
:0<i<I, 0§j§O> = N0, X;0) (4.45)

(4.45) can be rewritten as
<Nn(i, ]) - vﬂ(i7 _])
Jn

Applying Lemma 3.1, we then see that (3.6) holds for fixed I and O.
To avoid non-degenerate limits, we need to make sure that the asymptotic vari-

10<i<[0<j< o> = N(0, K;g Z1.0K;0").

ances given in matrix ¥ o are positive for fixed I and O. It suffices to check that for
0<i<L0=<j=0

lim V, (i, j) — lim Var(N, (i, j)) -

n—00 n n—00 n

0. (4.46)

From the definition,
Vit j) = B[ (Nas1 G )] = (v G )’
= E[E((Na(i. /) + A1 (i )2 F)] = (vnsa (i )
For (i, j) ¢ {(0, 1), (1, 0)}, we have from (4.31),
E ((NuGiv ) + Duri Gy )] )
= (Nu(i ))* + 2Ny (i DE(Ayi1 (s PIF) + E ((Ausr Gy 1)) F)
= (NuG, ) + 2N, (i, f)
x (cl(i— 1 +A)w

+o(—1+w)

Nu(i, j—1) 5 N (i, j))
Y%
n n

Nn.—l,' . Nn "'_1 Nn .,.
+c1(i_1+k)u+62(]_1+u) (l] )+5ij (i ])’
n n "
(4.47)
and using (4.2) gives
(Vi1 Gy )
n(i—1,j
= (Vn(iy ]) +ca@G—1 +k)¥
. v, (i, j—1) v (i, )\ 2
Fali— 1+ i g 0 )

= (i, J))? + 200G, ) [cl(z' — 1+ )‘)w
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. Vn(ia j — 1) vi’l(i7 )
to( -1+ w2, J}
n n
v(i—1, 74 . v(i,j—1 v, (i, j 2
+|:C1(i—1+)»)¥+52(]—1+/¢0) ( i )—51'1' (n])]'

(4.48)

Therefore, taking the expectation on both sides of (4.47) and subtracting (4.48) from
it give

.. .. 28 2c0(i—1+ 2 .. ) )
Vaur1(i, j) = V(i j) (1 - 7]) + %)E[Nn(l, DN, (=1, j)

_Vn(ia ])Vn(l - 19 ])]

2 i—1
+ME[NH(L NG, = 1) = va(iy yonCis j— 1]
+R1’l+l(i5 ])’

where as n — o0,

Rip1(Q, j) » ai—=1+M)pi1j+ca(j—1+wpij1+8ipi
—[aG=14+M)pirj+ (= 14+ wpij1 — 8pyl°
= (1+28;)p — P
= 28;pij + pii(1 — pj) > 0,
since p;; € (0, 1] and §;; > 0. Note that here p;; # 0 for all (i, j): the recursion in
(3.4) shows that both pg;, p1p > 0asweassume o, y > 0; it also follows that p;; = 0
for all (i, j) ¢ {(0, 1), (1, 0)} if we assume p;; = 0 for some (i, j), which is impos-
sible since we initiate the graph with a single node v and D; (v) = (1, 1).
Let L;; denote the limit of R, (i, ), then there exists n such that for all n > ny,
R, (i, j) = 1L;. Also,
E[N,(i, )N, (i — 1, j) — v, (i, jva(i — 1, j)]
= coV(N, (i, ), Nuli = 1, )) = = (Vi (i, )2 (Vi = 1, j)Y2,

and similarly

E[N, (i, ))Nu(i, j — 1) — vu (i, va(i, j — D] = =V, )NV2(Vu(, j— 1)V

We now prove (4.46) by induction. The base case when n =1 is trivial. For
n > 2, suppose that V,(i—1, j) > a;_, jn and V,(i, j— 1) > a; j_n for some
ai1,j, ai,j—1 > 0, then for all n > ny,

) o 172 RPN V5
Vn+1(i,j)ZVn(i,j)<l—%>—2c1(i—1+k)<—vn(:ﬁ> <—V"(l I’J))

n

VoG, D\NY? (VG i— DY 1
_262(j—1+ﬂ)< (n J)> ( ( ] )) +5L,]

n
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We therefore conclude that
() .o\ 172
Vi1, j) = V(i j) (1 - 17) — Kz(l’]) (%) + ELij, Vn > ng,

where Kl(”] ), Kz(l’] ) > 0are positive constants.
YA L; \?
If 22l < ( J ) , then
n 4K

— 2(i,j)
ap (Val, DY 1
Ll (RALEL [
n 4

. N2
1f 200 > () then

4k

(uxaﬂ)“2<4K§”_uxnﬁ

n - Ly n

In either case, for all n > ny we still have

()] () ..
K id 4K V 1, 1
Vier G ) 2Vl p (1- 8- ) g2 M) 1y
n L,’j n 4

.. N
Ko (kY )

+ L

:n‘a. 1-—
V. (i, j) ”

) . N2
Since K1) := K{*” + 4 (K{"") /Ly > 0, then for n > n,

1 K. KD\ 2 KD\ N0
VnH(i?DEZLij 1—|—(1— ” >+<1— - > +..._|_(1_ . >

1 1—(1-— K(i,j)/n)n—n0+1
— g KD /n

L L
~ 4K5 B (1-— e K ]))n >0, asn— o0.

So we are done with proving (4.46), thus completing the proof for Theorem 3.1.
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