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Scheduling Jobs with Unknown Duration in Clouds
Siva Theja Maguluri, Student Member, IEEE, and R. Srikant, Fellow, IEEE,

Abstract—We consider a stochastic model of jobs arriving at
a cloud data center. Each job requests a certain amount of CPU,
memory, disk space, etc. Job sizes (durations) are also modeled
as random variables, with possibly unbounded support. These
jobs need to be scheduled non preemptively on servers. The jobs
are first routed to one of the servers when they arrive and are
queued at the servers. Each server then chooses a set of jobs from
its queues so that it has enough resources to serve all of them
simultaneously. This problem has been studied previously under
the assumption that job sizes are known and upper bounded,
and an algorithm was proposed which stabilizes traffic load in
a diminished capacity region. Here, we present a load balancing
and scheduling algorithm that is throughput optimal, without
assuming that job sizes are known or are upper bounded.

I. INTRODUCTION

Cloud computing has emerged as an important source of
computing infrastructure to meet the needs of both corporate
and personal computing users. There are several cloud comput-
ing paradigms. We will consider an Infrastructure as a Service
(IaaS) system where users request Virtual Machines (VMs)
to be hosted on the cloud. A user can choose from a class
of VMs, each with different amounts of processing capacity,
memory and disk space. We call each request a ‘job’. The
amount of time each VM or job is to be hosted is called its
size.

Each server in the data center has certain amount of
resources. This imposes a constraint on the number of jobs
of different types that can be served simultaneously. The
primary focus in this paper is to study the following resource
allocation problems: When a job of a given type arrives, which
server should it be sent to? We will call this the routing or
load balancing problem. At each server, among the jobs that
are waiting for service, which subset of the jobs should be
scheduled? Jobs have to be scheduled in a nonpreemptive
manner. We will call this the scheduling problem. We want to
do this without knowledge of system parameters like arrival
rates.

The resource allocation problem in cloud data centers has
been well studied [1], [2]. Best Fit policy [3], [4] is a popular
policy that is used in practice. A stochastic model of the
IaaS cloud data center was studied in [5] where the capacity
region of such a system was characterized in terms of the
arrival rates. It was also shown in [5] that the Best Fit
policy is not stable for all the arrival rates in the capacity
region, i.e., is not throughput optimal. A simple preemptive
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and a more realistic nonpreemptive model were studied. A
joint routing (or load balancing) and scheduling algorithm
was proposed that is almost throughput optimal. That is, for
any ε > 0, a fraction (1 − ε) of the capacity region is
stabilizable in the nonpreemptive case. In the preemptive case,
the complete capacity region is stabilizable. However, this
algorithm assumes that the size of each job is known when the
job arrives into the system. This assumption is not realistic in
some settings.

The scheduling algorithm in [5] is inspired by MaxWeight
scheduling algorithm in wireless networks that has been well
studied [6]. MaxWeight scheduling is known to have good
delay performance and has been studied by extensive sim-
ulations, as well as optimality results in various asymptotic
regimes. However, one drawback of MaxWeight scheduling
in wireless networks is that its complexity increases ex-
ponentially with the number of wireless nodes. Moreover,
MaxWeight is a centralized policy.

It was shown in [5] that if each server chooses a MaxWeight
schedule, it is same as choosing a MaxWeight schedule for the
whole cloud system. This is a very useful result in practice
because this gives a distributed MaxWeight policy with much
lower complexity. Consider the following example. If there
are L servers and each server has S allowed configurations.
When each server computes a separate MaxWeight allocation,
it has to find a schedule from S allowed configurations. Since
there are L servers, this is equivalent to finding a schedule
from LS possibilities. However, for a centralized MaxWeight
schedule, one has to find a schedule from SL schedules.
Moreover, the complexity of each server’s scheduling problem
depends only on its own set of allowed configurations, which is
independent of the total number of servers. Typically the data
center is scaled by adding more servers rather than adding
more allowable configurations.

It was shown in [7] that the preemptive algorithm of [5]
optimizes a function of the backlog in the asymptotic regime
when the arrival rates are close to the boundary of the
capacity region. A study of the nonpreemptive algorithm in
this setting was not easy because the exact stability region of
the nonpreemptive algorithm was not known. Only an inner
bound was known. Reference [8] studies a resource allocation
algorithm in the many server asymptotic limit.

In this work, we study a nonpreemptive algorithm when
the job sizes are not known. Nonpreemptive algorithms are
more challenging to study because the state of the system in
different time slots is coupled. For example, a MaxWeight
schedule cannot be chosen in each time slot nonpreemptively.
Suppose that there are certain unfinished jobs that are being
served at the beginning of a time slot. These jobs cannot be
paused in the new time slot. So, the new schedule should be
chosen to include these jobs. A Maxweight schedule may not
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include these jobs.
Nonpreemptive algorithms were studied in literature in the

context of input queued switches with variable packet sizes.
One such algorithm was studied in [9]. This algorithm, how-
ever uses the special structure of a switch and so, it is not clear
as to how it can be generalized for the case of a cloud system.
Reference [10] presents another algorithm that is inspired by
CSMA type algorithm in wireless networks. One needs to
prove a time scale separation result to prove optimality of this
algorithm. This was done in [10] by appealing to prior work
[11]. However, the result in [11] is applicable only when the
Markov chain has finite number of states. However, since the
Markov chain in [10] depends on the job sizes, it could have
infinite states even in the special case when the job sizes are
geometrically distributed. So, the results in [10] do not seem
to be immediately applicable to our problem.

A similar problem was studied in [12]. Since a MaxWeight
schedule cannot be chosen in every time slot without disturb-
ing the packets in service, a MaxWeight schedule is chosen
only at every refresh time. A time slot is called a refresh
time if no packets are in service at the beginning of the time
slot. Between the refresh times, either the schedule can be left
unchanged or a ‘greedy’ MaxWeight schedule can be chosen.
It was argued that such a scheduling algorithm is throughput
optimal in a switch.

The proof of throughput optimality in [12] is based on first
showing that the duration between consecutive refresh times
is bounded so that a MaxWeight schedule is chosen often
enough. Blackwell’s renewal theorem was used to show this
result. Since Blackwell’s renewal theorem is applicable only
in steady state, we were unable to verify the correctness of
the proof.

Furthermore, to bound the refresh times of the system, it
was claimed in [12] that the refresh time for a system with
infinite queues provides an upper bound over the system with
arrivals. This is not true for every sample path. For a set of
jobs with given sizes, the arrivals could be timed in such a
way that the system with arrivals has a longer refresh time
than an infinitely backlogged system.

For example consider the following scenario. Let the the
original system be called System 1 and the system with infinite
queues, System 2. System 1 could have empty queues while
system 2 never has empty queues. Say T0 is a time when all
jobs finish service for system 2. This does not guarantee that
all jobs finish service for system 1. This is because system 1
could be serving just one job at time T0−1, when there could
be an arrival of a job of two time slots long. Let us say that it
can be scheduled simultaneously with the job in service. This
job then will not finish its service at time T0, and so T0 is not
a refresh time for system 1.

The result in [12] does not impose any conditions on job size
distribution. However, this insensitivity to job size distribution
seems to be a consequence of the relationship between the
infinite queue system and the finite queue system which is
assumed there, but which we do not believe is true in general.

In particular, the examples presented in [5], [13] show that
the policy presented in [12] is not throughput optimal when
the job sizes are deterministic.

Here, we develop a coupling technique to bound the ex-
pected time between two refresh times. With this technique, we
do not need to use Blackwell’s renewal theorem. The coupling
argument is also used to precisely state how the system with
infinitely backlogged queue provides an upper bound on the
mean duration between refresh times.

The main contributions in this work are the following.
1) We propose a throughput optimal scheduling and load

balancing algorithm for a cloud data center, when the job
sizes are unknown. Job sizes are assumed to be unknown
not only at arrival but also at the beginning of service.
This algorithm is based on using queue lengths (number
of jobs in the queue) for weights in MaxWeight schedule
instead of the workload as in [5]. The scheduling part of
our algorithm is based on [12], but includes an additional
routing component. Further, our proof of throughput-
optimality is different from the one in [12] due to the
earlier mentioned reasons.

2) Even if the job sizes are known, this algorithm does
not waste any resources unlike the algorithm in [5]
which forces a refresh time every T time slots potentially
wasting resources during the process. In particular, when
the job sizes have high variability, the amount of wastage
can be high. However, the algorithm in this paper works
even when the job sizes are not bounded, for instance,
when the job sizes are geometrically distributed.

In terms of proof techniques, we make the following con-
tributions.

1) We use a coupling technique to show that the mean
duration between refresh times is bounded. We then use
Wald’s identity to bound the drift of a Lyapunov function
between the refresh times.

2) Our algorithm can be used with a large class of weight
functions to compute the MaxWeight schedule (for exam-
ple, the ones considered in [14]). However, we present it
here for log-weight functions. Log-weight functions are
known to have good performance properties [15] and are
also amenable to low-complexity implementations using
randomized algorithms [16], [17].

3) Since we allow general job-size distributions, it is difficult
to find a Lyapunov function whose drift is negative
outside a finite set, as required by the Foster-Lyapunov
theorem which is typically used to prove stability results.
Instead, we use a theorem in [18] to prove our stability
result, but this theorem requires that the drift of the Lya-
punov function be (stochastically) bounded. We present
a novel modification of the typical Lyapunov function
used to establish the stability of MaxWeight algorithms
to verify the conditions of the theorem in [18].

In an earlier version of this paper [19], we primarily con-
sidered the case of geometric job sizes and simply mentioned
the extension to general job sizes without a proof. Here, we
provide complete proofs for both cases.

The paper is organized as follows. In the next section,
we describe the system and traffic model and present the
scheduling and load balancing algorithm. In section III, we
present the coupling technique and argue that the refresh times
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are bounded. We illustrate the use of this result by first
proving throughput optimality in the the simple case when
the job sizes are geometrically distributed in section IV. In
section V, we present the proof for the case of general job
size distributions. In section VI, we present some simulations
and finally conclude in section VII.

II. MODEL DESCRIPTION AND ALGORITHM

We first present the system and traffic model. Then, we
present the algorithm and queueing model.

A. System and Traffic Model

The cloud data center consists of L servers or machines.
There are K different resources. Server i has Cik amount of
resources of type k. There are M different types of VMs that
the users can request from the cloud service provider. Each
type of VM is specified by the amount of different resources
(such as CPU, disk space, memory, etc) that it requests. Type
m VM requests Rmk amount of resources of type k.

Given a server, an M -dimensional vector N is said to be
a feasible VM-configuration if the given server can simulta-
neously host N1 type-1 VMs, N2 type-2 VMs, . . . , and NM
type-M VMs. In other words, N is feasible at server i if and
only if

M∑
m=1

NmRmk ≤ Cik

for all k. We let Nmax denote the maximum number of VMs
of any type that can be served on any server.

In this paper, we consider a cloud system which hosts VMs
for clients. A VM request from a client specifies the type of
VM the client needs. We call a VM request a “job.” A job
is said to be a type-m job if a type-m VM is requested. We
assume that time is slotted. We say that the size of the job is
S if the VM needs to be hosted for S time slots. We assume
that S is unknown when a VM arrives. We next define the
concept of capacity for a cloud.

Let Am(t) denote the set of type-m jobs that arrive at the
beginning of time slot t, and let Am(t) = |Am(t)|, i.e., the
number of type-m jobs that arrive at the beginning of time
slot t. Am(t) is assumed to be a stochastic process which is
i.i.d across time and independent across different types. We
also assume that Am(t) ≤ Amax. Some of these assumptions
can be relaxed, but we consider a simple model for ease of
exposition.

For each job j, let Sj denote its size, i.e., the number of
time slots required to serve the job. For each j, Sj is assumed
to be a (positive) integer valued random variable independent
of the arrival process and the sizes of all other jobs in the
system. The distribution of Sj is assumed to be identical for
all jobs of same type. In other words, for each type m, the job
sizes are i.i.d. Let S be the support of the random variable S,
i.e., S = {n ∈ N : P (S = n) > 0}. The job size distribution
is assumed to satisfy the following assumption.

Assumption 1: If l1 ∈ S is in the support of the distribution,
then any l2 ∈ N such that 1 ≤ l2 < l1 is also in the support of
the distribution, i.e., l2 ∈ S . For each job type m, let Cm ,

inf l∈S P (Sm = l|Sm > l − 1). Then, there exists a C >
0 such that for each server m, Cm ≥ C > 0. In the case
when the support is finite, this just means that the conditional
probabilities P (Sk = l|Sk > l − 1) are non-zero for any l in
the support.

Assumption (1) means that when the job sizes are not
bounded, they have geometric tails. For example, truncated
heavy-tailed distributions would be allowed but purely heavy-
tailed distributions would not be allowed under our model.

B. Algorithm and Queueing Model

We assume that each server maintains M different queues
for different types of jobs. It then uses this queue length
information in making scheduling decisions. Let Q denote the
vector of these queue lengths where Qmi is the number of type
m jobs at server i.

Algorithm 1 performs load balancing to route jobs to servers
(Step 1) and uses a MaxWeight algorithm to schedule jobs on
each server (Step 2) with an appropriately chosen function
g(.). It is important to note that, unlike the algorithm in [5],
Algorithm 1 does not require the cloud system to know the
job sizes nor does it require the job sizes to be upper bounded.

Let Dmi(t) denote the number of type-m jobs that finish
service at server i in time slot t. Then the queue lengths evolve
as follows:

Qmi(t+ 1) = Qmi(t) +Ami(t)−Dmi(t).

The cloud system is said to be stable if the expected total
queue length is bounded, i.e.,

lim sup
t→∞

E[
∑
i

∑
m

Qmi(t)] <∞

A vector of arriving loads λ and mean job sizes S is
said to be supportable if there exists a resource allocation
mechanism under which the cloud system is stable. Let
Smax = maxm{Sm} and Smin = minm{Sm}.

In the following, we first identify the set of supportable
(λ, S) pairs. Let Ni be the set of feasible VM-configurations
on a server i. We define sets Ĉ and C as follows.

Ĉ =

{
N ∈ RM+ : N =

L∑
i=1

N (i) and N (i) ∈ Conv(Ni)

}
,

where Conv denotes the convex hull. Now define

C =
{
(λ, S) ∈ RM+ × RM+ : (λ ◦ S) ∈ Ĉ

}
,

where (λ ◦ S) denotes the Hadamard product or entrywise
product of the vectors λ and S and is defined as (λ ◦ S)m =
λmSm. We use int(.) to denote interior of a set.

We will show that a pair (λ, S) is supportable if and only if
(λ, S) ∈ C. As in [6], it is easy to show the following result.

Proposition 1: For any pair (λ, S) such that (λ, S) /∈ C,
limt→∞E [

∑
mQm(t)] = ∞, i.e., the pair (λ, S) is not

supportable.
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Algorithm 1 JSQ Routing and Myopic MaxWeight Scheduling
1) Routing Algorithm (JSQ Routing): All the type m jobs

that arrive in time slot t are routed to the server with the
shortest queue for type m jobs i.e., the server i∗m(t) =
argmin
i∈{1,2,,,L}

Qmi(t). Therefore, the arrivals to Qmi in time

slot t are given by

Ami(t) =

{
Am(t) if i = i∗m(t)

0 otherwise
(1)

2) Scheduling Algorithm (MaxWeight Scheduling) for each
server i: Let Ñ (i)

m (t) denote a configuration chosen in
each time slot. If the time slot is a refresh time (i.e., if
none of the servers are serving any jobs at the beginning
of the time slot), Ñ (i)

m (t) is chosen according to the
MaxWeight policy, i.e.,

Ñ (i)(t) ∈ argmax
N∈Ni

∑
m

g(Qmi(t))Nm. (2)

If it is not a refresh time, Ñ (i)
m (t) = Ñ

(i)
m (t−1). However,

Ñ
(i)
m (t) jobs of type m may not be present at server i,

in which case all the jobs in the queue that are not yet
being served will be included in the new configuration. If
N

(i)

m (t) denotes the actual number of type m jobs selected
at server i, then the configuration at time t is N (i)(t) =

N
(i)
(t). Otherwise, i.e., if there are enough number of

jobs at server i, N (i)(t) = Ñ
(i)
m (t).

III. REFRESH TIMES

Recall that a time slot is called a refresh time if none of
the servers are serving any jobs at the beginning of the time
slot. Note that a time slot is refresh time if, in the previous
time slot, either all jobs in service departed the system or the
system was completely empty.

Refresh times are important for our stability proof later,
due to the fact that a new MaxWeight schedule can be chosen
for all servers only at such time instants. At all other time
instants, an entirely new schedule cannot be chosen for all
servers simultaneously since this would require job preemption
which we assume is not allowed.

Let us denote the nth refresh time by tn. Let zn = tn+1−tn
be the duration (in slots) between the nth and (n+1)th refresh
times.

The following fact about refresh times is needed to study
the throughput of the system.

Lemma 1: There exists constants K1 > 0 and K2 > 0 such
that E[zn] < K1 and E[z2

n] < K2.
Proof: Let R(t) be a binary valued random process that

takes a value 1 if and only if time t is a refresh time. Consider
a job of type m that is being served at a server. Say it was
scheduled l time slots ago. The conditional probability that it
finishes its service in the next time slot is

P (Sm = l + 1|Sm > l) ≥ Cm ≥ C

from the assumption on the job size distribution. Thus, the
probability that a job of type m that is being served finishes

its service at any time slot is atleast C. So, the probability that
all the jobs scheduled at a server finish their service at any
time slot is no less than CMNmax and the probability that all
the jobs scheduled in the system finish their service is atleast
C , CLMNmax > 0. If all the jobs that are being served at all
the servers finish their service during a time slot, it is a refresh
time. Thus probability that a given time slot is a refresh time
is at least C. In other words, for any time t, if p(t) is the
probability that R(t) = 1 conditioned on the history of the
system (i.e., arrivals, departures, scheduling decisions made
and the finished service of the jobs that are in service), then
p(t) ≥ C > 0.

Define Rn(z) = R(tn + z) for z ≥ 0. Then zn is the
first time Rn(z) takes a value of 1. Now consider a Bernoulli
process Rn(z) with probability of success C that is coupled to
the refresh time process Rn(z) as follows. Whenever Rn(z) =
1, we also have Rn(z) = 1. One can construct such a pair
(Rn(t), Rn(z)) as follows. Consider an i.i.d random process
R̂n(z) uniformly distributed between 0 and 1. Then the pair
(Rn(z), Rn(z)) can be modeled as Rn(z) = 1 if and only if
R̂n(z) < p(tn + z) and R(t)) = 1 if and only if R̂n(z) < C.

Let zn be the first time Rn(z) takes a value of 1. Then,
by the construction of Rn(z), zn ≤ zn and since Rn(z) is a
Bernoulli process, there exists constants K1 > 0 and K2 > 0
such that E[zn] < K1 and E[z2

n] < K2 proving the Lemma.

IV. THROUGHPUT OPTIMALITY - GEOMETRIC PACKET
SIZES

In this section, we will characterize the throughput perfor-
mance of Algorithm 1 in the special case when the job sizes
are geometrically distributed. We will consider a more general
case in the next section.

We will need Wald’s identity [20, Chap 6, Cor 3.1 and Sec
4(a)] to bound the drift between two refresh times. We state
it here for convenience.

Theorem 1 (Wald’s Identity): Let {Xn : n ∈ N} be a
sequence of real-valued, random variables such that all {Xn :
n ∈ N} have same expectation and there exists a constant
C such that E[|Xn|] ≤ C for all n ∈ N. Assume that
there exists a filtration {Fn}n∈N such that Xn and Fn−1

are independent for every n ∈ N. Then, if N is a finite
mean stopping time with respect to the filtration {Fn}n∈N,
E[
∑N
n=1Xn] = E[Xn]E[N ].

In the case of geometric packet sizes, a wide class of func-
tions g(y) can be used to obtain a stable MaxWeight policy
[14]. Typically, V ((Q)) =

∑
i,m

∫
g((Q)mi)dy is used as a

Lyapunov function to prove stability of a MaxWeight policy
using g(y). To avoid excessive notation, we will illustrate the
proof of throughput optimality using g(y) = y in this section.

Proposition 2: When the job sizes are geometrically dis-
tributed with mean job size vector S, any job load vector that
satisfies (λ, S) ∈ int(C) is supportable under the JSQ routing
and myopic MaxWeight allocation as described in Algorithm
1 with g(y) = y.

Proof: Since the job sizes are geometrically distributed,
it is easy to see that X(t) = (Q(t), N(t)) is a Markov chain
under Algorithm 1.
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Obtain a new process, X̃(n) by sampling the Markov
Chain X(t) at the refresh times, i.e., X̃(n) = X(tn). Note
that X̃(n) is also a Markov Chain because, conditioned on
Q̃(n) = Q(tn) = q0 (and so N(tn)), the future of evolution
of X(t) and so X̃(n) is independent of the past.

Using V (X) = V (Q) =
∑
m

∑
i SmQ2

mi as the Lyapunov
function, we will first show that the drift of the Markov Chain
is negative outside a bounded set. This gives positive recur-
rence of the sampled Markov Chain from Foster-Lyapunov
Theorem. We will then use this to prove the positive recurrence
of the original Markov Chain.

First consider the following one step drift of V (t). Let t =
tn + τ for 0 ≤ τ < zn.

(V (t+ 1)− V (t))

=
∑
i

∑
m

Sm (Qmi(t) +Ami(t)−Dmi(t))
2 − SmQ2

mi(t)

=2
∑
i

∑
m

SmQmi(t) (Ami(t)−Dmi(t))

+
∑
i

∑
m

Sm (Ami(t)−Dmi(t))
2

≤2
∑
m

∑
i

SmQmi(t) (Ami(t)−Dmi(t)) +K1

where K1 = L(Amax +Nmax)
2(
∑
m Sm).

Now using this relation in the drift of the sampled system,
we get the following. With a slight abuse of notation, we
denote E [(.)|Q(tn) = q] by Eq [(.)].

E[V (Q̃(n+ 1))− V (Q̃(n))|Q̃(n) = q]

=E[V (tn+1)− V (tn)|Q(tn) = q]

=Eq

[
zn−1∑
τ=0

V (tn + τ + 1)− V (tn + τ)

]

≤Eq

zn−1∑
τ=0

2
∑
m,i

(
SmQmi(tn + τ)Ami(tn + τ)

−SmQmi(tn + τ)Dmi(tn + τ)
)
+K1

]
(3)

The last term above is bounded by K1K1 from Lemma 1.
We will now bound the first term in (3). From the definition
of Ami in the routing algorithm in (1), we have

2Eq

[
zn−1∑
τ=0

∑
m

∑
i

SmQmi(tn + τ)Ami(tn + τ)

]

=2Eq

[
zn−1∑
τ=0

∑
m

SmQmi∗m(tn+τ)(tn + τ)Am(tn + τ)

]

≤2Eq

[
zn−1∑
τ=0

∑
m

Sm
(
Qmi∗m(tn)(tn)Am(tn + τ)+τA2

maxSm
)]

≤2
∑
m

Smqmi∗mEq

[
zn−1∑
τ=0

Am(tn + τ)

]
+
∑
m

A2
maxSmEq

[
z2
n

]
≤A2

maxK2

∑
m

Sm + 2Eq [zn]
∑
m

Smqmi∗mλm (4)

where i∗m(t) = argmin
i∈{1,2,,,L}

Qmi(t) and i∗m = i∗m(tn). Since

Qmi∗m(tn+τ)(tn + τ) ≤ Qmi∗m(tn)(tn + τ) ≤ Qmi∗m
(tn) +

Amaxτ because the load at each queue cannot increase by
more than Amax in each time slot, we get the first inequality.

Let Y(t) = {Ymi(t)}m,i denote the state of jobs of type-
m at server i. When Qmi(t) 6= 0, Ymi(t) is a vector of size
N

(i)
m (t) and Yj

mi(t) is the amount of time the jth type-m
job that is in service at server i has been scheduled. Note
that the departures D(t) can be inferred from Y(t). Let F (n)

τ

be the filtration generated by the process Y(tn + τ). Then,
A(tn + τ + 1) is independent of F (n)

τ and zn is a stopping
time for F (n)

τ . Then, from Wald’s identity (Theorem 1) and
Lemma 1, we have (4).

Now we will bound the second term in (3). To do this,
consider the following system. For every job of type m that
is in the configuration Ñ

(i)
m (tn), consider an independent

geometric random variable of mean Sm to simulate potential
departures or job completions. Let Iij,m(t) be an indicator
function denoting if the jth job of type m at server i in
configuration Ñ

(i)
m (tn) has a potential departure at time t.

Because of memoryless property of geometric distribution,
Iij,m(t) are i.i.d Bernoulli with mean 1/Sm.

If the jth job was scheduled, Iij,m(t) corresponds to an
actual departure. If not (i.e., if there was unused service), there
is no actual departure corresponding to this. Let D̂mi(t) =∑Ñ(i)

m (tn)
j=1 Iij,m(t) denote the number of potential departures

of type m at server i. Note that if Qmi(t) ≥ Nmax, D̂mi(t) =
Dmi(t) since there is no unused service in this case. Also,
D̂mi(t)−Dmi(t) ≤ D̂mi(t) ≤ Nmax. Thus, we have,

Qmi(t)Dmi(t) = (Qmi(t)Dmi(t)) IQmi(t)≥Nmax

+ (Qmi(t)Dmi(t)) IQmi(t)<Nmax

≥
(
Qmi(t)D̂mi(t)

)
IQmi(t)≥Nmax

+
(
Qmi(t)

(
D̂mi(t)−Nmax

))
IQmi(t)<Nmax

≥Qmi(t)D̂mi(t)−N2
max (5)

Note that Qmi(t) ≥ Qmi(t−1)−Nmax, since Nmax is the
maximum possible departures in each time slot. So, we have

Qmi(tn+ τ)D̂mi(tn+ τ) ≥(Qmi(tn)−τNmax) D̂mi(tn + τ)

≥ Qmi(tn)D̂mi(tn + τ)− τN2
max

Using this with (5), we can bound the second term in (3) as
follows

2Eq

zn−1∑
τ=0

∑
i,m

SmQmi(tn + τ)Dmi(tn + τ)


≥2Eq

zn−1∑
τ=0

∑
i,m

SmQmi(tn + τ)D̂mi(tn + τ)


− LN2

max

∑
m

Sm2Eq [zn]
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≥2Eq

∑
i,m

SmQmi(tn)

zn−1∑
τ=0

D̂mi(tn + τ)

−K2

=2Eq [zn]
∑
i,m

qmiÑ
(i)
m −K2 (6)

where K2 = LN2
max

∑
m Sm(2K1 + K2). Let F̂ (n)

τ denote
the filtration generated by {Y(tn + τ), D̂(tn + τ)}. Then,
F (n)
τ ⊆ F̂ (n)

τ . Since zn is a stopping time with respect to
the filtration F (n)

τ , it is also a stopping time with respect
to the filtration F̂ (n)

τ . Since D̂(tn + τ + 1) is independent
of F̂ (n)

τ , Wald’s identity can be applied here. D̂(tn + τ) is
sum of Ñ (i)

m (tn) independent Bernoulli random variables each
with mean 1/Sm. Thus, we have E[D̂mi(t)] = Ñ

(i)
m (tn)/Sm.

Using this in Wald’s identity (Theorem 1), we get (6).
Since (λ, S) ∈ int(C), there exists ε > 0 such that ((1 +

ε)λ, S) ∈ C, there exists
{
(1 + ε)λi

}
i

such that λi ◦ S ∈
Conv(Ni) for all i and λ =

∑
i

λi. According to the scheduling

algorithm (2), for each server i, we have that∑
m

Qmi(tn)(1 + ε)λimSm ≤
∑
m

Qmi(tn)Ñ
(i)
m (tn). (7)

Then, from (4), (3) and (6), we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

≤K3 + 2Eq [zn]
∑
m

Smqmi∗mλm − 2Eq [zn]
∑
i,m

qmiÑ
(i)
m

(a)

≤K3 − 2εEq [zn]
∑
i

∑
m

qmiλ
i
mSm

≤K3 − 2ε
∑
i

∑
m

qmiλ
i
mSm

where K3 = A2
maxK2

∑
m Sm + K2. Inequality (a) follows

from λ =
∑
i

λi and (7). The last inequality follows from zn ≥
1.

Then, from the Foster-Lyapunov theorem [21], [22], we
have that the sampled Markov Chain X̃(n) is positive re-
current. So, there exists a constant K3 > 0 such that
limn→∞

∑
m

∑
iE[Qmi(t)] ≤ K3.

For any t > 0, let tn be the last refresh time before t. Then,∑
m,i

E[Qmi(t)] ≤
∑
m,i

E[(Qmi(tn) + zn(Amax +Nmax))]

As t→∞, we get

lim sup
t→∞

∑
m

∑
i

E[Qmi(t)]

≤ lim sup
n→∞

∑
m

∑
i

E[(Qmi(tn) + zn(Amax +Nmax))]

≤ K3 +K1LM(Amax +Nmax)

V. THROUGHPUT OPTIMALITY - GENERAL PACKET SIZE
DISTRIBUTION

In this section, we will consider a general packet size
distribution that satisfies Assumption 1.

We will show that Algorithm 1 is throughput optimal in
this case with appropriately chosen g(.). Unlike the Geometric
job size case, for a job that is scheduled, the expected number
of departures in each time slot is not constant here.

The process X(t) = (Q(t),Y(t)) is a Markov Chain, where
Y(t) is defined in the section IV. Let Wm(l) be the expected
remaining service time of a job of type m given that it has
already been served for l time slots. In other words, Wm(l) =
E[Sm− l|Sm > l]. Note that Wm(0) = Sm. Then, we denote
the expected backlogged workload at each queue by Qmi(t).
Thus,

Qmi(t) =

Qmi∑
j=1

Wm(lj)

where lj is the duration of completed service for the jth job
in the queue. Note that lj = 0 if the job was never served.

The expected backlog evolves as follows.

Qmi(t+ 1) = Qmi(t) +Ami(t)−Dmi(t).

where Ami(t) = Ami(t)Sm since each arrival of type m
brings in an expected load of Sm. Dmi(t) is the departure of
the load.

Let p̂ml = P (Sm = l + 1|Sm > l). A job of type m that
is scheduled for l amount of time, has a backlogged workload
of Wm(l). It departs in the next time slot with a probability
p̂ml. With a probability 1− p̂ml, the job does not depart, and
the expected remaining load changes to Wm(l + 1). So, the
departure in this case is Wm(l) −Wm(l + 1). In effect, we
have

Dmi(t) =

{
Wm(l) with prob p̂ml
Wm(l)−Wm(l + 1) with prob 1− p̂ml.

(8)

This means that the Dmi(t) could be negative sometimes,
which means the expected backlog could increase even if there
are no arrivals. Since the job size distribution is lower bounded
by a geometric distribution by Assumption 1, the expected
remaining workload is upper bounded by that of a geometric
distribution. We will now show this formally.

From Assumption 1 on the job size distribution, we have

P (Sm = l + 1|Sm > l) ≥ C
P (Sm > l + 1|Sm > l) ≤ (1− C)

Then, using the relation P (Sm > l+k+1|Sm > l) = P (Sm >
l + k + 1|Sm > l + k)P (Sm > l + k|Sm > l), one can
inductively show that P (Sm > l+ k|Sm > l) ≤ (1−C)k for
k ≥ 1. Then,

Wm(l) = E[Sm − l|Sm > l]

=

∞∑
k=0

P (Sm > l + k|Sm > l)

≤
∞∑
k=0

(1− C)k

≤ 1/C. (9)

Then from (8), the increase in backlog of workload due to
‘departure’ for each scheduled job can increase by at most
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Wm(l + 1), which is bounded 1/C. There are at most Nmax

jobs of each type that are scheduled. The arrival in backlog
queue is at most AmaxSmax. Thus, we have

Qmi(t+ 1)−Qmi(t) ≤ AmaxSmax +
Nmax

C
(10)

Similarly, since the maximum departure in work load for each
scheduled job is 1/C, we have

Qmi(t+ 1)−Qmi(t) ≥ −
Nmax

C
(11)

Since every job in the queue has at least one more time slot
of service left, Qmi(t) ≤ Qmi(t). Since Wm(l) ≤ 1/C, we
have the following lemma.

Lemma 2: There exists a constant C̃ ≥ 1 such that
Qmi(t) ≤ Qmi(t) ≤ C̃Qmi(t) for all i,m and t.

Unlike the case of geometric job sizes, the actual departures
in each time slot depend on the amount of finished service.
However, the expected departure of workload in each time
slot, is constant even for a general job size distribution. This
is the reason we use a Lyapunov function that depends on the
workload. We prove this result in the following lemma. This
is a key result that we need for the proof.

Lemma 3: If a job of type m has been scheduled for l time
slots, then the expected departure in the backlogged workload
is E[Dm|l] = 1. Therefore, we have E[Dm] = 1

Proof: Define pml = P (Sm = l). Then,

Wm(l) =E[Sm − l|Sm > l]

=p̂ml·1 + (1− p̂ml) (1+E[Sm−(l + 1)|Sm > l + 1])

=1 +Wm(l + 1) (1− p̂ml)

Thus, we have

Wm(l)−Wm(l + 1) = 1−Wm(l + 1) (p̂ml) (12)

Then, from (8),

E[Dm|l] =Wm(l)− (1− p̂ml)Wm(l + 1)

=Wm(l)−Wm(l + 1) + (p̂ml)Wm(l + 1) = 1

from (12).
Since E[Dm|l] = 1 for all l, we have E[Dm] =∑
lE[Dm|l]P (l) = 1.
As in the case of Geometric packet sizes, we will show

stability by first showing that the system obtained by sampling
at refresh times has negative drift. For reasons mentioned in
the introduction, here we will use g(y) = log(1 + y) and the
corresponding Lyapunov function

V (Q) =
∑
i,m

G(Qmi)

where G(.) : [0,∞)→ [0,∞) is defined as

G(q) =

∫ q

0

g(y)dy

=

∫ q

0

log(1 + y)dy

=(1 + q) log(1 + q)− q

To use Foster-Lyapunov Theorem to prove stability, one
needs to show that the drift of the Lyapunov function is

negative outside a finite set. However in the general case when
the packet sizes are not bounded, this set may not be finite
and so Foster-Lyapunov Theorem is not applicable. We will
instead use the following result by Hajek [18, Thm 2.3, Lemma
2.1], which can be thought of as a generalization of Foster-
Lyapunov Theorem for nonmarkovian random processes.

Theorem 2: Let {Zn}n≥=0 be a sequence of random vari-
ables adapted to a filtration {Fn}n≥=0, which satisfies the
following conditions:

C1 For some M and ε0,

E[Zn+1 − Zn|Fn] ≤ −ε0whenever Zn > M

C2 (|Zn+1 − Zn||Fn) < Z̃ for all n ≥ 0 and E[eθZ̃ ] is
finite for some θ > 0.

Then, there exists θ∗ > 0 and C∗ such that
lim supn→∞E[eθ

∗Zn ] ≤ C∗.
We will use this theorem with the filtration generated

by the process X(t) and consider the drift of a Lyapunov
function. However, the Lyapunov function corresponding to
the logarithmic g(.) does not satisfy the Lipschitz like bounded
drift condition C1 even though the queue lengths have bounded
increments.

Typically, if α-MaxWeight algorithm is used (i.e., one where
the weight for the queue of type m jobs at server i is
Q
α

mi with α > 1) corresponding to the Lyapunov function
Vα(Q) =

∑
i,m(Qmi)

(1+α), one can modify this and use the
corresponding (1+α) norm by considering the new Lyapunov
function Uα(Q) = (

∑
i,m(Qmi)

(1+α))
1

1+α [23]. Since this is
a norm on RLM , this has the bounded drift property. One can
then obtain the drift of Uα(.) in terms of the drift of Vα(.).

Here, we don’t have a norm corresponding to the loga-
rithmic Lyapunov function. So, we define a new Lyapunov
function U(.) as follows. Note that G(.) is a strictly increasing
function on the domain [0,∞), G(0) = 0 and G(q) → ∞ as
q → ∞. So, G(.) is a bijection and its inverse, G−1(.) :
[0,∞)→ [0,∞) is well-defined.

U(Q) = G−1(V (Q)) = G−1(
∑
i,m

G(Qmi))

This is related to the Lambart W function which is defined as
the inverse of xex that is studied in literature.

We will need the following Lemma relating the drift of the
Lyapunov functions U(.) and V (.).

Lemma 4: For any two nonnegative and nonzero vectors
Q

(1)
and Q

(2)
,

U(Q
(2)

)− U(Q
(1)

) ≤ V (Q
(2)

)− V (Q
(1)

)

log(1 + U(Q
(1)

))

The proof of this Lemma is based on concavity of U(.) and is
similar to the one in [23]. The proof is presented in Appendix
A.

We will need the following Lemma to verify the conditions
C1 and C2 in Theorem 2.

Lemma 5: For any nonnegative queue length vector Q,

1

LM

∑
i,m

log(1 +Qmi) ≤ log(1 +G−1(V (Q)))



8

≤ 1 +
∑
i,m

log(1 +Qmi)

The proof of this Lemma is presented in the Appendix B.
We will also need the following general form of Wald’s

identity.
Theorem 3 (Generalized Wald’s Identity): Let {Xn : n ∈

N} be a sequence of real-valued random variables and let N
be a nonnegative integer-valued random variable. Assume that

D1 {Xn}n∈N are all integrable (finite-mean) random
variables

D2 E[XnI{N≥n}] = E[Xn]P (N ≥ n) for every natural
number n, and

D3
∑∞
n=1E[|Xn|I{N≥n}] <∞.

Then the random sums SN ,
∑N
n=1Xn and TN ,∑N

n=1E[Xn] are integrable and E[SN ] = E[TN ].
We will state and prove the main proposition of this section,

which establishes the throughput optimality of Algorithm 1
when g(q) = log(1 + q).

Proposition 3: Assume that the job size distribution satis-
fies Assumption 1. Then, any job load vector that satisfies
(λ, S) ∈ int(C) is supportable under JSQ routing and my-
opic MaxWeight allocation as described in Algorithm 1 with
g(q) = log(1 + q).

Proof: When the queue length vector is Qmi(t), let
Y(t) = {Ymi(t)}m,i denote the state of jobs of type-m at
server i. When Qmi(t) 6= 0, Ymi(t) is a vector of size N (i)

m (t)
and Yj

mi(t) is the amount of time the jth type-m job that is
in service at server i has been scheduled.

It is easy to see that X(t) = (Q(t),Y(t)) is a Markov chain
under Algorithm 1.

We will show stability of X(t) by first showing that the
Markov Chain X̃(n) corresponding to the sampled system is
stable, as in the proof of Geometric case.

With slight abuse of notation, we will use V (t) for V (Q(t)).
Similarly, V (n), U(t), U(n) and U(X̃(n)). We will establish
this result by showing that the Lyapunov function U(n)
satisfies both the conditions of Theorem 2. We will study the
drift of U(n) in terms of drift of V (n) using Lemma 4. First
consider the following one step drift of V (t).

(V (t+ 1)− V (t))

=
∑
m,i

(
G
(
Qmi(t+ 1)

)
−G

(
Qmi(t)

))
≤
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

)
g(Qmi(t+ 1)) (13)

=
∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)
+
∑
m,i

(
Ami(t)−Dmi(t)

)
g(Qmi(t)) (14)

where (13) follows from the convexity of G(.). To bound the
first term in (14), first consider the case when Qmi(t+ 1) ≥
Qmi(t). Since g(.) is strictly increasing and concave, we have∣∣g(Qmi(t+ 1))− g(Qmi(t))

∣∣
= g(Qmi(t+ 1))− g(Qmi(t))

≤ g′(Qmi(t))(Qmi(t+ 1)−Qmi(t))

≤ (Qmi(t+ 1)−Qmi(t))

=
∣∣Qmi(t+ 1)−Qmi(t)

∣∣
where the second inequality follows from g′(.) ≤ 1. Similarly,
we get the same relation even when Qmi(t) > Qmi(t+1) as
follows. ∣∣g(Qmi(t+ 1))− g(Qmi(t))

∣∣
= g(Qmi(t))− g(Qmi(t+ 1))

≤ g′(Qmi(t+ 1))(Qmi(t)−Qmi(t+ 1))

≤ (Qmi(t)−Qmi(t+ 1))

=
∣∣Qmi(t+ 1)−Qmi(t)

∣∣ .
So the first term in (14) can be bounded as∑
m,i

(
Qmi(t+ 1)−Qmi(t)

) (
g(Qmi(t+ 1))− g(Qmi(t))

)
≤
∑
m,i

∣∣Qmi(t+ 1)−Qmi(t)
∣∣ ∣∣g(Qmi(t+ 1))− g(Qmi(t))

∣∣
≤
∑
m,i

∣∣(Qmi(t+ 1)−Qmi(t)
)∣∣2

≤K4.

where K4 = LM(AmaxSmax + Nmax

C )2. The last inequality
follows from (10) and (11). Thus, we have

V (t+1)−V (t) ≤ K4+
∑
m,i

(Ami(t)−Dmi(t))g(Qmi(t)) (15)

Similarly, it can be shown that

V (t)−V (t+1)≤ K4+
∑
m,i

(
Dmi(t)−Ami(t)

)
g(Qmi(t+1)) (16)

Let tn denote the last refresh time up to t. Let t =
tn + τ for 0 ≤ τ < zn. Again, we use Eq [(.)] to denote
E [(.)|Q(tn) = q,Y(tn)]. Now using (15) in the drift of the
sampled system, we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

=E[V (tn+1)− V (tn)|Q(tn) = q,Y(tn)]

=Eq

[
zn−1∑
τ=0

V (tn + τ + 1)− V (tn + τ)

]

≤Eq

zn−1∑
τ=0

∑
m,i

(
g(Qmi(tn + τ))Ami(tn + τ)

−g(Qmi(tn + τ))Dmi(tn + τ)
)+K4

 (17)

The last term above is bounded by K4K1 from Lemma 1.
We will now bound the first term in (17).

Eq

[
zn−1∑
τ=0

∑
m

∑
i

g(Qmi(tn + τ))Ami(tn + τ)

]

=Eq[

zn−1∑
τ=0

∑
m

g(Qmi∗m(tn+τ)(tn + τ))Am(tn + τ)Sm]
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(a)

≤Eq[

zn−1∑
τ=0

∑
m

g(Qmi∗m
(tn) + τAmaxSm)Am(tn + τ)Sm]

(b)

≤Eq[

zn−1∑
τ=0

∑
m

g(Qmi∗m
(tn))Am(tn + τ)Sm + τA2

maxS
2

m]

≤
∑
m

Smg(qmi∗m)E[

zn−1∑
τ=0

Am(tn + τ)] +
∑
m

A2
maxS

2

mE[z2
n]

(c)

≤A2
maxK2

∑
m

S
2

m + E[zn]
∑
m

Smg(qmi∗m)λm

≤K5 + E[zn]
∑
m

Smg(qmîm)λm (18)

where i∗m(t) = argmin
i∈{1,2,,,L}

Qmi(t), i∗m = i∗m(tn), îm(t) =

argmin
i∈{1,2,,,L}

Qmi(t), îm = îm(tn) and K5 = A2
maxK2

∑
m S

2

m+

K1

∑
m Sm log(C̃)λm. The first equality follows from the

definition of Ami in the routing algorithm in (1). Since
Qmi∗m(tn+τ)(tn + τ) ≤ Qmi∗m(tn)(tn + τ) ≤ Qmi∗m

(tn) +

SmAmaxτ because the load at each queue cannot increase by
more than AmaxSm in each time slot, we get (a). Inequality
(b) follows from concavity of g(.) and g′(.) ≤ 1.

Inequality (c) follows from Wald’s identity (Theorem 1)and
Lemma 1. For Wald’s Identity, we let Ft be the filtration
generated by the process Y(t). Then, A(t+1) is independent
of Ft and zn is a stopping time for Ft. Note that Lemma 2
gives qmi∗m ≤ qmi∗mC̃ ≤ qmîmC̃ ≤ qmîmC̃. This gives (18).

Now we will bound the second term in (17). Though we use
a fixed configuration between two refresh times, there may be
some unused service when the corresponding queue length is
small. We will first bound the unused service. Let D(j)

mi(t) be
the departure in workload at queue Qmi(t) due to the jth job
of type m in the configuration Ñ (i)

m (tn) so that

Dmi(t) =

Ñ(i)
m (tn)∑
j=1

D(j)

mi(t)

Define a fictitious departure process to account for the unused
service as follows.

D̂(j)
mi(t)=

{
D(j)

mi(t) if the jth job in Ñ (i)
m (tn)was scheduled

1 otherwise, i.e., if the jth job was unused.
(19)

D̂mi(t) =

Ñ(i)
m (tn)∑
j=1

D̂(j)
mi(t) (20)

Using D̂mi(t)−Dmi(t) ≤ Nmax, we get

g(Qmi(tn + τ))Dmi(tn + τ)

=
(
g(Qmi(tn + τ))Dmi(tn + τ)

)
IQmi(tn+τ)<Nmax

+
(
g(Qmi(tn + τ))Dmi(tn + τ)

)
IQmi(tn+τ)≥Nmax

(a)

≥
(
g(Qmi(tn + τ))

(
D̂mi(tn + τ)−Nmax

))
IQmi(tn+τ)<Nmax

+
(
g(Qmi(tn + τ))D̂mi(tn + τ)

)
IQmi(tn+τ)≥Nmax

(b)

≥g(Qmi(tn + τ))D̂mi(tn + τ)−Nmaxg(C̃Nmax) (21)

Since that there is no unused service if Qmi(t) ≥ Nmax, we
have (a). Inequality (b) follows from the fact that Qmi(t) ≤
Qmi(t)C̃ from Lemma 2 and N (i)

m (t) ≤ Nmax.
Since g is concave and 0 ≤ g′(.) ≤ 1, we have

g(Qmi(tn)) ≤g(Qmi(tn + τ))

+ g′(Qmi(tn + τ))(Qmi(tn)−Qmi(tn + τ))

≤g(Qmi(tn + τ)) + |Qmi(tn)−Qmi(tn + τ)|
≤g(Qmi(tn + τ)) + τ(AmaxSmax +Nmax/C)

where the last in follows from (10) and (11). Then, using
D̂mi(tn + τ) ≤ Nmax/C from (11) in (21), we get

g(Qmi(tn + τ))Dmi(tn + τ)

≥g(Qmi(tn))D̂mi(tn + τ)−K6τ −Nmaxg(C̃Nmax)

where K6 = (Nmax/C)((AmaxSmax+Nmax/C). Then, using
Lemma 1, the second term in (17) can be bounded as follows

Eq

zn−1∑
τ=0

∑
i,m

g(Qmi(tn + τ))Dmi(tn + τ)


≥Eq

zn−1∑
τ=0

∑
i,m

g(Qmi(tn))D̂mi(tn + τ)

−K7

=
∑
i,m

g(qmi)Eq

[
zn−1∑
τ=0

D̂mi(tn + τ)

]
−K7 (22)

where K7 = LM(K6K2 + Nmaxg(Nmax)K1). We will now
use the generalized Wald’s Identity (Theorem 3), verifying
conditions (D1), (D2) and (D3). Clearly, (D1) is true because
D̂mi(tn+τ) have finite mean by definition, and from Lemma
3.

From definition of D̂mi(tn+τ), from (8) and (9), |D̂mi(tn+
τ)| ≤ Nmax/C. So,
∞∑
τ=1

Eq

[
|D̂mi(tn + τ)|I{zn≥τ}

]
≤ Nmax

C

∞∑
τ=1

Eq

[
I{zn≥τ}

]
=
Nmax

C

∞∑
τ=1

Pq(zn ≥ τ)

=
Nmax

C
Eq[zn]

≤ NmaxK1

C
.

This verifies (D3). We verify (D2) by first proving the follow-
ing claim.

Claim 1:

Eq

[
D̂mi(tn + τ)|zn ≥ τ

]
= Eq

[
D̂mi(tn + τ)

]
Proof: Consider the departures due to each job, D̂(j)

mi(t)
as defined in (19). Intuitively, conditioned on {zn ≥ τ},
we have a conditional distribution on the amount of finished
service for each of the jobs. However, from Lemma 3, the
expected departure is 1 independent of finished service. Thus,
the conditional workload departure due to each job is 1. This
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is the same as the unconditional departure, again from Lemma
3. We will now prove this more formally.

The event {zn ≥ τ} is a union of many (but finite) disjoint
events {Eα : α = 1 . . .A}. Each of these events Eα is of the
form {(q(tn),A(tn),D(tn)), (q(tn + 1),A(tn + 1),D(tn +
1)), . . . (q(tn + τ − 1),A(tn + τ − 1),D(tn + τ − 1))}. In
other words, each event is a sample path of the system up
to time tn + τ and contains complete information about the
evolution of the system from time tn up to time tn + τ . Let
l
(j)
mi be the amount of finished service for the jth job of type m

at server i. l(j)mi is completely determined by Eα. Conditioned
on Eα, D̂(j)

mi(t) depends only on l(j)mi. It is independent of the
other jobs in the system, and is also independent of the past
departures. Thus, we have

Eq

[
D̂(j)
mi(tn + τ)|Eα

]
=Eq

[
D̂(j)
mi(tn + τ)|l(j)mi

]
=1

The last inequality follows from Lemma 3 and definition of
D̂(j)
mi(t) in terms of D(j)

mi(t) (19). Since Eα are disjoint, we
have

Eq

[
D̂(j)
mi(tn + τ)|zn ≥ τ

]
=
∑
α

P (Eα|zn ≥ τ)Eq

[
D̂(j)
mi(tn + τ)|Eα

]
=
∑
α

P (Eα|zn ≥ τ) = 1

Similarly, from Lemma 3 and (19), we have
Eq

[
D̂(j)
mi(tn + τ)

]
= 1. Summing over j, from (20),

we have the claim.
Since

Eq

[
D̂mi(tn + τ)Izn≥τ

]
=Eq

[
D̂mi(tn + τ)|zn ≥ τ

]
P (zn≥τ)

=Eq

[
D̂mi(tn + τ)

]
P (zn ≥ τ),

we have (D2). Therefore, using Generalized Wald’s Identity
(Theorem 3) in (22), we have

Eq

zn−1∑
τ=0

∑
i,m

g(Qmi(tn + τ))Dmi(tn + τ)


≥
∑
i,m

g(qmi)Eq [zn] Ñ
(i)
m (tn)−K7 (23)

The key idea is to note that the expected departures of
workload for each scheduled job is 1 from Lemma (3). We
use this, along with the generalized Wald’s theorem to bound
the departures similar to the case of geometric job sizes.

Since (λ, S) ∈ C, there exists
{
λi
}
i

such that λ =
∑
i λ

i

and λi ◦ S ∈ int(Conv(Ni)) for all i . Then, there exists an
an ε > 0 such that (λi + ε) ◦ S ∈ Conv(Ni) for all i. From
Lemma 2, we have g(qmi) ≤ g(C̃qmi) ≤ log(C̃(1+qmi)) ≤
g(qmi) + log(C̃). The last inequality which is an immediate
consequence of the log function has also been exploited in
[24] [25]for a different problem. For each server i, we have∑
m

(g(qmi)− log(C̃))(λim + ε)Sm ≤
∑
m

g(qmi)(λ
i
m + ε)Sm

(a)

≤
∑
m

g(qmi)Ñ
(i)
m (tn)

≤
∑
m

g(qmi)Ñ
(i)
m (tn)

where (a) follows from the Algorithm 1 since Ñ
(i)
m (tn) is

chosen according to MaxWeight policy. The last inequality
again follows from Lemma 2. Substituting this in (23) and
from (18) and (17), we get

E[V (X̃(n+ 1))− V (X̃(n))|Q̃(n) = q, Ỹ(n)]

≤K8+Eq[zn]
∑
m

(
g(qmîm)λmSm−

∑
i

g(qmi)(λ
i
m + ε)Sm

)
(a)

≤K8 − εSminEq[zn]
∑
i

∑
m

g(qmi)

≤K9 − εSmin log(1 +G−1(V (q)))

where K8 = K4K1+K5+K7+log(C̃)
∑
m(λm+Lε)Sm and

K9 = K8 + εSminK1. Inequality (a) follows from λ =
∑
i λ

i

and qmîm ≤ qmi. The last inequality follows from Lemma 5
and since zn ≥ 1.

If the packet sizes were bounded, we can find a finite set
of states B = {x :

∑
m

∑
i g(qmi) < M} so that the drift

is negative whenever x ∈ Bc. Then, similar to the proof in
Section IV, Foster-Lyapunov theorem can be used to show
that the sampled Markov Chain X̃(n) is positive recurrent.
We need the bounded packet size assumption here because,
if not, the set B could then be infinite since for each q there
are infinite possible values of state x = (q,y) with different
values of y.

Since the packet sizes are not bounded in general, we will
use Theorem 2 to show stability of Algorithm 1 for the random
process U(n). From Lemma 4, we have

E[U(X̃(n+ 1))− U(X̃(n))|X̃(n) = x = (q,y)]

≤E

[
V (X̃(n+ 1))− V (X̃(n))

log(1 + U(X̃(n))

∣∣∣∣∣ X̃(n) = x = (q,y)

]

≤ K9

log(1 + U(q))
− εSminK1 ≤ −εSminK1

2

whenever U(q) > e(2K9/εSminK1). Thus, U(n) satisfies con-
dition C1 of Theorem 2 for the filtration generated by the
{X̃(n)}. From Lemma 4, Lemma 5 and (15), we have

(U(tn + τ + 1)− U(tn + τ))

≤ [V (tn + τ + 1)− V (tn + τ)]

log(1 +G−1(V (Q(tn + τ))))

≤
K4 +Amax

∑
m,i Smg(Qmi(tn + τ))

log(1 +G−1(V (Q(tn + τ))))

≤ K4

log(1 +G−1(V (Q(tn + τ))))
+
AmaxSmax

LM

(a)

≤K10 if U(tn + τ) > 0
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where K10 = K4

log(2) + AmaxSmax

LM . Since U(Q) > 0 if and
only if V (Q) > 0 if and only if Q 6= 0, there is at least one
nonzero component of Q = 0 and so V (tn+ τ) > G(1). This
gives the inequality (a). If U(tn+ τ) = 0, from (15), we have
(U(tn + τ + 1)− U(tn + τ)) ≤ K11

∆
= G−1 (K4). Thus, we

have

(U(tn + τ + 1)− U(tn + τ)) ≤ K12

where K12 = max{K10,K11}. Similarly, from (16) it can be
shown that

(U(tn + τ)− U(tn + τ + 1)) ≤ K14

where K14 = max{K13,K11} and K13 = K4

log(2) + Nmax

LM .
Setting K15 = max{K12,K14}, we have

(|U(tn + τ)− U(tn + τ + 1)|) ≤ K15

( |U(tn + τ)− U(tn + τ + 1)||X(tn)) ≤ K15(
|U(X̃(n+ 1))− U(X̃(n))|

∣∣∣ X̃(n)
)
≤ K15zn

≤ K15zn

where zn is the coupled random variable constructed in the
proof of Lemma 1. Since zn is a geometric random variable
by construction, it satisfies condition C1 in Theorem 2. Thus,
we have that there are constants θ∗ > 0 and K4 > 0 such that,
limn→∞

∑
m

∑
iE[eθ

∗U(X̃(n))] ≤ K4. Since G(.) is convex,
from Jensen’s inequality, we have

G

(
1

LM

∑
m

∑
i

Qmi(tn)

)
≤ 1

LM

∑
m

∑
i

G
(
Qmi(tn)

)
≤V (Q(tn)) (24)∑

m

∑
i

Qmi(tn)
(a)

≤
∑
m

∑
i

Qmi(tn)

(b)

≤(LM)U(Q(tn))

≤LM
θ∗

eθ
∗U(X̃(n))

where (a) follows from Lemma 2 and (b) follows from (24).
Thus, we have limn→∞

∑
m

∑
iE[Qmi(tn)] ≤ LM

θ∗ K4.
For any t > 0, if tn+1 is the next refresh time after t, from

(11) we have

Qmi(tn+1) ≥ Qmi(t)− zn
Nmax

C∑
m

∑
i

E[Qmi(t)] ≤
∑
m

∑
i

E[(Qmi(tn+1) + znNmax/C)]

As t→∞, we get

lim sup
t→∞

∑
m,i

E[Qmi(t)] ≤ lim sup
n→∞

∑
m,i

E

[
Qmi(tn)+zn

Nmax

C

]
≤ LM

θ∗
K4 +

K1LMNmax

C
.

A centralized queuing architecture was considered in [5]. In
such a model, all the jobs are queued at a central location and

all the servers serve jobs from the same queues. There are no
queues at the servers. The scheduling algorithm in Algorithm
1 can be used in this case with each server using the central
queue lengths for the MaxWeight policy. It can be shown that
this algorithm is throughput optimal. The proof is similar to
that of Proposition 3 and so we skip it.

VI. SIMULATIONS

According to Algorithm 1, each server performs MaxWeight
scheduling only at refresh times. At other times, it uses the
same schedule as before. In this section, we present two
heuristic algorithms motivated by Algorithm 1. It is open
whether these algorithms are throughput-optimal, therefore we
study them through simulations.

At refresh times, a MaxWeight schedule is chosen at each
server. At all other times, each server tries to choose a
MaxWeight schedule greedily. It does not preempt the jobs that
are in service. It adds new jobs to the existing configuration
so as to maximize the weight using g(Qmi(t)) as weight. This
algorithm tries to emulate a MaxWeight schedule in every time
slot by greedily adding new jobs with higher priority to long
queues. This algorithm has the advantage that, at refresh times
an exact MaxWeight schedule is chosen automatically. Each
server does not need to know departure information of other
servers and so is independent of other servers. We call this
Algorithm 2. It is not clear if this algorithm is throughput
optimal. The proof in Section V is not applicable here, because
one cannot use Wald’s identity to bound the drift.

An alternate approach is to use local refresh times. For
server m, a local refresh time is a time when all the jobs that
are in service at server m finish their service simultaneously.
Thus, if a time instant is a local refresh time for all the servers,
it is a (global) refresh time for the system.

Consider the following Algorithm 3. Each server chooses a
MaxWeight schedule only at local refresh times. Between the
local refresh times, a server maintains the same configuration.
Again, it is not clear if this is throughput optimal. Each server
may have multiple local refresh times between two (global)
refresh times. Since the schedule changes at these refresh
times, again the approach in Section V is not applicable.

In this section, we use simulations to compare the perfor-
mance of these two algorithms. Motivated by the Amazon EC2
example in [5], we consider a data center with 100 identical
servers, and three types of jobs. The resource constraints are
such that (2, 0, 0), (1, 0, 1), and (0, 1, 1) are the three maximal
VM configurations for each server. We consider two load
vectors, λ(1) = (1, 1

3 ,
2
3 ) and λ(2) = (1, 1

2 ,
1
2 ) which are on

the boundary of the capacity region of each server. λ(1) is a
linear combination of all the three maximal schedules whereas
λ(2) is a combination of two of the three maximal schedules.

We consider three different job size distributions. Distribu-
tion A is a bounded distribution which models the high vari-
ability in jobs sizes as follows: when a new job is generated,
with probability 0.7, the size is an integer that is uniformly
distributed between 1 and 50, with probability 0.15, it is an
integer that is uniformly distributed between 251 and 300, and
with probability 0.15, it is uniformly distributed between 451
and 500. Therefore, the average job size is 130.5.
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Fig. 1. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(1) and job size distribution A

Fig. 2. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(1) and job size distribution B

Distribution B is a Geometric distribution with mean 130.5.
Distribution C is a combination of Distributions A and B with
equal probability, i.e., the size of a new job is sampled from
Distribution A with probability 1/2 and from Distribution B
with probability 1/2.

We further assume the number of type-i jobs arriving at
each time slot follows a Binomial distribution with parameter
(ρ λi

130.5 , 100).
Figures 1, 2 and 3 shows the mean delay of the jobs for

both the algorithms with the three job size distributions using
the load vector λ(1). We vary the parameter ρ to simulate
different traffic intensities. Each simulation was run for one
million time slots. Figures 4, 5 and 6 show the same results
when the load vector λ(2) is used.

The simulations indicate that both the algorithms may be
throughput optimal. For λ(1), Algorithm 2 has better delay
performance at higher loads whereas for for λ(2), both the
algorithms have similar delay performance. This indicates that
using the greedy MaxWeight schedule is sometimes more
efficient than using a static schedule between refresh times.

Fig. 3. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(1) and job size distribution C

Fig. 4. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(2) and job size distribution A

Fig. 5. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(2) and job size distribution B
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Fig. 6. Comparison of Mean delay using Algorithms 2 and 3 for load vector
λ(2) and job size distribution C

VII. CONCLUSION

In this paper, we studied a MaxWeight scheduling and Join
the Shortest Queue routing algorithm for a cloud computing
data center. This is a nonpreemptive algorithm that can be
implemented without knowing the job durations. A Maxweight
schedule is chosen at every refresh time. The weights for the
MaxWeight scheduling algorithm are chosen to be logarithmic
functions of the queue lengths. We showed that the that the
refresh times occur often enough. We used this to show that
this algorithm is throughput optimal by showing that the drift
of a lyapunov function is negative. We then presented two
more natural algorithms and studied their performance using
simulations.
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APPENDIX A
PROOF OF LEMMA 4

Since G(.) is a strictly increasing bijective convex function
on the open interval (0,∞), it is easy to see that G−1(.) is a
strictly increasing concave function on (0,∞). Thus, for any
two positive real numbers v2 and v1, G−1(v2) − G−1(v1) ≤
(v2 − v1)

(
G−1(v1)

)′
where (.)′ denotes derivative.

Let u = G−1(v). Then,

v = G(u)

dv

du
= G′(u) = g(u) = g(G−1(v))

du

dv
=

1

g(G−1(v))

Since du
dv =

(
G−1(v)

)′
, we have

(
G−1(v)

)′
= 1

g(G−1(v)) .

Thus, G−1(v2)−G−1(v1) ≤ (v2−v1)
g(G−1(v1)) . Using V (Q

(1)
) and

V (Q
(2)

) for v1 and v2, we get the lemma.
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APPENDIX B
PROOF OF LEMMA 5

Since the arithmetic mean is at least as as large as the
geometric mean and since G(.) is strictly increasing, we have

G

∏
i,m

(1 +Qmi)
1
LM − 1

 ≤ G(∑i,m(1 +Qmi)

LM
− 1

)

=

∑
i,m(1+Qmi)

LM
log

(∑
i,m(1+Qmi)

LM

)
−
∑
i,m(1+Qmi)

LM
+1

(a)

≤ 1

LM

∑
i,m

(1 +Qmi) log
(
(1 +Qmi)

)
−
∑
i,m(Qmi)

LM

=
V (Q))

LM
≤ V (Q))

where inequality (a) follows from log sum inequality. Now,
since G(.) and log(.) are strictly increasing, we have

e(
1
LM

∑
i,m log(1+Qmi)) ≤ 1 +G−1

(
V (Q))

)
1

LM

∑
i,m

log(1 +Qmi) ≤ log
(
(1 +G−1

(
V (Q))

))
(25)

Now to prove the second inequality, note that since Qmi is
nonnegative for all i and m,

∑
i,m

log(1 +Qmi)
∏
i′,m′

(1 +Qm′i′)


≥
∑
i,m

(
log(1 +Qmi)(1 +Qmi)

)
≥
∑
i,m

(
(1 +Qmi) log(1 +Qmi)

)
−
∑
i,mQmi − 1

e

Shuffling the terms, we get,e∏
i,m

(1 +Qmi)

log
e∏

i,m

(1 +Qmi)

−
e∏

i,m

(1 +Qmi)

+1

≥
∑
i,m

(
(1 +Qmi) log(1 +Qmi)

)
−
∑
i,m

Qmi

From the definition of G(.) and V (.), this is same as

G

e∏
i,m

(1 +Qmi)− 1

 ≥ V (Q)

e(1+
∑
i,m log(1+Qmi)) ≥ 1 +G−1(V (Q))

1 +
∑
i,m

log(1 +Qmi) ≥ log(1 +G−1(V (Q)))

The last two inequalities again follow from the fact that G(.)
and log(.) are strictly increasing.


