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Abstract Abel-Tauberian theorems relate power law behavior of distributions and
their transforms. We formulate and prove a multivariate version for non-standard
regularly varying measures on R

p
+ and then apply it to prove that the joint distribution

of in- and out-degree in a directed edge preferential attachment model has jointly
regularly varying tails.

Keywords Multivariate heavy tails · Preferential attachment model ·
Scale free networks · Tauberian theory
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1 Introduction

This paper has two themes: (i) Abel-Tauberian theorems relate power law behav-
ior of distributions and their transforms. (ii) Such Abel-Tauberian theorems can be
used to study power law behavior of in- and out-degree of directed edge preferential
attachment network models.

Abel-Tauberian theorems relate regular variation of infinite Radon measures
U(x) = U([0, x]) on R

p
+ to regular variation of their Laplace transforms

Û (1/x) =
∫
R

p
+

e− ∑p

i=1 si/xi U(ds), x > 0.
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In one dimension when p = 1, such theorems provide standard tools for obtaining
asymptotic power law tails for cases when a probability description is more easily
specified by the transform rather than the distribution. Often the transform rather than
the distribution is accessible as a solution to difference or recursive relations. Appli-
cation areas include queueing theory, branching processes, insurance modeling and
network analysis. Standard references covering the essentials in one dimension are
Bingham et al. (1987) and Feller (1971). Transform theory when p > 1 for the stan-
dard case of regular variation are considered in Resnick (1991, 2007), Stadtmüller
(1981), Stadtmüller and Trautner (1979, 1981), Stam (1977), and Yakimiv (2005).
In this paper we consider an Abel-Tauberian theorem for the non-standard case of
regular variation where scaling functions for different components have different tail
indices.

Preferential attachment is an important mechanism for describing growth of
directed networks where a new node attaches to an existing node or new edges
are created according to probabilistic postulates that take into account the in- and
out-degree of the existing nodes. We consider models studied by Bollobás et al.
(2003) and Krapivsky and Redner (2001). Based on solutions to difference equations,
Samorodnitsky et al. (2014) derived the joint generating function of limiting frequen-
cies for in-degree and out-degree. In this paper we explain how the joint non-standard
regular variation of in- and out-degree can be obtained from the joint generating
function using Abel-Tauberian theory.

This paper is organized as follows. We start with a brief summary of multivariate
regular variation of measures in Section 2 to establish notation and basic concepts.
Section 3 gives the Abel-Tauberian theorem for measures which are non-standard
regularly varying. In Section 4.3, we apply the Tauberian theory to study the mul-
tivariate power laws of in- and out-degree in the preferential attachment model.
Section 4.1 includes a detailed description of the preferential attachment model,
Section 4.2 summarizes known results about the joint generating function of in- and
out-degree and Section 4.3 applies the Tauberian theory to obtain the joint power law
behavior of in- and out-degree.

2 Multivariate regular variation

We briefly review the basic concepts of multivariate regular variation which forms the
mathematical framework for multivariate heavy tails. We emphasize two dimensions
since this is the context for the application to in- and out-degree but generally the
extension to p ≥ 2 dimensions is clear. See Resnick (2007) for more detail.

A random vector (X, Y ) ≥ 0 has a distribution that is non-standard regularly
varying if there exist scaling functions a(t) ↑ ∞ and b(t) ↑ ∞ and a non-zero limit
measure ν(·) called the limit or tail measure such that as t → ∞,

tP [(X/a(t), Y/b(t)) ∈ · ]
v→ ν(·) (2.1)

where “
v→ ” denotes vague convergence of measures in M+([0, ∞]2 \ {0}) =

M+(E), the space of Radon measures on E. The scaling functions will be regularly
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Tauberian theory and preferential attachment

varying and we assume their indices are positive and therefore, without loss of gen-
erality, we may suppose a(t) and b(t) are continuous and strictly increasing. The
phrasing in Eq. 2.1 implies the marginal distributions have regularly varying tails.

In case a(t) = b(t), (X, Y ) has a distribution with standard regularly varying tails.
Given a vector with a distribution which is non-standard regularly varying, there are
at least two methods for standardizing the vector so that the transformed vector has
standard regular variation (Resnick 2007, Section 9.2.3). The simplest is the power
method which is justified when the scaling functions are power functions:

a(t) = t1/γ1 , b(t) = t1/γ2, γi > 0, i = 1, 2.

For instance with c = γ1/γ2,

tP
[(

Xc/t1/γ2 , Y/t1/γ2
)

∈ ·
]

v→ ν̃(·), (2.2)

where if T (x, y) = (xc, y), then ν̃ = ν ◦ T −1. Since the two scaling functions in
Eq. 2.2 are the same, the regular variation is now standard. The measure ν̃ will have
a scaling property and if the coordinate system is changed properly, ν̃ will disinte-
grate to a product; for example the polar coordinate transform is one such coordinate
system change achieving the disintegration into a product and this provides access to
an angular measure that is one way to describe the asymptotic dependence structure
of the standardized (X, Y ).

Non-standard regular variation of Radon measures is defined in Eq. 3.4 below .

2.1 Miscellaneous notation

Here is a notation and concept summary.

RVβ Regularly varying functions with index β > 0. We pick versions of such
functions that are continuous and strictly increasing.

M+(E) Radon measures on E := [0, ∞]p \ {0} metrized by vague convergence.
M+(R

p
+) Radon measures on R

p
+ metrized by vague convergence.

v→ Vague convergence in M+(R
p
+) or M+(E) as appropriate.

x x = (x1, . . . , xp).
λx (λ1x1, . . . , λpxp).
λ′x

∑p

i=1 λixi .
1 1 = (1, . . . , 1).
0 0 = (0, . . . , 0).
Û Laplace transform of a measure U ; Û (λ) = ∫

R
p
+ exp{−λ′x}U(dx).

ℵ ℵ = {x ∈ R
p
+ : ‖x‖ = 1}, the unit sphere in R

p
+ for some norm ‖ · ‖.

In general vectors are denoted by bold letters, eg. x = (x1, . . . , xp). Oper-
ations on vectors, unless noted otherwise, should be interpreted componentwise.
Thus, λx = (λ1x1, . . . , . . . , λpxp) but (as noted) λ′x = ∑p

i=1 λixi . Also [0, x] =
{(u1, . . . , up) : 0 ≤ ui ≤ xi, i = 1, . . . , p}.
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3 A Tauberian theorem for nonstandard regular variation

In this section we give an Abel-Tauberian theorem which relates non-standard regular
variation of a Radon measure U(x) on R

p
+ to non-standard regular variation of the

Laplace transform Û (1/x). Versions in the standard case when p > 1 are considered
in Resnick (1991, 2007), Stadtmüller (1981), Stadtmüller and Trautner (1979, 1981),
Stam (1977), and Yakimiv (2005).

3.1 Assumptions

For p ≥ 1, suppose U is a measure on R
p
+ satisfying

Û (λ) :=
∫
R

p
+

e−λ′xU(dx) < ∞, λ > 0. (3.1)

This implies U is Radon on R
p
+ since for λ > 0, and y > 0,

∞ >

∫
R

p
+

e−λ′xU(dx) ≥
∫
R

p
+

e−λ′x1[0,y](x)U(dx)

≥ e−λ′y
∫

1[0,y](x)U(dx) = e−λ′yU([0, y]).

So U(y) := U([0, y]) < ∞ for y > 0 and therefore U ∈ M+(R
p
+).

For i = 1, . . . , p, assume

bi(t) ∈ RV1/γi
, γi > 0, i = 1, . . . , p. (3.2)

Write b(t) = (b1(t), . . . , bp(t)) and γ = (γ1, . . . , γp). Set

Ut(x) = 1

t
U(b(t)x). (3.3)

3.2 Regular variation of the measure implies regular variation of the transform

For this section assume U satisfies (3.1) and Ut is defined in Eq. 3.3. The scaling
functions bi(t) satisfy (3.2). The non-standard regular variation assumption for U is
that there exist U∞ ∈ M+(R

p
+), U∞ �≡ 0, such that

Ut
v→ U∞, in M+(R

p
+). (3.4)

If we can choose the scaling functions (bi, i = 1, . . . , p) to be identical, then the
regular variation is standard.

3.2.1 Consequences

The assumptions have consequences needed for further work.

1. Continuous convergence: The convergence in Eq. 3.4 is continuous convergence
on (0, ∞) := (0, ∞)p; that is, if as t → ∞, x(t) → x(∞) ∈ (0, ∞), then

Ut(x(t)) → U∞(x(∞)), (t → ∞), (3.5)
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Tauberian theory and preferential attachment

provided x(∞) is a continuity point of U∞(x). This is a monotonicity argument: If
x(∞) and x(∞) + ε1 are continuity points of U∞(x), then

lim sup
t→∞

Ut(x(t)) ≤ lim
t→∞ Ut(x(∞) + ε1)

= U∞(x(∞) + ε1),

and letting ε ↓ 0 in such a way that x(∞)+ε1 are continuity points of U∞(x) yields

lim sup
t→∞

Ut(x(t)) ≤ U∞(x(∞)).

A reverse inequality is obtained similarly.

2. Scaling property. A consequence of the continuous convergence is the scaling
property: for c > 0

U∞ ◦ T −1
c = cU∞, (3.6)

where Tc : R
p
+ �→ R

p
+ is defined by Tc x = c−1/γ x. It is enough to check that for

x > 0,

U∞
(
c1/γ x

)
= cU∞(x) . (3.7)

Indeed,

U∞
(
c1/γ x

)
= lim

t→∞
1

t
U

(
b1(t)c

1/γ1x1, . . . , bp(t)c1/γpxp

)

and by continuous convergence, this is

= lim
t→∞ c

1

ct
U

(
b1(ct)

(
b1(t)

b1(ct)
c1/γ1

)
x1, . . . , bp(ct)

(
bp(t)

bp(ct)
c1/γp

)
xp

)

= cU∞(x).

The scaling property implies, in particular, that all points x are continuity points of
U∞.

3. Laplace transform of U∞ exists: Let i∗ ∈ {1, . . . , p} be such that γi∗ ≥ γi for all
i ∈ {1, . . . , p}. It follows from the scaling property (3.6) that for any a > 0

U∞

({
x :

p∑
i=1

xi ≤ a

})
≤ aγi∗ U∞

({
x :

p∑
i=1

xi ≤ 1

})
.

Therefore, for λ > 0,

Û∞(λ) ≤
∫
R

p
+

e− mini λi

∑
i xi U∞(dx)

≤ U∞

({
x :

p∑
i=1

xi ≤ 1

}) ∫ ∞

0
e−(mini λi )x γi∗x

γi∗−1 dx < ∞ . (3.8)

Author's personal copy



3.2.2 The result

This section requires a regularity condition: for any x > 0,

lim
y→∞ lim sup

t→∞

∫
∪p

i=1[vi>y]
e− ∑p

i=1 vi/xi Ut (dv) = 0. (3.9)

Proposition 1 Assume (3.2) and suppose that U satisfies the non-standard regular
variation condition (3.4). Then the Laplace transforms Û (1/x) and Û∞(1/x) are
distribution functions of Radon measures on R

p
+ and these measures inherit the non-

standard regular variation: for x > 0,

1

t
Û (1/b(t)x)) → Û∞(1/x), (3.10)

provided (3.9) also holds.

Proof Let E1, . . . , Ep be iid standard exponentially distributed random variables so
that

F =
(

1

E1
, . . . ,

1

Ep

)

are iid standard Frechét random variables with marginal distribution

P [1/E1 ≤ x] = e−1/x, x > 0.

From Eq. 3.4 we get

P [F ∈ · ] × Ut
v→ P [F ∈ · ] × U∞, (3.11)

in M+
([0, ∞]p × R

p
+
)
. Define h : [0, ∞]p × R

p
+ �→ [0, ∞]p × R

p
+ by

h(x, y) = (xy, y),

where xy = (xiyi, i = 1, . . . , p) is componentwise multiplication, and we set
0 ·∞ = 0. The map h satisfies the compactness condition of (Resnick 2007, Proposi-
tion 5.5): Suppose A ⊂ [0, ∞]p ×R

p
+ satisfies the condition that there exists M > 0

such that

(x, y) ∈ A implies
p∨

i=1

yi ≤ M.

Then
h−1(A) = {(u, v) : (uv, v) ∈ A}

satisfies

(x, y) ∈ h−1(A) implies
p∨

i=1

yi ≤ M.

Thus if A is relatively compact, so is h−1(A). Therefore Eq. 3.11 and (Resnick 2007,
Proposition 5.5) imply

(P [F ∈ · ] × Ut)◦h−1 v→ (P [F ∈ · ] × U∞)◦h−1, in M+([0, ∞]p×R
p
+). (3.12)
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Tauberian theory and preferential attachment

Evaluate the left side of Eq. 3.12 on the relatively compact set [0, x]×[0, y1] (assum-
ing x > 0 and y > 0 are chosen to make this is a continuity set of the limit measure)
and we get,

(P [F ∈ · ] × Ut) ◦ h−1 ([0, x] × [0, y1])=
∫∫

{(u,v):uv≤x,v≤y1}
P [F ∈ du ]Ut(dv)

=
∫

v≤y1

∫
u≤x/v

P [F ∈ du ]Ut(dv)

=
∫

v≤y1

p∏
i=1

e−vi/xi Ut (dv)

=
∫

v≤y1
e− ∑p

i=1 vi/xi Ut (dv) (3.13)

and applying (3.12) we conclude that as t → ∞ this converges to

→
∫

v≤y1
e− ∑p

i=1 vi/xi U∞(dv). (3.14)

Now let y → ∞ and apply monotone convergence to get the integral in Eq. 3.14 to
converge to

→
∫
R

p
+

e− ∑p

i=1 vi/xi U∞(dv) =: Û∞(1/x).

So to show for x > 0 that

Ût (1/x) :=
∫
R

p
+

e− ∑p

i=1 vi/xi Ut (dv) = 1

t
Û (1/(b(t)x)) → Û∞(1/x), (3.15)

we must verify that

lim
y→∞ lim sup

t→∞

∣∣∣∣∣
∫

v≤y1
e− ∑p

i=1 vi/xi Ut (dv) −
∫
R

p
+

e− ∑p
i=1 vi/xi Ut (dv)

∣∣∣∣∣ = 0,

which is Eq. 3.9.
The statement that Û (1/x) is a distribution function of a Radon measure follows

from Eq. 3.1 since, as in Eq. 3.13,

∞ > Û(1/x) = lim
y→∞ (P [F ∈ · ] × U) ◦ h−1 ([0, x] × [0, y1]) ,

a limit of the distribution functions of Radon measures. The statement about Û∞(1/x)

follows similarly using the fact that Û∞(λ) < ∞ for λ > 0 by Eq. 3.8.

Rather than checking condition (3.9) directly, it may sometimes be easier to verify
the following sufficient condition: for every 1 ≤ i ≤ p, suppose

Ui(x) = U(R+ × · · · × [0, x] × R+ × · · · × R+) < ∞, (3.16)

and

lim
t→∞

Ui(bi(t)x)

t
= xγi , x > 0. (3.17)
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To see why these conditions are sufficient for Eq. 3.9, dominate the integral in Eq. 3.9
by

p∑
i=1

∫
[vi>y]

e− ∑p
i=1 vi/xi Ut (dv)

and focus, for simplicity, on the integral with i = 1 which can be written as

∫
[v1>y]

[
p∏

l=1

∫
sl>vl

1

xl

e−sl/xl dsl

]
Ut(dv)

=
∫

s1>y

(∫
y<v1≤s1

sl≥vl;l=2,...,p

Ut (dv)

)
p∏

l=1

1

xl

e−sl/xl ds1 . . . dsp

=
∫

s∈(y,∞)×R
p−1
+

Ut

(
(y, s1] × [0, s2] × · · · × [0, sp])

p∏
l=1

1

xl

e−sl/xl ds1 . . . dsp

≤
∫

s∈(y,∞)×R
p−1
+

Ut(s)

p∏
l=1

1

xl

e−sl/xl ds1 . . . dsp

≤
∫ ∞

y

Ut ([0, s1] × R
p−1
+ )

1

x1
e−s1/x1ds1

=
∫ ∞

y

U1(b1(t)s1)

t

1

x1
e−s1/x1ds1

and by an application of the Potter bounds, for given δ > 0 and large enough t and
y > 1, the previous expression is bounded by

≤
∫ ∞

y

(const)sγ1+δ 1

x1
e−s1/x1ds1 → 0, (y → ∞).

3.3 Regular variation of the transform implies regular variation of the measure

In this section we assume (3.1), (3.2), (3.9) and additionally assume there exists a
finite-valued function Û∞ such that for x > 0,

1

t
Û (1/(b(t)x)) = (P [F ∈ · ] × Ut) ◦ h−1 ([0, x] × R

p
+
)

→ Û∞(1/x). (3.18)

We claim that {Ut } is a tight family of measures on R
p
+. It suffices to show that for

any M > 0

sup
t≥1

Ut [0, M1] < ∞.
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Tauberian theory and preferential attachment

Given ε > 0, there exists δ > 0 such that P
[
F ∈ [δ1, δ−11]] ≥ 1 − ε. For x > 0,

Ût (1/x) = (P [F ∈ · ] × Ut) ◦ h−1([0, x] × R
p
+)

=
∫

{(u,v):uv≤x}
P [F ∈ du ]Ut(dv) ≥

∫
uv≤xu∈[δ1,δ−11]

P [F ∈ du ]Ut(dv)

=
∫

u∈[δ1,δ−11]
Ut(x/u)P [F ∈ du ]

≥ Ut(x/δ−1)P
[
F ∈ [δ1, δ−11]

]
≥ Ut(x/δ−1)(1 − ε).

Set x = δ−1M1 and then

sup
t≥1

Ut(M1) ≤ 1

1 − ε
sup
t≥1

Ût (1/(δ−1M1)) < ∞

by convergence in Eq. 3.18.
Suppose {Utn} is a convergent subsequence, say Utn → L in M+(R

p
+). Since we

assume (3.9) holds, the mechanics of Section 3.2.2 give for x > 0,

Ûtn(1/x) → L̂(1/x) < ∞, (tn → ∞) (3.19)

at continuity points of the limit. From Eq. 3.18 we get L̂ = Û∞. If there are two
subsequential limits L1, L2 of {Ut } then L̂1 = L̂2 = Û∞ and so {Ut } converges in
M+(R

p
+) to some U∞ with transform Û∞.

We summarize:

Proposition 2 Suppose U ∈ M+(R
p
+) and let (3.1), (3.2), (3.9) hold. If there exists

a finite-valued function Û∞ such that Eq. 3.18 holds, then Eq. 3.4 holds for some
measure U∞ ∈ M+(R

p
+) whose Laplace transform is Û∞. Moreover,

Ut(x) = 1

t
U(b(t)x) → U∞(x), (t → ∞)

for all x.

4 Application to preferential attachment network models

4.1 Model description

The directed edge preferential attachement model studied by Krapivsky and
Redner (2001) and Bollobás et al. (2003) is a model for a groowing directed random
graph. The dynamics of the model are as follows. Choose nonnegative real parame-
ters α, β, γ , δin and δout, such that α + β + γ = 1. To avoid degenerate situations
assume each of the numbers α, β, γ is strictly smaller than 1.

At each step of the growth algorithm we add one edge to an existing graph to
obtain a new graph, and we will enumerate the obtained graphs by the number of
edges they contain. Start with an initial finite directed graph, denoted G(n0), with at
least one node and n0 edges. For n = n0 + 1, n0 + 2, . . . , G(n) will be a graph with
n edges and a random number N(n) of nodes. If u is a node in G(n − 1), Din(u) and
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Dout(u) denote the in and out degree of u respectively. The graph G(n) is obtained
from the graph G(n − 1) as follows.

• With probability α we append to G(n − 1) a new node v and an edge leading
from v to an existing node w in G(n − 1) (denoted v �→ w). The existing node
w in G(n − 1) is chosen with probability depending on its in-degree:

p(w is chosen) = Din(w) + δin

n − 1 + δinN(n − 1)
.

• With probability β we only append to G(n − 1) a directed edge v �→ w between
two existing nodes v and w of G(n − 1). The existing nodes v, w are chosen
independently from the nodes of G(n − 1) with probabilities

p(v is chosen)= Dout(v) + δout

n − 1 + δoutN(n − 1)
, p(wis chosen)= Din(w) + δin

n − 1 + δinN(n − 1)
.

• With probability γ we append to G(n − 1) a new node w and an edge v �→ w

leading from the existing node v in G(n − 1) to the new node w. The existing
node v in G(n − 1) is chosen with probability

p(v is chosen) = Dout(v) + δout

n − 1 + δoutN(n − 1)
.

If either δin = 0, or δout = 0, we must have n0 ≥ 1 for the initial steps of the
algorithm to make sense.

For i, j = 0, 1, 2, . . . and n ≥ n0, let Nij (n) be the (random) number of nodes in
G(n) with in-degree i and out-degree j . Theorem 3.2 in Bollobás et al. (2003) shows
that there are nonrandom constants (fij ) such that

lim
n→∞

Nij (n)

n
= fij a.s. for i, j = 0, 1, 2, . . . . (4.1)

Clearly, f00 = 0. Since we obviously have

lim
n→∞

N(n)

n
= 1 − β a.s.,

we see that the empirical joint in- and out-degree distribution in the sequence {G(n)}
of growing random graphs has as a nonrandom limit the probability distribution

lim
n→∞

Nij (n)

N(n)
= fij

1 − β
:= pij a.s. for i, j = 0, 1, 2, . . . . (4.2)

In Bollobás et al. (2003) it was shown that the limiting degree distribution (pij ) has,
marginally, regularly varying (in fact, power-like) tails. Specifically, Theorem 3.1
ibid. shows that for some finite positive constants Cin and Cout we have

pi(in) :=
∞∑

j=0

pij ∼ Cini
−αin as i → ∞, as long as αδin + γ > 0, (4.3)

pj (out) :=
∞∑
i=0

pij ∼ Coutj
−αout as j → ∞, as long as γ δout + α > 0.
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Tauberian theory and preferential attachment

Here

αin = 1 + 1 + δin(α + γ )

α + β
, αout = 1 + 1 + δout(α + γ )

γ + β
. (4.4)

In fact, the limiting degree distribution (pij ) in Eq. 4.2 generates a distribution
that has jointly nonstandard regularly varying tails and the limit measure of regular
variation has a density as shown in Samorodnitsky et al. (2014).

4.2 Notation and results summary

We summarize results and notation for the preferential attachment model from
Samorodnitsky et al. (2014).

c1 = α + β

1 + δin(α + γ )
= 1

αin − 1
, c2 = β + γ

1 + δout(α + γ )
, = 1

αout − 1
(4.5)

a = c2/c1. (4.6)

We developed an explicit formula for the joint generating function of in- and out-
degree. The joint generating function of {pij } in Eq. 4.2,

ϕ(x, y) =
∞∑
i=0

∞∑
j=0

xiyjpij , 0 ≤ x, y ≤ 1, (4.7)

satisfies a partial differential equation that, when solved, yields

ϕ(x, y) = γ

α + γ
xϕ1(x, y) + α

α + γ
yϕ2(x, y) , (4.8)

with

ϕ1(x, y)=c−1
1

∫ ∞

1
z−(1+1/c1) (x+(1−x)z)−(δin+1)

(
y+(1−y)za

)−δout dz ,(4.9)

ϕ2(x, y)=c−1
1

∫ ∞

1
z−(1+1/c1) (x+(1−x)z)−δin

(
y+(1−y)za

)−(δout+1)
dz (4.10)

for 0 ≤ x, y ≤ 1. Each of ϕ1, ϕ2 is the joint generating function of a pair of nonneg-
ative integer-valued random variables; that is, on some probability space we can find
nonnegative integer-valued random variables Xj , Yj , j = 1, 2 such that

ϕj (x, y) = E
(
xXj yYj

)
, 0 ≤ x, y ≤ 1, j = 1, 2 .

If (I, O) is a random vector with generating function (4.8),

ϕ(x, y) = E
(
xI yO

)
,

we can represent the distribution of (I, O) as

(I, O)
d= B(1 + X1, Y1) + (1 − B)(X2, 1 + Y2), (4.11)

where B is a Bernoulli switching variable independent of Xj , Yj , j = 1, 2 with

P [B = 1] = 1 − P [B = 0] = γ

α + γ
.
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The explicit structure and form in Eq. 4.8, 4.9 and 4.10 allowed analysis of the asymp-
totic multivariate power law structure performed in Samorodnitsky et al. (2014). The
functions ϕi, i = 1, 2 are transforms of bivariate mass functions constructed by
mixing two negative binomial distributions with respect to the same Pareto distri-
bution. This structure is quite particular and explicit and allows direct analysis of
the bivariate regular variation structure. Absent such structure, if all one has is the
joint generating function, one would have to rely on Tauberian analysis of the trans-
form. We show how the material in Section 2 is applicable. Further remarks are in
Section 5.

4.3 Joint regular variation of the distribution of in-degree and out-degree

In this section we apply the Tauberian theorem of Section 3 to the joint generating
function ϕ of the limiting distribution of in- and out-degree given in Eq. 4.8, 4.9 and
4.10 to prove the nonstandard joint regular variation of in- and out-degree and obtain
an expression for the density of the tail measure.

The next Theorem 3 shows that each of the random vectors
(
Xj , Yj

)
, j = 1, 2,

has a nonstandard regularly varying distribution. The decomposition (4.8) allows us
to deduce the nonstandard joint regular variation of (I, O), the in-degree and out-
degree.

Theorem 3 Assume that δin > 0 and δout > 0, and let αin and αout be given by
Eq. 4.4. For each j = 1, 2 there is a Radon measure Vj ∈ M+([0, ∞]2 \ {0}) such
that as h → ∞,

hP
[(

h−1/(αin−1)Xj , h−1/(αout−1)Yj

)
∈ ·

]
v→ Vj (·), (4.12)

vaguely in M+([0, ∞]2 \ {0}). Furthermore, V1 and V2 concentrate on (0, ∞)2 and
have Lebesgue densities f1, f2 given by,

f1(x, y) = c−1
1 (
(δin + 1)
(δout))

−1 xδinyδout−1
∫ ∞

0
z−(2+1/c1+δin+aδout)

×e−(x/z+y/za)dz, (4.13)

and

f2(x, y) = c−1
1 (
(δin)
(δout + 1))−1 xδin−1yδout

∫ ∞

0
z−(1+a+1/c1+δin+aδout)

×e−(x/z+y/za)dz. (4.14)

The random vector (I, O) with joint mass function {pij } in Eq. 4.2 satisfies as h →
∞,

hP
[(

h−1/(αin−1)I, h−1/(αout−1)O
)

∈ ·
]

v→ γ

α + γ
V1(·) + α

α + γ
V2(·),

vaguely in M+([0, ∞]2 \ {0}).
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Proof It is enough to prove (4.12), (4.13) and (4.14) . We treat the case j = 1. The
case j = 2 is analogous. Since ϕ1(x, y) is the generating function of a probability
mass function, simply converting ϕ1(x, y) into a Laplace transform will not yield the
Laplace transform of an infinite measure U as required by the previous section. So
we first modify the generating function.

Choose and fix a positive integer k > αin−1. This choice of k guarantees E(Xk
1) =

∞. Denote

ψ(x, y) = ∂kϕ1

∂xk
(x, y), 0 < x, y < 1,

so that the function ψ can be written in the form

ψ(x, y) =
∞∑
i=0

∞∑
j=0

xiyjm
(k)
ij , 0 < x, y < 1 , (4.15)

where

m
(k)
ij =

k∏
d=1

(i + d)p
(k)
ij , i, j = 0, 1, 2, . . . ,

and (p
(k)
ij ) is the joint probability mass function of the random vector (X1 − k, Y1).

Let U(·) = ∑∞
i=0

∑∞
j=0m

(k)
ij ε(i,j)(·) be the infinite Radon measure on [0, ∞)2 con-

centrating on ({0, 1, 2, . . .})2 that puts mass m
(k)
ij at (i, j). To verify this measure is

infinite, observe

∑
i,j

m
(k)
ij =

∞∑
l=0

k∏
p=1

(p + l)P [X1 = l + k]

and since
∏k

p=1(p + l) ∼ (l + k)k as l → ∞ and E(Xk
1) = ∞, we have

∑
i,j m

(k)
ij

diverges.
Using Proposition 2, we show that the measure U is regularly varying: As h → ∞,

we show,

1

h
U

{
(i, j) :

(
h−1/(k−αin+1)i, h−(αin−1)/((αout−1)(k−αin+1))j

)
∈ ·

}
v→ V1,k(·) (4.16)

vaguely in M+([0, ∞)2), where the Radon measure V1,k concentrates on (0, ∞)2

with density

f1,k(x, y) = c−1
1 (
(δin+1)
(δout))

−1xδin+kyδout−1
∫ ∞

0
z−(2+1/c1+δin+aδout)

×e−(x/z+y/za)dz. (4.17)
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To this end, using the form of ϕ1 in Eq. 4.9, we write the function ψ in Eq. 4.15
explicitly as

ψ(x, y) = c−1
1

k∏
i=1

(δin + i)

∫ ∞

1
z−(1+1/c1)(z − 1)k (x + (1 − x)z)−(δin+k+1)

× (
y + (1 − y)za

)−δout dz

:= c−1
1

k∏
i=1

(δin + i)ψ̃(x, y) .

We switch from generating functions to Laplace transforms by replacing (x, y) with
e−λ = (e−λ1 , e−λ2) and then consider regular variation of the resulting Laplace
transform. For fixed λ1 > 0, λ2 > 0 elementary calculations show that, as h → ∞,

h−1ψ̃
(
e−λ1h

−1/(k−αin+1)

, e−λ2h
−(αin−1)/(αout−1)(k−αin+1)

)

∼ h−1
∫ ∞

1
zk−1−1/c1

(
1 + zλ1h

−1/(k−αin+1)
)−(δin+k+1)

×
(

1 + zaλ2h
−(αin−1)/((αout−1)(k−αin+1))

)−δout
dz

=
∫ ∞

h−1/(k−αin+1)
zk−1−1/c1 (1 + zλ1)

−(δin+k+1)
(
1 + zaλ2

)−δout dz

→
∫ ∞

0
zk−1−1/c1 (1 + zλ1)

−(δin+k+1)
(
1 + zaλ2

)−δout dz .

We conclude that for any λ1 > 0, λ2 > 0, as h → ∞,

h−1Û (λ1h
−1/(k−αin+1), λ2h

−(αin−1)/((αout−1)(k−αin+1)))

= h−1ψ
(
e−λ1h

−1/(k−αin+1)

, e−λ2h
−(αin−1)/((αout−1)(k−αin+1))

)

→ c−1
1

k∏
i=1

(δin + i)

∫ ∞

0
zk−1−1/c1 (1 + zλ1)

−(δin+k+1)
(
1 + zaλ2

)−δout dz

=
∫

[0,∞)2
e−(λ1v1+λ2v2) V1,k(dv1, dv2) , (4.18)

where the measure V1,k concentrates on (0, ∞)2 and has density

f1,k(x, y)=c−1
1

k∏
i=1

(δin+i)

∫ ∞

0
zk−1−1/c1

xδin+kz−(δin+k+1)


(δin + k + 1)
e−x/z yδout−1(za)−δout


(δout)
e−y/za

dz,

given by Eq. 4.17.
The claim (4.16) now follows from Eq. 4.18 and the Tauberian result in Proposi-

tion 2 provided we check that the measure U satisfies condition (3.9) of that result
so we must check with

b(h) =
(
h1/(k−αin+1), h(αin−1)/((αout−1)(k−αin+1))

)
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that

lim
y→∞ lim sup

h→∞

∫
[v1>y]∪[v2>y]

e−λ′v h−1U(b(h)dv) = 0. (4.19)

Considering the definition of U(·) the integral in Eq. 4.19 becomes, after a change of
variable si = bi(h)vi ,

∫
[s1>b1(h)y]∪[s2>b2(h)y]

e−(λ1s1/b1(h)+λ2s2/b2(h)) h−1U(ds)

=
∑

[i>b1(h)y]∪[j>b2(h)y]
e−(λ1i/b1(h)+λ2j/b2(h)) h−1m

(k)
ij

=
∑

[i>b1(h)y]∪[j>b2(h)y]
e−(λ1i/b1(h)+λ2j/b2(h)) h−1

k∏
d=1

(i + d)p
(k)
ij

≤
∑

i>b1(h)y

∞∑
j=0

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i+d)p
(k)
ij (4.20)

+
∑

j>b2(h)y

∞∑
i=0

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij . (4.21)

Notice that for the double sum in Eq. 4.20 we have,

∑
i>b1(h)y

∞∑
j=0

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij

≤
∑

i>b1(h)y

e−(λ1i/b1(h)) h−1
∞∑

j=0

k∏
d=1

(i + d)p
(k)
ij

=
∑

i>b1(h)y

e−(λ1i/b1(h)) h−1
k∏

d=1

(i + d)pi+k(in)

using the notation from Eq. 4.3. Set ui = ∏k
d=1(i + d)pi+k(in) so from Eq. 4.3

ui ∼ Cini
k−αin . Letting C be a finite constant, the sum on the previous line is bounded

by

C
∑

i>b1(h)y

e−(λ1i/b1(h)) h−1ik−αin

∼ Ch−1
∫ ∞

b1(h)y

e−(λ1x/b1(h))xk−αin dx

→ C

∫ ∞

y

e−λ1xxk−αin dx, (h → ∞),

→ 0 (y → ∞).
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In particular, given ε > 0, there is θε ∈ (0, ∞) such that for all h large enough,

∑
i>b1(h)θε

∞∑
j=0

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij ≤ ε. (4.22)

We now deal with the double sum (4.21). For h such that Eq. 4.22 is satisfied, we
have,

∑
j>b2(h)y

∞∑
i=0

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij

≤ ε +
∑

i≤b1(h)θε, j>b2(h)y

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij .

Further, for some positive constant C,

∑
i≤b1(h)θε, j>b2(h)y

e−(λ1i/b1(h)+λ2j/b2(h)) h−1
k∏

d=1

(i + d)p
(k)
ij

≤ C
∑

i≤b1(h)θε, j>b2(h)y

h−1ikp
(k)
ij

≤ Cθk
ε h−1b1(h)k

∑
j>b2(h)y

∞∑
i=0

p
(k)
ij

≤ Cθk
ε h(αin−1)/(k−αin+1)

∑
j>b2(h)y

pj (out)

∼
(
CCoutθ

k
ε /(αout − 1)

)
h(αin−1)/(k−αin+1)(b2(h)y)−(αout−1)

=
(
CCoutθ

k
ε /(αout − 1)

)
y−(αout−1)

→ 0 (y → ∞)

by Karamata’s theorem, using the notation from Eq. 4.3. This controls the double
sum in Eq. 4.21.

Letting ε → 0 we see that we have verified that the measure U satisfies condition
(3.9) and that Eq. 4.16 holds and we are now ready to prove (4.12). Let μ(k) =∑

i,j p
(k)
ij ε(i,j) be the probability measure concentrating on ({0, 1, 2, . . .})2 that puts

mass p
(k)
ij at (i, j). For Eq. 4.12, it is enough to prove that for any a, b > 0,

h

∫ ∞

h1/(αin−1)a

∫ ∞

h1/(αout−1)b

μ(k)(dx, dy) →
∫ ∞

a

∫ ∞

b

f1(x, y) dxdy (4.23)

as h → ∞, with f1 given by Eq. 4.13. Indeed, by Theorem 3.2 in Bollobás et al.
(2003), the conditional distributions of the random vector (I, O) are also regular

Author's personal copy



Tauberian theory and preferential attachment

varying with exponents of regular variation strictly larger than those of the marginal
distributions. Therefore, one can trivially add the axes {x = 0, y > 0} and {x >

0, y = 0} to the convergence in Eq. 4.23 which yields

hP
[(

h−1/(αin−1)(X1 − k), h−1/(αout−1)Y1

)
∈ ·

]
v→ V1(·) ,

which is equivalent to Eq. 4.12 with j = 1.
It remains, therefore, to prove (4.23). Fix M > max(a, b). Since

μ(k)(dx, dy) = U(dx, dy)∏k
d=1(x + d)

,

we have, as h → ∞,

h

∫ h1/(αin−1)M

h1/(αin−1)a

∫ h1/(αout−1)M

h1/(αout−1)b

μ(k)(dx, dy) ∼ h

∫ h1/(αin−1)M

h1/(αin−1)a

∫ h1/(αout−1)M

h1/(αout−1)b

×x−kU(dx, dy)

= h1−k/(αout−1)

∫ M

a

∫ M

b

x−kU
(
dh1/(αin−1)x, dh1/(αout−1)y

)
.

Denoting mh = hk/(αout−1)−1, we can write the above as

= 1

mh

∫ M

a

∫ M

b

x−kU
(
m

1/(k−αin+1)
h dx, m

(αin−1)/((αout−1)(k−αin+1))
h dy

)

→
∫ M

a

∫ M

b

x−kf1,k(x, y) dx dy

as h → ∞ by Eq. 4.16. Since

f1(x, y) = x−kf1,k(x, y), 0 < x, y < 1 ,

the statement (4.12) with j = 1 follows, because by Eq. 4.3 and 4.8,

lim sup
h→∞

h

[∫ ∞

h1/(αin−1)M

∫ ∞

0
μ(k)(dx, dy) +

∫ ∞

0

∫
h1/(αout−1)M

μ(k)(dx, dy)

]

≤ lim sup
h→∞

hP
(
X1 > h1/(αin−1)M + k

)
+ lim sup

h→∞
hP

(
Y1 > h1/(αout−1)M

)

≤ α + γ

γ

Cin

αin − 1
M−(αin−1) + α + γ

α

Cout

αout − 1
M−(αout−1),

and one only needs to let M → ∞.
As mentioned before, the case of Eq. 4.12 with j = 2 is analogous.

5 Conclusions

The structure of both ϕi, i = 1, 2 in Eq. 4.9 and 4.10 is simple enough to
allow direct analysis of the bivariate regular variation; each piece is a Pareto
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mixture of independent negative-binomial components. This solution was presented
in Samorodnitsky et al. (2014). However, in other models, this explicitness will be
absent. If one proceeds from difference equations to solve for ϕ(x, y), one can apply
Tauberian methods even when ϕ(x, y) has no explicit representation as a heavy tail
mixture. Assuming some sort of Markovian growth structure in the network model,
steps in the analysis are

(1) Express the desired mass function as a solution of a difference equation.
(2) Solve the difference equation using pde methods.
(3) If the solution ϕ(x, y) has advantageous structure, attempt to analyze bivariate

power law structure directly.
(4) Otherwise, transform ϕ(x, y) to the Laplace transform of an infinite measure.

The Tauberian theory only applies to the case of infinite measures and this
requires modifying ϕ(x, y), typically by taking k derivatives, where k is chosen
to give an infinite kth marginal moment.

(5) Apply the Tauberian theorem.

One variant of the preferential attachment model presented here and in Samorod-
nitsky et al. (2014) is a reciprocity model incorporating an added feature that when
a new node joins a network, it attaches via an edge to an existing node according
to preferential attachment rules and the attached link may or may not be reciprocal.
Once a new node attaches, there are probabilities for a reciprocal edge being created.
See for instance Jiang et al. (2014). We intend to analyze such a model in the near
future and anticipate the Tauberian theory being crucial.
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