
ar
X

iv
:1

20
6.

12
64

v1
 [

cs
.P

F
]

6
Ju

n
20

12

Heavy Traffic Optimal Resource Allocation
Algorithms for Cloud Computing Clusters

Siva Theja Maguluri and R. Srikant
Department of ECE and CSL

University of Illinois at Urbana-Champaign
siva.theja@gmail.com; rsrikant@illinois.edu

Lei Ying
Department of ECEE

Arizona State University
lying6@asu.edu

Abstract—Cloud computing is emerging as an important plat-
form for business, personal and mobile computing applications.
In this paper, we study a stochastic model of cloud computing,
where jobs arrive according to a stochastic process and request
resources like CPU, memory and storage space. We consider a
model where the resource allocation problem can be separated
into a routing or load balancing problem and a scheduling prob-
lem. We study the join-the-shortest-queue routing and power-
of-two-choices routing algorithms with MaxWeight scheduling
algorithm. It was known that these algorithms are throughput
optimal. In this paper, we show that these algorithms are queue
length optimal in the heavy traffic limit.

Index Terms—Scheduling, load balancing, cloud computing,
resource allocation.

I. I NTRODUCTION

Cloud computing services are emerging as an important
resource for personal as well as commercial computing appli-
cations. Several cloud computing systems are now commer-
cially available, including Amazon EC2 system [7], Google’s
AppEngine [1], and Microsoft’s Azure [3]. A comprehensive
survey on cloud computing can be found in [9], [2], [17].

In this paper, we focus on cloud computing platforms that
provide infrastructure as service. Users submit requests for
resources in the form of virtual machines (VMs). Each request
specifies the amount of resources it needs in terms of processor
power, memory, storage space, etc.. We call these requests
jobs. The cloud service provider first queues these requests
and then schedules them on physical machines called servers.

Each server has a limited amount of resources of each kind.
This limits the number and types of jobs that can be scheduled
on a server. The set of jobs of each type that can be scheduled
simultaneously at a server is called a configuration. The convex
hull of the possible configurations at a server is the capacity
region of the server. The total capacity region of the cloud is
then the Minkowski sum of the capacity regions of all servers.

The simplest architecture for serving the jobs is to queue
them at a central location. In each time slot, a central scheduler
chooses the configuration at each server and allocates jobs
to the servers, in a preemptive manner. As pointed out in
[15], this problem is then identical to scheduling in an ad
hoc wireless network with interference constraints. In practice,
however, jobs are routed to servers upon arrival. Thus, queues
are maintained at each individual server. It was shown in [15]
that join-the-shortest queue-type algorithms for routing, along

with the MaxWeight scheduling algorithm [22] at each server
is throughput optimal. The focus of this paper is to study the
delay, or equivalently, the queue length performance of the
algorithms presented in [15].

Characterizing the exact delay or queue length in general is
difficult. So, we study the system in the heavy-traffic regime,
i.e., when the exogenous arrival rate is close to the boundary
of the capacity region. In this regime, for some systems,
the multi-dimensional state of the system reduces to a single
dimension, called state-space collapse. In [16], [23], a method
was outlined to use the state-space collapse for studying the
diffusion limits of several queuing systems. This procedure
has been successfully applied to a variety of multiqueue
models served by multiple servers [20], [11], [12], [4]. But
these models assume that the system is work conserving, i.e.,
queued jobs are processed at maximum rate by each server.
Stolyar [21], generalized this notion of state-space collapse
and resource pooling to a generalized switch model, where
it is hard to define work-conserving policies. This was used
to establish the heavy traffic optimality of the MaxWeight
algorithm.

Most of these results are based on considering a scaled ver-
sion of queue lengths and time, which converges to a regulated
Brownian motion, and then show sample-path optimality in
the scaled time over a finite time interval. This then allows
a natural conjecture about steady state distribution. In [8],
the authors present an alternate method to prove heavy traffic
optimality that is not only simpler, but shows heavy traffic
optimality in unscaled time. In addition, this method directly
obtains heavy-traffic optimality in steady state. The method
consists of the following three steps.

(1) Lower bound: First a lower bound is obtained on the
weighted sum of expected queue lengths by comparing
with a single-server queue. A lower bound for the single-
server queue, similar to the Kingman bound [14], then
gives a lower bound to the original system.

(2) State-space collapse: The second step is to show that
the state of the system collapses to a single dimension.
Here, it is not a complete state-space collapse, as in the
Brownian limit approach, but an approximate one. In
particular, this step is to show that the queue length along
a certain direction increases as the exogenous arrival rate
gets closer to the boundary of the capacity region but the

http://arxiv.org/abs/1206.1264v1

queue length in any perpendicular direction is bounded.
(3) Upper bound: The state-space collapse is then used to

obtain an upper bound on the weighted queue length.
This is obtained by using a natural Lyapunov function
suggested by the resource pooling. Heavy-traffic opti-
mality can be obtained if the lower bounds and the upper
bounds coincide.

In this paper, we apply the above three-step procedure to
study the resource allocation algorithms presented in [15]. We
briefly review the results in [15] now. Jobs are first routed to
the servers, and are then queued at the servers, and a scheduler
schedules jobs at each server. So, we need an algorithm that
has two components, viz.,

1) a routing algorithm that routes new jobs to servers in
each time slot (we assume that the jobs are assigned to
a server upon arrival and they cannot be moved to a
different server) and

2) a scheduling algorithm that chooses the configuration of
each server, i.e., in each time slot, it decides which jobs
to serve. Here we assume that jobs can be preempted,
i.e., a job can be served in a time slot, and then be
preempted if it is not scheduled in the next time slot. Its
service can be resumed in the next time it is scheduled.
Such a model is applicable in situations where job sizes
are typically large.

It was shown in [15] that using the join-the-shortest-
queue (JSQ) routing and MaxWeight scheduling algorithm is
throughput optimal. In Section III, we show that this policy
is queue length optimal in the heavy traffic limit when all the
servers are identical. We use the three step procedure described
above to prove the heavy traffic optimality. The lower bound
in this case is identical to the case of the MaxWeight schedul-
ing problem. However, state-space collapse does not directly
follow from the corresponding results for the MaxWeight
algorithm in [8] due to the additional routing step here. We
use this to obtain an upper bound that coincides with the lower
bound in the heavy traffic limit.

JSQ needs queue length information of all servers at the
router. In practice, this communication overhead can be quite
significant when the number of servers is large. An alternative
algorithm is the power-of-two-choices routing algorithm.In
each time slot, two servers are chosen uniformly at random and
new arrivals are routed to the server with the shorter queue.
It was shown in [15] that the power-of-two-choices routing
algorithm with the MaxWeight scheduling is throughput op-
timal if all the servers are identical. Here, we show that the
heavy-traffic optimality in this case is a minor modification
of the corresponding result for JSQ routing and MaxWeight
scheduling.

A special case of the resource allocation problem is when
all the jobs are of same type. In this case, scheduling is not
required at each server. The problem reduces to a routing-
only problem which is well studied [18], [5], [6], [13], [19].
For reasons to be explained later, the results, from Section
III cannot be applied in this case since the capacity region

is along a single dimension (of the formλ < µ). In Section
IV, we show heavy traffic optimality of the power-of-two-
choices routing algorithm. The lower and upper bounds in
this case are identical to the case of JSQ routing in [8].
The main contribution here is to show state-space collapse,
which is somewhat different compared to [8]. The results here
complement the heavy-traffic optimality results in [6], [13]
which were obtained using Brownian motion limits.

Note on Notation

The set of real numbers, the set of non-negative real
numbers,

and the set of positive real numbers are denoted byR, R+

and R++ respectively. We denote vectors inRJ or R
M by

x, in normal font. We use bold fontx to denote vectors in
R

JM . Dot product in the vector spacesRJ or RM is denoted
by 〈x, y〉 and the dot product inRJM is denoted by〈x,y〉.

II. SYSTEM MODEL AND ALGORITHM

Consider a discrete time cloud computing system as follows.
There areM servers indexed bym. Each server hasI different
kinds of resources such as processing power, disk space,
memory, etc.. Serverm has Ri,m units of resourcei for
i ∈ {1, 2, 3, ..., I}. There areJ different types of jobs indexed
by j. Jobs of typej needri,j units of resourcei for their
service. A job is said to be of sizeD if it takes D units of
time to finish its service. LetDmax be the maximum allowed
service time.

Let Aj(t) denote the set of type-j jobs that arrive at the
beginning of time slott. Indexing the jobs inAj(t) from 1
through |Aj(t)|, we defineaj(t) =

∑
k∈Aj(t)

Dk, to be the
overall size of the jobs inAj(t) or the total time slots requested
by the jobs inAj(t). Thus,aj(t) denotes the total work load
of type j that arrives in time slott. We assume thataj(t) is a
stochastic process which is i.i.d. across time slots,E[aj(t)] =
λj andPr(aj(t) = 0) > ǫA for someǫA > 0 for all j and t.
Many of these assumptions can be relaxed, but we make these
assumptions for the ease of exposition. Second moments of the
arrival processes are assumed to be bounded. Letvar[aj(t)] =
σ2
j , λ = (λ1,λJ) and σ = (σ1,σJ). We denoteσ2 =

(σ2
1 ,σ

2
J).

In each time slot, the central router routes the new arrivals
to one of the servers. Each server maintainsJ queues corre-
sponding to the work loads of theJ different types of jobs.
Let qj,m(t) denote the total backlogged job size of the typej
jobs at serverm at time slott.

Consider serverm. We say that serverm is in configuration
s = (s1, s2, ..., sJ) ∈ (Z+)

J if the server is servings1 jobs of
type1, s2 jobs of type2 etc. This is possible only if the server
has enough resources to accommodate all these jobs. In other

words,
J∑

j=1

sjri,j ≤ Ri,m∀i ∈ {1, 2, ..., I}. Let smax be the

maximum number of jobs of any type that can be scheduled
on any server. LetSm be the set of feasible configurations
on serverm. We say thats is a maximal configuration if
no other job can be accommodated i.e., for everyj′ s + ej′

(where ej′ is the unit vector alongj′) violates at least one
of the resource constraints. LetC∗

m be the convex hull of the
maximal configurations of serverm. Let Cm = {s ∈ (R+)

J
:

s ≤ s∗ for somes∗ ∈ C∗
m}. Heres ≤ s∗ meanssj ≤ s∗j∀j ∈

{1, 2, ..., J}. Cm can be thought of as the capacity region for
serverm. Note that ifλ ∈ interior(Cm), there exists anǫ > 0
such thatλ(1 + ǫ) ∈ Cm. Cm is a convex polytope in the
nonnegative quadrant ofRJ .

Define C =
M∑

m=1
Cm = {s ∈ (R+)

J : ∃sm ∈

Cm ∀ m s.t. s ≤
M∑

m=1
sm}. We denote this asC =

M∑
m=1

Cm.

Heresm just denotes an element inCm and notmth power of

s. Then,C =
M∑

m=1
Cm, where

∑
denotes the Minkowski sum

of sets. So,C is again a convex polytope in the nonnegative
quadrant ofRJ . So,C can be described by a set of hyperplanes
as follows:

C = {s ≥ 0 :
〈
c(k), s

〉
≤ b(k), k = 1, ...K}

whereK is the number of hyperplanes that completely defines
C, and(c(k), b(k)) completely defines thekth hyperplaneH(k),〈
c(k), s

〉
= b(k). SinceC is in the first quadrant, we have

||c(k)|| = 1 , c(k) ≥ 0, b(k) ≥ 0 for k = 1, 2, ...K.

It was shown in [15] thatC is the capacity region of this

system. Similar toC, defineS =
M∑

m=1
Sm.

Lemma 1: Given thekth hyperplaneH(k) of the capacity
regionC (i.e.,

〈
c(k), λ

〉
= b(k)), for each serverm, there is a

b
(k)
m such that

〈
c(k), λ

〉
= b

(k)
m is the boundary of the capacity

region Cm, and b(k) =
M∑

m=1
b
(k)
m . Moreover, for every set

{
λ
(k)
m ∈ Cm

}
m

such thatλ(k) =
M∑

m=1
λ
(k)
m andλ(k) ∈ C lies

on thekth hyperplaneH(k) , we have that
〈
c(k), λ

(k)
m

〉
= b

(k)
m .

Proof: Defineb(k)m = max
s∈Cm

〈
c(k), s

〉
. Then, since

C =
M∑

m=1
Cm, we have thatb(k) =

M∑
m=1

b
(k)
m .

Again, by the definition ofC, for every λ ∈ C, there

are λ
(k)
m ∈ Cm for each m such thatλ(k) =

M∑
m=1

λ
(k)
m .

However, these may not be unique. We will prove that for
every such

{
λ
(k)
m

}
m

, for eachm,
〈
c(k), λ

(k)
m

〉
= b

(k)
m . Sup-

pose, for some serverm1,
〈
c(k), λ

(k)
m1

〉
< b

(k)
m1 . Then since

〈
c(k),

M∑
m=1

λ
(k)
m

〉
=

M∑
m=1

b
(k)
m , there existsm2 such that

〈
c(k), λ

(k)
m2

〉
> b

(k)
m2 which is a contradiction. Thus, we have

the lemma.

III. JSQ ROUTING AND MAX WEIGHT

SCHEDULING

In this section, we will study the performance of JSQ
routing with MaxWeight scheduling, as described in Algorithm
1.

Algorithm 1 JSQ Routing and MaxWeight Scheduling
1) Routing Algorithm: All the type j arrivals in a time slot

are routed to the server with the smallest queue length
for type j jobs, i.e., the serverm∗

j = argmin
m∈{1,2,...M}

qj,m.

Ties are broken uniformly at random.
2) Scheduling Algorithm: In each time slot, serverm

chooses a configurationsm ∈ C∗
m so that sm =

argmax
sm∈C∗

m

J∑
j=1

smj qj,m. It then schedules up to a maximum

of smj jobs of typej (in a preemptive manner). Note
that even if the queue length is greater than the allocated
service, all of it may not be utilized, e.g., when the back-
logged size is from a single job, since different chunks
of the same job cannot be scheduled simultaneously.
Denote the actual number of jobs chosen bysmj . Note
that if qj,m ≥ Dmaxsmax, thensmj = smj .

Let Yj,m(t) denote the state of the queue for type-j jobs
at serverm, whereY i

j,m(t) is the (backlogged) size of the
ith type-j job at serverm. It is easy to see thatY(t) =
{Yj,m(t)}j,m is a Markov chain under the JSQ routing and
MaxWeight scheduling. Then,qj,m(t) =

∑
i Y

i
j,m(t) is a

function of the stateYj,m(t).
The queue lengths of workload evolve according to the

following equation:

qj,m(t+ 1) = qj,m(t) + aj,m(t)− smj (t)

= qj,m(t) + aj,m(t)− smj (t) + uj,m(t) (1)

where uj,m(t) is the unused service, given byuj,m(t) =
smj (t) − smj (t), smj (t) is the MaxWeight schedule andsmj (t)
is the actual schedule chosen by the scheduling algorithm and
the arrivals are

aj,m(t) =

{
aj(t) if m = m∗

j (t)

0 otherwise
. (2)

Here,m∗
j is the server chosen by the routing algorithm for

type j jobs. Note that

uj,m(t) = 0 whenqj,m(t) + aj,m(t) ≥ Dmaxsmax. (3)

Also, denotes = (sj)j where

sj =
M∑

m=1

smj . (4)

Denotea = (aj,m)j,m, s = (smj)j,m andu = (uj,m)j,m. Also
denote1 to be the vector with1 in all components.

It was shown in [15] that this algorithm is throughput
optimal. Here, we will show that this algorithm is heavy traffic
optimal.

Recall that the capacity region is bounded byK hyper-
planes, each hyperplaneH(k) described by its normal vector
c(k) and the valueb(k). Then, for anyλ ∈ interior(C), we
can define the distance ofλ to H(k) and the closest point,
respectively, as

ǫ(k) = min
s∈H(k)

||λ− s|| (5)

λ(k) = λ+ ǫ(k)c(k)

whereǫ(k) > 0 for eachk sinceλ ∈ interior(C). We let ǫ ,(
ǫ(k)
)K
k=1

denote the vector of distances to all hyperplanes.
Note thatλ(k) may be outside the capacity regionC for some
hyperplanes. So define

Kλ ,

{
k ∈ {1, 2, ...K} : λ(k) ∈ C

}

Kλ identifies the set ofdominant hyperplanes whose closest
point to λ is on the boundary of the capacity regionC
hence is a feasible average rate for service. Note that for any
λ ∈ interior(C), the setKλ is non-empty, and hence is well-
defined. We further define

Ko
λ ,

{
k ∈ Kλ : λ(k) ∈ Relint(F (k))

}

whereF (k) denotes the face on whichλ(k) lies andRelint
means relative interior. Thus,Ko

λ is the subset of faces inKλ

for which the projection ofλ is not shared by more than one
hyperplane.

For ǫ ,
(
ǫ(k)
)K
k=1

> 0, let λ(ǫ) be the arrival rate in the
interior of the capacity region so that its distance from the
hyperplaneH(k) is ǫ(k). Let λ(k) be the closest point toλ(ǫ)

on H(k). Thus, we have

λ(k) = λ(ǫ) + ǫ(k)c(k). (6)

Let q(ǫ)(t) be the queue length process when the arrival rate
is λ(ǫ).

Define c(k) ∈ R
JM
+ , indexed byj,m as cj,m =

cj√
M

. We
expect that the state space collapse occurs along the direction
c(k). This is intuitive. For a fixedj, JSQ routing tries to
equalize the queue lengths across servers. For a fixed server
m, we expect that the state space collapse occurs alongc(k)

when approaching the hyperplaneH(k), as shown in [8]. Thus,
for JSQ routing and MaxWeight, we expect that the state space
collapse occurs alongc(k) in R

JM .
For eachk ∈ Ko

λ(ǫ) , define the projection and perpendicular
component ofq(ǫ) to the vectorc(k) as follows:

q
(ǫ,k)
|| ,

〈
c(k),q(ǫ)

〉
c(k)

q
(ǫ,k)
⊥ , q(ǫ) − q

(ǫ,k)
||

In this section, we will prove the following proposition.
Proposition 1: Consider the cloud computing system de-

scribed in Section II. Assume all the servers are identical,i.e.,
Ri,m = Ri for all serversm and resourcesi and that JSQ
routing and MaxWeight scheduling as described in Algorithm
1 is used. Let the exogenous arrival rate beλ(ǫ) ∈ Interior(C)
and the standard deviation of the arrival vector beσ(ǫ) ∈ R

J
++

where the parameterǫ =
(
ǫ(k)
)K
k=1

is so that ǫ(k) is the
distance ofλ(ǫ) from the kth hyperplaneH(k) as defined in
(5). Then for eachk ∈ Ko

λ(ǫ) , the steady state queue length
satisfies

ǫ(k)E
[〈

c(k),q(t)
〉]

≤ ζ(ǫ,k)

2
+B

(ǫ,k)
2

where ζ(ǫ,k) = 1√
M

〈(
c(k)
)2

,
(
σ(ǫ)

)2〉
+

(ǫ(k))2√
M

, B
(ǫ,k)
2 is

o(1
ǫ(k))

In the heavy traffic limit asǫ(k) ↓ 0, this bound is tight, i.e.,

lim
ǫ(k)↓0

ǫ(k)E
[〈

c(k),q(ǫ)
〉]

=
ζ(k)

2

whereζ(k) = 1√
M

〈(
c(k)
)2

, (σ)
2
〉

.
We will prove this proposition by following the three step

procedure described in Section I, by first obtaining a lower
bound, then showing state space collapse and finally using the
state space collapse result to obtain an upper bound.

A. Lower Bound

Sinceλ(ǫ) is in the interior ofC, the process
{
q(ǫ)(t)

}
t

has
a steady state distribution. We will obtain a lower bound on

E
[〈
c(k),q(ǫ)

〉]
= E

[
J∑

j=1

c
(k)
j√
M

(
M∑

m=1
qjm

)]
in steady state as

follows.
Consider the single server queuing system,φ(ǫ)(t) with

arrival process 1√
M

〈
c(k), a(ǫ)(t)

〉
and service process given

by b(k)
√
M

at each time slot. Thenφ(t) is stochastically smaller

than
〈
c(k),q(t)(ǫ)

〉
. Thus, we have

E

[〈
c(k),q(ǫ)

〉]
≥ E

[
φ(ǫ)

]
.

Using φ2 as Lyapunov function for the single server queue
and noting that the drift of it should be zero in steady state,

one can boundE
[
φ
(ǫ)
]

as follows [8]

ǫ(k)E
[
φ
(ǫ)
]
≥ ζ(ǫ,k)

2
−B

(ǫ,k)
1 .

where
(
c(k)
)2

=

((
c
(k)
j

)2)J

j=1

, B
(ǫ,k)
1 = b(k)ǫ(k)

2 and

ζ(ǫ,k) = 1√
M

〈(
c(k)
)2

,
(
σ(ǫ)

)2〉
+

(ǫ(k))2√
M

.

Thus, in the heavy traffic limit asǫ(k) ↓ 0, we have that

lim
ǫ(k)↓0

ǫ(k)E
[〈

c(k),q(ǫ)
〉]

≥ ζ(k)

2
(7)

whereζ(k) = 1√
M

〈(
c(k)
)2

, (σ)
2
〉

.

B. State Space Collapse

In this subsection, we will show that there is a state space
collapse along the directionc(k). We know that as the arrival
rate approaches the boundary of the capacity region, i.e.,
ǫ(k) → 0, the steady state mean queue lengthE[||q||] → ∞.
We will show that asǫ(k) → 0, queue length projected along

any direction perpendicular toc(k) is bounded. So the constant
does not contribute to the first order term in1

ǫ(k) , in which we
are interested. Therefore, it is sufficient to study a bound on
the queue length alongc(k). This is called state-space collapse.

Define the following Lyapunov functions.

V (q) ,

M∑

m=1

J∑

j=1

q2j,m, W
(k)
⊥ (q) ,

∥∥∥q(k)
⊥

∥∥∥ , W (k)
|| (q) ,

∥∥∥q(k)
||

∥∥∥

V
(k)
|| (q) ,

〈
c(k),q(ǫ)

〉2
=
∥∥∥q(k)

||

∥∥∥
2

=
1

M




M∑

m=1

J∑

j=1

qj,mcj




2

.

Define the drift of the above Lyapunov functions.

∆V (q) , [V (q(t + 1))− V (q(t))] I(q(t) = q)

∆W
(k)
⊥ (q) ,

[
W

(k)
⊥ (q(t + 1))−W

(k)
⊥ (q(t))

]
I(q(t) = q)

∆W
(k)
|| (q) ,

[
W

(k)
|| (q(t + 1))−W

(k)
|| (q(t))

]
I(q(t) = q)

∆V
(k)
|| (q) ,

[
V

(k)
|| (q(t + 1))− V

(k)
|| (q(t))

]
I(q(t) = q)

To show the state space collapse happens along the direction
of c(k), we will need a result by Hajek [10], which gives a
bound on

∥∥∥q(k)
⊥

∥∥∥ if the drift of W
(k)
⊥ (q) is negative. Here

we use the following special case of the result by Hajek, as
presented in [8].

Lemma 2: For an irreducible and aperiodic Markov Chain
{X [t]}t≥0 over a countable state spaceX , supposeZ : X →
R+ is a nonnegative-valued Lyapunov function. We define the
drift of Z at X as

∆Z(X) , [Z(X [t+ 1])− Z(X [t])] I(X [t] = X),

whereI(.) is the indicator function. Thus,∆Z(X) is a random
variable that measures the amount of change in the value of
Z in one step, starting from stateX. This drift is assumed to
satisfy the following conditions:

1) There exists anη > 0, and aκ < ∞ such that for all
X ∈ X with Z(X) ≥ κ,

E[∆Z(X)|X [t] = X] ≤ −η.

2) There exists aD < ∞ such that for allX ∈ X ,

P (|∆Z(X)| ≤ D) = 1.

Then, there exists aθ⋆ > 0 and aC⋆ < ∞ such that

lim sup
t→∞

E

[
eθ

⋆Z(X[t])
]
≤ C⋆.

If we further assume that the Markov Chain{X [t]}t is positive
recurrent, thenZ(X [t]) converges in distribution to a random
variableZ̄ for which

E

[
eθ

⋆Z̄
]
≤ C⋆,

which directly implies that all moments of̄Z exist and are
finite.

We also need Lemma 7 from [8], which gives the drift of
W

(k)
⊥ (q) in terms of drifts ofV (q) andV (k)

|| (q).

Lemma 3: Drift of W
(k)
⊥ can be bounded as follows:

∆W
(k)
⊥ (q) ≤ 1

2
∥∥∥q(k)

⊥

∥∥∥
(∆V (q) −∆V

(k)
|| (q)) ∀ q ∈ R

J
+

(8)
Let us first consider the last term in this inequality.

E

[
△ V

(k)
|| (q(ǫ))

∣∣∣q(ǫ)(t) = q(ǫ)
]

=E

[
V

(k)
|| (q(ǫ)(t+ 1))− V

(k)
|| (q(ǫ)(t))

∣∣∣q(ǫ)(t) = q(ǫ)
]

=E

[〈
c(k),q(ǫ)(t+ 1)

〉2
−
〈
c(k),q(ǫ)(t)

〉2∣∣∣∣q(t) = q(ǫ)

]

=E

[〈
c(k),q(ǫ)(t) + a(ǫ)(t)− s(ǫ)(t) + u(ǫ)(t)

〉2

−
〈
c(k),q(ǫ)(t)

〉2∣∣∣∣q(t) = q(ǫ)

]

=E

[〈
c(k),q(ǫ)(t) + a(ǫ)(t)− s(ǫ)(t)

〉2
+
〈
c(k),u(ǫ)(t)

〉2

+ 2
〈
c(k),q(ǫ)(t) + a(ǫ)(t)− s(ǫ)(t)

〉〈
c(k),u(ǫ)(t)

〉

−
〈
c(k),q(ǫ)(t)

〉2∣∣∣∣q(t) = q(ǫ)

]

≥E

[〈
c(k), a(ǫ)(t)− s(ǫ)(t)

〉2
− 2

〈
c(k), s(ǫ)(t)

〉〈
c(k),u(ǫ)(t)

〉

+2
〈
c(k),q(ǫ)(t)

〉〈
c(k), a(ǫ)(t)− s(ǫ)(t)

〉∣∣∣q(t) = q(ǫ)
]

≥2
〈
c(k),q(ǫ)

〉(〈
c(k),E

[
a(ǫ)(t)

∣∣∣q(t) = q(ǫ)
]

−E

[
s(ǫ)(t)

∣∣∣q(t) = q(ǫ)
]〉)

− 2
〈
c(k), smax1

〉2

=
2||q(ǫ,k)

|| ||
√
M

J∑

j=1

cj

(
M∑

m=1

E

[
a
(ǫ)
j,m(t)|q(t) = q(ǫ)

]

−
M∑

m=1

E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])
−K2

=
2||q(ǫ,k)

|| ||
√
M

J∑

j=1

cj

(
λ
(ǫ)
j −

M∑

m=1

E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])
−K2

(9)

=
2||q(ǫ,k)

|| ||
√
M

J∑

j=1

cj

(
λ
(k)
j − ǫ(k)c

(k)
j

−
M∑

m=1

E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])
−K2 (10)

=
2||q(ǫ,k)

|| ||
√
M

J∑

j=1

cj

(
M∑

m=1

λ
m(k)
j −

M∑

m=1

E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])

−K2 −
2ǫ(k)√
M

||q(ǫ,k)
|| || (11)

=
2||q(ǫ,k)

|| ||
√
M

M∑

m=1

J∑

j=1

cj

(
λ
m(k)
j − E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])

−K2 −
2ǫ(k)√
M

||q(ǫ,k)
|| ||

≥ −K2 −
2ǫ(k)√
M

||q(ǫ,k)
|| || (12)

whereK2 = 2JMs2max. Equation (9) follows from the fact
that the sum of arrival rates at each server is same as the
external arrival rate. Equation (10) follows from (6). Fromthe
definition ofC, we have that there existsλm(k) ∈ Cm such that

λ(k) =
M∑

m=1
λm(k). This gives (11). From Lemma 1, we have

that for eachm, there existsb(k)m such that
J∑

j=1

cjλ
m(k)
j = b

(k)
m

and
〈
c(k), sm(ǫ)

〉
≤ b

(k)
m for every sm(ǫ)(t) ∈ Cm. Therefore,

we have, for eachm,
J∑

j=1

cj

(
λ
m(k)
j − E

[
s
m(ǫ)
j (t)|q(t) = q(ǫ)

])
≥ 0

and so (12) is true.
Now, let us consider the first term in (8). By expanding the

drift of V (q(ǫ)) and using (3), it can be easily seen that

E

[
△ V (q(ǫ))|q(ǫ)(t) = q(ǫ)

]

≤K ′ + E




M∑

m=1

J∑

j=1

(
2q

(ǫ)
j,m

(
aj,m(t)− smj (t)

))

 (13)

whereK ′ = M

(
∑
j

(
λ2
j + σ2

j

)
+ 2Js2max(1 +Dmax)

)

By definition of aj,m(t), (2) we have

E




M∑

m=1

J∑

j=1

2q
(ǫ)
j,maj,m(t)




= E




J∑

j=1

2q
(ǫ)
j,m∗

j
aj(t)




=

J∑

j=1

2q
(ǫ)
j,m∗

j
λ
(ǫ)
j

≤
J∑

j=1

2λ
(ǫ)
j

M∑

m=1

q
(ǫ)
j,m

M
. (14)

From (13) and (14), we have,

E

[
△ V (q(ǫ))|q(ǫ)(t) = q(ǫ)

]

≤K ′ +
J∑

j=1

2λ
(ǫ)
j

M∑

m=1

q
(ǫ)
j,m

M
− 2

M∑

m=1

E




J∑

j=1

q
(ǫ)
j,msmj (t)


 (15)

=K ′ +
J∑

j=1

2
(
λ
(k)
j − ǫ(k)c

(k)
j

) M∑

m=1

q
(ǫ)
j,m

M

− 2

M∑

m=1

E




J∑

j=1

q
(ǫ)
j,msmj (t)




=K ′ − 2ǫ(k)√
M

||q(ǫ,k)
|| ||+ 2

M∑

m=1

E




J∑

j=1

q
(ǫ)
j,m

(
λ
(k)
j

M
− smj (t)

)


=K1−
2ǫ(k)√
M

||q(ǫ,k)
|| ||+ 2

M∑

m=1

E


 min
rm∈Cm

J∑

j=1

q
(ǫ)
j,m

(
λ
(k)
j

M
− rmj

)


(16)

whereK1 = K ′ + 2JMDmaxs
2
max. Equation (16) is true

because of MaxWeight scheduling. Note that in algorithm 1,
the actual service allocated to jobs of typej at serverm
is same as that of the MaxWeight schedule as long as the
corresponding queue length is greater thanDmaxsmax. This
gives the additional2JMDmaxs

2
max term.

Assumingall the servers are identical, we have that for
eachm, Cm = {λ/M : λ ∈ C}. So, Cm is a scaled version
of C. Thus,λm = λ/M . Sincek ∈ Ko

λ(ǫ) , we also have that
k ∈ Ko

λm(ǫ) for the capacity regionCm. Thus, there exists
δ(k) > 0 so that

B(k)

δ(k) , H(k) ∩ {r ∈ R
J
+ : ||r − λ(k)/M || ≤ δ(k)}

lies strictly within the face ofCm that corresponds toF (k).
(Note that this is the only instance in the proof of Proposition
1 that we use the assumption that all the servers are identical.)
Call this faceF (k)

m . Thus we have,

E

[
△ V (q(ǫ))|q(ǫ)(t) = q(ǫ)

]
−
(
K1 −

2ǫ(k)√
M

||q(ǫ,k)
|| ||

)

≤2

M∑

m=1

E


 min
rm∈B(k)

δ(k)

J∑

j=1

q
(ǫ)
j,m

(
λ
(k)
j

M
− rmj

)
 (17)

=2

M∑

m=1

E


 min
rm∈B(k)

δ(k)

J∑

j=1

(
q
(ǫ)
j,m −

∥∥∥q(k)
||

∥∥∥ cj√
M

)(
λ
(k)
j

M
− rmj

)


(18)

=2
M∑

m=1

E


 min
rm∈B(k)

δ(k)

J∑

j=1

q
(ǫ,k)
⊥j,m

(
λ
(k)
j

M
− rmj

)


=− 2δ(k)
M∑

m=1

√√√√
J∑

j=1

(
q
(ǫ,k)
⊥j,m

)2
(19)

≤− 2δ(k)

√√√√
M∑

m=1

J∑

j=1

(
q
(ǫ,k)
⊥j,m

)2
(20)

=− 2δ(k)
∥∥∥q(k)

⊥

∥∥∥ . (21)

Equation (18) is true becausec is a vector perpendicular to the
faceF (k)

m of Cm whereas bothλ(k)/M andrm lie on the face

F (k)
m . So, 1√

M

∥∥∥q(k)
||

∥∥∥
J∑

j=1

cj

(
λ
(k)
j

M
− rmj

)
= 0. Equation (19)

is true because
J∑

j=1

q
(ǫ,k)
⊥j,m

(
λ
(k)
j

M
− rmj

)
is inner product inRJ

+

which is minimized whenrm is chosen to be on the boundary

of B(k)

δ(k) so that

(
λ
(k)
j

M
− rmj

)

j

points in the opposite direction

to
(
q
(ǫ,k)
⊥j,m

)
j
. Since

(
M∑

m=1

√
J∑

j=1

(
q
(ǫ,k)
⊥j,m

)2
)2

≥
M∑

m=1

J∑
j=1

(
q
(ǫ,k)
⊥j,m

)2
, we get (20).

Now substituting (12) and (21) in (8), we get

E

[
△ W

(k)
⊥ (q(ǫ))|q(ǫ)(t) = q(ǫ)

]

≤ K1 +K2

2
∥∥∥q(ǫ,k)

⊥

∥∥∥
− δ(k)

≤−δ(k)

2
whenever

(
W

(k)
⊥ (q(ǫ)) ≥ K1 +K2

δ(k)

)
.

Moreover, since the departures in each time slot are bounded
and the arrivals are finite there is aD < ∞ such that
P (|∆Z(X)| ≤ D) almost surely. Now, applying Lemma 2,
we have the following proposition.

Proposition 2: Assuming all the servers are identical, for
λ(ǫ) ∈ C, under JSQ routing and MaxWeight scheduling,
for every k ∈ Ko

λ(ǫ) , there exists a set of finite constants

{N (k)
r }r=1,2,... such thatE

[∥∥∥q(ǫ,k)
⊥

∥∥∥
r]

≤ N
(k)
r for all ǫ > 0

and for eachr = 1, 2,
As in [21], [8], note thatk ∈ Ko

λ(ǫ) is an important
assumption here. Ifk ∈ K r Ko

λ(ǫ) , i.e., if the arrival rate
approaches a corner point of the capacity region asǫ(k) → 0,
then there is no constantδ(k) so thatB(k)

δ(k) lies in the face
F (k). In other words, theδ(k) depends onǫ(k) and so the
bound obtained by Lemma 2 also depends onǫ(k).

Remark: As stated in Proposition 1, our results hold only
for the case of identical servers, which is the most practical
scenario. However, we have written the proofs more generally
whenever we can so that it is clear where we need the identical
server assumption. In particular, in this subsection, up to
Equation (16), we do not need this assumption, but we have
used the assumption after that, in analyzing the drift ofV (q).
The upper bound in the next section is valid more generally
if one can establish state-space collapse for the non-identical
server case. However, at this time, this is an open problem.

C. Upper Bound

In this section, we will obtain an upper bound on the
weighted queue length,E

[〈
c(k),q(ǫ)

〉]
in steady state, and

show that in the asymptotic limit asǫ(k) ↓ 0, this coincides
with the lower bound.

Noting that the drift of∆W
(k)
|| is zero in steady state, it

can be shown, as in Lemma8 from [8] that in steady state,
for any c ∈ R

JM
+ , we have

E [〈c,q(t)〉 〈c, s(t)− a(t)〉] (22)

=
E

[
〈c, s(t)− a(t)〉2

]

2
+

E

[
〈c,u(t)〉2

]

2
(23)

+ E [〈c,q(t) + a(t)− s(t)〉 〈c,u(t)〉] (24)

We will obtain an upper bound onE
[〈
c(k),q(ǫ)

〉]
by bound-

ing each of the above terms. Before that, we need the following
definitions and results.

Let π(k) be the steady-state probability that the MaxWeight
schedule chosen is from the faceF (k), i.e.,

π(k) = P

(
〈c, s(t)〉 = b(k)

)
.

wheresj =
M∑

m=1
smj as defined in (4). Also, define

γ(k) = min
{
b(k) − 〈c, r〉 : r ∈ S \ F (k)

}
.

Then noting that in steady state,

E

[〈
c(k), s(q)

〉]
≥
〈
c(k), λǫ

〉
= b(k) − ǫ(k),

it can be shown as in Claim1 in [8] that for for anyǫ(k) ∈(
0, γ(k)

)
,

(
1− π(k)

)
≤ ǫ(k)

γ(k)
.

Then, note that

E

[(
b(k) − 〈c, s(t)〉

)2]

=
(
1− π(k)

)
E

[(
b(k) − 〈c, s(t)〉

)2
|
(
〈c, s(t)〉 6= b(k)

)
,

]

≤ ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

(25)

Define C̃m ⊆ R
JM
+ as C̃m = C1 × ... × CM . Then,C̃m is a

convex polygon.
Claim 1: Let qm ∈ R

J
+ for eachm ∈ {1, 2,M}. Denote

q = (qm)Mm=1 ∈ R
JM
+ . If, for eachm, (sm)∗ is a solution of

max
s∈Cm

〈qm, s〉 thens∗ = ((sm)
∗
)m is a solution ofmax

s∈C̃m

〈q, s〉.

Proof: Since s∗ ∈ C̃m, 〈q, s∗〉 ≤ max
s∈C̃m

〈q, s〉.

Note that max
s∈C̃m

〈q, s〉 =
M∑

m=1
max

sm∈Cm

〈qm, sm〉 . Therefore,

if 〈q, s∗〉 < max
s∈C̃m

〈q, s〉, we have
M∑

m=1

〈
qm, (sm)

∗〉
<

M∑
m=1

max
sm∈Cm

〈qm, sm〉. Then there exists anm ≤ M such that
〈
qm, (sm)

∗〉
< max

sm∈Cm

〈qm, sm〉, which is a contradiction.

Therefore, choosing a MaxWeight schedule at each server
is same as choosing a MaxWeight schedule from the con-
vex polygon, C̃m. Since there are a finite number of fea-
sible schedules, givenc(k) ∈ R

JM
+ such that ||c(k)|| =

1, there exists an angleθ(k) ∈ (0, π
2] such that, for all

q ∈
{
q ∈ R

JM
+ : ||q(k)

|| || ≥ ||q|| cos
(
θ(k)

)}
, (i.e., for all

q ∈ R
JM
+ such thatθ

qq
(k)

||

≤ θ(k) whereθab represents the

angle between vectorsa andb), we have
〈
c(k), s(t)

〉
I (q(t) = q) = b(k)/

√
M.

We can bound the unused service as follows.

E

[〈
c(k),u(t)

〉]
≤ E

[〈
c(k), s(t)− a(t)

〉]

=
1√
M

(
E

[〈
c(k), s(t)

〉]
−
〈
c(k), λǫ

〉)

=
1√
M

(
E

[〈
c(k), s(t)

〉]
−
(
b(k) − ǫ(k)

))

≤ ǫ(k)√
M

(26)

where the last inequality follows from the fact that the
MaxWeight schedule lies inside the capacity region and so
E
[〈
c(k), s(t)

〉]
≤ b(k).

Now, we will bound each of the terms in (24). Let us first
consider the term in (22). Given that the arrival rate ifλǫ we
have,

E

[〈
c(k),q(t)

〉 〈
c(k), s(t)− a(t)

〉]

=E

[〈
c(k),q(t)

〉](b(k)√
M

− 1√
M

〈
c(k), λ

〉)

− E

[〈
c(k),q(t)

〉(b(k)√
M

−
〈
c(k), s(t)

〉)]

=
ǫ(k)√
M

E

[〈
c(k),q(t)

〉]

− E

[
||q(k)

|| (t)||
(

b(k)√
M

−
〈
c(k), s(t)

〉)]
.

Now, we will bound the last term in this equation using the
definition of θ(k) as follows.

E

[
||q(k)

|| (t)||
(

b(k)√
M

−
〈
c(k), s(t)

〉)]

=E

[
||q(t)|| cos

(
θ
qq

(k)

||

)(
b(k)√
M

−
〈
c(k), s(t)

〉)]

=E

[
||q(t)|| cos

(
θ
qq

(k)

||

)
I
(
θ
qq

(k)

||

> θ(k)
)

×
(

b(k)√
M

−
〈
c(k), s(t)

〉)]
(27)

=E

[
||q(k)

⊥ (t)|| cot
(
θ
qq

(k)

||

)
I
(
θ
qq

(k)

||

> θ(k)
)

×
(

b(k)√
M

−
〈
c(k), s(t)

〉)]

=E

[
||q(k)

⊥ (t)||I
(
θ
qq

(k)

||

> θ(k)
)(

b(k)√
M

−
〈
c(k), s(t)

〉)]

× cot
(
θ(k)

)

≤ 1√
M

E

[
||q(k)

⊥ (t)||
(
b(k) −

〈
c(k), s(t)

〉)]
cot
(
θ(k)

)
(28)

≤cot
(
θ(k)

)
√
M

√
E

[
||q(k)

⊥ (t)||2
]
E

[(
b(k) −

〈
c(k), s(t)

〉)2]

(29)

≤cot
(
θ(k)

)
√
M

√
N

(k)
2

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

where (27) follows from the definition ofθ(k), (28) follows
from our choice ofc(k) and definition ofs, (29) follows from

Cauchy-Schwarz inequality. the last inequality follows from
state-space collapse (Proposition 2) and (25). Thus, we have

E

[〈
c(k),q(t)

〉 〈
c(k), s(t)− a(t)

〉]

≥ ǫ(k)√
M

E

[〈
c(k),q(t)

〉]

− cot
(
θ(k)

)
√
M

√
N

(k)
2

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

(30)

Now, consider the first term in (23). Again, using the fact
that the arrival rate isλǫ we have,

E

[〈
c(k), s(t)− a(t)

〉2]

=E

[(〈
c(k), a(t)

〉
− b(k)√

M

)2
]
+ E

[(
b(k)√
M

−
〈
c(k), s(t)

〉)2
]

− 2
ǫ(k)√
M

E

[(
b(k)√
M

−
〈
c(k), s(t)

〉)]

≤E



(

1√
M

〈
c(k), a(t)− λǫ

〉
+

〈
c(k), λǫ

〉
− b(k)√

M

)2



+ E

[(
b(k)√
M

−
〈
c(k), s(t)

〉)2
]

=
1

M
E

[(〈
c(k), a(t)− λǫ

〉)2]
+ 2

ǫ(k)√
M

E

[〈
c(k), a(t)− λǫ

〉]

+

(
ǫ(k)
)2

M
+

1

M
E

[(
b(k) −

〈
c(k), s(t)

〉)2]

≤ 1

M

〈(
c(k)
)2

, σ2

〉
+

(
ǫ(k)
)2

M

+
1

M

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)

(31)

=
1√
M

(
ζ(ǫ,k) +

1√
M

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
))

(32)

where ζ(ǫ,k) was defined as ζ(ǫ,k) =
(ǫ(k))2√

M
+

1√
M

〈(
c(k)
)2

,
(
σ(ǫ)

)2〉
. Equation (31) is obtained by

noting thatE [a(t)] = λǫ and soE
[(〈

c(k), a(t)− λǫ
〉)2]

=

var
(〈
c(k), a(t)− λǫ

〉)
=
〈
c(k), var(a(t) − λǫ)

〉
.

Consider the second term in (23).

E

[〈
c(k),u(t)

〉2]
≤
〈
c(k),1smax

〉
E

[〈
c(k),u(t)

〉]

≤ ǫ(k)√
M

〈
c(k),1smax

〉
(33)

where the last inequality follows from (26).
Now, we consider the term in (24). We need some def-

initions so that we can only consider the non-zero compo-
nents ofc. Let L(k)

++ =
{
j ∈ {1, 2, ...J} : c

(k)
j > 0

}
. Define

c̃(k) =
(
c
(k)
jm

)
j∈L(k)

++

,q̃ = (qjm)
j∈L(k)

++

andũ = (ujm)
j∈L(k)

++

.

Also define, the projections,̃q(k)
|| =

〈
c̃(k), q̃

〉
c̃(k) and q̃(k)

⊥ =

q̃− q̃
(k)
|| . Similarly, defineũ(k)

|| and ũ(k)
⊥ . Then, we have

E

[〈
c(k),q(t) + a(t) − s(t)

〉〈
c(k),u(t)

〉]

=E

[〈
c(k),q(t+ 1)

〉〈
c(k),u(t)

〉]
− E

[〈
c(k),u(t)

〉2]

≤E

[〈
c(k),q(t+ 1)

〉〈
c(k),u(t)

〉]

=E

[〈
c̃(k), q̃(t+ 1)

〉〈
c̃(k), ũ(t)

〉]

=E

[
||q̃(k)

|| (t+ 1)||||ũ(k)
|| ||

]

=E

[〈
q̃
(k)
|| (t+ 1), ũ

(k)
|| (t)

〉]

=E

[〈
q̃
(k)
|| (t+ 1), ũ(t)

〉]

=E [〈q̃(t+ 1), ũ(t)〉] + E

[〈
−q̃

(k)
⊥ (t+ 1), ũ(t)

〉]

≤E [〈Dmaxsmax1, ũ(t)〉] +
√
E

[
||q̃(k)

⊥ (t+ 1)||2
]
E [||ũ(t)||2]

(34)

≤DmaxsmaxE [〈1, ũ(t)〉] +
√
N

(k)
2 E [〈ũ(t), ũ(t)〉] (35)

≤DmaxsmaxE [〈1, ũ(t)〉] +
√
N

(k)
2 smaxE [〈1, ũ(t)〉]

where (34) follows from (3) and from Cauchy-Schwarz in-
equality. Equation (35) follows from from state-space collapse
(Proposition 2), sinceE

[
||q̃(k)

⊥ ||2
]
≤ E

[
||q(k)

⊥ ||2
]
≤ N

(k)
2 .

Note that

E [〈1, ũ(t)〉] ≤ 1

c
(k)
min

E

[〈
c̃(k), ũ(t)

〉]

=
1

c
(k)
min

E

[〈
c(k),u(t)

〉]

≤ ǫ(k)√
M

wherec(k)min

∆
= min

j∈L(k)
++

c
(k)
j > 0 and the last inequality follows

from (26). Thus, we have

E

[〈
c(k),q(t) + s(t)− a(t)

〉 〈
c(k),u(t)

〉]

≤Dmaxsmax

ǫ(k)√
M

+

√
N

(k)
2 smax

ǫ(k)√
M

(36)

Now, substituting (30), (32), (33) and (36) in (24), we get

ǫ(k)E
[〈

c(k),q(t)
〉]

≤ ζ(ǫ,k)

2
+B

(ǫ,k)
2

where

B
(ǫ,k)
2 =

1

2
√
M

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)
+Dmaxsmaxǫ

(k)

+
ǫ(k)

2

〈
c(k),1smax

〉
+

√√
MN

(k)
2 smaxǫ(k)

+ cot
(
θ(k)

)√
N

(k)
2

ǫ(k)

γ(k)

((
b(k)
)2

+ 〈c, smax1〉2
)
.

Thus, in the heavy traffic limit asǫ(k) ↓ 0, we have that

lim
ǫ(k)↓0

ǫ(k)E
[〈

c(k),q(ǫ)
〉]

≤ ζ(k)

2
(37)

whereζ(k) was defined asζ(k) = 1√
M

〈(
c(k)
)2

, (σ)2
〉

. Thus,
(7) and (37) establish the first moment heavy-traffic optimality
of JSQ routing and MaxWeight scheduling policy. The proof
of Proposition 1 is now complete.

D. Power-of-Two-Choices Routing and MaxWeight Scheduling

JSQ routing needs complete queue length information at
the router. In practice, this communication overhead can be
considerable when the number of servers is large. An alternate
algorithm is the power-of-two-choices routing algorithm.

In this algorithm, in each time slott, for each type of jobm,
two serversmj

1(t) andmj
2(t) are chosen uniformly at random.

All the type m job arrivals in this time slot are then routed
to the server with the shorter queue length among these two,
i.e., m∗

j (t) = argmin
m∈{mj

1(t),m
j
2(t)}

qj,m(t).

It was shown in [15] that power-of-two-choices routing al-
gorithm with MaxWeight scheduling is throughput optimal if
all the servers are identical. From the proof of throughput
optimality, one obtains

E

[
△ V (q(ǫ))|q(ǫ)(t) = q(ǫ)

]

≤K ′ +
J∑

j=1

2λj

M∑

m=1

q
(ǫ)
j,m

M
− E




M∑

m=1

J∑

j=1

2q
(ǫ)
j,msmj (t)




Note that this inequality is identical to (15), in the proof of
state-space collapse of JSQ routing and MaxWeight scheduling
policy. Also note that the remainder of the proof of state-
space collapse and upper bound in Sections III-B and III-C
is independent of the routing policy. Moreover, the proof of
lower bound in Section III-A is also valid here. Thus, once we
have the above relation, the proof of heavy traffic optimality of
this policy is identical to that of JSQ routing and MaxWeight
scheduling policy.

IV. POWER-OF-TWO-CHOICES ROUTING

In this section, we consider the power-of-two-choices rout-
ing algorithm, without any scheduling. This is a special case
of the model considered in the previous section when all the
jobs are of the same type. In this case, there is a single queue
at each server and no scheduling is needed.

Note on Notation

In this section, sinceJ = 1 here, we just denote all vectors
(in R

M) in bold fontx.
The result from previous section is not applicable here be-

cause of the following reason. In Proposition 1, a sequence of
systems with arrival rate approaching a face of the capacity
region, along its normal vector were considered. The normal

vector of the face plays an important role in the state space
collapse, and so the upper bound obtained is in terms of this
normal. So, this result cannot be applied if the arrival rates
were approaching a corner point where there is no common
normal vector. In particular, the proof of state space collapse in
Section III-B is not applicable here because one cannot define
a ballB(k)

δ(k) as in (17) at a corner point.
LetA(t) denote the set of jobs that arrive at the beginning of

time slot t. Let Dk be the size ofkth job. We definea(t) =∑
k∈A(t) Dk, to be the overall size of the jobs inA(t) or

the total time slots requested by the jobs. We assume that
a(t) is a stochastic process which is i.i.d. across time slots,
E[a(t)] = λ and Pr(a(t) = 0) > ǫa for someǫa > 0 for
all t. Let σ2 = var[a(t)]. Let X(t) denote the servers chosen
at time slott. So,X(t) can take one ofMC2 values of the
form (m,m′) wherem,m′ ∈ Z+ and 1 ≤ m < m′ ≤ M .
Here MC2 denotes the number of2-combinations in a set
of size M . Note thatX(t) is an i.i.d. random process with
a uniform distribution over all possible values. DefineMC2

different arrival processes denoted byam,m′(t) with 1 ≤ m <
m′ ≤ M as follows. Ifx(t) = (m̂, m̂′), then

am,m′(t) =

{
a(t) for m = m̂ andm′ = m̂′

0 otherwise
.

Thus, {am,m′(t)} can be thought of as a set of correlated
arrival processes. They are correlated so that only one of them
can have a non-zero value at each time. Letλm,m′ = E[am,m′(t)].
Thenλm,m′ = λ

MC2
. The arrivals inam,m′(t) can be routed

only to either serverm or serverm′. According to the power-
of-two-choices algorithm, all the jobs are then routed to the
server with smallest queue amongm andm′. Ties are broken
at random. Letam(t) denote the arrivals to serverm at time
t after routing.

Let µ be the amount of service available in each time slot
at each server. Not all of this service may be used either
because the queue is empty or because different chunks of
same job cannot be served simultaneously. Letsm(t) be the
actual amount of service scheduled available in time slott
at serverm. Let um(t) denote the unused service which is
defined asum(t) = µ − sm(t). Let qm(t) denote the queue
length at serverm at time t, and letq(t) denote the vector
(q1(t), q2(t),qM (t)) Then, we have

qm(t+ 1) = qm(t) + am(t)− µ+ um(t).

Note that

um(t) = 0 wheneverqm(t) + am(t) ≥ Dmaxµ. (38)

We again follow the procedure used in the previous section
to show heavy traffic optimality. Since power-of-two-choices
algorithm tries to equalize any two randomly chosen queues,
we expect that there is a state-space collapse along the direc-
tion where all queues are equal, similar to JSQ algorithm.

Let c1 = 1√
M
(1, 1,1) be the unit vector inRM along

which we expect state-space collapse. Let1 denote the vector
(1,1,.....1). For anyQ ∈ R

M , defineQ|| to be the component

of Q alongc1, i.e.,Q|| = 〈Q, c1〉 c1 where〈., .〉 denotes the

canonical dot product. Thus,Q|| =

∑
m

Qm

M
1. DefineQ⊥ to be

the component ofQ perpendicular toQ||, i.e.,Q⊥ = Q−Q||.

Define the Lyapunov functionsV||(Q) = ||Q||||2 =

(∑
m

Qm

)2

M

andW⊥(Q) = ||Q⊥|| =


∑

m

Q2
m −

(∑
m

Qm

)2

M




1
2

.

A. Lower Bound

Consider an arrival process with arrival rateλ(ǫ) such that
ǫ = Mµ − λ(ǫ). Let q(ǫ)(t) denote the corresponding queue
length vector. Since the system is stabilizable, there exists
a steady-state distribution ofq(ǫ)(t). Again, lower bounding
(
∑
m

q(ǫ)) by a single queue length as in Section III-A, we have

E

[
∑

m

q(ǫ)

]
≥
(
σ(ǫ)

)2
+ ǫ2

2ǫ
−B1

whereB1 = Msmax

2 . Thus, in the heavy-traffic limit we have

lim inf
ǫ→0

ǫE

[
∑

m

q(ǫ)

]
≥ σ2

2
. (39)

B. State Space Collapse

For simplicity of notation, in this sub-section, we writeq
for q(ǫ). We will bound the drift of the Lyapunov function
W⊥(Q), and again use Lemma 2 to obtain state space collapse.
We again use (8) withc1 instead ofc(k) to get the drift of
W

(k)
⊥ (q) in terms of drifts ofV (q) andV (k)

|| (q).
Let us first consider the last term.

E
[
△ V||(q)|q(t) = q

]

=E
[
V||(q(t + 1))− V||(q(t))|q(t) = q

]

=
1

M
E



(
∑

m

qm(t+ 1)

)2

−
(
∑

m

qm(t)

)2

|q(t) = q




=
1

M
E



(
∑

m

qm(t) + am(t)− µ+
∑

m

um(t)

)2

−
(
∑

m

qm(t)

)2

|q(t) = q




=
1

M
E



(
∑

m

qm(t) + am(t)− µ

)2

+

(
∑

m

um(t)

)2

+2

(
∑

m

qm(t) + am(t)− µ

)(
∑

m

um(t)

)

−
(
∑

m

qm(t)

)2

|q(t) = q




≥ 1

M
E



(
∑

m

am(t)− µ

)2

+ 2

(
∑

m

qm(t)

)(
∑

m

am(t)− µ

)

−2Mµ

(
∑

m

um(t)

)
|q(t) = q

]

≥ 2

M

(
∑

m

qm

)
E

[(
∑

m

am(t)− µ

)
|q(t) = q

]

− 2µE

[
∑

m

um(t)|q(t) = q

]

≥−K3 + 2

(
∑

m

qm

)(
λ

M
− µ

)

≥−K3 − 2
ǫ

M

(
∑

m

qm

)
(40)

whereK3 = 2Mµ2 is obtained by boundingsm(t) and
um(t) by smax.

Now, we will bound the first term in (8). Expanding
[△ V (q)|q(t)] and using (38), it is easy to see that

E [△ V (q)|q(t) = q]

≤K4 − 2µ
∑

m

qm(t)

+ EXE

[
∑

m

2qm(t)am(t)|q(t) = q, X(t) = i, j

]
.

whereK4 = M(2µ2(Dmax + 1) + σ2 + λ2). Let p be a per-
mutation of(1, 2, ...M) so thatqp(1) ≤ qp(2) ≤ ≤ qp(M).
Let p′ be the inverse permutation. In other words,p′(m) is
the position ofm in the permutationp. Let qmin = qp(1) and
qmin = qp(M). Then, we have

E [△ V (q)|q(t) = q]

≤K4 − 2µ
∑

m

qm(t) + 2qmin

λ
MC2

+
∑

(i,j) 6=(p(1),p(M))

1
MC2

E [qi(t)a(t) + qi(t)a(t)|X(t) = i, j]

=K4 − 2µ
∑

m

qm(t)− λ
MC2

(qmax − qmin) +
2λ

M

∑

m

qm(t).

=K4 − 2
ǫ

M

∑

m

qm(t)− λ
MC2

(qmax − qmin)

Note that

||q⊥|| =

√√√√√
∑

m


qm −

∑
m

qm

M




2

≤
√
M (qmax − qmin)

2

=
√
M (qmax − qmin) .

Thus, we have,

E [△ V (q)|q(t) = q] ≤K4 − 2
ǫ

M

∑

m

qm(t)− λ
MC2

||q⊥||√
M

Substituting this and (40) in (8), we have

E [△ W⊥(q)] ≤
K3 +K4

2||q⊥||
− λ

MC2

1

2
√
M

.

This means that we have negative drift for sufficiently large
W⊥(q). Since the drift ofW⊥(q) is finite with probability1,
using Lemma 2, there exist finite constants{N ′

r}r=1,2,... such

thatE
[
||q(ǫ)||r

]
≤ N ′

r for eachr = 1, 2,

C. Upper Bound

The upper bound is again obtained by bounding each of
the terms in (24). This is identical to the case of JSQ routing
(Proposition 3 in [8]). So, we will not repeat the proof here,
but just state the upper bound.

E

[
∑

m

q(ǫ)

]
≥
(
σ(ǫ)

)2
+ ǫ2

2ǫ
−B

(ǫ)
2

whereB
(ǫ)
2 = M

√
N2smax

ǫ
+ smax

2 . Thus, in heavy traffic
limit, we have

lim inf
ǫ→0

ǫE

[
∑

m

q(ǫ)

]
≥ σ2

2
.

This coincides with the heavy-traffic lower bound in (39). This
establishes the first-moment heavy-traffic optimality of power-
of-two choices routing algorithm.

V. CONCLUSIONS

We considered a stochastic model for load balancing and
scheduling in cloud computing clusters. We studied the per-
formance of JSQ routing and MaxWeight scheduling policy
under this model. It was known that this policy is throughput
optimal. We have shown that it is heavy traffic optimal when
all the servers are identical. We also found that using the
power-of-two-choices routing instead of JSQ routing is also
heavy traffic optimal.

We then considered a simpler setting where the jobs are
of the same type, so only load balancing is needed. It has
been established by others using diffusion limit argumentsthat
the power-of-two-choices algorithm is heavy traffic optimal.
We presented a steady-state version of this result here using
Lyapunov drift arguments.

VI. A CKNOWLEDGMENTS

Research was funded in part by ARO MURI W911NF-08-
1-0233 and NSF grant CNS-0963807.

REFERENCES

[1] AppEngine. http://code.google.com/appengine/.
[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. Above the clouds: A
Berkeley view of cloud computing. 2009. Tech. Rep. UCB/eeCs-2009-
28, EECS department, U.C. Berkeley.

[3] Azure. http://www.microsoft.com/windowsazure/.
[4] S. L. Bell and R. J. Williams. Dynamic scheduling of a parallel server

system in heavy traffic with complete resource pooling: asymptotic
optimality of a threshold policy. Electronic J. of Probability, pages
1044–1115, 2005.

http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/

[5] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing
with general service time distributions. InProceedings of the ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, SIGMETRICS ’10, pages 275–286, New York,
NY, USA, 2010. ACM.

[6] H. Chen and H. Q. Ye. Asymptotic optimality of balanced routing, 2010.
http://myweb.polyu.edu.hk/∼ lgtyehq/papers/ChenYe11OR.pdf.

[7] EC2. http://aws.amazon.com/ec2/.
[8] A. Eryilmaz and R. Srikant. Asymptotically tight steady-state queue

length bounds implied by drift conditions.Queueing Systems, pages
1–49, 2012.

[9] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid
computing 360-degree compared. InGrid Computing Environments
Workshop, 2008. GCE’08, pages 1–10, 2008.

[10] B. Hajek. Hitting-time and occupation-time bounds implied by drift
analysis with applications.Advances in Applied Probability, pages 502–
525, 1982.

[11] J. M. Harrison. Heavy traffic analysis of a system with parallel servers:
Asymptotic optimality of discrete review policies.Ann. App. Probab.,
pages 822–848, 1998.

[12] J. M. Harrison and M. J. Lopez. Heavy traffic resource pooling in
parallel-server systems.Queueing Systems, pages 339–368, 1999.

[13] Y. T. He and D. G. Down. Limited choice and locality considerations
for load balancing.Performance Evaluation, 65(9):670 – 687, 2008.

[14] J. F. C. Kingman. Some inequalities for the queue GI/G/1. Biometrika,
pages 315–324, 1962.

[15] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load
balancing and scheduling in cloud computing clusters. InProc. IEEE
Infocom., pages 702–710, 2012.

[16] M.Bramson. State space collapse with application to heavy-traffic
limits for multiclass queueing networks.Queueing Systems Theory and
Applications, pages 89 – 148, 1998.

[17] D. A. Menasce and P. Ngo. Understanding cloud computing: Experi-
mentation and capacity planning. InProc. 2009 Computer Measurement
Group Conf., 2009.

[18] M. Mitzenmacher. The Power of Two Choices in Randomized Load
Balancing. PhD thesis, University of California at Berkeley, 1996.

[19] R. L. D. N. D. Vvedenskaya and F. I. Karpelevich. Queueing system
with selection of the shortest of two queues: An asymptotic approach.
Problems of Information Transmission, 32(1):15–27, 1996.

[20] M. I. Reiman. Some diffusion approximations with statespace collapse.
In Proceedings of International Seminar on Modelling and Performance
Evaluation Methodology, Lecture Notes in Control and Information
Sciences, pages 209–240, Berlin, 1983. Springer.

[21] A. Stolyar. MaxWeight scheduling in a generalized switch: State space
collapse and workload minimization in heavy traffic.Adv. Appl. Prob.,
14(1), 2004.

[22] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks.IEEE Trans. Automat. Contr., 4:1936–1948,
December 1992.

[23] R. J. Williams. Diffusion approximations for open multiclass queueing
networks: Sufficient conditions involving state space collapse.Queueing
Systems Theory and Applications, pages 27 – 88, 1998.

http://myweb.polyu.edu.hk/~lgtyehq/papers/ChenYe11OR.pdf
http://aws.amazon.com/ec2/

	I Introduction
	II System Model and Algorithm
	III JSQ Routing and MaxWeight Scheduling
	III-A Lower Bound
	III-B State Space Collapse
	III-C Upper Bound
	III-D Power-of-Two-Choices Routing and MaxWeight Scheduling

	IV Power-of-Two-Choices routing
	IV-A Lower Bound
	IV-B State Space Collapse
	IV-C Upper Bound

	V Conclusions
	VI Acknowledgments
	References

