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Abstract

Preferential attachment is a widely adopted paradigm for understanding the

dynamics of social networks. Formal statistical inference, for instance GLM

techniques, and model verification methods will require knowing test statistics

are asymptotically normal even though node or count based network data is

nothing like classical data from independently replicated experiments. We

therefore study asymptotic normality of degree counts for a sequence of growing

simple undirected preferential attachment graphs. The methods of proof rely

on identifying martingales and then exploiting the martingale central limit

theorems.
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1. Introduction

Preferential attachment is a widely adopted model for understanding social

network growth. The assumption posits that nodes with a large number of existing

connections are more likely to attract connections from new nodes joining the

network. This paradigm is one of the justifications for perceived power law behavior.

Statistical analyses of social networks is complicated by the fact that node based
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data is nothing like classical iid data obtained from repeated sampling. Efforts

at statistical estimation and model confirmation center around graphical based

slope methods, regression models for the center of the data and tail estimation

methodology. These statistical techniques are adaptations of classical methods but

currently are largely without justification. Yet they produce reasonable answers

and plots.

We begin a program for justifying statistical methodology by examining the

asymptotic normality of counting variables for the number of nodes of degree k

in a simple undirected preferential attachment model described in [11, Chapter 8].

We let Nn(k) be the number of nodes of degree k at the nth stage of development

of the network. It is known Nn(k)/n → pk and for our model, the sequence {pk}

can be exhibited explicitly. The martingale central limit theorem allows us to

prove asymptotic normality for
√
n(Nk(k)/n − pk). This emphasizes consistency

of the empirical count percentages as estimates of {pk} and provides confidence

statements for the estimates.

We describe the undirected preferential attachment model in Section 1.1 and

give known mathematical results that we need in Section 3. Asymptotic normality

is considered in the simplest case k = 1 in Section 3 and for the general case in

Section 4.

Acknowledgement. After writing and submitting our paper, we became aware

that T. Móri [9] considered a similar model without self-loops and derived the

asymptotic normality of degree counts using martingale central limit theorems.

1.1. The model for preferential attachment.

We consider a simple growing undirected graph with preferential attachment that

is outlined in [11, Chapter 8] or [5]. The random graph at stage n is Gn = (Vn, En),

the set of nodes or vertices is Vn := {1, . . . , n} and the set of undirected edges is

En, a subset of {{i, j} : i, j ∈ Vn}. For v ∈ Vn, let Dn(v) be the degree of

v at stage n; that is, the number of edges incident to v. As a convenient and

harmless initialization, assume V1 consists of a single node 1 with a self-loop so
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that D1(1) = 2.

Conditional on knowing the graph Gn, at stage n+ 1 a new node n+ 1 appears

and with a parameter δ > −1, either

1. The new node n+ 1 attaches to v ∈ Vn with probability

Dn(v) + δ

n(2 + δ) + (1 + δ)
, (1)

or

2. n+ 1 attaches to itself with probability

1 + δ

n(2 + δ) + (1 + δ)
. (2)

In the first case Dn+1(n + 1) = 1 and in the second case Dn+1(n + 1) = 2. It is

standard for this model that ∑
v∈Vn

Dn(v) = 2n

and thus the attachment probabilities in (1) and (2) add to 1.

2. Martingale Central Limit theorem

Martingale central limit theorems have been used for a long time. In order

to make the paper self-contained, we present the statements we will need in this

section. We start with a one-dimensional martingale adaptation of the Lindeberg-

Feller central limit theorem ([4, Chapter 8] or [6]).

Proposition 2.1. Let {Xn,m,Fn,m, 1 ≤ m ≤ n} be a square integrable martingale

difference array satisfying

1. Vn,n :=
∑
m≤nE(X2

n,m|Fn,m−1)
P→ σ2 as n→∞.

2.
∑
m≤nE(X2

n,m1[|Xn,m|>ε]|Fn,m−1)
P→ 0 as n→∞ for all ε > 0.

Then as n→∞,
n∑

m=1

Xn,m ⇒ N(0, σ2). (3)
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Proposition 2.1 can be extended to the multivariate case using the Cramér-Wold

device. We give the statement we need but omit the proof as many versions are in

the literature. See for example [3, 7, 8].

Proposition 2.2. Let {Xn,m,Fn,m, 1 ≤ m ≤ n}, Xn,m =
(
Xn,m,1, . . . , Xn,m,d

)T
,

be a d-dimensional square-integrable martingale difference array. Consider the d×d

nonnegative definite random matrices

Gn,m =
(
E
(
Xn,m,iXn,m,j

∣∣Fn,m−1), i, j = 1, . . . , d
)
, Vn =

n∑
m=1

Gn,m,

and suppose (An) is a sequence of l × d matrices with a bounded supremum norm.

Assume that

1. AnVnA
T
n

P→ Σ as n → ∞ for some nonrandom (automatically nonnegatively

definite) matrix Σ.

2.
∑
m≤nE(X2

n,m,i1[|Xn,m,i|>ε]|Fn,m−1)
P→ 0 as n → ∞ for all i = 1, . . . , d and

ε > 0.

Then in Rl,
n∑

m=1

AnXn,m ⇒X, (n→∞), (4)

a centered l-dimensional Gaussian vector with covariance matrix Σ.

3. Asymptotic normality of degree counts

For k ≥ 1, let Nn(k) be the number of nodes in Gn with degree k:

Nn(k) =
∑
v∈Vn

1[Dn(v)=k].

Using concentration inequalities and martingale methods it is shown, for instance

in [11, Chapter 8] that there is a probability mass function {pk, k ≥ 1} such that

almost surely as n→∞,

Nn(k)

n
→ pk, k ≥ 1 , (5)
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and

pk =
( (2 + δ)Γ(3 + 2δ)

Γ(1 + δ)

) Γ(k + δ)

Γ(k + 3 + 2δ)
= c(δ)

Γ(k + δ)

Γ(k + 3 + 2δ)
. (6)

Of course Γ(·) is the gamma function. In particular, for k = 1

p1 =
2 + δ

3 + 2δ
,

and as k →∞, power law behavior is

pk ∼ c(δ)k−3−δ.

We consider the asymptotic normality of Nn(k)/n− pk for k ≥ 1, and we start

with the simplest case of k = 1.

When proving the asymptotic normality for the number of nodes of degree 1, we

will use the abbreviations

νn = E(Nn(1)), γ =
1 + δ

2 + δ
, wn =

n

n+ γ
.

Note N1(1) = ν1 = 0 since the initial node has a self-loop so D1(1) = 2.

Let Fn be the information from observing the growth of the network up through

the nth stage. Then

E(Nn+1(1)|Fn) = Nn(1) + E
(
(Nn+1(1)−Nn(1))|Fn

)
= Nn(1) + E

(
1[n+1 links to v∈Vn;Dn(v)>1]|Fn

)
= Nn(1) + 1− P [n+ 1 links to itself |Fn]

− P [n+ 1 links to v ∈ Vn;Dn(v) = 1|Fn]

and using (2) and the fact that for the last term Dn(v) = 1, we get

= Nn(1) + 1− 1 + δ

n(2 + δ) + (1 + δ)
− 1 + δ

n(2 + δ) + (1 + δ)
Nn(1) (7)

= Nn(1)(1− γ

n+ γ
) + (1− γ

n+ γ
)

= wnNn(1) + wn.

We conclude

E(Nn+1(1)|Fn) = wnNn(1) + wn, (8)
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νn+1 = wnνn + wn. (9)

We claim

Mn+1 :=
Nn+1(1)− νn+1∏n

j=1 wj
=
Nn+1(1)−

∑n
l=1

∏n
j=l wj∏n

j=1 wj
, n ≥ 1 (10)

is a martingale. This is verified using (8) and (9).

Consider now the martingale difference

dn+1 :=Mn+1 −Mn =
Nn+1(1)− νn+1∏n

j=1 wj
− Nn(1)− νn∏n−1

j=1 wj

=
1∏n

j=1 wj

(
Nn+1(1)− νn+1 − (wnNn(1)− wnνn)

)
=

1∏n
j=1 wj

(
Nn+1(1)−Nn(1) +Nn(1)(1− wn)− wn

)
. (11)

As above,

Nn+1(1)−Nn(1) =: ∆n+1 = 1[n+1 links with v∈Vn;Dn(v)>1],

and ∆2
n+1 = ∆n+1. Therefore,

d2n+1 =
1

(
∏n
j=1 wj)

2

(
∆n+1 + 2∆n+1

(
Nn(1)(1− wn)− wn

)
+
(
Nn(1)(1− wn)− wn

)2)
=

1

(
∏n
j=1 wj)

2

(
∆n+1{1 + 2

(
(1− wn)Nn(1)− wn

)
}

+
(
(1− wn)Nn(1)− wn

)2)
.

Since

E(∆n+1|Fn) = E(Nn+1(1)−Nn(1)|Fn) = 1− γ

n+ γ
(1 +Nn(1)),

we have

E(d2n+1|Fn) =
1

(
∏n
j=1 wj)

2

(
{1 + 2

(
(1− wn)Nn(1)− wn

)
}
(
1− γ

n+ γ
(1 +Nn(1)

)
+ [(1− wn)Nn(1)− wn]2

)
= :

1

(
∏n
j=1 wj)

2
χn. (12)

We need the following observations:
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(a) wn = n/(n+ γ)→ 1, as n→∞.

(b) 1− wn = γ/(n+ γ) ∼ γ/n→ 0.

(c) Owing to the usual recursion on the gamma function,

Γ(n+ 1 + γ)

Γ(1 + γ)
=

n−1∏
j=0

(n+ γ − j) =

n∏
l=1

(γ + l).

(d) Therefore we have

n∏
j=1

wj =

n∏
j=1

( j

j + γ

)
=

Γ(n+ 1)

Γ(n+ 1 + γ)
Γ(1 + γ)

∼Γ(1 + γ)n−γ = Γ(
1

p1
)n−γ (13)

by Stirling’s formula.

(e) We have

lim
n→∞

Nn(1)

n
= lim
n→∞

νn
n

= p1 =
2 + δ

3 + 2δ
.

This allows us to evaluate limn→∞ χn in (12) as

c0(δ) :=
(

1 + 2(γp1 − 1)][1− γp1]
)

+ (γp1 − 1)2 = γp1(1− γp1)

=
( 1 + δ

3 + 2δ

)( 2 + δ

3 + 2δ

)
=

(1 + δ)(2 + δ)

(3 + 2δ)2
. (14)

Therefore from (13), (12) and (14)

E(d2n+1|Fn) ∼ c0(δ)

(Γ(1 + γ)n−γ)2
=: c1(δ)n2γ (15)

with

c1(δ) = c0(δ)/(Γ(1 + γ))2.

Keeping in mind that the asymptotic equivalence in (15) holds a.s, we apply

Karamata’s theorem on integration (eg, [10, page 25] or [2]), to obtain

n∑
j=1

E(d2j+1|Fj) ∼
c1(δ)

2γ + 1
n2γ+1 =: σ2(δ)n2γ+1, (n→∞), (16)
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with

σ2(δ) =
(1 + δ)(2 + δ)

(3 + 2δ)2(2γ + 1)(Γ(1 + γ))2
. (17)

Now set

dn,m =
dm

σ(δ)nγ+1/2
, 1 ≤ m ≤ n,

and the first condition of Proposition 2.1 is satisfied. For the second condition of

Proposition 2.1 observe that from (11), we get by ignoring constants and remem-

bering |∆m+1| ≤ 1, that, as m→∞,

[|dn,m+1| > ε] =[|dm+1| > εnγ+1/2]

⊂[
1∏m

j=1 wj
|[1 +Nm(1)(1− wm)− wm| > εnγ+1/2]

⊂[cmγ |(const)| > εnγ+1/2]

⊂[cnγ |(const)| > εnγ+1/2].

So with probability converging to 1 as n→∞, all the indicator functions 1[|dn,m|>ε]

vanish, and this verifies the second condition for the central limit theorem.

We conclude from Proposition 2.1 that (3) holds. Unpacking (3), we find

n∑
m=1

dn,m =

n∑
m=1

dm
σ(δ)nγ+1/2

=
1

σ(δ)nγ+1/2

(Nn(1)− νn∏n−1
j=1 wj

)
.

Use (13) to get

√
n
(Nn(1)

n
− νn

n

)
=
Nn − νn√

n
⇒ N(0, σ2

1(δ)),

where σ1(δ) = Γ(1 + γ)σ(δ). Since there exists K such that

∞∨
n=1

|νn − np1| ≤ K,

(eg, [11, Section 8.5]), we may conclude the following.

Proposition 3.1. The number of nodes at stage n with degree 1 is asymptotically

normal,
√
n
(Nn(1)

n
− p1

)
⇒ N(0, σ2

1(δ)),

where

σ2
1(δ) =

(1 + δ)(2 + δ)2

(3 + 2δ)2(4 + 3δ)
.
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4. Normality for the number of nodes of degree k, k > 1.

The results of Section 3 show how the martingale central limit theorem can be

used to prove that the deviation of the fraction of the nodes in the nth graph,

that have degree 1, from their limiting fraction, is of the order n−1/2 and, when

normalized by that quantity, has a limiting centered normal distribution; this is

the content of Proposition 3.1. It turns out that this distributional result is valid

for all node degrees simultaneously. More specifically, a central limit theorem in

RN holds, and the limit is a centered Gaussian process.

Theorem 4.1. The proportion of nodes with given degrees satisfy the limiting

distributional relation(√
n
(Nn(k)

n
− pk

)
, k = 1, 2, . . .

)
⇒
(
Zk, k = 1, 2 . . .

)
(18)

in RN, where
(
Zk, k = 1, 2 . . .

)
is a centered Gaussian process with covariance

function RZ given by (45).

Remark 4.1. We precede the proof of the theorem with a number of comments.

First of all, weak convergence in RN is equivalent to convergence of the finite-

dimensional distributions; see [1].

It is clear also that, for every fixed n, the stochastic process in the left hand side

of (18) will have at most n random elements; however, all elements in the limiting

process are random.

Finally, the variance of Z1 in the right hand side of (18) is given in Proposition

3.1.

Proof of Theorem 4.1. As in the one-dimensional case of Section 3, we will use

a martingale central limit theorem, so we start with constructing a suitable mar-

tingale for each fixed node degree. For k = 1, 2 . . . we denote νn(k) = E(Nn(k)),

n ≥ k (so that νn = νn(1)). It follows from (5) and bounded convergence,

νn(k)

n
→ pk, k ≥ 1 . (19)
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Let

a(k)n =

[
n−1∏
i=k

(
1− k + δ

i(2 + δ) + 1 + δ

)]−1
, n ≥ k, (20)

so that

a
(k)
n+1 = a(k)n

(
1− k + δ

n(2 + δ) + 1 + δ

)−1
, (21)

and for future use, note that by the Stirling formula,

a(k)n =
Γ
(
n+ (1 + δ)/(2 + δ)

)
Γ
(
k + (1− k)/(2 + δ)

)
Γ
(
k + (1 + δ)/(2 + δ)

)
Γ
(
n+ (1− k)/(2 + δ)

) (22)

∼
Γ
(
k + (1− k)/(2 + δ)

)
Γ
(
k + (1 + δ)/(2 + δ)

)n(k+δ)/(2+δ) (n→∞)

so that as a function of n, a
(k)
n is regularly varying with index (k+ δ)/(2 + δ). Also

define,

b
(k)
j =

k−1∏
i=j

i+ δ

i− k
= (−1)k−j

Γ(k + δ)

(k − j)! Γ(j + δ)
, 1 ≤ j ≤ k. (23)

We use the usual conventions to set a
(k)
k = b

(k)
k = 1, and set

M (k)
n = a(k)n

k∑
j=1

b
(k)
j

(
Nn(j)− νn(j)

)
, n ≥ k . (24)

The process (M
(1)
n ) coincides with the process (Mn) defined in (10) and we already

proved the latter process is a martingale with respect to the filtration (Fn). Now

we check that for each k ≥ 1 the process
(
M

(k)
n , n ≥ k

)
is a martingale with respect

to the same filtration.

Recall the dynamics of the of the counting processes (Nn(k)): for each fixed n,

there is a partition of the sample space into disjoint events An(k), k = 0, 1, . . .,

n ≥ 1, n ≥ k, with

P (An(k)|Fn) =

 k+δ
n(2+δ)+(1+δ)Nn(k), k = 1, . . . , n

1+δ
n(2+δ)+(1+δ) , k = 0 .

(25)

The event An(k) is the event that a new node appears at stage n+ 1 and attaches

to v ∈ Vn with Dn(v) = k while An(0) is the event that a new node attaches to
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itself. In terms of these events, for each k ≥ 3 and n ≥ k,

Nn+1(k) =


Nn(k) + 1 on An(k − 1),

Nn(k)− 1 on An(k),

Nn(k) on ∪j /∈{k−1,k}An(j),

(26)

for k = 2 and n ≥ 2,

Nn+1(2) =


Nn(2) + 1 on An(0) ∪An(1),

Nn(2)− 1 on An(2),

Nn(2) on ∪j≥3An(j),

(27)

while for k = 1 and n ≥ 1,

Nn+1(1) =

 Nn(1) + 1 on ∪j≥2An(j) ,

Nn(1) on An(0) ∪An(1).
(28)

In particular, for n ≥ k,

E(Nn+1(k)|Fn) =

(
1− k + δ

n(2 + δ) + (1 + δ)

)
Nn(k) (29)

+
k − 1 + δ

n(2 + δ) + (1 + δ)
Nn(k − 1), k ≥ 3 ,

E(Nn+1(2)|Fn) =

(
1− 2 + δ

n(2 + δ) + (1 + δ)

)
Nn(2) (30)

+
1 + δ

n(2 + δ) + (1 + δ)

(
1 +Nn(1)

)
.

Taking the expectation, we see that

νn+1(k) =

(
1− k + δ

n(2 + δ) + (1 + δ)

)
νn(k) (31)

+
k − 1 + δ

n(2 + δ) + (1 + δ)
νn(k − 1), k ≥ 3 ,

νn+1(2) =

(
1− 2 + δ

n(2 + δ) + (1 + δ)

)
νn(2) (32)

+
1 + δ

n(2 + δ) + (1 + δ)

(
1 + νn(1)

)
.

The corresponding dynamics for k = 1 is given in (7). Therefore, for n ≥ k,

E
(
M

(k)
n+1

∣∣Fn) = a
(k)
n+1

k∑
j=1

b
(k)
j E

[(
Nn+1(j)− νn+1(j)

)∣∣Fn]
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= a
(k)
n+1b

(k)
1

n

n+ γ

(
Nn(1)− νn(1)

)
+ a

(k)
n+1

k∑
j=2

b
(k)
j

[(
1− j + δ

n(2 + δ) + (1 + δ)

)(
Nn(j)− νn(j)

)
+

j − 1 + δ

n(2 + δ) + (1 + δ)

(
Nn(j − 1)− νn(j − 1)

)]
= a

(k)
n+1

{
k−1∑
j=1

[
b
(k)
j

(
1− j + δ

n(2 + δ) + (1 + δ)

)

+b
(k)
j+1

j + δ

n(2 + δ) + (1 + δ)

] (
Nn(j)− νn(j)

)
+ b

(k)
k

(
1− k + δ

n(2 + δ) + (1 + δ)

)(
Nn(k)− νn(k)

)}
,

and elementary calculations show that this is the same as the right hand side of

(24). Therefore for each k, the process
(
M

(k)
n , n ≥ k

)
is indeed a martingale with

respect to the filtration (Fn).

For k = 1, 2, . . . define a k-variate triangular array of martingale differences by

Xn,m,j =
M

(j)
m −M (j)

m−1

a
(j)
n n1/2

, m = k + 1, . . . , n, j = 1, . . . , k , (33)

for n = k, k + 1, . . .. In order to use the multivariate martingale central limit

theorem in Proposition 2.2, we compute the asymptotic form of the quantities

Gn,m(i, j) :=E
(
Xn,m,iXn,m,j

∣∣Fm−1) (34)

=
(
a(i)n a(j)n n

)−1
E
((
M (i)
m −M

(i)
m−1

)(
M (j)
m −M

(j)
m−1

)∣∣∣Fm−1) ,
m = k + 1, . . . , n, i, j = 1, . . . , k. By the martingale property,

E
((
M

(i)
m+1 −M (i)

m

)(
M

(j)
m+1 −M (j)

m

)∣∣∣Fm) (35)

= E

[
i∑

d=1

b
(i)
d

(
a
(i)
m+1N

(d)
m+1 − a(i)m N (d)

m

) j∑
l=1

b
(j)
l

(
a
(j)
m+1N

(l)
m+1 − a(j)m N (l)

m

)∣∣∣∣Fm
]

−
i∑

d=1

b
(i)
d

(
a
(i)
m+1ν

(d)
m+1 − a(i)m ν(d)m

) j∑
l=1

b
(j)
l

(
a
(j)
m+1ν

(l)
m+1 − a(j)m ν(l)m

)
.

We begin by analyzing the behaviour of the deterministic term in the right hand
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side of (35). We claim that for every i ≥ 1,

lim
n→∞

1

a
(i)
n

i∑
d=1

b
(i)
d

(
a
(i)
n+1ν

(d)
n+1 − a(i)n ν(d)n

)
= b

(i)
1 , (36)

with b
(i)
1 given by (23). Indeed, for d ≥ 3, by (20) and (31) we have

a
(i)
n+1ν

(d)
n+1 − a(i)n ν(d)n = a

(i)
n+1

(
ν(d)n

i− d
n(2 + δ) + 1 + δ

+ ν(d−1)n

d− 1 + δ

n(2 + δ) + 1 + δ

)
∼ (i− d)pd + (d− 1 + δ)pd−1

2 + δ
a(i)n

as n→∞ by (19), the fact that a
(i)
n+1 ∼ a

(i)
n and the same is true for d = 2 by (32).

Similarly, using (7), we obtain for d = 1 that

a
(i)
n+1ν

(1)
n+1 − a(i)n ν(1)n ∼

(
i− 1

2 + δ
p1 + 1

)
a(i)n = a(i)n + a(i)n

i− 1

2 + δ
p1,

as n→∞. Therefore (with p0 = 0),

lim
n→∞

1

a
(i)
n

i∑
d=1

b
(i)
d

(
a
(i)
n+1ν

(d)
n+1 − a(i)n ν(d)n

)
= b

(i)
1 +

1

2 + δ

i∑
d=1

b
(i)
d

[
(i− d)pd + (d− 1 + δ)pd−1

]
= b

(i)
1 ,

since

i∑
d=1

b
(i)
d

[
(i− d)pd + (d− 1 + δ)pd−1

]
=

i−1∑
d=1

pd
[
(i− d)b

(i)
d + (d+ δ)b

(i)
d+1

]
= 0 . (37)

Next, by (26), (27) and (28),

a
(i)
n+1Nn+1(d)− a(i)n Nn(d) = a

(i)
n+1

(
Nn(d)

i+ δ

n(2 + δ) + 1 + δ
+Bn(d)

)
,

with

Bn(d) =


1 on An(d− 1),

−1 on An(d),

0 on ∪j /∈{d−1,d}An(j),

for d ≥ 3,

Bn(2) =


1 on An(0) ∪An(1),

−1 on An(2),

0 on ∪j≥3An(j),

(38)
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Bn(1) =

 1 on ∪j≥2An(j) ,

0 on An(0) ∪An(1).

Therefore, as n→∞,

E

[
1

a
(i)
n a

(j)
n

i∑
d=1

b
(i)
d

(
a
(i)
n+1Nn+1(d)− a(i)n Nn(d)

)
×

j∑
l=1

b
(j)
l

(
a
(j)
n+1Nn+1(l)− a(j)n Nn(l)

)∣∣∣∣Fn
]

∼ E

[
i∑

d=1

b
(i)
d

(
Nn(d)

i+ δ

n(2 + δ) + 1 + δ
+Bn(d)

)
×

j∑
l=1

b
(j)
l

(
Nn(l)

j + δ

n(2 + δ) + 1 + δ
+Bn(l)

) ∣∣∣∣Fn
]

=

i∑
d=1

b
(i)
d (i+ δ)

Nn(d)

n(2 + δ) + 1 + δ

j∑
l=1

b
(j)
l (j + δ)

Nn(l)

n(2 + δ) + 1 + δ

+

i∑
d=1

b
(i)
d (i+ δ)

Nn(d)

n(2 + δ) + 1 + δ

j∑
l=1

b
(j)
l E

(
Bn(l)

∣∣Fn)
+

j∑
l=1

b
(j)
l (j + δ)

Nn(l)

n(2 + δ) + 1 + δ

i∑
d=1

b
(i)
d E

(
Bn(d)

∣∣Fn)
+

i∑
d=1

j∑
l=1

b
(i)
d b

(j)
l E

(
Bn(d)Bn(l)

∣∣Fn)
:= S1,n(i, j) + S2,n(i, j) + S3,n(i, j) + S4,n(i, j) .

It follows by (5) that

i∑
d=1

b
(i)
d (i+ δ)

Nn(d)

n(2 + δ) + 1 + δ
→ i+ δ

2 + δ

i∑
d=1

b
(i)
d pd a.s. as n→∞.

Next, by (38),

i∑
d=1

b
(i)
d E

(
Bn(d)

∣∣Fn) = b
(i)
1

[
1− 1 + δ

n(2 + δ) + 1 + δ

(
1 +Nn(1)

)]
+ 1i≥2 b

(i)
2

[
1 + δ

n(2 + δ) + 1 + δ

(
1 +Nn(1)

)
− 2 + δ

n(2 + δ) + 1 + δ
Nn(2)

]
+ 1i≥3

i∑
d=3

b
(i)
d

[
d− 1 + δ

n(2 + δ) + 1 + δ
Nn(d− 1)− d+ δ

n(2 + δ) + 1 + δ
Nn(d)

]
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→b(i)1

(
1− 1 + δ

2 + δ
p1

)
+ 1i≥2

1

2 + δ

i∑
d=2

b
(i)
d

(
(d− 1 + δ)pd−1 − (d+ δ)pd

)
=b

(i)
1 +

1

2 + δ

i∑
d=1

b
(i)
d

(
(d− 1 + δ)pd−1 − (d+ δ)pd

)
=b

(i)
1 −

i+ δ

2 + δ

i∑
d=1

b
(i)
d pd

a.s., where at the last step we used (37). We conclude that, with probability 1,

S1,n(i, j)→ (i+ δ)(j + δ)

(2 + δ)2

i∑
d=1

b
(i)
d pd

j∑
l=1

b
(j)
l pl ,

S2,n(i, j)→ i+ δ

2 + δ

i∑
d=1

b
(i)
d pd

(
b
(j)
1 −

j + δ

2 + δ

j∑
l=1

b
(j)
l pl

)
,

S3,n(i, j)→ j + δ

2 + δ

i∑
l=1

jb
(j)
l pl

(
b
(i)
1 −

i+ δ

2 + δ

i∑
d=1

b
(i)
d pd

)
.

Finally, we consider the term S4,n(i, j). Note that, by (38), we have the following

cases.

1. On An(0) ∪An(1):

E
(
Bn(d)Bn(l)

∣∣Fn) = 1d=l=2 .

2. On An(m), m ≥ 2,

E
(
Bn(d)Bn(l)

∣∣Fn) =

 1 if d, l ∈ {1,m+ 1} or d = l = m,

−1 if d = m, l ∈ {1,m+ 1} or l = m, d ∈ {1,m+ 1}.

Therefore, using the convention b
(i)
d = 0 if d > i, we can write

S4,n(i, j) = b
(i)
2 b

(j)
2

1 + δ

n(2 + δ) + 1 + δ

(
1 +N (1)

n

)
+

n∑
m=2

(
b
(i)
1 − b(i)m + b

(i)
m+1

)(
b
(j)
1 − b(j)m + b

(j)
m+1

) m+ δ

n(2 + δ) + 1 + δ
N (m)
n

→
∞∑
m=1

m+ δ

2 + δ

(
b
(i)
1 − b(i)m + b

(i)
m+1

)(
b
(j)
1 − b(j)m + b

(j)
m+1

)
pm
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a.s. as n→∞. We conclude that, with probability 1,

E

[
1

a
(i)
n a

(j)
n

(
M

(i)
n+1 −M (i)

n

)(
M

(j)
n+1 −M (j)

n

)∣∣∣Fn]→ a(i, j) (39)

=:

∞∑
m=1

m+ δ

2 + δ

(
b
(i)
1 − b(i)m + b

(i)
m+1

)(
b
(j)
1 − b(j)m + b

(j)
m+1

)
pm

−

(
b
(i)
1 −

i+ δ

2 + δ

i∑
d=1

b
(i)
d pd

)(
b
(j)
1 −

j + δ

2 + δ

j∑
l=1

b
(j)
l pl

)
.

Next we simplify the expression for a(i, j), to make it clear that a(i, i) > 0 for

all i ≥ 1. Note that, by (6) and (23), for each i,

i−1∑
d=1

b
(i)
d pd = c(δ)(−1)iΓ(i+ δ)

i−1∑
d=1

(−1)d
1

(i− d)! Γ(d+ 3 + 2δ)

= c(δ)
(−1)iΓ(i+ δ)

i+ 2 + 2δ

i−1∑
d=1

(−1)d
[

1

(i− d)! Γ(d+ 2 + 2δ)
+

1

(i− d− 1)! Γ(d+ 3 + 2δ)

]
= c(δ)

(−1)iΓ(i+ δ)

i+ 2 + 2δ

(
− 1

(i− 1)! Γ(3 + 2δ)
+ (−1)i−1

1

Γ(i+ 2 + 2δ)

)
,

where at the last step we used the telescoping property of the sum. Elementary

algebra now gives us for i ≥ 1,

b
(i)
1 −

i+ δ

2 + δ

i∑
d=1

b
(i)
d pd =

2 + δ

Γ(1 + δ)

(−1)i−1Γ(i+ δ)

(i− 1)! Γ(i+ 2 + 2δ)
. (40)

Similarly, for i ≥ 1, using a telescopic property,

∞∑
m=i+1

m+ δ

2 + δ

(
b
(i)
1 − b(i)m + b

(i)
m+1

)2
pm =

(
b
(i)
1

)2 c(δ)
2 + δ

∞∑
m=i+1

Γ(m+ 1 + δ)

Γ(m+ 3 + 2δ)

=
(
b
(i)
1

)2 c(δ)
2 + δ

∞∑
m=i+1

1

1 + δ

[
Γ(m+ 1 + δ)

Γ(m+ 2 + 2δ)
− Γ(m+ 2 + δ)

Γ(m+ 3 + 2δ)

]
=
(
b
(i)
1

)2 c(δ)

(1 + δ)(2 + δ)

Γ(i+ 2 + δ)

Γ(i+ 3 + 2δ)

=
Γ(3 + 2δ)

Γ(2 + δ)
(
Γ(1 + δ)

)2 Γ(i+ 2 + δ)
(
Γ(i+ δ)

)2
Γ(i+ 3 + 2δ)

(
(i− 1)!

)2 .
Therefore, by (40),

a(i, i) >

∞∑
m=i+1

m+ δ

2 + δ

(
b
(i)
1 − b(i)m + b

(i)
m+1

)2
pm −

(
b
(i)
1 −

i+ δ

2 + δ

i∑
d=1

b
(i)
d pd

)2
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=

(
2 + δ

Γ(1 + δ)

Γ(i+ δ)

(i− 1)! (i+ 2 + 2δ)

)2 [
Γ(3 + 2δ)

(2 + δ)Γ(3 + δ)

(i+ 2 + 2δ)Γ(i+ 2 + δ)

Γ(i+ 2 + 2δ)
− 1

]
.

Note that the expression inside the bracket is greater than

Γ(3 + 2δ)

(2 + δ)Γ(3 + δ)

Γ(i+ 2 + δ)

Γ(i+ 1 + 2δ)
− 1 ,

and, since for 0 < b < a, the ratio Γ(x + a)/Γ(x + b) is increasing in x ≥ 0, the

above difference is, for i ≥ 2, at least

Γ(3 + 2δ)

(2 + δ)Γ(3 + δ)

Γ(2 + 2 + δ)

Γ(2 + 1 + 2δ)
− 1 =

3 + δ

2 + δ
− 1 > 0 .

This shows that a(i, i) > 0 for all i ≥ 2. The fact that the same is true for i = 1

can be seen directly from (39) (and was also shown in Section 3).

We know from (39) that

nGn,n(i, j)→ a(i, j), (n→∞),

and from the definition (34) we have

Gn,m =
a
(i)
m a

(j)
m

na
(i)
n a

(i)
n

mGm,m(i, j).

and from the regular variation property after (22), the function

u(m) := a(i)m a(i)mmGm,m(i, j)

is regularly varying with index (i + j + 2δ)/(2 + δ). Therefore, from Karamata’s

theorem on integration of regularly varying functions

Vn(i, j) =

n∑
m=k+1

Gn,m(i, j) =

∑n
m=k u(m)

na
(i)
n a

(j)
n

∼ nu(n)

( i+j+2δ
2+δ + 1)na

(i)
n a

(i)
n

∼ a(i, j)
2 + δ

i+ j + 3δ + 2
,

for i, j = 1, . . . , k, where a(i, j) is defined in (39). This verifies the first condition

the martingale central limit theorem of Proposition 2.2 (with each An being a k×k

identity matrix.) The second condition of the theorem holds as well, since by (26),

the differences are bounded,∣∣(Nn(j)− νn(j)
)
−
(
Nn−1(j)− νn−1(j)

)∣∣ ≤ 2 for all j,
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hence, as in the one-dimensional case of Section 3, for all n large enough, the events{
Xn,m,j > ε

}
are empty for all m ≤ n and all j. We conclude that 1

n1/2

k∑
j=1

b
(k)
j

(
Nn(j)− νn(j)

)
, k ≥ 1

⇒ (
Yk, k = 1, 2 . . .

)
(41)

in RN, where
(
Yk, k = 1, 2 . . .

)
is a centered Gaussian process with covariance

function RY given by

RY (i, j) =
2 + δ

i+ j + 2 + 3δ
a(i, j), i, j ≥ 1 . (42)

We use this covariance function to define the k × k matrix

RY,k = (RY (i, j), 1 ≤ i, j ≤ k).

For a fixed k = 1, 2 . . . the convergence in (41) means that

Ck

(
Nn(j)− νn(j)

n1/2
, j = 1, . . . , k

)T
⇒
(
Yj , j = 1, . . . , k

)
,

where Ck is a k × k matrix with the entries

ci,j =

 b
(i)
j j ≤ i

0 j > i .

Using the easily checkable identity, valid for any real r,

i∑
m=j

rm−jb(i)m b
(m)
j = b

(i)
j (1 + r)i−j , 1 ≤ j ≤ i , (43)

we can check that the inverse of Ck, Dk = C−1k , has the entries

di,j =

 (−1)i−jb
(i)
j j ≤ i

0 j > i .
(44)

We conclude that(
Nn(j)− νn(j)

n1/2
, j = 1, . . . , k

)
⇒ Dk

(
Yj , j = 1, . . . , k

)T
,

and the covariance matrix of the limiting Gaussian vector is given by

Σk = DkRY,kD
T
k ,
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where RY,k is the k × k matrix given after (42).

In order to facilitate the calculation of the entries of the matrix Σk, we write the

matrix RY,k in the form

RY,k =

∞∑
m=0

hm

∫ ∞
0

(2 + δ)e−(2+3δ)xRm,x dx ,

where

hm =

 −1 m = 0,

m+δ
2+δ pm m = 1, 2, . . . ,

and the matrix Rm,x is a k × k matrix of the form

Rm,x = CT
m,xCm,x .

Here Cm,x is a vector with the entries

Cm,x(i) =


(
b
(i)
1 − i+δ

2+δ

∑i
d=1 b

(i)
d pd

)
e−ix, i ≥ 1 m = 0(

b
(i)
1 − b

(i)
m + b

(i)
m+1

)
e−ix, i ≥ 1 m ≥ 1 .

Therefore,

Σk =

∞∑
m=0

hm

∫ ∞
0

(2 + δ)e−(2+3δ)xDkC
T
m,xCm,xD

T
k dx .

Note that by (44) and (43), for any m ≥ 1 and i = 1, 2, . . .,

(
DkC

T
m,x

)
(i) =

i∑
j=1

(−1)i−jb
(i)
j

(
b
(j)
1 − b(j)m + b

(j)
m+1

)
e−jx

= e−xb
(i)
1

(
−1+e−x

)i−1−e−mxb(i)m (−1+e−x
)i−m

+e−(m+1)xb
(i)
m+1

(
−1+e−x

)i−m−1
.

Therefore, for m ≥ 1 and i, j = 1, 2, . . .,

(
DkC

T
m,x

)
(i)
(
DkC

T
m,x

)
(j) = b

(i)
1 b

(j)
1 e−2x

(
−1 + e−x

)i+j−2
−
(
b
(i)
1 b(j)m + b(i)m b

(j)
1

)
e−(m+1)x

(
−1 + e−x

)i+j−m−1
+
(
b
(i)
1 b

(j)
m+1 + b

(i)
m+1b

(j)
1

)
e−(m+2)x

(
−1 + e−x

)i+j−m−2
+ b(i)m b(j)m e−2mx

(
−1 + e−x

)i+j−2m
−
(
b(i)m b

(j)
m+1 + b

(i)
m+1b

(j)
m

)
e−(2m+1)x

(
−1 + e−x

)i+j−2m−1
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+ b
(i)
m+1b

(j)
m+1e

−(2m+2)x
(
−1 + e−x

)i+j−2m−2
:=

6∑
l=1

θ(l)m,x(i, j) .

We have: ∫ ∞
0

(2 + δ)e−(2+3δ)xθ(1)m,x(i, j) dx

= (−1)i+j(2 + δ)b
(i)
1 b

(j)
1

∫ ∞
0

e−(4+3δ)x
(
1− e−x

)i+j−2
dx

= (−1)i+j(2 + δ)b
(i)
1 b

(j)
1 B(4 + 3δ, i+ j − 1)

= (−1)i+j(2 + δ)b
(i)
1 b

(j)
1

Γ(4 + 3δ)(i+ j − 2)!

Γ(i+ j + 3 + 3δ)
.

Similarly,∫ ∞
0

(2 + δ)e−(2+3δ)xθ(2)m,x(i, j) dx

= (−1)i+j−m(2 + δ)
(
b
(i)
1 b(j)m + b(i)m b

(j)
1

)Γ(m+ 3 + 3δ)(i+ j −m− 1)!

Γ(i+ j + 3 + 3δ)
,

∫ ∞
0

(2 + δ)e−(2+3δ)xθ(3)m,x(i, j) dx

= (−1)i+j−m(2 + δ)
(
b
(i)
1 b

(j)
m+1 + b

(i)
m+1b

(j)
1

)Γ(m+ 4 + 3δ)(i+ j −m− 2)!

Γ(i+ j + 3 + 3δ)
,

∫ ∞
0

(2 + δ)e−(2+3δ)xθ(4)m,x(i, j) dx

= (−1)i+j(2 + δ)b(i)m b(j)m
Γ(2m+ 2 + 3δ)(i+ j − 2m)!

Γ(i+ j + 3 + 3δ)
,

∫ ∞
0

(2 + δ)e−(2+3δ)xθ(5)m,x(i, j) dx

= (−1)i+j(2 + δ)
(
b(i)m b

(j)
m+1 + b

(i)
m+1b

(j)
m

)Γ(2m+ 3 + 3δ)(i+ j − 2m− 1)!

Γ(i+ j + 3 + 3δ)
,

∫ ∞
0

(2 + δ)e−(2+3δ)xθ(6)m,x(i, j) dx

= (−1)i+j(2 + δ)b
(i)
m+1b

(j)
m+1

Γ(2m+ 4 + 3δ)(i+ j − 2m− 2)!

Γ(i+ j + 3 + 3δ)
.
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Similarly, by (44) and (40), for i ≥ 1,

(
DkC

T
0,x

)
(i) =

(2 + δ)Γ(i+ δ)

Γ(1 + δ)

i∑
l=1

(−1)l−1e−lx
1

(i− l)!(l − 1)!Γ(l + 2 + 2δ)
.

Therefore, for i, j ≥ 1,∫ ∞
0

(2 + δ)e−(2+3δ)x
(
DkC

T
0,x

)
(i)
(
C0,xD

T
k

)
(j) dx

=
(2 + δ)2Γ(i+ δ)Γ(j + δ)(

Γ(1 + δ)
)2

i∑
l1=1

j∑
l2=1

(−1)l1+l2(l1 + l2 + 2 + 3δ)−1

(i− l1)!(l1 − 1)!Γ(l1 + 2 + 2δ)(j − l2)!(l2 − 1)!Γ(l2 + 2 + 2δ)
.

We conclude that the covariance function of the limiting Gaussian process
(
Zk, k =

1, 2 . . .
)

in (18) is given by

RZ(i, j) =
(−1)i+j

Γ(i+ j + 3 + 3δ)
∞∑
m=1

(m+ δ)pm
[
b
(i)
1 b

(j)
1 Γ(4 + 3δ)(i+ j − 2)! (45)

+ (−1)m
(
b
(i)
1 b(j)m + b(i)m b

(j)
1

)
Γ(m+ 3 + 3δ)(i+ j −m− 1)!

+ (−1)m
(
b
(i)
1 b

(j)
m+1 + b

(i)
m+1b

(j)
1

)
Γ(m+ 4 + 3δ)(i+ j −m− 2)!

+ b(i)m b(j)m Γ(2m+ 2 + 3δ)(i+ j − 2m)!

+
(
b(i)m b

(j)
m+1 + b

(i)
m+1b

(j)
m

)
Γ(2m+ 3 + 3δ)(i+ j − 2m− 1)!

+ b
(i)
m+1b

(j)
m+1Γ(2m+ 4 + 3δ)(i+ j − 2m− 2)!

]
− (2 + δ)2Γ(i+ δ)Γ(j + δ)(

Γ(1 + δ)
)2

i∑
l1=1

j∑
l2=1

(−1)l1+l2(l1 + l2 + 2 + 3δ)−1

(i− l1)!(l1 − 1)!Γ(l1 + 2 + 2δ)(j − l2)!(l2 − 1)!Γ(l2 + 2 + 2δ)
.

Once again, it is possible to show that RZ(i, i) > 0 for all i ≥ 1. We omit the

argument.
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5. Concluding remarks

We are currently extending these methods to directed graphs where each node

is indexed by at least two characteristics such as in and out degree. Our goal

is to evaluate inferential methods for estimating model parameters that require

asymptotic normality results such as presented here.
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