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Abstract—Cloud computing is emerging as an important plat- - with the MaxWeight scheduling algorithr [22] at each server
form for business, personal and mobile computing applicatins. s throughput optimal. The focus of this paper is to study the

In this paper, we study a stochastic model of cloud computing delay, or equivalently, the queue length performance of the
where jobs arrive according to a stochastic process and re@st Ny p—
algorithms presented in [15].

resources like CPU, memory and storage space. We consider a o . .
model where the resource allocation problem can be separafe ~ Characterizing the exact delay or queue length in general is
into a routing or load balancing problem and a scheduling pr>-  difficult. So, we study the system in the heavy-traffic regime

lem. We study the join-the-shortest-queue routing and powe j.e., when the exogenous arrival rate is close to the boyndar
of-two-choices routing algorithms with MaxWeight scheduing ¢ the capacity region. In this regime, for some systems,

algorithm. It was known that these algorithms are throughput the multi-dimensional state of the system reduces to aeing|
optimal. In this paper, we show that these algorithms are quee uft-al : Yy u Ing

length optimal in the heavy traffic limit. dimension, called state-space collapselIn [16], [23], thogk
Index Terms—Scheduling, load balancing, cloud computing, was outlined to use the state-space collapse for studyiag th
resource allocation. diffusion limits of several queuing systems. This procedur

has been successfully applied to a variety of multiqueue
models served by multiple serveis [20], [11], [12]] [4]. But
Cloud computing services are emerging as an importdhese models assume that the system is work conserving, i.e.
resource for personal as well as commercial computing apgiueued jobs are processed at maximum rate by each server.
cations. Several cloud computing systems are now comm8telyar [21], generalized this notion of state-space pska
cially available, including Amazon EC2 systen [7], Google’and resource pooling to a generalized switch model, where
AppEngine [1], and Microsoft's Azure [3]. A comprehensivet is hard to define work-conserving policies. This was used
survey on cloud computing can be found fin [9], [2],[17]. to establish the heavy traffic optimality of the MaxWeight
In this paper, we focus on cloud computing platforms thadgorithm.
provide infrastructure as service. Users submit requests f Most of these results are based on considering a scaled ver-
resources in the form of virtual machines (VMs). Each retjuesion of queue lengths and time, which converges to a regllate
specifies the amount of resources it needs in terms of procedsrownian motion, and then show sample-path optimality in
power, memory, storage space, etc.. We call these requdbes scaled time over a finite time interval. This then allows
jobs. The cloud service provider first queues these requeatsiatural conjecture about steady state distribution. n [8
and then schedules them on physical machines called serviérg authors present an alternate method to prove heavctraffi
Each server has a limited amount of resources of each kiptimality that is not only simpler, but shows heavy traffic
This limits the number and types of jobs that can be schedulegtimality in unscaled time. In addition, this method ditgec
on a server. The set of jobs of each type that can be schedudbthins heavy-traffic optimality in steady state. The mdtho
simultaneously at a server is called a configuration. Theeon consists of the following three steps.
hull of the possible configurations at a server is the capacit(1) Lower bound: First a lower bound is obtained on the
region of the server. The total capacity region of the cloud i weighted sum of expected queue lengths by comparing
then the Minkowski sum of the capacity regions of all servers with a single-server queue. A lower bound for the single-
The simplest architecture for serving the jobs is to queue  server queue, similar to the Kingman bouind![14], then
them at a central location. In each time slot, a central sdeed gives a lower bound to the original system.
chooses the configuration at each server and allocates jolf2) Sate-space collapse: The second step is to show that
to the servers, in a preemptive manner. As pointed out in  the state of the system collapses to a single dimension.
[15], this problem is then identical to scheduling in an ad Here, it is not a complete state-space collapse, as in the
hoc wireless network with interference constraints. Ircfice, Brownian limit approach, but an approximate one. In
however, jobs are routed to servers upon arrival. Thus, egieu particular, this step is to show that the queue length along
are maintained at each individual server. It was shown_ if [15 a certain direction increases as the exogenous arrival rate
that join-the-shortest queue-type algorithms for routaigng gets closer to the boundary of the capacity region but the
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gueue length in any perpendicular direction is bounded. along a single dimension (of the forin< p). In Section

(3) Upper bound: The state-space collapse is then used we show heavy traffic optimality of the power-of-two-
obtain an upper bound on the weighted queue lengtthoices routing algorithm. The lower and upper bounds in
This is obtained by using a natural Lyapunov functiothis case are identical to the case of JSQ routing[in [8].
suggested by the resource pooling. Heavy-traffic opfFhe main contribution here is to show state-space collapse,
mality can be obtained if the lower bounds and the uppeihich is somewhat different compared o [8]. The resulteher
bounds coincide. complement the heavy-traffic optimality results [0 [6],_[13

In this paper, we apply the above three-step procedureVYBiCh were obtained using Brownian motion limits.
stl_de the resource allocat_lon algorithms presentgd In M8 Note on Notation
briefly review the results in_[15] now. Jobs are first routed to .
the servers, and are then queued at the servers, and a ssheduf "€ Set of real numbers, the set of non-negative real

schedules jobs at each server. So, we need an algorithm {H4DPers, o
has two components, viz. and the set of positive real numbers are denote®bRR

ina alaorithm th b _and R, respectively. We denote vectors R’ or RM by
1) arouting algorithm that routes new jobs to servers in in normal font. We use bold font to denote vectors in

each time slot (we assume that the jobs are assignequt@M Dot product in the vector spac’ or R is denoted

a server upon arrival and they cannot be moved to and the dot product i’ is denoted b
different server) and &y (. v) P Y, y).

2) ascheduling algorithm that chooses the configuration of [I. SYSTEM MODEL AND ALGORITHM

each server, i.e., in each t'mism,t’t')t dec:ldgs which jobs . gider a discrete time cloud computing system as follows.
to serve. Here we assume that jobs can be preemptefly e arer servers indexed by:. Each server hakdifferent

.e., a job can be served in a time slot, and then ds of resources such as processing power, disk space,

preempted if it is not scheduled in the next time slot. Itr°hemory etc.. Servern has R .. units of resourcei for
’ . T, M

service can be resumed in the next time it is schedulelol6 {1,2,3,..., I}. There areJ different types of jobs indexed

Such a_model is applicable in situations where job siz%§, j. Jobs of typej needr; ; units of resource for their
are typically large. service. A job is said to be of sizB if it takes D units of

It was shown in [[1B] that using the join-the-shortestime to finish its service. LeD,,,, be the maximum allowed
gueue (JSQ) routing and MaxWeight scheduling algorithm &ervice time.
throughput optimal. In Section 11l, we show that this policy Let .4;(¢) denote the set of typg-jobs that arrive at the
is queue length optimal in the heavy traffic limit when all th@eginning of time slot. Indexing the jobs inA;(¢) from 1
servers are identical. We use the three step procedurehiecrthrough|.4; (t)|, we definea; (t) = Y,c 4 () Dr., to be the
above to prove the heavy traffic optimality. The lower boungverall size of the jobs itd;(t) or the total time slots requested
in this case is identical to the case of the MaxWeight schedly the jobs inA;(t). Thus,a;(t) denotes the total work load
ing problem. However, state-space collapse does not biredif type j that arrives in time slot. We assume that;(t) is a
follow from the corresponding results for the MaxWeightochastic process which is i.i.d. across time slBfs,(t)] =
algorithm in [8] due to the additional routing step here. W, andPr(a;(t) = 0) > e for somees > 0 for all j andt.
use this to obtain an upper bound that coincides with thedowgany of these assumptions can be relaxed, but we make these
bound in the heavy traffic limit. assumptions for the ease of exposition. Second moments of th

JSQ needs queue length information of all servers at thgrival processes are assumed to be bounded:dsét; ()] =
router. In practice, this communication overhead can beequb?, A = ()\,...\;) ando = (oy,....05). We denotes? =
significant when the number of servers is large. An alteveati(o?, ....0%).
algorithm is the power-of-two-choices routing algorithin. In each time slot, the central router routes the new arrivals
each time slot, two servers are chosen uniformly at randa a@ one of the servers. Each server maintaingueues corre-
new arrivals are routed to the server with the shorter queggonding to the work loads of thé different types of jobs.
It was shown in[[15] that the power-of-two-choices routinget g, ,,(t) denote the total backlogged job size of the type
algorithm with the MaxWeight scheduling is throughput opjobs at servern at time slott.
timal if all the servers are identical. Here, we show that the Consider servem. We say that server. is in configuration
heavy-traffic optimality in this case is a minor modificationy = (s,, s, ..., s;) € (Z4)” if the server is serving; jobs of
of the corresponding result for JSQ routing and MaxWeiglype 1, s, jobs of type2 etc. This is possible only if the server
scheduling. has enough resources to accommodate all these jobs. In other

A special case of the resource allocation problem is when J ,
all the jobs are of same type. In this case, scheduling is nvg?rds,j;sjrm < Bim¥i € {1,2,.... I} Let 5o, be the
required at each server. The problem reduces to a routimyaximum number of jobs of any type that can be scheduled
only problem which is well studied [18]. [5].[6][ [13]L.[19] on any server. LetS,, be the set of feasible configurations
For reasons to be explained later, the results, from Section serverm. We say thats is a maximal configuration if
[T cannot be applied in this case since the capacity regio other job can be accommodated i.e., for evgryg + e/



(wheree;s is the unit vector along’) violates at least one SCHEDULING
of the resource constraints. LEf, be the convex hull of the | this section, we will study the performance of JSQ

. . . J
maximal configurations of serven. LetC,, = {s € (R+)" :  routing with MaxWeight scheduling, as described in Algomit
s < s* for somes* € C;,}. Heres < s* meanss; < siVj € [

{1,2,...,J}. C;, can be thought of as the capacity region for
serverm. Note that if\ € interior(Cy,), there exists aa > 0  Algorithm 1 JSQ Routing and MaxWeight Scheduling
such thatA(1 +¢) € Cp. Cy is @ convex polytope in the ~ 1) Routing Algorithm: All the type j arrivals in a time slot

nonnegative quadrant & are routed to the server with the smallest queue length
Define ¢ — % Cn = {s € (R+)J . ggm ¢ for type j jobs, i.e., the servem; = mg}{rlgjgrfi%}qjym.
v M Ties are broken uniformly at random.
Cm Vmsts < Y s™} We denote this ag = Z Cm 2) Scheduling Algorithm: In each time slot, servern
Heres™ just den(;?es1 an element @, and notm™ power of chooses a configuratios™ & C;, so thats™ =
s. Then,C = Z Cm, Where" denotes the Minkowski sum argmast gj,m- It then schedules up to a maximum

S7n€C* 7 1
of sets. So(C s agaln a convex polytope in the nonnegative of sj jobs of typej (in a preemptive manner). Note
quadrant oR”’. So,C can be described by a set of hyperplanes  that even if the queue length is greater than the allocated

as follows: service, all of it may not be utilized, e.g., when the back-
logged size is from a single job, since different chunks
C={s>0: <c<k), s> <b® k=1,..K} of the same job cannot be scheduled simultaneously.

Denote the actual number of jobs chosensty. Note
whereK is the number of hyperplanes that completely defines  that if ¢; ., > DyazSmaz, then@ = s
¢, and(c® p(®)) completely defines the'" hyperplang (%),
(™, s) =b®). SinceC is in the first quadrant, we have

Let Y; ., (t) denote the state of the queue for typgebs

1E® =1 ,e® >0, 8™ >0 fork=1,2,..K. at serverm, whereY;, (t) is the (backlogged) size of the
B B ith type+ job at serverm. It is easy to see thal¥(t) =

It was shown in[[15] that is the capacity region of this {Yj.m(t)},m is @ Markov chain under the JSQ routing and

MaxWeight scheduling. Theng; ,, m is a
system. Similar ta, defineS = ZS funcuongof the statéfj,?n() My (1) = 2 ¥jm ()

Lemma 1: Given thekt" hyperplaneH () of the capacity The queue lengths of workload evolve according to the
regionC (i.e., (¢, X) = b)), for each servem, there is a following equation:
bi%) such that{c®), \) = b is the boundary of the capacity Gim(t+1) = qm(t) + a;m(t) —

(t)
() +m(t) (1)

where @, ,,,(t) is the unused service, given by, ,.(t) =
k) k . - Js G5
{/\( €Cm } such that\(® Z ) and A®) € C lies s (t) — s (t), s7(¢) is the MaxWeight schedule and"(t)
/\(k)> ! is the actual schedule chosen by the scheduling algoritidn an
~ 7™ the arrivals are
Proof: Defineb(l) = max (¢, s). Then, since
ajm(t) = {

gm

J
_m

J

. Mk —
region C,,, and b*) = Z bix) . Moreover, for every set = qjm(t) + ajm(t) —

on thek! hyperplane{(*) , we have tha<

seCm

aj(t) if m=mj(t)
0 otherwise '

M M (k) (2)
C= Y Cn, we have that® = > by,

m=1 m=1 ) i .
Again, by the definition ofC, for every A € C, there Here,mj is the server chosen by the routing algorithm for
(k) Mo gy typej jobs. Note that
are \,’ € C, for eachm such thatA® = 3>\,

m=1 — . .
However, these may not be unique. We will prove that for m(t) = 0 wheng; m(t) + a;jm(t) = Dmazsmaz- (3)
every such{AS,’f)} , for eachm, 20(’“) )\(k)> = b Sup- Also, denotes = (s;); where

M
55 = Zs;” (4)
m=1

Denotea = (a; ;) im, S = (87) i m andd = (Ui, ) i.m. AlSO
< ®) )‘(k)> > bﬁfig Wh'Ch is a contradiction. Thus, we h"’“’edenotelato EJaeJ’th)eJ’ve;or \(/\fizcrijin all C(l)lmp((;lflje’nt)sjj
the lemma. u It was shown in [[15] that this algorithm is throughput
optimal. Here, we will show that this algorithm is heavy ftiaf
I11. JSQ ROUTING AND MAXWEIGHT optimal.

U

)

pose, for some servem <c(’“)7)\$f§2> < o'%). Then since

k), LONT) (k) ;
Z /\ Z b’ , there existsn, such that



Recall that the capacity region is bounded Ky hyper- where the parameter = (e(k))szl is so thate®) is the
planes, each hyperplarté(*) described by its normal vectordistance ofA() from the k' hyperplaneX(*) as defined in
") and the value*). Then, for any\ ¢ interior(C), we (). Then for eachk € K9,.,, the steady state queue length
can define the distance of to #(*) and the closest point, satisfies

respectively, as (k)
WE[(® gn))] < & Bk
€® — min (| — 5| 5) € [<c el )>} < + By
seH k) 9 9 ( (k))2 ()
AF) = A 4 () o(R) where (9 = L ((¢®)? (09)*) + (L, BN i

wheree®) > 0 for eachk since\ € interior(C). We lete 2 o)

. . . (k) . . . .
(e(lc))ii1 denote the vector of distances to all hyperplanes.In the heavy traffic limit ag'" | 0, this bound is tight, i.e.,
At (k) ; ; ; (k)
Note thatA'*) may bg outside the capacity regiGrfor some lim <P E [<c(k), q(e)ﬂ _ Y
hyperplanes. So define e 10 2
(K 2
K2 {ke {12,k A0 ec} where¢®) = L {(c®)? (0)?),

We will prove this proposition by following the three step
procedure described in Secti@h |, by first obtaining a lower

oint to A is on the boundary of the capacity regi . . :
P . A : y capacty: reg @h bound, then showing state space collapse and finally useng th
hence is a feasible average rate for service. Note that fpr ar% .
state space collapse result to obtain an upper bound.

A € interior(C), the setiCy is non-empty, and hence is well-
defined. We further define A. Lower Bound

Ky identifies the set oflominant hyperplanes whose closest

QL {k €K, AW e Relmt(]—‘(k))} SinceA(®) is in the interior ofC, the proces{q‘“)(t)}, has
a steady state distribution. We will obtain a lower bound on
where F(¥) denotes the face on whick®) lies and Relint ® @ J o (M _
means relative interior. Thug$ is the subset of faces ikiy E[(c™,q)] =E Z:lﬁ (mg_:lqﬂ'm) in steady state as
for which the projection of\ is not shared by more than onegg|jows. = -

hyperpIaAne. . _ _ Consider the single server queuing systef)(t) with
Fore = (E(k))kzl > 0, let A€ be the arrival rate in the arrival process\/_lﬁ <C(k),a(5)(t)> and service process given

interior of the capacity region so that its distance from the ;& X . .
hyperplaneH® is %) Let A(®) be the closest point ta(© hoy 73; at each time slot. Then(t) is stochastically smaller

on #® . Thus. we have than (c®), q(¢)(?)). Thus, we have

AR — \© L () (k) ©6) E Kc(k),q(e)ﬂ SE [(b(e)} .
Let q')(t) be the queue length process when the arrival ratgsing 2 as Lyapunov function for the single server queue
is (). and noting that the drift of it should be zero in steady state,

5 k JM : _ % —(e
Definec™ € R{", indexed byj,m asc;,, = 7i7- W one can bound {(b( )} as follows [8]
expect that the state space collapse occurs along %mdnect
c®). This is intuitive. For a fixedj, JSQ routing tries to (e (€.k)
- : ®E [39] > ¢ Bk
equalize the queue lengths across servers. For a fixed server € [¢ } =9 1
m, we expect that the state space collapse occurs aldhg N
when approaching the hyperplahé®), as shown in[8]. Thus, where (c®)? = ((05@) ) , B — B8 ang

for JSQ routing and MaxWeight, we expect that the state space j=1

collapse occurs along®) in R7M, (k) _ 1 <(c(k))2 (U(E))2> . (<9)*
For eachk € K., define the projection and perpendicular h \'/Mh h ’ fhic fooi \/(I\_]g) o A
component ofg(®) to the vectorc® as follows: Thus, in the heavy traffic limit as™ | 0, we have that
(k)
(k) & / (k) (e)> (k) (k) [< (k) _(E)>} (_
q" = <C a4’ )c E(lir)llloe E|(c'™,q > 5 (7
(e,k) 2 (o) _ (e,k)
qa; q q) where¢®) = \/LM <(C(k))2 ’ (U)2>'

In this section, we will prove the following proposition.

Proposition 1: Consider the cloud computing system deB- State Space Collapse
scribed in Sectiofll. Assume all the servers are identical, In this subsection, we will show that there is a state space
R;» = R, for all serversm and resources and that JSQ collapse along the directioef*). We know that as the arrival
routing and MaxWeight scheduling as described in Algorithmate approaches the boundary of the capacity region, i.e.,
[is used. Let the exogenous arrival rate\ye € Interior(C) €* — 0, the steady state mean queue lenBffiq||] — oc.
and the standard deviation of the arrival vectorty@ € R7,  We will show that as*) — 0, queue length projected along



any direction perpendicular ig"*) is bounded. So the constant Lemma 3: Drift of Wi’“) can be bounded as follows:
does not contribute to the first order term-&;, in which we

are interested. Therefore, it is sufficient to study a bound o AW(k>( ) < 1 (AV(q) — AVH(k)( ) VqeR’
the queue length along”). This is called state-space collapse. 2 Hq(l H
Define the following Lyapunov functions. (8)

Let us first consider the last term in this inequality.

M J
Q) £ qugz,mv W(k)

m=1j5=1
k € € €
N S G A (U IR CE Y
(k) A k € _ (k) _ [
@ = (®.a9) = o] = (ZZ%M) —E [V*(a 9t + 1) - VP @ 0)] (1) = o]
m:lj:l -
2 2
Define the drift of the above Lyapunov functions. =E <C(k) q(t+ 1)> - <C(k)7 q(e)(f)> ‘ q(t) = q(e)]

AV( )£ V(g <t+1>> V(a®) Z(a(t) = a) 9, q00) + 20~ 59) + 1))
alt + 1) - W @®)| Z(a(t) = a)

(a) 2 [Wi* <

>A[ a(t+1)) - WP (a(0)] Zta) = a) (¥ >’q@>=q<€)}

(a) [W Mat+1) - V@) Tt =a)  =E <c<k> a(t) +a (1) ~ s 1)) + (e, <e><)>
2
= (e,
{

A

To show the state space collapse happens along the dlreCtIO+ <C(k) (E)( £) +al@ ) — s > <C >
of ¢(®), we will need a result by HajeK [10], which gives a
c > q(t) = q(e)}

bound on qL)H if the drift of W( )( ) is negative. Here
2
{ c® 2 (1) — @ (¢ )> _9 <c<k>,s<f>(t)> <c<k>,ﬁ<s>(t)>

we use the following special case of the result by Hajek, as
presented in[[8].
Lemma 2: For an irreducible and aperiodic Markov Chaln

{Xt]}+>0 over a countable state spadg supposeZ : X — 9 e® ot 8, @) () — st ’ (t) = q©
R, is a nonnegative-valued Lyapunov function. We define the <C A )> <C al(r) —s > al }
drift of Z at X as >92 <C<k> q e>> (<c DR {a@)(t)’ q(t) = q<e>]
a _ _ 2
AZ(X) 2 [Z(X[t+1)) - Z(X )] Z(X[1] = X), & [s0)] at) q@] >) , <C<k>, et
whereZ(.) is the indicator function. Thug) Z(X) is a random (e.k)
variable that measures the amount of change in the value o?” I Z Z]E { (e) q(e):|
Z in one step, starting from staf€. This drift is assumed to
satisfy the following conditions:
1) There exists am > 0, and ax < co such that for all _ZE {s;-n(e)(tﬂq(t) = q )} K,
X € X with Z(X) > &, '
€, k
E[AZ(X)|X[f] = X] < —n. 2||q( [ M o, “
Z /\ ZE [ q(t) =aq } - K
2) There exists & < oo such that for allX € X, = m=1
©)
P(AZ(X)[<D) =1 (ek) 7

| _2llq o
Then, there exists & > 0 and aC* < oo such that Z (

limsupE [ee*Z(X[t])} < C*.

o . ZE s Wlat) = a9 | - Ko (10)

If we further assume that the Markov ChdiX [¢]}; is positive

recurrent, therZ (X [t]) converges in distribution to a random 2” (5 k) J

M

variable Z for which Z (Z)\m(k) _ Z]E [sm(e)(tﬂq(t) _ q(e)D
_ J J
E |:€9*Z:| S C*, m—1 me=1
_ k)

which directly implies that all moments of exist and are  — Ko — \/—Hqu | (11)
finite. ||q €, k)” M
We also need Lemma 7 frorh][8], which gives the drift of. "I ! E ls™O ) alt) = q©
Wi’“)(q) in terms of drifts ofV(q) andV( )( ). mz:l; ( [ i (Dlalt) =a D



- || |
2 \/— ‘

e al ™| (12) . ; ®
% | k-2 )|| f’“>||+2ZE min 340, (22—

where Ky, = 2JMs?2,,.. Equation [[®) follows from the fact var i el i\ M

that the sum of arrival rates at each server is same as the (16)

external arrival rate. Equatioh_(10) follows frofd (6). Frone

definition ofC we have that there exisdg*(®) ¢ C,, such that Where K1 = K’ + 2JM Dyy4252,,,.. Equation [(IB) is true

m because of MaxWeight scheduling. Note that in algorifim 1,
AW = Z A, This gives [TL). From Lemnfd 1, we hav AV&he actual service allocated to jobs of typeat serverm
A _ (6 is same as that of the MaxWeight schedule as long as the
corresponding queue length is greater tHan . Smaz- This
gives the additiona.J M D, 4,82, term.

Assumingall the servers are identical, we have that for
eachm, C,, = {\/M : X\ € C}. So,(,, is a scaled version

that for eachm, there exist$'% such thatz CjA;
Jj=

and (), s < b¥) for every s™()(t) e C,,. Therefore,
we have, for eachn,

J m
(mk) m(e) _(© of C. Thus,\™ = A\/M. Sincek € KY.,, we also have that
ZCJ (/\j E [Sj lalt) =a D 20 k € K%,.., for the capacity regior’,,. Thus, there exists
=1 5®*) > 0 so that

and so[(IPR) is true.
Now, let us consider the first term iQl (8). By expanding the
drift of V(q(©) and using[(B), it can be easily seen that

E |4 V(a?)la® ) =]

<K'+E 22(2(](6) ajm(t) — J(t))) (13)

B 2 H1® q{re R [lr — A® /M| < 60}

lies strictly within the face ofC,, that corresponds t& ().
(Note that this is the only instance in the proof of Propositi
[I that we use the assumption that all the servers are ideptica
Call this faceF\". Thus we have,

2¢(k) .
= B [5 V@la0 - 4] - (K- 21 )
where K’ = M z (A2 +02) +2J52,,,(1 + Dinaz) v [ 7 AR
mazx SQZE mir(lk) qu_’m JV — T‘;-n (17)
By definition ofamn( ), (@) we have m=1 | "B j=1
M| J © Wl ¢ )\(k)
5 _ . € k 7 i .m
B| 3> 200 23 °e | min, 35 (o~ [P ] ) ( TR )
m=1j=1 - L
(18)
) 9 (é) , M|
Z Gm =2 E
m—1 rmeB

J
—25% 13 (q ; (19)

J
< Zmﬁ Z q’ﬁ’” (14) Y 5
: - < — 26 J >3 (al) (20)

From [13) and[(14), we have, m=1j=1
k
E [A V(g N)q© 1) = q<e>] — 250 HqQH . (21)

J M q(_e) M J Equation[(IB) is true becauseés a vector perpendicular to the
<K'+ 3 2298 ;\/}” 2) B | gl s ) face ) of C,, whereas both(¥) /M andr™ lie on the face
— e — J (k) .
J;l met A; (:) ' Fi¥. so, T quk)H _Zlcj (AM - r;-") = 0. Equation [(ID)
q; -
:K/ 2 (A(k) _ (k) (k)) J,m Q) o )
* ; i - M is true becaus{ qu’?n A;w - r;”> is inner product ink+
= m= 1
M J “ which is m|n|m|zed when™ is chosen to be on the boundary
€ m (k)
o 2ZE qu,msj (t) of B T;”) points in the opposite direction
m=1 j:l ]



(e k) ) Since Let 7(*) be the steady-state probability that the MaxWeight
o 2 schedule chosen is from the fagg®), i.e.,

e,k
(2_ S R)) = £ 5 () we s 0 (f5(0) =),

Now substltutlng ) and:@l) inl(8), we get

M
B [A W (q9))q@ (1) = q(e)} wheres; = m{:l@ as defined in[{4). Also, define

K+ K
L}j—é(k) ~ () :min{b(k)—<c,r> :TES\F(k)}.
2 ol
Then noting that in steady state
k ’
<_6( : whenever ( W% (q(9) > Kt Ky _
= L ) E [<C<k>75(q)>} > <c<k>,x> — pB) _ (),

Moreover, since the departures in each time slot are bounded *)

and the arrivals are finite there is B < oo such that It ca? )be shown as in Clain in [8] that for for anye(®)

P(JAZ(X)| < D) almost surely. Now, applying Lemnid 2,( )

we have the following proposition. (1 _ 7T(k)) < ﬁ
Proposition 2: Assuming all the servers are identical, for — k)

M€ e ¢, under JSQ routing and MaxWeight schedulingrpen note that

for everyk € KS., there exists a set of finite constants ,

{N#1,_1 5 such thatE {Hq(6 k)H } < N® forall e >0 E [(b(“ — (e, E(t)}) ]

and for eachr =1,2,. )

As in [21], [8], note thatk e ICi(ﬁ) is an important — (1 _W(k)) E [(b(k) _ <c7§(t)>) | ((c,E(t)> ) b(k)) ’}
assumption here. It € K \ K%, i.e., if the arzgal rate ,
approaches a corner point of the capaC|ty region'&@s— 0, & (k) 2
then there is no constamst®) so thath;(k)) lies in the face SWf) ((b ) + (¢ Smazl) ) (25)
F®*) . In other words, the’*) depends ore(*) and so the
bound obtained by Lemnid 2 also depends:Gn.

Remark: As stated in Propositiol] 1, our results hold only©
for the case of identical servers, which is the most praktica
scenario. However, we have written the proofs more generafl = (
whenever we can so that it is clear where we need the |dent|§%X q™,

DefineC,, C RJM asC,, = Cy % ... x Cpr. Then,C,, is a
nvex polygon.

Claim 1: Let¢™ € R for eachm € {1,2,...M}. Denote
)nj\f 1 € RIM I, for eachm, (s™)" is a solution of

s) thens* = ((s™)"),, is a solution ofmax (q, s).
s€Cm,

server assumption. In particular, in this subsection, up to P : " 5 "

. roof: Since s* € Cp, ,8 < ax (q, s).
Equation [[(I6), we do not need this assumption, but we have me (@87 < felgf: (as)
used the assumption after that, in analyzing the drift’¢d). mm
The upper bound in the next section is valid more general'\l)Pte that g {a,8) = mzlsmmgg (g™, s™) . Therefore,
if one can establish state-space collapse for the nonicdént . Mo
server case. However, at this time, this is an open problemif (@,s™) < max (q,s), we have 21 (g™, (s™)") <

m m=
C. Upper Bound M -
- Upper Boun Inacx (¢™, s™). Then there exists am < M such that
18" 6

In this section, we will obtain an upper bound on th%ﬂ ) < (g™, s™), which is a contradiction. m
qm max (q",s"), .

weighted queue lengtt [(c(®,q()] in steady state, and smel,
show that in the asymptotic limit ag*) | 0, this coincides Therefore, choosing a MaxWeight schedule at each server
with the lower bound. is same as choosing a MaxWeight schedule from the con-

Noting that the drift ofAWI(k) is zero in steady state, it V€X polygon,C,,. Since there are a finite number of fea-
can be shown, as in Lemngafrom [8] that in steady state, Sible schedules, giver™ ¢ RJM such that||c™|| =

for any c € RZM, we have 1, there exists an anglé(“ € (O, Z] such that, for all
JM . (k) :
E [(e.a(t)) (e.(¢) - a(t)] ez @ € {acB cllal| = [iaeos (09) ], (e, for al
g lles 21 B e ain? q € R{M such thatd_ ol < 0% wheref,;, represents the
_ {e;3(t) —a(®)) } T [<C’u(t)> } (23) angle between vectonss andb) we have
2 2
+ E[{c,q(t) +a(t) —5(1)) (c,u(t))] (24) <C(k)7§(t)> Z(q(t) =q) =b*/VM.

We will obtain an upper bound o [(c*), q(9))] by bound-  We can bound the unused service as follows.
ing each of the above terms. Before that, we need the foligwin ) — *)
definitions and results. E KC ,a( )>} <E [<C s(t) a(t)ﬂ



ek)

Cauchy-Schwarz inequality. the last inequality followsrir
state-space collapse (Propositidn 2) dnd (25). Thus, we hav

E [<c<k>, q(t)> <c(k),§(t) - a(t)>]

(k)
26 €
= (29 N Kc(k)’q(t)ﬂ
where the last inequality follows from the fact that the cot (e(k)) * (k) ) )
MaxWeight schedule lies inside the capacity region and so — ———=4/N;"' —> ((b(k)) + (¢, Smaz1) ) (30)
E [(c®),5(£))] < b®. VM Y

Now, we will bound each of the terms ih_(24). Let us first Now, consider the first term ii{23). Again, using the fact

consider the term il (22). Given that the arrival rate\ifwe

have,

E [<c<k>, q(t)> <c(k)(,)§(t) - a(t)>]
k bt* 1 k
[ e-00)] ({5 ke ()
—-E _<c(k),q t ( c(k),§(t)>)]
e .
S )
-E

a0 (e~ (c.50) )]

Now, we will bound the last term in this equation using the

definition of #*) as follows.

e [P o (= - <c<’“>,§<t>>)}

=& [l eos (1,401 ) (Yo~ (<0.50) )]
N - ) uir)

(b( ) ® t)

T
—E |1 ||cot( )I(qu<m>9(k>)

k
X(b() C(k) S

=E |[lq" (t)|IZ <9qq<k> > 9(k)) (f/(—% - <C(k)’§(t)>)]
X _cot (H(k))

<= [la )] (1) = (<¥.5(0)) )] cor (99) (28)

<) i [1a @] [0 — (e, 0))]
@)

X

(27)

t (6 (k)
s%\/@@% (6®)* + (e smasl)?)

where [27) follows from the definition of*), (28) follows
from our choice okc*) and definition ofs, (29) follows from

that the arrival rate is\° we have,

E Kc(’@,g(t) - a(t)ﬂ
<<c(k),a(t)> \b/(%) ] +E K\b/(% <c(k),§(t)>>2]

()

1 2 (e >)2
<— (k) 2
M < ) 7 >+ M
1 ¢® 2
L e (k)
+ M 4 ((b ) + {¢, Smazx1) ) (31)
1 1 e(k) 2
- (e,k) (k) 9
M (< VM A®) <(b )+ (e smasl) ))
(32)
k - k ()2
where (&%) was defined as((©F) = +

2 2 VM
= ((¢®)*,(#9)*). Equation [3L) is obtained by
noting thatE [a(t)] = A° and soE [((c(’“),a(t) _ )\e>)2} _

var ({¢® a(t) — X)) = (¥, var(a(t) — X9)).
Consider the second term in_{23).

E [<c<k>,ﬁ(t)>1 < <c(k),lsmam>]}§ [<c<k>,ﬁ(t)>}

< f/(% <c(k), 1smaz> (33)

where the last inequality follows froni_(R6).
Now, we consider the term i _(R4). We need some def-
initions so that we can only consider the non-zero compo-

nents ofc. Let L‘f}r = {j e{1,2,..0}: c§k) > O}. Define



k) — <>) a = (a; d=(u (k)
= (61) ey 0= (@m) ez andn (“Jm>jec$“l‘ oot (600) \[N59 =55 (009)7 + e mae)?).
Also define, the projections"il(lk) = (c® q)ec® andg'” v

a q|(| ) S|m||ar|y, deﬂneuH and uJ_) Then, we have ThUS, in the heaVy traffic limit as(k) i 0, we have that

E < ) +a(t) —s(t )>< (t)ﬂ 6(11&106(@1@ [<C<k>,q<e>>} < ? (37)
=k <C(k) q(t +1) > <C >} E {<C(k)vﬁ(t)>1 where¢®) was defined ag® = —L- <(c(k))2 , (0)2>. Thus,
) (2) and KB])_establish the fir_st moment hgavy-trgfflc optityal
<E <C a(t+1) > <C >} of JSQ routing and MaxWeight scheduling policy. The proof
) <C(k) a(t+1) > <C (k) =~ >} of Propositior L is now complete.

D. Power-of-Two-Choices Routing and MaxWeight Scheduling

k
=E [|[a" (¢ + DIlIE ] . . )
JSQ routing needs complete queue length information at

-k <(~l(k) t+1),u k)( )>] the router. In practice, this communication overhead can be
I ) uj considerable when the number of servers is large. An alierna
) <q(k) (t+1), (t)>] algorithm is the power-of-two-choices routing algorithm.
I In this algorithm, in each time slat for each type of jobn,
=E[(q(t+1),a(t))] +E K (’“) (t+1),u(t )>] two serversn (t) andmi(t) are chosen uniformly at random.

All the type m job arrivals in this time slot are then routed

<E [(DimawSmaz1, ()] + \/IE [||C~l(f) (t + 1)”2} E [|[a(t)][2] T%the s(;rver Wlt: ;he shorter q(lz)eue length among these two,
m = rg min qj,m

(34) me{md (t),mi ()}
\/ ®) _ It was shown in[[15] that power-of-two-choices routing al-
<DrmazsmaxE [(1,u(t))] + 1/ No 7 E [(u(t), u(t))] (35) gorithm with MaxWeight scheduling is throughput optimal if
<DimassmasE [(1,T(£))] + \/Nz(k smaaE [(1,T())] all the servers are identical. From the proof of throughput

optimality, one obtains
where [3#) follows from[{8) and from Cauchy-Schwarz in- (O 1) ©
equality. Equation(35) follows from from state-space aptle E [A V(a@)la“(t) = q }
(Propositior{2), sincé& {Hﬁf)lﬂ <E [||q(k)|| } < N, o)
Note that <K’+Z2/\ Z e ZZZI;?,L sy (t)
E[(1,8())] < —E [(e®, 5t o o

(1, 850) = R KC U )>} Note that this inequality is identical t§_([15), in the prodf o

state-space collapse of JSQ routing and MaxWeight schegluli

min

1
= E [<C(k)aﬁ(t)>] policy. Also note that the remainder of the proof of state-
CT;)" space collapse and upper bound in Sectlons]iiI-B [and]IlI-C
< £ is independent of the routing policy. Moreover, the proof of
~ VM lower bound in Sectiof II-A is also valid here. Thus, once we

have the above relation, the proof of heavy traffic optingadit
this policy is identical to that of JSQ routing and MaxWeight

wherec™ 2 min ¢ > 0 and the last inequality follows

main

jec® ) :
from (28). Thus, we have scheduling policy.
E [<C(k)7 a(t) +5(t) — a(t)> <C(k)’ﬁ(t)>} V. POWER-OF-TWO-CHOICES ROUTING
In this section, we consider the power-of-two-choicesrout
e®) (k) e(k) ing algorithm, without any scheduling. This is a specialecas

SDmazsmaz s + 1/ V: (36) of the model considered in the previous section when all the

/— Smam —
2 M job f th t In thi there i ingl
_— _ jobs are of the same type. In this case, there is a single queue
Now, substituting[(30) [{32)[(33) anL{36) n.{24), we get at each server and no scheduling is needed.

(e,k)
eME [(c®, qt))] < S + Bk Note on Notation
9 q = 2 2
In this section, sincg = 1 here, we just denote all vectors

where (in RM) in bold fontx.
Blek) _ 1 ﬂ ( (k))z +(c Smazl>2 4 Dy Sane® The result from previous section is not applicable here be-
2 2/ M ) cause of the following reason. In Propositldn 1, a sequefce o

N (k) ® 1 \/ Vv G ® sysFems with grnval rate approaching a fz_ice of the capacity
5 \¢ ) Smaz + 2 Smaz€ region, along its normal vector were considered. The normal



vector of the face plays an important role in the state spaceQ alongc, i.e., Q| = (Q,c;) c; where(.,.) denotes the

collapse, and so the upper bound obtained is in terms of this . 2Qm ,

normal. So, this result cannot be applied if the arrival gatganonical dot f[)rOdUCt' Thl:jg“lzt 1 Def'nin to be

were approaching a corner point where there is no commblf component o perpendicular tdy, i.e. QL = Q-Qy.

normal vector. In particular, the proof of state space pskain

Sectior[II[-B is not applicable here because one cannotelefin )

a ballBé’f,A as in [1T) at a corner point. i (EQm) 2
Let A(t) denote the set of jobs that arrive at the beginning @d W, (Q) = [|Q.Ll| = | > Q7, — ~ "5 -

time slot¢. Let D;, be the size of!”" job. We definea(t) = m

ZkeA(t) Dy, to be the overall size of the jobs id(t) or A. Lower Bound

the t.o tal time S|0FS requested t_)y the_j.obs. we assume thabonsider an arrival process with arrival rate) such that
a(t) is a stochastic process which is i.i.d. across time slots

&= Mpu — X\, Let q'“)(t) denote the corresponding queue
Ela(t)] = ;‘ and Pr(a(t) = 0) > €, for somee, > 0 for length vector. Since the system is stabilizable, theretexis
all t. Let o* = var[a(t)]. Let X (¢) denote the servers chose

" steady-state distribution @f()(¢). Again, lower boundin
at time slott. So, X (t) can take one of/C, values of the y of (). Again, g

q'?) by a single queue length as in SectionTlI-A, we have
form (m,m’) wherem,m’ € Z, and1 < m < m’ < M. (;q ) by geq 9

Here M, denotes the number df-combinations in a set
of size M. Note thatX (¢) is an i.i.d. random process with E
a uniform distribution over all possible values. DefiffeC,
different arrival processes denoted &y .,/ (t) with 1 < m <
m’ < M as follows. Ifz(t) = (1, m’), then

' ' 2 <§Qm)
Define the Lyapunov functionig (Q) = ||QHU = m 7l

2€

(€)% 1 ¢2
qul L@ +e 5

m
whereB; = Msmex | Thus, in the heavy-traffic limit we have

2
— 5 I — o/ im i g > o
G () = a(t) form = andm’ =m . hg{l}lf&E qu ‘| > —. (39)
’ 0 otherwise m
B. Sate Space Collapse

Thgs,l{amym/ (t)} C'I(:ihn be thoughlt E)fdas ?hstet Olf Cor;;?tﬁd For simplicity of notation, in this sub-section, we writg
arrival processes. 1hey are correlated so that only on for q(¢). We will bound the drift of the Lyapunov function

can have anon-zero value at each ime.1gln: = Elam,m (t)]'WL(Q), and again use Lemnha 2 to obtain state space collapse.

= 2 i i , . X . i
Thlent/\m,_,t,ﬁ = g, The arr|valsl|n;z\m7m ét) c?ntrt])e routed again use[{8) witl; instead ofc*) to get the drift of
only to either servem or servenn'. According to the POWer- v () (i terms of drifts ofV'(q) andVH(k)(q).

of-two-choices algorithm, all the jobs are then routed te th L ' .

: P et us first consider the last term.
server with smallest queue amongandm/. Ties are broken
at random. Let,,(t) denote the arrivals to server at time  E [2 V| /(q)lq(t) = q]

t after routing. _ _ _ _ =E [Vji(a(t +1)) = V/(a(t))la(t) = d]
Let 1 be the amount of service available in each time slot -

2 2

at each server. Not all of this service may be used eitherl .
because the queue is empty or because different c:hunks_df_/[IE (qu(t+ 1)> B (qu(t)> la(t) = a
same job cannot be served simultaneously. .gtt) be the L " )
actual amount of service scheduled available in time slot 1
at serverm. Let u,,(t) denote the unused service which isiﬁIE (qu(t) +am(t) —p+ Z“m(t)>
defined asu,,(t) = u — sm(t). Let ¢, (¢) denote the queue Ly m
length at servern at timet¢, and letq(t) denote the vector 2

—( qm(t)> la(t)

(q1(t), qa(t), ....qas(t)) Then, we have —q

G (t+1) = qm(t) + am(t) — p+ wm(t). 2 2
Note that :%E <qu(t) + am(t) — u) + <Zum(t)>
um (t) = 0 wheneverg,, (t) + am(t) > Dmazp- (38) " "

We again follow the procedure used in the previous section+2 <qu(t) +am(t) — M) (Z“m(t)>
to show heavy traffic optimality. Since power-of-two-chesc m
algorithm tries to equalize any two randomly chosen queues, (

m

2
qu(t)> la(t) =a

m

we expect that there is a state-space collapse along the dire —
tion where all queues are equal, similar to JSQ algorithm.
Letci = —=(1,1,....1) be the unit vector irR* along

2
which we expect state-space collapse. Letenote the vector ZL]E <Zam(t) — u) +2 (qu(t)> (Zam(t) — u)
(1,1,.....1). For anfQ € R, defineQ), to be the component M m m

m



—2Mp <Zum(t)> la(t) = q}

> (;qs E K;amm - u) alt) = q]

—2ulE

> um(®la(t) = q]
>~ K3 +2 <qu> (% —u)
()

where K3 = 2My? is obtained by bounding,,(t) and

Um () BY Smaz-

Now, we will bound the first term in[{8). Expanding

(40)

[A V(q)|a(t)] and using[(3B), it is easy to see that

E[a V(dg)la(t) = d
<Ky — 2MZQm (t)

+ExE | 2¢m(tam(t)a(t) = q, X () =i, j

where Ky = M (21*(Dyaz + 1) + 02 + A\2). Let p be a per-
mutation of(1,2,...M) so thatg,1) < gye2) <

..... < Qp(M)-

Let p’ be the inverse permutation. In other wor@&m) is
p p

the position ofm in the permutatiorp. Let ¢,,in = q,(1) and

Gmin = qp(ar)- Then, we have
E[a V(a)la(t) =d]
A
<K4 - 2MZQm + 2szn MC,

1

+ > gy B lai(alt) + ai(t)a(®)] X (1) = 1, ]

(4,3)#(p(1),p(M))

A
:K4 - 2NZQm (t) - W(Qmam - qmzn)

—K4 - 2_ZQm I\{O Qmaw - szn)

Note that
> dm
||QL|| = zm: qm — M
2
S \/M (Qmaw - QTmn)

=V M (Qmaw - QTmn) .

Thus, we have,

E[s V(a)la(t) = a <Ki— 2223 qn(t)

2

+%;%m

Substituting this and_(40) in{8), we have
K3+ Ky A 1
acll MGy
This means that we have negative drift for sufficiently large

W (q). Since the drift ofiW, (q) is finite with probability1,
using LemmdDR, there exist finite constaff§/},—, » . such

that E [||§(5)||’“} < N/ for eachr = 1,2, ....

E[a Wi(q)] <

C. Upper Bound

The upper bound is again obtained by bounding each of
the terms in[(24). This is identical to the case of JSQ routing
(Proposition 3 in[[8]). So, we will not repeat the proof here,
but just state the upper bound.

o©)? + €2 .
Z(_l(e)] > 00) * )2 - By

€

E

m

where Bée) = M,/ M2smaz 4 Smaz Thuys, in heavy traffic
limit, we have

2

imi 5@ >
lnen_)%lfeE l;q ] 2=

This coincides with the heavy-traffic lower bound[inl(39)isTh
establishes the first-moment heavy-traffic optimality ofvpo
of-two choices routing algorithm.

V. CONCLUSIONS

We considered a stochastic model for load balancing and
scheduling in cloud computing clusters. We studied the per-
formance of JSQ routing and MaxWeight scheduling policy
under this model. It was known that this policy is throughput
optimal. We have shown that it is heavy traffic optimal when
all the servers are identical. We also found that using the
power-of-two-choices routing instead of JSQ routing isoals
heavy traffic optimal.

We then considered a simpler setting where the jobs are
of the same type, so only load balancing is needed. It has
been established by others using diffusion limit argumtres
the power-of-two-choices algorithm is heavy traffic optima
We presented a steady-state version of this result herg usin
Lyapunov drift arguments.

VI. ACKNOWLEDGMENTS

Research was funded in part by ARO MURI W911NF-08-
1-0233 and NSF grant CNS-0963807.

REFERENCES

[1] AppEngine.| http://code.google.com/appengine/.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Kainski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above tlwuds: A
Berkeley view of cloud computing. 2009. Tech. Rep. UCB/e2089-
28, EECS department, U.C. Berkeley.

[3] Azure. http://www.microsoft.com/windowsazure/.

[4] S. L. Bell and R. J. Williams. Dynamic scheduling of a dialaserver
system in heavy traffic with complete resource pooling: gsptic
optimality of a threshold policy. Electronic J. of Probability, pages
1044-1115, 2005.


http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/

(5]

(6]
[7]
(8]
El
[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

M. Bramson, Y. Lu, and B. Prabhakar. Randomized load rizfey
with general service time distributions. Proceedings of the ACM
S GMETRICS international conference on Measurement and modeling
of computer systems, SIGMETRICS '10, pages 275-286, New York,
NY, USA, 2010. ACM.

H. Chen and H. Q. Ye. Asymptotic optimality of balancediting, 2010.
http://myweb.polyu.edu.hk/lgtyehqg/papers/ChenYellOR.pdf.

EC2. http://aws.amazon.com/ez2/.

A. Eryilmaz and R. Srikant. Asymptotically tight steadtate queue
length bounds implied by drift conditionsQueueing Systems, pages
1-49, 2012.

I. Foster, Y. Zhao, |. Raicu, and S. Lu. Cloud computingd agrid
computing 360-degree compared. @rid Computing Environments
Wbrkshop, 2008. GCE'08, pages 1-10, 2008.

B. Hajek. Hitting-time and occupation-time bounds lreg@ by drift
analysis with applicationsAdvances in Applied Probability, pages 502—
525, 1982.

J. M. Harrison. Heavy traffic analysis of a system withighial servers:
Asymptotic optimality of discrete review policiesAnn. App. Probab.,
pages 822-848, 1998.

J. M. Harrison and M. J. Lopez. Heavy traffic resource lipgoin
parallel-server system®Queueing Systems, pages 339-368, 1999.

Y. T. He and D. G. Down. Limited choice and locality camesiations
for load balancing.Performance Evaluation, 65(9):670 — 687, 2008.
J. F. C. Kingman. Some inequalities for the queue Gl/@ibmetrika,
pages 315-324, 1962.

S. T. Maguluri, R. Srikant, and L. Ying. Stochastic mtdef load
balancing and scheduling in cloud computing clusters.Pioc. IEEE
Infocom., pages 702-710, 2012.

M.Bramson. State space collapse with application tavieraffic
limits for multiclass queueing networkQueueing Systems Theory and
Applications, pages 89 — 148, 1998.

D. A. Menasce and P. Ngo. Understanding cloud computiExperi-
mentation and capacity planning. Bnoc. 2009 Computer Measurement
Group Conf., 2009.

M. Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California at Berkeley, 1996.
R. L. D. N. D. Vvedenskaya and F. |. Karpelevich. Quegegystem
with selection of the shortest of two queues: An asymptopipreach.
Problems of Information Transmission, 32(1):15-27, 1996.

M. I. Reiman. Some diffusion approximations with stafgmce collapse.
In Proceedings of International Seminar on Modelling and Performance
Evaluation Methodology, Lecture Notes in Control and Information
Sciences, pages 209-240, Berlin, 1983. Springer.

A. Stolyar. MaxWeight scheduling in a generalized sWwitState space
collapse and workload minimization in heavy traffiddv. Appl. Prob.,
14(1), 2004.

L. Tassiulas and A. Ephremides. Stability propertidsconstrained
queueing systems and scheduling policies for maximum timut in
multihop radio networks.|IEEE Trans. Automat. Contr., 4:1936-1948,
December 1992.

R. J. Williams. Diffusion approximations for open mialass queueing
networks: Sufficient conditions involving state spaceayudle.Queueing
Systems Theory and Applications, pages 27 — 88, 1998.


http://myweb.polyu.edu.hk/~lgtyehq/papers/ChenYe11OR.pdf
http://aws.amazon.com/ec2/

	I Introduction
	II System Model and Algorithm
	III JSQ Routing and MaxWeight Scheduling
	III-A Lower Bound
	III-B State Space Collapse
	III-C Upper Bound
	III-D Power-of-Two-Choices Routing and MaxWeight Scheduling

	IV Power-of-Two-Choices routing
	IV-A Lower Bound
	IV-B State Space Collapse
	IV-C Upper Bound

	V Conclusions
	VI Acknowledgments
	References

