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ABSTRACT
We consider a system ofN parallel servers, where each server
consists of B units of a resource. Jobs arrive at this sys-
tem according to a Poisson process, and each job stays in
the system for an exponentially distributed amount of time.
Each job may request different units of the resource from
the system. The goal is to understand how to route arriving
jobs to the servers to minimize the probability that an ar-
riving job does not find the required amount of resource at
the server, i.e., the goal is to minimize blocking probability.
The motivation for this problem arises from the design of
cloud computing systems in which the jobs are virtual ma-
chines (VMs) that request resources such as memory from
a large pool of servers. In this paper, we consider power-of-
d-choices routing, where a job is routed to the server with
the largest amount of available resource among d ≥ 2 ran-
domly chosen servers. We consider a fluid model that cor-
responds to the limit as N goes to infinity and provide an
explicit upper bound for the equilibrium blocking probabil-
ity. We show that the upper bound exhibits different be-
havior as B goes to infinity depending on the relationship
between the total traffic intensity λ and B. In particular,
if (B − λ)/

√
λ → α, the upper bound is doubly exponen-

tial in
√
λ and if (B − λ)/ logd λ → β, β > 1, the upper

bound is exponential in λ. Simulation results show that the
blocking probability, even for small B, exhibits qualitatively
different behavior in the two traffic regimes. This is in con-
trast with the result for random routing, where the blocking
probability scales as O(1/

√
λ) even if (B − λ)/

√
λ→ α.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes,
Queueing theory
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1. INTRODUCTION
We consider a system of N parallel homogeneous servers.

Each server has B units of a resource. There are J different
types of jobs. Jobs of type j arrive at the system according to
a rate-Nλj Poisson process, and each type-j job requires bj
units of resource and stays in the system for an exponentially
distributed amount of time with mean 1. Let λ =

∑J
j=1 λjbj

denote the total traffic intensity.
Each arriving job is routed to a server according to a rout-

ing policy and requires zero-delay service. If the selected
server has sufficient resource to accommodate the arriving
job, the job will be processed immediately. Otherwise the
job is blocked, i.e., it leaves the system immediately without
being served. The goal is to understand how to route arriv-
ing jobs to the servers to minimize the probability that an
arriving job does not find the required amount of resource
at the server, i.e., to minimize blocking probability.

For each server m, let nj,m(t) denote the number of type-j
jobs that the server is serving at time t. We use

nm(t) = (n1,m(t), n2,m(t), ..., nJ,m(t))

to denote the state of server m. Note that nm is feasible only
if server m has enough resource to accommodate all these
jobs. That is,

J∑
j=1

nj,mbj ≤ B.

The model is motivated by the design of cloud comput-
ing systems in which the jobs are virtual machines (VMs)
that request resources from a large pool of servers. Some
examples of cloud computing systems are Amazon EC2 sys-
tem [1], Google’s AppEngine [3] and Microsoft’s Azure [5].
Users submit requests for resource in the form of virtual ma-
chines (VMs). Each request specifies the amount of physical
resources it needs in terms of processor power, memory, I/O
bandwidth, disk, etc.

The resource allocation problem for VMs is a stochastic
bin-packing problem [6, 9], but with VMs terminating af-
ter an application has completed. This motivates our model
with jobs arriving and departing the system, which was first
considered in [15] and is referred to as a service model in [26].
When a user submits VM requests in a cloud computing sys-
tem, any request that is not immediately fulfilled is typically



rejected [5]. This motivates us to consider a loss model and
its blocking probability, in contrast to the models in [15, 26].

In our model, we consider one-dimensional packing con-
straint for the requests of resources. While VM requests can
be modelled as multi-dimensional bin-packing, it has been
observed that memory is the dominating bottleneck [11].
Due to the large size of a cloud computing system, we con-
sider asymptotic blocking probability as N →∞.

We consider the power-of-d-choices routing algorithm for
this system. An arriving job is routed to the server with
the largest amount of available resource among d ≥ 2 ran-
domly chosen servers. When none of the chosen servers has
enough resource to accommodate the job, it is rejected. In
this paper, we focus on the fluid limit as N → ∞ and the
asymptotic blocking probability. To the best of our knowl-
edge, this is the first work of studying power-of-d-choices
routing algorithm in a loss model with packing constraints.

1.1 Related Work
VMs packing problem. Some recent work model the
VMs allocation as stochastic bin packing with item depar-
tures [11, 17], and focus on improving resource utilization
with different packing algorithms. Some other recent work
study this problem with different performance objectives,
including maximizing system throughput [15], minimizing
heavy-traffic queue lengths [16], and minimizing the total
energy consumption [29]. In this paper, we are interested in
zero-delay service, i.e., a VM is served immediately upon ar-
rival. The recent works in [24, 26, 25] also study zero-delay
service. However, their performance objective is to mini-
mize the number of servers occupied, which is different from
ours. In particular, they consider the case of infinite num-
ber of servers, while we consider finite number of servers and
study the blocking probability in the limit as the number of
servers goes to infinity.

The Power-of-d-choices algorithm. Azar et. al. [4] were
the first to analyze randomized load balancing schemes us-
ing balls-and-bins model. Another line of work focus on the
queueing systems, [18, 19, 28, 8, 10, 14, 20, 31]. In par-
ticular, a supermarket model has been used widely to ana-
lyze the randomized load balancing schemes. Vvedenskaya
et.al. [28] and Mitzenmacher [18] showed that when each ar-
riving job is assigned to the shortest d ≥ 2 randomly chosen
queues, the equilibrium queue sizes decay doubly exponen-
tially in the limit as the number of servers goes to infinity.
This is a substantial improvement over the d = 1 case, where
the queue size decays exponentially. While the work in [27]
does not address power-of-d choices routing directly, similar
analytical techniques have been used there to study the im-
pact of resource pooling in large server farms. However, to
the best of our knowledge, the performance of the power-of-
d-choices algorithm (d ≥ 2) for a loss model has not been
studied previously. Related work has also been done in par-
allel with our work in [21]

1.2 Organization of the Paper
The rest of the paper is organized as follows. Section 1.3

introduces the notation used in this paper. Section 2 states
the precise model and main results. The proofs of these main
results will be deferred to later sections. We first study the
loss model under the power-of-d-choices algorithm (d ≥ 2)
for the case when jobs are homogeneous, i.e., all jobs are of
the same type, in Section 3-5. Section 3 justifies the use of

fluid approximation of sufficiently large finite systems. Sec-
tion 4 develops an upper bound for the stationary point of
the fluid model. Section 5 analyzes the blocking probabil-
ity in two different limiting regimes. We then extend our
analysis to the case with heterogeneous jobs based on an
independence ansatz in Section 6.

1.3 Notation
We will use bold letters to denote vectors in RB or NJ or

NJ×N , and ordinary letters for scalars. Dot product in the
vector spaces RJ is denoted by 〈x,y〉.

Let N+ be the set of non-negative integers. The following
notations will be used throughout the paper:

C ,

{
n ∈ NJ+ :

J∑
j=1

njbj ≤ B

}
,

Q(N) , {Q = {n1,n2, ...,nN} : nm ∈ C, ∀m = 1, 2, ..., N} ,

S ,
{

s ∈ [0, 1]B+1 : 1 = s0 ≥ s1 ≥ ... ≥ sB ≥ 0
}
,

S(N) ,

{
s ∈ S : si =

Ki

N
, for some Ki ∈ N+,∀i

}
,

P ,

p ∈ R|C| :

|C|∑
i=1

pi = 1, pi ≥ 0, ∀i

 .

And we will use the following notation for asymptotic
comparisons; here f and g are positive functions:

1. f(x) . g(x) for f(x) = O(g(x)), and f(x) & g(x) for
f(x) = Ω(g(x)).

2. f(x) ∼ g(x) for lim
x→∞

f(x)
g(x)

= 1.

2. PROBLEM STATEMENT AND MAIN RE-
SULTS

We briefly recap the model that was stated in the intro-
duction. We consider a system with N servers, each of which
has B units of a resource, such as CPU, memory, etc. This
system is accessed by J different types of jobs, where each
type of job is characterized by the number of units of re-
source that it demands. Jobs of type j arrive according to
a Poisson process of rate Nλj , each type-j job requests bj
units of the resource, and each job stays in the system for an
exponentially distributed amount of time with mean 1. We
use b = (b1, b2, ..., bJ) to denote the vector of resource units
required by different job types. The arrival processes of the
different job types and the job holding times are all indepen-
dent of each other. We consider two cases separately, J = 1
which we call the homogeneous job case and J > 1 which we
call the heterogeneous job case. In the homogeneous case,
we assume without loss of generality that b1 = 1, i.e., all
jobs require one unit of resource.

Our goal is to study the blocking probability of the power-
of-d-choices routing: under this routing scheme, upon each
job arrival, d servers are selected uniformly at random and
the job is routed to the least loaded of the servers (the one
with the least amount of resource used). If none of the
selected servers has sufficient amount of resource, then the
arriving job is blocked and lost. The performance in the
case d = 1 is fundamentally different from the cases where
d > 1. Therefore, we study these two cases separately. In the



case of d = 1, since we are routing an arrival to a randomly
selected server, we will call this scheme the random routing
scheme. We will reserve the use of the term power-of-d-
choices routing to the case where d > 1.

Next, we present the main results of the paper, for the
homogeneous job case first followed by the heterogeneous
job case.

2.1 Homogeneous Jobs
Before we present our main results, we introduce some

notation. Consider a system with N servers. Let S
(N)
k (t)

denote the fraction of servers with at least k jobs in service

at time t. We use π(N) = (π
(N)
0 , π

(N)
1 , ..., π

(N)
B ) to denote the

equilibrium distribution of S(N)(t) = {S(N)
i (t)}Bi=0. We will

approximate π(N) by the stationary state of the following
fluid model in a manner which will be made precise later.

Definition 1. (Fluid Model). Given any initial condi-
tion s0 ∈ S, a function s(t) : [0,∞) → S is said to be a
solution to the fluid model if:

1. s(0) = s0;

2. s0(t) = 1 for any t ≥ 0;

3. s(t) satisfies the following differential equations for any
t ≥ 0:

dsk(t)

dt
=

{
λ(sdk−1 − sdk)− k(sk − sk+1), 1 ≤ k ≤ B − 1
λ(sdB−1 − sdB)−BsB , k = B

(1)

Equation (1) can be written as

ṡ(t) = F(s),

where

Fk(s) =

{
λ(sdk−1 − sdk)− k(sk − sk+1), 1 ≤ k ≤ B − 1
λ(sdB−1 − sdB)−BsB , k = B

The k-th function Fk(s) is the drift of sk at point s(t). The
stationary point of the differential equation (1), denoted by
π, satisfies

F(π) = 0. (2)

The following theorem presents the main convergence re-
sult (in the limit N →∞) for the homogeneous job case.

Theorem 1. The fluid model has a unique stationary dis-
tribution π and the sequence of stationary distribution π(N)

converges weakly to δπ, which is the Dirac measure concen-
trated on π. That is,

lim
N→∞

π(N) = δπ, in distribution.

Due to the convergence result above and due to the Pois-
son nature of the arrival process, πdB is a good approximation
to the blocking probability experienced by arriving jobs, de-

noted by P
(N)
b , in a system with N servers. This is due to

the fact that, in the limit as N → ∞, the servers become
independent. However, that is not directly established in

the convergence theorem above. But it can be argued as
follows: using Little’s law, we have

Nλ(1− P (N)
b ) = N

B∑
k=1

π
(N)
k .

Summing Fk(π) = 0 over 1 ≤ k ≤ B yields

λ(1− πdB) =

B∑
k=1

πk.

Let Pb = πdB . From Theorem 1, we can approximate P
(N)
b

by Pb when N is sufficiently large.

While π can be computed recursively from Eq. (2), we
provide a closed-form expression which provides an upper
bound on πB for all values of λ and B for the case d ≥ 2.
This upper bound is useful later to understand the striking
performance difference between the cases d = 1 and d > 1.

Theorem 2. (Upper bound) Let π denote the stationary
point of the fluid model. Define {π̄k}Bk=0 as follows:

π̄k =


1, 0 ≤ k ≤ i0 + 1

λ
dk−i0−1−1

d−1

(k−1)(k−2)d
1 ···(i0+1)d

k−i0−2 , i0 + 1 < k ≤ B
(3)

where i0 = bλc.
Then π̄ is an upper bound for π, i.e., for any 0 ≤ k ≤ B,

π̄k ≥ πk.

Note that in the case d = 1, since we are randomly se-
lecting a server, by the property of Poisson processes, the
blocking probability is given by the well-known Erlang-B
formula for M/M/B/B systems:

B(B, λ) =
λB/B!∑B
k=0(λk/k!)

. (4)

Comparing equations (3) and (4), we can see that the
blocking probability goes to zero faster in the case of d ≥ 2,
compared to that for d = 1.

To further provide insight into the blocking probability Pb
in the case of d ≥ 2, we consider two limiting regimes: (i)
B−λ√
λ
→ α as B → ∞ and (ii) B−λ

logd λ
→ β as B → ∞. We

call the former the heavy-traffic regime and the latter the
critically-loaded regime. The heavy-traffic has been stud-
ied extensively in the context of M/M/B/B and G/G/B/B
systems [7, 30, 23].

Theorem 3. Let λ < B and λ
B
→ 1 as B →∞, then

πB . (e−
c2

2 )
(B−λ)2

λ
d(1−c)(B−λ)−1

, (5)

where c is an arbitrary constant satisfying 0 < c < 1.
In particular,

1. If B−λ√
λ
→ α as B →∞, where α > 0, then

logd log
1

Pb
& ((1− c)α+ o(1))

√
λ.

That is, the blocking probability decays doubly exponen-
tially in

√
λ.



2. If B−λ
logd λ

→ β as B → ∞, where β > 1, then there

exists a constant γ = (1− c)β − 1 > 0 such that

log
1

Pb
& λγ+o(1).

That is, the blocking probability decays exponentially in
λγ .

Remark. Theorem 3 shows that the fluid limit of the equi-
librium blocking probability is dominated by an asymptotic
upper bound, which exhibits very different behavior depend-
ing on the relationship between λ and B as B goes to infinity.
In particular, if B−λ√

λ
→ α, the upper bound is doubly expo-

nential in
√
λ and if B−λ

log λ
→ β, β > 1, the upper bound is

exponential in λη. This is in contrast with the result for ran-
dom routing, where the blocking probability scales as O( 1√

λ
)

even if B−λ√
λ
→ α.
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Figure 1: Blocking probability for the power-of-two-choices al-

gorithm with different load gap. Line curves are obtained by

solving Eq. (2) numerically. Markers are from simulations with

N = 1000.

Numerical Results: Figure 1 shows the blocking probabil-
ity for the power-of-two-choices algorithm with B−λ =

√
λ

and B − λ = 2 log λ, both by solving Eq. (2) numerically
and by simulating a finite system with N = 1000. Note
that the y-axis is in log scale. We can see that even for
small B, the blocking probability Pb exhibits qualitatively
different behavior in these two regions: with log λ load gap,
Pb decays exponentially; while for

√
λ load gap, Pb decays

much faster. For B = 30, Pb is of order 10−15 with
√
λ

load gap. It requires very long simulation time in order to
observe blocking event. We simulated around 1010 arrivals
and no job blocking was observed for B ≥ 30.

To extend the results in this section to the heterogeneous
job case, we present a well-known alternative viewpoint of
the derivation of π. Suppose we assume that, in steady-
state, the servers become independent of each other and
due to symmetry, the number of jobs in each server is given
by π. In this case, let us focus on a particular server, say
server 1, and write down the Markov chain corresponding to
the number of jobs in the server. To describe the transition
rate of this Markov chain, suppose that the server has k
jobs currently in service. Then, the arrival rate of jobs to
this server (call it qk) is Nλ times the probability that an

arriving job selects this server. It is easy that qk is given by

qk = Nλ · d
N

(
d∑
i=1

1

i

(
d− 1

i− 1

)
(π

(N)
k − π(N)

k+1)i−1(π
(N)
k+1)d−i

)
,

which in the limit as N →∞ becomes

qk = λ

(
πdk − πdk+1

πk − πk+1

)
.

Thus, the Markov chain can be represented by the transition
diagram in Figure 2. It is now easy to see that the steady-
state distribution of this Markov chain is given by Eq. (2).
This independence ansantz will be used in the next section
to derive blocking probability results for the heterogeneous
job case.

1B B10 2

1 2 B

0q 1q
1Bq

Figure 2: State-transition-rate diagram for server 1 with B units

of resource and homogeneous job arrivals.

2.2 Heterogeneous Jobs
We use the independence ansatz in the previous subsection

as follows. Consider a particular server, say server 1, and let
n = (n1, ..., nJ) be the number of jobs of different types in
this server. Let {pn}n∈C denote the asymptotic equilibrium
distribution for server 1. Then pn is also the asymptotic
fraction of servers in state n.

Under the asymptotic independence assumption, the ar-
rival process of type j jobs to server 1 is a state-dependent
Poisson process with rate λj(n), which is given by

λj(n) = λj

(
d∑
i=1

(
d

i

)
Ei−1

n Gd−in

)
, (6)

where

En =
∑
n̂∈C

〈n̂,b〉=〈n,b〉

pn̂ , Gn =
∑
n′∈C

〈n′,b〉>〈n,b〉

pn′ .

Let Bj = b B
bj
c denote the maximum number of type-j

jobs that a server can serve simultaneously. In the case of
two job types, the Markov chain is shown in Figure 3. How-
ever, it is difficult to analyze the equilibrium distribution of
this Markov and obtain a simple expression for the blocking
probability. Therefore, we study a one-dimensional recur-
sion as in [12] and [22].

Theorem 4. The tail distribution r of the number of oc-
cupied resource units satisfies the following equation for any
k = 0, 1, ...., B:

J∑
j=1

λjbj(r
d
k−bj − r

d
k−bj+1) = k(rk − rk+1), (7)

where rx = 1 for any x ≤ 0 and rB+1 = 0.
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of resource and two types of jobs arrivals.

As for the blocking probability, we obtain analogous re-
sults as for homogeneous jobs. Let b = max

j=1,...,J
bj , and de-

note the blocking probability for jobs of type j by Pbj . We
have the following theorem.

Theorem 5. Let λ < B and λ
B
→ 1 as B →∞,

rB−b+1 . (e−
c2

2 )
(B−λ)2

bλ
d
(1−c)(B−λ

b
)−1

, (8)

where c is an arbitrary constant satisfying 0 < c < 1.
In particular,

1. If B−λ√
λ
→ α as B →∞, where α > 0, then

logd log
1

Pbj
& ((1− c)α

b
+ o(1))

√
λ,

∀j ∈ {1, 2, ..., J}. That is, for any type of jobs, the

blocking probability decays doubly exponentially in
√
λ.

2. If B−λ
logd λ

→ β as B → ∞, where β > b, then there

exists a constant η = (1− c)β
b
− 1 > 0 such that

log
1

Pbj
& λη+o(1),

∀j ∈ {1, 2, ..., J}. That is, for any type of jobs, the
blocking probability decays exponentially in λη.

The results in this section are derived under the indepen-
dence ansatz. The existing technique to establish asymp-
totic independence depends on monotonicity, which does not
hold for our problem. Although we do not have the tools to
prove the ansatz without monotonicity, we believe that it is
true in terms of the random nature of power-of-d-choices al-
gorithm. Alternatively, one can use the fluid approximation:
first show convergence of the stochastic system to a differen-
tial equation, then show that the differential equation has a
unique stationary point to which it converges starting from

any initial condition, and finally prove certain tightness re-
sults. We have done all of this for the homogeneous case in
the next section. In the heterogeneous case, we only have
partial results: we can prove convergence to a differential
equation and also show that the equation (7) is one of the
stationary points of the differential equation. The rest of
the steps need to be verified.

3. CONVERGENCE RESULTS FOR THE HO-
MOGENEOUS CASE

In this section, we focus on the convergence results that
justify the approximation of the sample paths S(N)(t) of
sufficiently large systems using the solution s(t) to the fluid
model. Before showing the convergence results rigorously,
we introduce some notation for system state and provide
some interpretation of the fluid model defined in Section
2.1.

3.1 Preliminaries
Fix the number of servers N . With homogeneous jobs,

system state can be represented by Q(N)(t) = (n
(N)
1 (t), n

(N)
2 (t),

..., n
(N)
N (t)), where n

(N)
m (t) is the number of jobs in server m

at time t. Under the Poisson arrivals and i.i.d exponen-
tial service time assumption, the process {Q(N)(t), t ≥ 0} is

Markov with state space Q(N). Note that 0 ≤ n
(N)
m (t) ≤ B

as each server can accommodate at most B jobs simultane-
ously. Define

S
(N)
k (t) =

1

N

(N)∑
i=1

I[k,B](n
(N)
i (t)), ∀k ∈ {0, 1, 2, ..., B},

where S
(N)
k (t) represents the fraction of servers with at least

k jobs in service. Note that S
(N)
0 (t) = 1 for all t. Since the

system is fully symmetric, the evolution of the system can
be described by the process {S(N)(t), t ≥ 0}, which is also
Markov. Moreover, the system is stable for any λ ≥ 0, as
the amount of resource at each server is finite and there
is no extra waiting room for arrivals. Hence the Markov
process {S(N)(t), t ≥ 0} is positive recurrent. We use π(N) =

(π
(N)
0 , π

(N)
1 , ..., π

(N)
B ) to denote its equilibrium distribution.

Explanation for the drift of sk(t) in Eq. (1): Con-
sider a system with N servers. We will identify the expected
change in the fraction of servers with at least k jobs in ser-
vice over a small period of time of length dt.

(I). The first term corresponds to the change caused by
the arrivals. When an arriving job is assigned to a server

with k − 1 jobs, S
(N)
k increases by 1

N
. Observe that the

number of servers with at least j jobs for j 6= k, does not

change. Thus S
(N)
k is increased by 1

N
if only if an arriving

job joins a server with k− 1 jobs. Note that the probability
that all d sampled servers have at least k − 1 jobs is sdk−1.

The difference sdk−1 − sdk is the probability that at least one
of the sampled servers has k−1 jobs. With total arrival rate

Nλ, the increment for S
(N)
k during this time period due to

arrival is hence dt×Nλ× 1
N
× (sdk−1− sdk) = λ(sdk−1− sdk)dt.

(II). The second term corresponds to the decrease due to
the completion of jobs. The argument is similar to that of
the first term.



3.2 Convergence Results
We first provide an overview of the convergence results:

First we prove some properties of the fluid model. We
will show that there exists a unique solution π to the dif-
ferential equations (1) which is stationary with respect to t,
i.e., F(π) = 0 (Lemma 1). Moreover, given any finite initial
condition, the solution to the fluid equation is unique and
converges to the stationary solution as t→∞ (Lemma 2).

The second step is to show that as N →∞, the evolution
of process S(N)(t) converges uniformly, over any finite time
interval, to the unique solution of the fluid model (Lemma
5). The result is derived by applying Kurtz’s theorem ([13,
18]) for density dependent jump Markov processes.

The last step is to prove that the sequence of the steady-
state distribution of S(N)(t) (denoted by π(N)), concentrates
at the unique stationary distribution of the fluid model (π)
as N →∞ (Theorem 1).

Lemma 1. There exists a unique solution π ∈ S of the
differential equation (1) that is invariant with respect to t,
i.e., F(π) = 0.

We defer the full proof of Lemma 1 to the appendix and
provide an outline below.

Proof outline of Lemma 1
Existence: The stationary solution π satisfies the equation
F(π) = 0. We construct a continuous mapping G : S → S,
such that a fixed point of G is a solution to F(π) = 0.
By Brouwer Fixed Point Theorem, G has at least one fixed
point, i.e., there exists π ∈ S such that F(π) = 0.

Uniqueness: We prove the uniqueness of stationary solu-
tion by contradiction and induction. First we show that
if there exist two stationary solutions π and π̂ satisfying
πB = π̂B , then πk = π̂k for any k. Therefore if there ex-
ist two different solutions π and π̂, πB 6= π̂B . Assume
πB < π̂B , by induction, we can show that πk < π̂k for
any k = 0, 1, ..., B, which contradicts with the fact that
π0 = π̂0 = 1.

Lemma 2. Given any initial condition s0 ∈ S,

1. the fluid model has a unique solution s(s0, t) in S,

2. as t→∞, the solution s(s0, t) converges to the unique
stationary solution π.

We need the following lemmas to prove Lemma 2. The
proofs of Lemma 3-4 are provided in the appendix.

Lemma 3. Let s̄(t) and s(t) be the solutions to differential
equations (1) with initial condition s̄0 and s0 respectively. If
s̄0
k ≤ s0

k for k = 1, 2, ..., B, then s̄k(t) ≤ sk(t) for any t ≥ 0.

Lemma 4. Let ψ(t) =
∑B
k=0 |sk(t)−πk|, where s(t) is the

solution to differential equations (1) with initial condition s0

satisfying s0
k ≥ πk for any k (or s0

k ≤ πk for any k), then
ψ(t) converges to 0 as t→∞.

Proof of Lemma 2: Item 1 follows by the arguments in
Theorem 1.(a) of [28].

For any initial values s0 ∈ S, define two initial condi-
tions su and sl: suk = max{s0

k, πk}, slk = min{s0
k, πk} for

any k. Let su(t) and sl(t) denote the solutions with initial
conditions su and sl respectively. From Lemma 3, we have
suk(t) ≥ πk ≥ slk(t) for all t and any k. Thus it is sufficient
to show that limt→∞ |su(t) − π| = limt→∞ |sl(t) − π| = 0,
where |·| is l1 norm. The result follows directly from Lemma
4.

Lemma 5. Consider a sequence of systems with the num-
ber of servers N increasing to infinity. Fix any T > 0. If the
sequence of initial system state {S(N)(0)}∞N=1 concentrates
on some s0 ∈ S as N →∞, then

lim
N→∞

sup
t∈[0,T ]

|S(N)(t)− s(s0, t)| = 0 a.s. (9)

where s(s0, t) is the solution to the differential equation (1)
given initial condition s0.

The following lemma is used to prove Lemma 5.

Lemma 6. The drift function F(s) is Lipschitz, i.e., there
exits a constant M > 0 such that for any x,y ∈ S,

|F(x)− F(y)| ≤M |x− y|,

where | · | is l1 norm.

Proof of Lemma 5: We prove this lemma by Kurtz’s the-
orem [13].

(a). It is easy to check that {S(N)(t), t ≥ 0} is a density

dependent jump Markov process with state space S(N).
(b). When the system is in state s, the possible tran-

sitions is given by L = {±ek : 1 ≤ k ≤ B}, where ek
are vectors with only the k−th element equal to 1/N and
all other elements zero. The transition rates are given by

q
(N)
s,s+l = Nβl(s), where βek (s) = λ(sdk−1−sdk) and β−ek (s) =

k(sk − sk+1). Therefore the rate at which jumps occur is
bounded above by λ+B everywhere.

(c). Lemma 6 states that the differential equation for the
limiting deterministic process satisfies the Lipschitz condi-
tion.

Then the result follows by Kurtz’s Theorem.

Proof of Theorem 1:
We will use⇒ for weak convergence throughout the proof.
Note that set S is compact. By a corollary of Prokhorov’s

Theorem, for any subsequence of {N}, there exists a subsub-

sequence {Nk} such that π(Nk) converges weakly to some
probability distribution π̄. By the Skorokhod’s represen-
tation theorem, there exist a sequence of random vector
{X(Nk)} and a random vector X̄ such that

X(Nk) d
= π(Nk) X̄

d
= π̄,

and

X(Nk) a.s.−→ X̄ as k →∞.

Let S(Nk)(0) = X(Nk), i.e., start the system with Nk
servers at an initial condition specified by its stationary dis-
tribution. We use S̄(t) to denote the random state of the
dynamic system with initial condition X̄.

We have the following claim (proven in the appendix):

Claim 1: For any t ≥ 0,

S(Nk)(t)⇒ S̄(t) as k →∞.



Then the result follows from the arguments in Theorem
5.1 of [2].

Remark. Lemma 5 and Theorem 1 state that the behavior
of sufficiently large systems can be approximated by that
of the deterministic infinite system, which is described by a
system of differential equations defined in Eq. (1).
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Figure 4: Equilibrium tail distribution for the power-of-two-

choices algorithm with B = 50 at three different loads. The values

for the stationary point are obtained numerically by solving Eq.

(2). Simulation results are from a finite system with N = 500.

Numerical Result. Figure 4 shows the equilibrium tail
distributions of the number of jobs at a server under the
power-of-two-choices algorithm with B = 50 at three differ-
ent loads, both by solving Eq. (2) numerically and by sim-
ulating a finite system with N = 500. We can see that the
coincidence of the empirical distribution with the stationary
point is almost exact. That is, values of the stationary point
in the large system limit predict that of a finite system very
well.

4. AN UPPER-BOUND FOR THE HOMO-
GENEOUS CASE

Unlike the supermarket model operating under the power-
of-d-choices policy [18, 28], there is no explicit expression
for the stationary point π of the loss model. We establish
an explicit upper-bound for π. Observe that the proposed
upper-bound π̄ (defined in Eq. (3)) can be expressed by a
recursive formula as follows:

π̄k =

{
1, 0 ≤ k ≤ i0 + 1

λ
k−1

π̄dk−1, i0 + 1 < k ≤ B

where i0 = bλc.

Proof of Theorem 2: We complete the proof in two steps.
(i) First we show that πk ≤ λ

k
πdk−1 for 1 ≤ k ≤ B by

backward induction. The inequality holds for k = B:

πB −
λ

B
πdB−1 = − λ

B
πdB ≤ 0.

Assume that πk+1 ≤ λ
k+1

πdk hold for k + 1 ≤ B. Then

πk −
λ

k
πdk−1 = πk+1 −

λ

k
πdk ≤ πk+1 −

λ

k + 1
πdk ≤ 0.

Hence πk ≤ λ
k
πdk−1, ∀k = 1, 2, ..., B.

(ii) Next we prove the theorem by induction.
For any k ≤ i0 + 1, π̄k = 1 ≥ πk.

Assume that π̄k ≥ πk hold for some k ≥ i0 + 1. Then

π̄k+1 =
λ

k
π̄dk ≥

λ

k
πdk ≥

λ

k
πdk + πk −

λ

k
πdk−1 = πk+1,

where the first inequality comes from the assumption and
the second one follows by the property of π we just proved.
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Figure 5: An upper bound for the stationary point.

Figure 5 compares the equilibrium tail distribution of the
stationary point and the proposed distribution π̄ with B =
50 at three different loads. We can see that the upper bound
always holds. Moreover, the proposed distribution charac-
terizes the steep slope of the stationary point, i.e., πk de-
creases drastically from 1 to 0 at some k.

Since the performance measure of primary interest is the
blocking probability Pb, we are interested in the tightness of
the upper-bound blocking probability.

ρ = λ/B Fluid limit Upper-bound

0.6 0 0

0.8 0 4.508× 10−27

0.84 0.0000 7.003× 10−7

0.88 1.873× 10−25 0.0426

0.9 5.229× 10−13 0.2419

0.92 8.240× 10−7 0.5535

0.94 7.854× 10−4 0.8122

Table 1: The blocking probability for the power-of-two-
choices policy with B = 50 at different load.

Table 1 compares the upper-bound blocking probability
and values of the stationary fluid limit under the power-
of-two-choices policy with B = 50 at different loads. The
values given by the upper-bound are quite close to that of
the stationary fluid limit at low to medium load. With B
fixed, as the load increases towards 1, the gap increases. We
have seen that the proposed upper-bound resembles a shift
of the stationary fluid limit from Fig. 5. At high load, the
upper-bound shifts too much that the resulting bound for
blocking probability becomes loose. However, if we fix the
load ρ = λ

B
for the system, we can see that the upper-bound

blocking probability π̄dB decays to 0 as B increases. This
implies that the upper-bound becomes tight for sufficiently
large B.



5. PROOF OF THEOREM 3
We devote this section to the proof of Theorem 3. We

begin by proving the following lemma.

Lemma 7. Let λ < B and λ
B
→ 1 as B →∞. If k

B−λ →
θ as B → ∞, where θ is a constant satisfying 0 ≤ θ < 1,
then

λB−i0−k · i0!

(B − k)!
∼ e−

(1−θ)2(B−λ)2

2λ , (10)

where i0 = bλc.

Proof. By Stirling’s formula, we have

λB−i0−k · i0!

(B − k)!

∼ λB−i0−k
√

2πi0 · ( i0e )i0√
2π(B − k) · (B−k

e
)B−k

∼
√

i0
B − k · e

B−k−λ
(

λ

B − k

)λ
·
(

λ

B − k

)B−k−λ
∼ eB−k−λ

(
λ

B − k

)λ
·
(

λ

B − k

)B−k−λ
(11)

Define ∆ = B − λ. Note that λ/∆→∞ as B →∞. And
(B − k − λ) ∼ (1− θ)∆. Then we have(

λ

B − k

)B−k−λ
∼

(
λ

λ+ (1− θ)∆

)(1−θ)∆

∼
(

1 +
(1− θ)∆

λ

)−(1−θ)∆

∼

[(
1 +

(1− θ)
λ/∆

)−λ/∆]−(1−θ) ∆2

λ

∼ e−(1−θ)2 ∆2

λ (12)

Now consider the first two terms in Eq. (11).

log

(
eB−k−λ

(
λ

B − k

)λ)

∼ (1− θ)∆− λ log

(
1 +

(1− θ)∆
λ

)
∼ (1− θ)∆− λ

(
(1− θ)∆

λ
− 1

2

(
(1− θ)∆

λ

)2

+ o(λ)

)

∼ (1− θ)2∆2

2λ
+ o(1)

That is,

eB−k−λ
(

λ

B − k

)λ
∼ e

(1−θ)2∆2

2λ (13)

Equations (12)-(13) yield the asymptotic approximation
in Eq. (10).

Proof of Theorem 3:
From Theorem 2, it is sufficient to show that the upper

bound π̄B defined in (3) satisfies Eq. (5). We establish this
result using Lemma 7.

We can write π̄B as

π̄B =

(
λB−i0−1 · i0!

(B − 1)!

)
·
(
λB−i0−2 · i0!

(B − 2)!

)(d−1)·d0

·
(
λB−i0−3 · i0!

(B − 3)!

)(d−1)d

· · ·
(

λ · i0!

(i0 + 1)!

)(d−1)dB−i0−3

(14)

Note that each term within the bracket in Eq.(14) is no
greater than 1. We can obtain an upper bound for π̄B by
discarding some terms in Eq. (14). In particular, consider
keeping the first m terms, where m = (1 − c)(B − λ), c is
an arbitrary constant satisfying 0 < c < 1. From Lemma 7,
each term we keep here can be approximated by using Eq
(10). Define ∆ = B − λ. Then we have

π̄B ≤
(
λB−i0−1 · i0!

(B − 1)!

)
·
(
λB−i0−2 · i0!

(B − 2)!

)(d−1)d0

· · ·
(
λB−i0−m · i0!

(B −m)!

)(d−1)dm−2

∼ e−
∆2

2λ [(1− 1
∆

)2+(1− 2
∆

)2·(d−1)+···+(1−m
∆

)2·(d−1)dm−2]

. e−
c2∆2

2λ
·dm−1

=

(
e−

c2

2

)∆2

λ
·d(1−c)∆−1

.

We complete the proof for Eq. (5). As discussed in Section
2.1, we have Pb = πdB . Thus,

Pb .

(
e−

c2

2

)∆2

λ
·d(1−c)∆

Now we can study the blocking probability with various

load gap by analyzing the exponent c2

2
∆2

λ
· d(1−c)∆.

1. B−λ√
λ
→ α: we have:

logd log
1

Pb

& 2 logd ∆− logd λ+ logd
c2

2
+ (1− c)∆

∼ ((1− c)α+ o(1))
√
λ.

2. B−λ
logd λ

→ β: As β > 1 and 0 < c < 1 is an arbitrary

constant, we can select c to make γ = (1−c)β−1 > 0.
Then we have:

logd log
1

Pb
& ((1− c)β − 1) logd λ+ 2 logd log λ+ o(1)

∼ (γ + o(1)) logd λ.

Hence

log
1

Pb
& λγ+o(1).

6. HETEROGENEOUS JOBS
In this section, we focus on the heterogeneous job case.

In particular, we will employ the ansatz in [8], which asserts
that in equilibrium, any finite set of queues in a randomized



load balancing system become asymptotically independent
as the number of queues goes to infinity. This will allows us
to derive the equilibrium distribution by studying a single
server, which has state-dependent Poisson arrivals.

6.1 Independence Ansatz
The asymptotic independence for a supermarket model

operating under the power-of-d policy with exponentially
distributed service time was established by Graham [10]
using the propagation of chaos approach. And the inde-
pendence ansatz for general service time distributions was
demonstrated in [8]. A key step of the existing approaches
involves standard coupling to establish a monotonicity prop-
erty for the supermarket model, which is essential to prov-
ing the independence ansatz. The monotonicity property
states that there exists a coupling such that the evolution
of a system with any non-zero initial condition stochasti-
cally dominates the evolution of the same system with the
all-zeros initial condition. The monotonicity argument is
used to demonstrate uniform convergence, i.e., the distance
between the two evolutions of the system monotonically de-
creases with time. This ensures convergence of the system
under the arbitrary initial condition to the limiting equilib-
rium distribution.

We found that it is difficult to establish the independence
ansatz using such approach as the loss model with the power-
of-d policy does not satisfy the monotonicity property. Con-
sider two copies X1(·) and X2(·) of the loss model under
the power-of-d policy. And assume element-wise dominance
of X1(·) over X2(·). With exponential service times, depar-
tures of the two systems can always be coupled. Problem
comes from blocking for arrivals. As an arrival is blocked
when it is assigned to a server with insufficient resource, it
is possible that jobs are blocked in the heavier-loaded sys-
tem X1(·) while enter the lighter-loaded system X2(·). This
might break the dominance. Therefore monotonicity does
not hold for the loss model by standard coupling.

Justification of the independence ansatz for our model re-
mains to be done. However, we believe that it is true con-
sidering the randomized nature of power-of-d algorithms. In
this following section, we derive some interesting results un-
der the independence ansatz.

6.2 Equilibrium Distribution for A Single Queue
We assume asymptotic independence for the loss model

with the power-of-d algorithm. Consider server 1 (by sym-
metry, any server) in the large N limit. Under the asymp-
totic independence assumption, the arrival process of type
j jobs to server 1 is a state-dependent Poisson process with
rate λj(n), which is given in Eq. (6).

We can explain Eq (6) as follows: Assume that server 1 is
of state n. When a type j job arrives at the system, it will
join server 1 only if server 1 is chosen and the state n′ of any
other selected server satisfies the condition 〈n′,b〉 ≥ 〈n,b〉,
i.e., server 1 has the largest amount of available resource.
Note that server 1 is selected as one of the d sampled servers

with probability
(N−1
d−1 )
(Nd )

= d
N
. Consider the case where i− 1

out of the other d−1 selected servers have the same amount
of available resource, i ∈ {1, 2, ..., d}. Such an event happens
with probability

(
d−1
i−1

)
Ei−1

n Gd−in , where En (Gn) represents

the fraction of servers with the same (larger) amount of re-
source occupied. As ties are broken randomly, server 1 is

selected with probability 1
i
. Hence the probability that the

arrival is routed to server 1 is given by

d∑
i=1

d

N
· 1

i
·

(
d− 1

i− 1

)
Ei−1

n Gd−in =
1

N

d∑
i=1

(
d

i

)
Ei−1

n Gd−in .

Multiplying this probability by the arrival rate of type j jobs
and letting N →∞ yield Eq. (6).

Note that queue 1 is a birth-death process with state-
dependent arrival and departure rates. The global balance
equation is given by:[

J∑
j=1

njδ
−
j (n) +

J∑
j=1

λj(n)δ+
j (n)

]
pn

=

J∑
j=1

λj(n
−
j )δ−j (n)p

n−j
+

J∑
j=1

(nj + 1)δ+
j (n)p

n+
j
,(15)

where

n+
j = (n1, n2, ..., nj−1, nj + 1, nj+1, ..., nJ),

n−j = (n1, n2, ..., nj−1, nj − 1, nj+1, ..., nJ),

δ+
j (n) =

{
1, if n+

j ∈ C
0, otherwise

δ−j (n) =

{
1, if n−j ∈ C
0, otherwise

Moreover, the local balance equation is given by

λj(n
−
j )δ−j (n)p

n−j
= njδ

−
j (n)pn, (16)

∀j ∈ {1, 2, ..., J}, ∀n ∈ C.

Remark. We notice that if the local balance equations are
satisfied, the global balance equations are satisfied. How-
ever, we have not established that the global balance equa-
tions have a unique solution. This is normally true for queue-
ing systems where the arrival rate is fixed; however, since the
derivation here follows from the independence ansantz, the
arrival rate depends on p. Thus, establishing the uniqueness
of the solution to Eq. (15) remains to be done.

6.3 One-dimensional Recursion
We are interested in the probability Pbj that an arriving

job of type j is blocked. Note that

Pbj =

 ∑
n∈T +

j

pn


d

, (17)

where T +
j = {n ∈ C : n+

j /∈ C}.
The underlying high dimension of the state n makes it dif-

ficult to obtain the equilibrium distribution from Eq. (16).
In order to quantify the blocking probability, we will use
Kaufman-Roberts recursion [12, 22] to establish a one-
dimensional recursion, regardless of the dimensionality of
jobs types (Theorem 4). The key idea is to pay attention to

the random variable R(n) =
∑J
j=1 njbj , which denote the

amount of occupied resource. We use r to represent the tail
distribution of R(n), i.e.,

rk = Pr[R ≥ k] =
∑

n∈C:〈n,b〉≥k

pn, for k = 0, 1, ..., B.



Note that rk is also the asymptotic fraction of servers having
at least k units of resource occupied. For ease of exposition,
throughout this section, we define rx = 1 for any x ≤ 0, and
rB+1 = 0.

In order to prove Theorem 4, we need the following lemma.

Lemma 8. For any j ∈ J , and k ∈ {0, 1, ..., B},

λj(r
d
k−bj − r

d
k−bj+1) = E [nj |〈n,b〉 = k] (rk − rk+1), (18)

where rx = 1 for any x ≤ 0 and rB+1 = 0.

Proof. Equation (16) can be written as :

λj(n
−
j )γj(n)p

n−j
= njpn, (19)

where

γj(n) =

{
1 if nj ≥ 1
0 if nj = 0

For any k ∈ {0, 1, ..., B}, define Dk = {n ∈ C : k =∑J
j=1 njbj}. Note that for any n ∈ Dk,

En = rk − rk+1, Gn = rk+1.

Hence λj(n) depends on k = 〈n,b〉 only.
Summing Eq. (19) over the set Dk, we have∑

n∈Dk

λj(n
−
j )γj(n)p

n−j
=
∑

n∈Dk

njpn. (20)

Consider the left-hand-side (LHS) of (20).

LHS =
∑

n∈Dk

λj(n
−
j )γj(n)p

n−j

= λj
∑

n∈Dk

(
d∑
i=1

(
d

i

)
Ei−1

n−j
Gd−i

n−j

)
γj(n)p

n−j

= λj
∑

n∈Dk∩{n:nj≥1}

(
d∑
i=1

(
d

i

)
Ei−1

n−j
Gd−i

n−j

)
p
n−j
.

Note that

Dk ∩ {n : nj ≥ 1}

=

n ∈ C :
∑
i 6=j

nibi + (nj − 1)bj = k − bj , nj ≥ 1

 .

Let n̂ = n−j . Then

LHS = λj
∑

n̂∈Dk−bj

(
d∑
i=1

(
d

i

)
Ei−1

n̂ Gd−in̂

)
pn̂

= λj

(
d∑
i=1

(
d

i

)
(rk−bj − rk−bj+1)i−1rd−ik−bj+1

) ∑
n̂∈Dk−bj

pn̂

= λj

(
d∑
i=1

(
d

i

)
(rk−bj − rk−bj+1)ird−ik−bj+1

)
= λj(r

d
k−bj − r

d
k−bj+1). (21)

The right-hand side (RHS) of (20) can be written as

RHS =
∑

n∈Dk

nj
pn

P[{n : 〈n,b〉 = k}]P[{n : 〈n,b〉 = k}]

=
∑

n∈Dk

njP[n|〈n,b〉 = k](rk − rk+1)

= E [nj |〈n,b〉 = k] (rk − rk+1). (22)

Equation (18) follows from Eq. (21) and (22).

Proof of Theorem 4: Multiplying Eq. (18) by bj on both
side and summing over j yields

J∑
j=1

λjbj(r
d
k−bj − r

d
k−bj+1)

=

J∑
j=1

bjE [nj |k] (rk − rk+1)

= E

[
J∑
j=1

bjnj |k

]
(rk − rk+1)

= k(rk − rk+1)

Remark. We can write the blocking probability for jobs of
type j as

Pbj =

 ∑
n∈C:〈n,b〉>B−bj

pn

d

= rdB−bj+1.

By solving Eq. (7), we can obtain Pbj immediately. Com-
pared with the formula (17), the one-dimensional recursion
brings a significant reduction in computation.
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Figure 6: Equilibrium distribution of the number of occupied

resource units for the power-of-two-choices algorithm with B =

50 and three types of jobs, where b = (1, 2, 4) and λj = λ/7.

The values for the stationary point are obtained numerically by

solving Eq. (7). Simulation results are from a finite system with

N = 1000.

Numerical Results. Figure 6 compares the empirical dis-
tribution from simulation of a finite system with N = 1000
with the stationary point at three different loads. Simu-
lation results coincide with the stationary point very well,
which also verifies the validness of independence ansatz.

6.4 Upper Bound
We first establish an upper bound for the tail distribu-

tion r of the number of occupied resource units. Let λ =∑J
j=1 λjbj be the total traffic intensity. We have the follow-

ing theorem.



Theorem 6. Define {r̄k}Bk=0 as follows:

r̄k =


1, 0 ≤ k ≤ k0 + 1

1
k−1

J∑
j=1

λjbj r̄
d
k−bj , k0 + 1 < k ≤ B (23)

where k0 = bλc, r̄x = 1 for any x ≤ 0 and r̄B+1 = 0.
Let {rk}Bk=0 denote the solution to Eq (7). Then for any

k = 0, 1, ..., B,

r̄k ≥ rk.

Proof of Theorem 6 is essentially the same as that of The-
orem 2.

Lemma 9. Define {r̃k}Bk=0 as follows:

r̃k =


1, 0 ≤ k < b(k′0 + 2)

λ
(m−1)b

r̃dk−b, mb ≤ k < (m+ 1)b, k ≤ B,
m ∈ N and k′0 + 1 < m ≤ B

b

(24)

where b = max
j=1,...,J

bj , and k′0 = bλ
b
c

Then r̃ gives an upper bound for r̄, i.e., for any k =
0, 1, ..., B,

r̃k ≥ r̄k.

The following corollary follows immediately by Theorem
6 and Lemma 9.

Corollary 1. r̃ is an upper bound for r, i.e.,

r̃k ≥ rk, ∀k = 0, 1, ..., B.

Remark. Although the upper bound r̄ has no explicit ex-
pression, the recursion is straightforward and no further it-
erative calculation is needed here. Lemma 9 provides a fur-
ther upper bound on r̄ which is used in the analysis of the
blocking probability in the heavy-traffic and critically-loaded
traffic regimes (Theorem 5).

6.5 Proof Outline of Theorem 5
Proof outline of Theorem 5:
Note that b = max

j=1,...,J
bj . By the monotonicity of the tail

distribution {rk}Bk=0, the blocking probability Pbj for type
j jobs (∀j ∈ {1, 2, ..., J}) satisfies

Pbj = rdB−bj+1 ≤ rdB−b+1 ≤ r̃dB−b+1.

Hence it is sufficient to show that the upper-bound r̃B−b+1

satisfies (8).

From the definition of r̃, we can see that {r̃k}Bk=0 consists
of consecutive subsequences of size b, where elements in each
subsequence have the same value. That is, ∀k ∈ [mb, (m +
1)b), m ∈ N, r̃k = r̃mb. To analyze its asymptotic behavior,
we consider the subsequence {r̃mb}m∈N. Define the scaled
arrival rate λ′ = λ/b, and resource units B′ = bB/bc. Then

the recursion of {r̃mb}B
′

m=0 is the same as π̄ with arrival rate
λ′ and B′ units of resource.

By following the proof for Theorem 3, we can establish the
asymptotic behavior of r̃B′b in large B′ limit, which gives Eq.
(8). The analysis for the two limiting regimes is the same as
that in Theorem 3.

Remark. Theorem 5 states that for the general case with
multiple types of jobs, the blocking probability for jobs of
any type under the power-of-d algorithm has exactly the
same asymptotic behavior as that of homogeneous job case.
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Figure 7: Blocking probability for the power-of-two-choices al-

gorithm with different load gap. There are three types of jobs

with b = (1, 2, 4). Line curves are obtained by solving Eq. (7)

numerically. Markers are from simulations with N = 1000.

Numerical Results. We simulate a system of N = 1000
servers under the power-of-two-choices algorithm with dif-
ferent load gap. We consider three types of jobs with same
arrival rate, i.e., λ1 = λ2 = λ3, and b = (1, 2, 4). For eachB,

we simulate this system with different load gap B−λ =
√
λ

and B−λ = 2 log λ, where λ =
∑
j λjbj is the total traffic in-

tensity. Figure 7 compares the blocking probability for jobs
that require the maximum amount of resource, i.e., type 3
jobs, with different load gap, both by solving Eq. (7) numer-
ically and by simulation. Note that the y-axis is in log scale.
Observe that the blocking probability for jobs of type 3 ex-
hibits similar behavior as that of the homogeneous job case
(Fig. 1). That is, Pb3 decays exponentially with log λ load

gap, while it decays much faster with
√
λ load gap. Similar

behavior can be observed for the blocking probability of the
other two types of jobs.

7. CONCLUSION AND FUTURE WORK
This paper considered a loss model for the VM assignment

problem in a cloud system. The overall goal is to study how
to route arriving jobs to the servers in order to minimize the
probability that an arriving job does not find the required
number of resources in the system. Using the fluid model ap-
proach, we showed that when arrivals are routed to the least
utilized of d ≥ 2 randomly selected servers, the blocking
probability decays exponentially or doubly exponentially.
This is a substantial improvement over the random policy.
In addition, we developed an explicit upper-bound for the
stationary fluid limit. The analysis of the upper-bound re-
vealed significant insight into the asymptotic behavior of
large systems with the power-of-d-choices (d ≥ 2) algorithm.

We have seen that for a fixed B, the gap between the pro-
posed upper-bound and the stationary fluid limit increases
with the load. For future work, we are interested in char-
acterizing the gap and establishing an approximation with
higher accuracy. Some of current model assumptions could
be relaxed to make the model closer to the real system, in-
cluding the assumption of exponential service times and the
constraint on the one-dimensionality of requested resources.
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Appendix
Proof of Lemma 1
The case λ = 0 is trivial with a unique stationary solution
π = (1, 0, 0, ..., 0︸ ︷︷ ︸

B

). We focus on the case λ > 0.

Existence: For ease of exposition, throughout the proof we
define xB+1 = 0 for any x ∈ S.

Step 1. Define G(x), ∀x ∈ S.
For any x ∈ S, let G(x) = (G0(x), G1(x), ..., GB(x)),

where G0(x) = 1, and ∀k = 1, 2, ..., B, Gk(x) ≥ 0 satisfies

λGdk(x) + kGk(x)− λxdk−1 − kxk+1 = 0. (25)

We will show that G is uniquely determined by x. Con-
sider a sequence of functions {Hk(yk)}Bk=1, where

Hk(yk) = λydk + kyk − λxdk−1 − kxk+1.

Since x ∈ S,

Hk(xk−1) = kxk−1 − kxk+1 ≥ 0,

Hk(xk+1) = λxdk+1 − λxdk−1 ≤ 0.

Note that Hk(yk) is strictly increasing in yk ∈ [0,∞). Hence
there exists a unique y∗k > 0 such that Hk(y∗k) = 0. By the
definition of Gk in (25), Hk(Gk) = 0. Hence Gk = y∗k is
determined by x uniquely, and

xk+1 ≤ Gk(x) ≤ xk−1. (26)

Step 2. Show that G(·) is mapping S into S.
We will verify that ∀x ∈ S, G(x) ∈ S, i.e., 1 = G0(x) ≥

G1(x) ≥ ... ≥ GB(x) ≥ 0. For any x ∈ S, inequality in (26)
ensures that Gk ∈ [0, 1] for all k. To prove that Gk ≥ Gk+1,
consider a function

ϕk(z) = λzd + kz,

which is strictly increasing in [0, 1]. Hence it is sufficient to
show that ϕk(Gk) ≥ ϕk(Gk+1).

ϕk(Gk)− ϕk(Gk+1)

= λGdk + kGk − λGdk+1 − (k + 1)Gk+1 +Gk+1

(a)
= λxdk−1 + kxk+1 − λxdk − (k + 1)xk+2 +Gk+1

= λ(xdk−1 − xdk) + k(xk+1 − xk+2) +Gk+1 − xk+2

(b)

≥ Gk+1 − πk+2

(c)

≥ 0,

where the equality (a) comes from the definition of Gk, Gk+1

in (25), and the inequality (b) follows by the fact that x ∈ S,
and the inequality (c) results from the property ofGk in (26).

Therefore G(x) ∈ S.

Step 3. Show that G(·) is continuous.
Consider any point x ∈ S. For every ε > 0, set δ = ε

λd+1
.

Let y be any point in S such that |x − y| < δ. By the
definition of G(·), ∀k = 1, 2, ..., B,

λ(Gdk(x)−Gdk(y)) + k(Gk(x)−Gk(y))

= (Gk(x)−Gk(y))

(
λ

d−1∑
i=0

Gd−1−i
k (x)Gik(y) + k

)

= λ(xdk−1 − ydk−1) + k(xk+1 − yk+1)

= λ(xk−1 − yk−1)

(
d−1∑
i=0

xd−1−i
k−1 yik−1

)
+ k(xk+1 − yk+1)

Then we have

|Gk(x)−Gk(y)|

=
|λ(xk−1 − yk−1)

(∑d−1
i=0 x

d−1−i
k−1 yik−1

)
+ k(xk+1 − yk+1)|

λ
∑d−1
i=0 G

d−1−i
k (x)Gik(y) + k

≤ λd|xk−1 − yk−1|+ k|(xk+1 − yk+1)|
k

≤ λd|xk−1 − yk−1|+ |(xk+1 − yk+1)|,

which implies that

|G(x)−G(y)|

=

B∑
k=0

|Gk(x)−Gk(y)|

≤
B∑
k=1

(λd|xk−1 − yk−1|+ |(xk+1 − yk+1)|)

≤ (λd+ 1)

B∑
k=0

|xk − yk|

< (λd+ 1)δ

= ε.

Therefore G is continuous at any point x ∈ S.
Step 4. Show that a fixed point of G in S is a stationary
point.

Note that set S is compact and convex. Step 1-3 ensures
that there exists a fixed point of G in S, denoted by x̂. That
is, x̂ = G(x̂). From the definition of G in (25), we have

Fk(x̂) = λx̂dk + kx̂k − λx̂dk−1 − kx̂k+1 = 0.

That is, x̂ is a stationary point.

Uniqueness: We prove the uniqueness of stationary solu-
tion by contradiction.

Assume that there exists two different solutions π and π̂.
We claim that πB 6= π̂B . Otherwise, we have

πB−1 =
d

√
πdB +

B

λ
πB = π̂B−1.

Note that

πk =
d

√
πdk+1 +

k + 1

λ
(πk+1 − πk+2).

Hence by induction, we can show that πk = π̂k for any
k = 0, 1, ..., B.

Consider the case that πB < π̂B . Similarly, we can es-
tablish that πk < π̂k for any k = 0, 1, ..., B by induction.
Therefore, π0 < π̂0, which contradicts with the fact that
π0 = π̂0 = 1. This completes the proof for the uniqueness.

Proof of Lemma 3
Due to continuous dependence of a solution on the initial
values, it is sufficient to show that if s̄0

k < s0
k for any k ≥ 1,



s̄k(t) ≤ sk(t) for all t ≥ 0 and any k. Assume that strict in-
equalities hold for t < t1 and are broken at t = t1. Consider
two cases:

(i) s̄k(t1) = sk(t1) for any k.
The uniqueness of solution ensures that s̄k(t) = sk(t) for

all t ≥ t1 and any k. Hence the claim holds.

(ii) ∃k∗ ≥ 1 such that s̄k∗(t1) < sk∗(t1).
Then there exists k ≥ 1 such that s̄k(t1) = sk(t1), and at

least of one following conditions hold: s̄k−1(t1) < sk−1(t1),
s̄k+1(t1) < sk+1(t1). If k < B, we have

ds̄k
dt

(t1)− dsk
dt

(t1) = λ(s̄dk−1 − sdk−1) + k(s̄k+1 − sk+1)

−λ(s̄dk − sdk)− k(s̄k − sk)

< 0,

where the inequality comes from the definition of k. Simi-
larly, we can verify that ds̄k

dt
(t1)− dsk

dt
(t1) < 0 if k = B.

Since s̄(t) and s(t) are continuous functions of t, there
exists t0 < t1 such that s̄k(t0) < sk(t0) and

ds̄k
dt

(t)− dsk
dt

(t) < 0

for any t ∈ (t0, t1). Thus

s̄k(t1)−sk(t1) = s̄k(t0)−sk(t0)+

∫ t1

t0

(
ds̄k
dt

(t)− dsk
dt

(t)

)
dt < 0,

which contradicts with the assumption that s̄k(t1) = sk(t1).

Proof for Lemma 4
We will show that dψ(t)/dt ≤ −ψ. Then ψ(t) ≤ ψ(0)e−t,
which implies that ψ(t) converges to 0 exponentially fast.

Consider the case where s0
k ≥ πk for any k. From Lemma

4, sk(t) ≥ πk for any t ≥ 0, ∀k ∈ {0, 1, ..., B}. We can rewrite

ψ(t) as ψ(t) =
∑B
k=0(sk(t)−πk). Since F(π) = 0, ṡ = F(s),

we have

dψ(t)

dt
=

B∑
k=0

dsk(t)

dt

=

B∑
k=1

Fk(s(t))−
B∑
k=1

Fk(π)

=

(
λ(sd0(t)− sdB(t))−

B∑
k=1

sk(t)

)

−

(
λ(πd0 − πdB)−

B∑
k=1

πk

)
= −λ(sdB(t)− πdB)− ψ(t)

≤ −ψ(t),

where the last inequality follows by the fact that sdB(t) ≥ πdB .
The other case where s0

k ≤ πk for any k can be proved
similarly.

Proof of Lemma 6
Since x,y ∈ S, for any 0 ≤ k ≤ B

0 ≤ xk ≤ 1, 0 ≤ yk ≤ 1.

Then we have:

|F(x)− F(y)|

=

B−1∑
k=1

|λ(xdk−1 − xdk)− k(xk − xk+1)

−λ(ydk−1 − ydk) + k(yk − yk+1)|
+|λ(xdB−1 − xdB)−BxB − λ(ydB−1 − ydB) +ByB |

≤ 2

B∑
k=0

k|xk − yk|+ 2

B∑
k=0

λ|xdk − ydk|

≤ 2B

B∑
k=0

|xk − yk|+ 2λ

B∑
k=0

(
|xk − yk|

d−1∑
i=0

xd−1−i
k yik

)

≤ 2(B + dλ)

B∑
k=0

|xk − yk|

= M |x− y|,

where M = 2(B + dλ).

Proof of Claim 1
From Lemma 5, we have

S(Nk)(t)⇒ S̄(t) as k →∞.

By the definition of weak convergence, for a bounded con-
tinuous function f ,

E
[
f(S(Nk)(t))|S(Nk)(0)

]
n→∞−→ E

[
f(S̄(t))|S̄(0)

]
,

if S(Nk)(0)→ S̄(0) as k →∞.

As S(Nk)(0) = X(Nk) and S̄(0) = X̄, by Skorokhod’s rep-
resentation theorem,

S(Nk)(0)→ S̄(0).

Define

Yk = E
[
f(S(Nk)(t))|X(Nk)

]
, Y = E

[
f(S̄(t))|X̄

]
.

Since f is bounded, Yk and Y are bounded. By the
bounded convergence theorem, we have

E [Yk]→ E [Y] .

This holds for all bounded, continuous f. Thus again by
the definition of weak convergence,

S(Nk)(t)⇒ S̄(t) as k →∞

.


