
Atwood et al.

RESEARCH

Efficient Network Generation Under General
Preferential Attachment
James Atwood1*, Bruno Ribeiro2 and Don Towsley1

*Correspondence:

jatwood@cs.umass.edu
1School of Computer Science,

University of Massachusetts

Amherst, 01003, Amherst, MA,

USA

Full list of author information is

available at the end of the article

Abstract

Preferential attachment (PA) models of network structure are widely used due to
their explanatory power and conceptual simplicity. PA models are able to account
for the scale-free degree distributions observed in many real-world large networks
by sequentially introducing nodes that attach preferentially to existing nodes with
high degree. The ability to efficiently generate instances from PA models is a key
asset in understanding both the models themselves and the real networks that
they represent. Surprisingly, little attention has been paid to the problem of
efficient instance generation. In this paper, we show that the complexity of
generating network instances from a PA model depends on the preference
function of the model, provide efficient data structures that work under any
preference function, and present empirical results from an implementation based
on these data structures. We demonstrate that, by indexing growing networks
with a simple augmented heap, we can implement a network generator which
scales many orders of magnitude beyond existing capabilities (106 – 108 nodes).
We show the utility of an efficient and general PA network generator by
investigating the consequences of varying the preference functions of an existing
model. We also provide “quicknet”, a freely-available open-source
implementation of the methods described in this work.

Keywords: Preferential; Attachment; Network; Science

1 Introduction
There is a clear need for scalable network generators, as the ability to efficiently

generate instances from models of network structure is central to understanding

both the models and the real networks that they represent. Ideally, researchers of

communication and social networks should be able to generate networks on the

same scale as the real networks they study, and many interesting networks, such as

the World Wide Web and Facebook, have millions to billions of nodes. Furthermore,

network generation is the primary tool both for empirically validating the theoretical

behavior of models of network structure and for investigating behaviors that are

not captured by theoretical results. The generation of very large networks is of

particular importance for these tasks because theoretically derived behavior is often

asymptotic.

However, the generation of large networks is difficult because of its high com-

plexity. In the case of preferential attachment (PA), arguably the most widely used

generative model of networks, a non-local distribution over node degrees must be

both sampled from and updated at each time-step. If we naively index this distri-

bution, we will need to update every node at every time-step, which implies that

generating a network will have complexity of at least O(|V |2).

Atwood et al. Page 2 of 16

PA models are of particular interest because they account for the scale-free dis-

tribution of degree observed in many large networks [1]. For instance, scale-free

degree distributions have been observed in the World Wide Web [2, 3, 4], the Inter-

net [5, 6, 7], and telephone call graphs [8, 9], bibliographic networks [10] and social

networks [11].

Preferential attachment models generate networks by sequentially introducing

nodes that prefer to attach to nodes with high degree. While many extensions

to this model class exist, all members share the same basic form: At each time-

step, sample a node from the network with probability proportional to its degree;

introduce a new node to the network; and add an edge from the new node to the

sampled node. This behavior has important implications for implementation. First,

PA is inherently sequential, because the next action taken depends on the state of

the network, and the state of the network changes at each time-step. This implies

that the algorithm is not easily parallelized. Second, network nodes must be indexed

such that they can be efficiently sampled by degree, and, because we are introduc-

ing a new node at each time-step, the index must also support efficient insertion.

Third, the relevant distribution over nodes is non-local, in that the introduction of

a new node and edge affects the probability of every node in the network through

the normalization factor.

Much of the work in modeling network structure has focused on the asymptotic

regime. A model is defined, and a limiting degree distribution (as |V | approaches in-

finity) is obtained analytically. Less effort has focused on generating finite networks.

In the following sections, we provide a robust framework for generating networks

via PA. This framework easily scales to millions of nodes on commodity hardware.

We also provide “quicknet”, a freely-available open-source C implementation of the

framework[1].

The remainder of the paper is structured as follows. In Section 2, we analyze

the complexity of generating networks from PA models. Section 3 describes candi-

date methods for efficiently implementing preferential attachment generators and

presents results from a simulator which implements them. Section 4 describes sev-

eral applications of a PA network generator which scales to many millions of nodes.

We describe related work in Section 5 and present conclusions and future work in

Sections 6 and 7, respectively.

2 Complexity
In this section we then provide a formal definition of a PA model, then describe two

existing PA models as examples. This is followed by an analysis of the complexity

of generating networks from PA models.

2.1 Definitions

In this section we provide a framework for representing general preferential attach-

ment models. Note that the idea of a general PA model is not new to this work,

and that the formulation presented here is only used to facilitate algorithmic anal-

ysis. For a detailed treatment of general preferential attachment, please see ‘The

Organization of Random Growing Networks’ by Krapivsky and Redner [12].

[1]https://github.com/hackscience/quicknet

Atwood et al. Page 3 of 16

Let Gt = (Vt, Et) be the network that results from t iterations of a PA simulation.

Vt is the set vertices (or nodes) within the network and Et is the set of edges

between elements of Vt. Let T (Gt) be the worst-case time complexity of generating

Gt; that is, the worst-case time complexity of a preferential attachment simulation

of t iterations.

Recall that the number of iterations required to generate a network with |V | nodes

via PA is Θ(|V |). Accordingly, we will omit t and frame our discussion of complexity

T (G) in terms of |V |.
Let A = {a1, a2, ..., a|A|} be a set of attributes that can be defined on a network

node. Let Xv = {xva1 , xva2 , ..., xva|A|} ∈ R|A| be a setting of A for node v ∈ V , and

let λvai ∈ R be the fitness of node v for attribute ai. Let

f =
{
fai(xvai , λvai) : R× R→ R+ | ai ∈ A

}
be a set of functions, where fai ∈ f maps xvai ∈ R and λvai ∈ R to a preference

mass µvai ∈ R+. The “preference mass” µvai is a non-negative real value that is

proportional to the probability of selecting v by ai under the PA model. We will

refer to the elements of f as the “preference functions” of the PA model. Note that,

in this work, we restrict our attention to the set of degree-related attributes D (i.e.

in-degree, out-degree, and total degree) with settings xvd ∈ N∀ d ∈ D. This implies

that the elements of f are defined over the natural numbers:

f =
{
fd(xvd, λvd) : N× R→ R+ | d ∈ D

}
The restriction is purely elective; any attribute with real-valued settings could be

specified.

A PA model has one or more preference functions. Price’s model, for example,

has a single linear preference function. Krapivsky’s model has two: one for in-degree

and another for out-degree. A “linear preferential attachment model” only admits

linear preference functions of the form g(x, λ) = c1x+ λ, a “quadratic preferential

attachment model” only admits quadratic preference functions of the form g(x, λ) =

c2x
2 + c1x+ λ, and so on.

2.2 Description of Considered Models

2.2.1 Price’s Model

Figure 1 describes Price’s algorithm. Briefly, at each time-step, a node is sampled

from the network with probability proportional to its in-degree; a new node is

introduced to the network; and a directed edge is added from the new node to the

sampled node. Notice that a node is added at each time-step, so that the generation

of a network with |V | nodes takes |V | steps.

2.2.2 Krapivsky’s Model

Figure 1 also describes the algorithm of Krapivsky et al. At each step, the algorithm

of Price’s model is followed with probability p, and a “preferential edge step” is taken

with probability 1 − p. During a preferential edge step two nodes, no and ni, are

sampled from the network by out- and in-degree, respectively, and an edge is added

Atwood et al. Page 4 of 16

from no to ni. Note that a node is no longer added at every step; rather, a node is

added at a given step with probability p. This implies that the number of iterations

required to generate a network with |V | nodes is a random variable with expected

value |V |/p. |V |/p is Θ(|V |) ∀p, so asymptotically this is no different than Price’s

model. More generally, the number of iterations required to generate a network with

|V | nodes via a PA model is Θ(|V |).

2.3 Generation Complexity

We obtain a trivial lower bound on T (G) by noting that, in order to generate G,

we must at the very least output |V | nodes, so T (G) = Ω(|V |).
A discussion of the upper bound follows. Recall that the salient problem in gener-

ating networks from a PA model is indexing the network’s nodes in such a way that

sampling, insertion, and incrementation can be accomplished efficiently. Tonelli et

al. [13] provide a clever method for accomplishing all three tasks in constant time,

provided that the preference function is linear and the fitness is both uniform across

all nodes and constant. Given constant insertion and sampling times, the generation

of a network with |V | nodes takes O(|V |) time. Considering that the lower bound

is Ω(|V |), we have the asymptotically tight bound of T (G) = Θ(|V |).
However, this method does not extend to nonlinear preferential attachment (see

Section 5 for details). We can improve performance by shifting to data structures

which provide O(log|V |) insertion, sampling, and incrementation, giving an overall

complexity of T (G) = O(|V |log|V |).
We accomplish this with a set of augmented tree structures. Each tree supports a

preference function of the model by indexing the preference mass assigned to each

node in the network by that preference function. Each item in the tree indexes a

node in the network. The tree items are annotated with the preference mass of the

network node under the preference function, and the subtree mass, which is the

total preference mass of the subtree that has the item as root; see Figure 3. Note

that we refer to “items” in the tree rather than the more typical “nodes”; this is

to avoid confusion between elements of the tree and elements of the network. We

can sample from such a structure by recursively comparing the properly normalized

subtree mass of a given item and its children to a uniform random draw; see Figures

2 and 3.

Note that, at each iteration of a standard PA simulation, we must sample a node,

update that node’s mass, and insert a new node. In what follows we show that each

of these steps can be accomplished in asymptotically logarithmic time.

3 Implementation
The tree structure that we described in the previous section can be implemented

in a number of different ways that each have a generation time of O(|V |log|V |).
They differ in their computational time for finite |V |. In this section, we empirically

evaluate a set of realizations of the annotated tree structure. Specifically, we inves-

tigate a simple binary max-heap where priority is defined by node mass, and a set

of binary treaps with various sort and priority keys.

Note that, in the discussion of the heap-based and treap-based implementations

of the tree structure, we will often refer to a “sort invariant” and a “heap invariant”.

Atwood et al. Page 5 of 16

The sort invariant states that, for any three nodes Y ← X → Z where Y and Z

are the left and right children of parent X, respectively, and a “sort key” k that is

associated with each item, Y.k ≤ X.k ≤ Z.k. The heap invariant states that for any

three nodes Y ← X → Z (defined in the same fashion) and some “priority key” p

associated with each item, X.p ≥ Y.p and X.p ≥ Z.p.
We first describe the binary maximum heap. We annotate each item in the heap

with a node mass, which is defined by the preference function, and a subtree mass,

which is initialized to the node mass. When inserting a new item i, i’s node mass

is added to all traversed items, so that the subtree mass remains accurate upon

insertion. Sampling is accomplished via the algorithm of Figure 2. Node mass may

only increase, so we implement an augmented version of increase-key which main-

tains subtree mass under exchanges; see Figure 4 for a diagram of the exchange

operation. The increase-key operation supports the Increment operation, which is

described below. We set priorities to be equivalent to node masses so that the most

probable nodes can be accessed more quickly.

The PA process is supported by the binary maximum heap via the operations

Sample, Increment and Insert. As previously mentioned, sampling is performed via

the algorithm of Figure 2. Increment increases an item’s mass and then performs

heap exchanges to account for any violation of the heap invariant; it is described

in Figure 5. Insert adds an item to the index, appropriately updating the subtree

masses of any parent items; see Figure 6.

Note that, if we were to annotate each item with a node’s probability mass rather

than preference mass, insertion would be a linear time operation. When a new node

is introduced, the probability of every existing node decreases because the normal-

ization factor increases. Thus, upon insertion, every item’s probability mass would

need to be updated. There are |V | items, so insertion becomes a Θ(|V |) operation

in this situation. Conversely, the preference mass of each node is unaffected by the

introduction of a new node. Insertion in this scenario is a O(log|V |) operation; see

Figure 6 and Figure 7.

We use Price’s model as an illustrative example. Recall that, in Price’s model, a

new node is introduced at each time-step, and an edge from the new node to an

existing node is added preferentially. We first identify an existing node via Sample.

We then create a new node and add an edge from the new node to the existing

node. Increment is called on the existing node to reflect the change in preference

mass due to the new incoming edge. Finally, the new node is added to the in-

dex via Insert. Sample, Increment and Insert are O(log|V |) operations, which im-

plies that a single iteration is O(log|V |), and that a simulation with |V | iterations

is O(|V |log|V |). Generating a network with |V | nodes takes Θ(|V |) iterations, so

T (G) = O(|V |log|V |).
The augmented heap is implemented via a dynamic array that provides amortized

constant insertion time at the cost of some wasted space. We sought to avoid this

wastage by instead using some sort of binary tree, where insertion can be defined

according to some ordinal value rather than an index into an underlying array.

Binary treaps are an extension of binary trees that maintain a heap invariant over

a random priority assigned to each item, guaranteeing that the tree is balanced in

expectation [14].

Atwood et al. Page 6 of 16

The treap-based tree structure supports two operations: Insert and Sample-

Destructive. Sample-Destructive is built on the Sample procedure that is given

in Figure 2. It alters the procedure so that the sampling operation is destructive;

that is, the sampled item is removed from the treap. The Insert operation inserts

an item so that the sort invariant is maintained, much like one would insert an item

into a binary tree. After the item is inserted, the heap invariant may have been

violated, so tree rotations are performed until the heap invariant has been restored.

Figure 8 shows the empirical run time of each of these structures as a function of

generated network size. All networks were generated from Krapivsky’s model. The

binary heap consistently took significantly less time than the treap-based methods

to generate networks of several different sizes.

4 Applications
We validate our generation model by generating sets of networks from the Krapivsky

model and comparing the marginal degree distributions inferred from the generated

networks with the asymptotic value predicted by the model. We then use the gen-

erator to explore some interesting questions. Specifically, we analyze the effect of

changing the fitnesses of the Krapivsky model from a constant value to a random

variable with various distributions. We also analyze the robustness of Krapivsky’s

model to superlinear preference functions.

4.1 Validating the Network Generator

We validate our framework by comparing the inferred exponents of the marginal

distributions of generated networks with the known (theoretical, asymptotic) val-

ues for the exponents. We generated 10 networks with 107 nodes each. Figure 9

shows a plot of the base-10 logarithm of both degree an complementary cumulative

distribution. The exponents of the marginal degree distributions were inferred via

linear regression. We find, as expected, that they both exhibit power-law behavior

(evident in the linearity) and that the inferred exponents of the distributions are

in relatively good agreement with asymptotic theoretical values. Note that, while

networks with 107 nodes are very large, they are still finite; we believe that this ac-

counts for the small discrepancy between the inferred exponents and the theoretic

values.

4.2 Exploring Extensions to Krapivsky’s Model

4.2.1 Pareto Fitness

We use our network generator to investigate the effects of altering the Krapivsky

model. Specifically, we generated networks from a variant where the fitnesses as-

signed to each node were sampled from a Pareto distribution, rather than assigning

the same constant value to each node. Results can be seen in Figure 9. The distri-

bution of in-degree fitness is
λdλm
dλ+1 and has expected value λdm

λ−1 . The parameter dm

is set to (λ− 1) so that the expected value of the distribution simplifies to λ. The

same form was used for the out-degree fitness. Note that this variant still exhibits

scale-free behavior, that the inferred exponents are in better agreement with the

predicted values than the exponents inferred from the simulation of the unaltered

model, and that the variance of the inferred exponents is higher.

Atwood et al. Page 7 of 16

4.2.2 Normal Fitness

We also simulated a variant of the Krapivsky model where fitnesses were sampled

from a truncated normal distribution. Results can be seen in Figure 9. In-degree

fitnesses were sampled from N(λ, (λ/4)2) and out-degree fitnesses from N(µ, (µ/4)2).

The variances were chosen such that the probability of sampling a negative fitness

is very small (less than 10−4); the distributions were truncated so that any negative

samples were replaced with zero. Note that scale-free behavior is still observed and

that the inferred exponents of the marginal distributions of in and out-degree are

in very close agreement with the simulation of the original model.

4.2.3 Robustness to Superlinear Preference Functions

Super-linear preference functions increase the strength of the “rich-get-richer” effect.

This can lead to situations where one node quickly overtakes all others and is thus

a component of most of the edges in the network. In the extreme case, a star will

form; all edges will be connected to the outlier node. We investigate the robustness

of Krapivsky’s model to super-linear preference functions by plotting the ratio dmax
|E| ,

were dmax is the maximum degree, as a function of the preference function exponent

α; see Figure 10. dmax|E| will approach 1 as the network approaches a star formation.

There is an interesting side effect to the transition from scale-free to star-

structured networks. As the network becomes more star-like, the probability of

selecting the most probable node tends to increase. The most probable node always

sits at the top of the heap, so it can be accessed in constant time. So, the closer a

network’s structure is to a star formation, the larger the probability that an itera-

tion of a PA algorithm will be constant time. For a star structured network in the

limit, every iteration will be constant time and the generation of a network with

|V | nodes will be Θ(|V |). This behavior is apparent for finite |V |; we have observed

that the runtime of the generator tends to decrease as α increases.

5 Related Work
5.1 Summary

This work is concerned with the problem of efficiently generating networks from PA

models. Some examples of PA models include the models of Price (directed networks

with scale-free in-degrees) [15], Barabasi and Albert (undirected networks with

scale-free degrees) [16], Krapivsky et al. (directed networks with non-independent

in and out-degrees which exhibit marginally scale-free behavior) [17], and Capocci

et al. (like Krapivsky’s model, but with reciprocation) [18].

There has been some prior work in efficiently generating networks from PA mod-

els. Ren and Li [19] describe the simulation of a particular linear PA model, RX,

but do not address the general problem of simulating networks from models with

general preference functions. Hruz et al. [20] and D’Angelo and Ferreti [21] pro-

vide methods for parallelizing the simulation of linear PA, but do not treat the

nonlinear case. Machta and Machta [22] analyze the general case for the PRAM

shared-memory parallel architecture. To the best of our knowledge, our work is the

first to address the problem of efficient generation from PA models under possibly

nonlinear preference functions using a sequential model of computation.

Tonelli et al. [13] provide a method for computing an iteration of the linear Yule-

Simon cumulative advantage process in constant time. This method can naturally

Atwood et al. Page 8 of 16

be extended to network generation through linear PA. However, the extension to

nonlinear PA is very inefficient in both time and space, as shown in the next section.

5.2 Extension to Nonlinear PA

Let u be an array of integers and F a real number. Consider a preferential attach-

ment model with a linear preference function f(d) = ad+b, where a is the coefficient

of the preferential attachment model, d is a node’s in-degree, and b is a fitness value

which is the same for all nodes. Assume that, like Price’s model, each new node is

introduced with an outgoing edge which attaches preferentially to an existing node.

When a node n is inserted into the network, n’s fitness is added to F , and a label

identifying the node that n attaches to is appended to u. It is easy to see that the

probability of selecting node i after the nth insertion is proportional to a|dni | + F .

The real number, F , can be thought of as indexing the probability mass due only to

the fitness of each node in the network, whereas the array of integers, u, indexes the

mass due to the degrees of nodes. Tonelli et al. provide a constant-time algorithm

for sampling from this structure in their paper.

The array, u, stores a collection of integers which map to node labels. Each time

a node is attached to, that node’s label is appended to u. The real number, F ,

stores the sum of all of the individual fitnesses b. We sample from this structure as

follows. Let K be the length of u, a be the linear coefficient of the process, and r

be a random variable uniformly distributed on the interval [0,K + nb]. If r > K,

then the quantity round(r−Kb) + 1 provides the label of the node. Otherwise, the

quantity round(ra) + 1 specifies an index into u which in turn specifies a node label.

Both calculations take constant time, so sampling does as well.

Notice that this generation algorithm relies on two assumptions: the preferential

attachment scheme must be linear, and the fitnesses must be the same for all nodes.

To understand the first assumption, consider a model with a quadratic preference

function f(d) = ad2 + b. In order to index a node’s transition from degree d to

degree d+1, we must append (d+1)2−d2 = 2d+1 entries to u. Indexing a node of

degree d is thus an O(d) operation, and the array u requires
∑
v∈V d

2
v entries. More

generally, under a preference function of degree α, indexing a node’s transition from

d to d+ 1 requires O(dα−1) operations, and the array u will have
∑
v∈V d

α
v entries.

The second assumption is necessary for the real number F to map directly to a

node index. The generation algorithm also assumes that the fitnesses of each node

are the same. Imagine if, instead of adding each node’s fitness to a real number F ,

we had an array z with one entry for each node, and that each entry in z contained

an identifying label. We could sample a label from z in constant time simply by

uniformly choosing an index into z and returning the label in z at that index. Now

consider the situation where fitnesses are real-valued and not the same. We can no

longer sample from z simply by sampling an index of the array, because different

indices now imply different fitnesses, and thus different probability masses. We could

account for this by annotating each item in z with the node’s fitness value, but then

sampling would entail a search and be an O(log|V |) operation.

So, when extended to nonlinear preferential attachment, the algorithm of Tonelli

et al becomes very inefficient. Note also that the extension only holds when the

preference function is a polynomial.

Atwood et al. Page 9 of 16

6 Conclusion
We provide an efficient framework for simulating preferential attachment under

general preference functions which scales to millions of nodes. We validate this

framework empirically and show applications in the generation and comparison of

large networks.

7 Future Work
We have shown that, for nonlinear preferential attachment, the complexity of gener-

ating a network with |V | nodes is both Ω(|V |) and O(|V |log|V |). Future work could

provide asymptotically tighter bounds. Furthermore, generation methods that focus

on creating disk-resident or distributed networks could potentially scale to much

larger sizes than the in-memory approach proposed in this paper.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
This work was supported by MURI ARO grant 66220-9902 and NSF grant CNS-1065133.

Author details
1School of Computer Science, University of Massachusetts Amherst, 01003, Amherst, MA, USA. 2School of

Computer Science, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.

References
1. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)

2. Barabási, A.-L., Albert, R., Jeong, H.: Internet: Diameter of the World-Wide Web. Nature 401(6749), 130–131

(1999)

3. Barabási, A.-L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the

world-wide web. Physica A: Statistical Mechanics and its Applications 281(1-4), 69–77 (2000)

4. Broder, A., Kumar, R., Maghoul, F., Raghavan, P.: Graph structure in the Web. Computer Networks (2000)

5. Chen, Q., Chang, H., Govindan, R.: The Origin of Power Laws in Internet Topologies Revisited. INFOCOM

(2002)

6. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology vol. 29,

(1999)

7. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the

Internet. Physical Review E 65(6), 066130 (2002)

8. Aiello, W., Chung, F., Lü, L.: A random graph model for massive graphs. In: the Thirty-second Annual ACM

Symposium, pp. 171–180 (2000)

9. Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. Foundations of Computer Science (2001)

10. de Solla Price, D.J.: Networks of Scientific Papers. Science (1965)

11. Ribeiro, B., Gauvin, W., Liu, B., Towsley, D.: On MySpace Account Spans and Double Pareto-Like Distribution

of Friends. In: INFOCOM (2010)

12. Krapivsky, P., Redner, S.: Organization of growing random networks. Physical Review E 63(6), 066123 (2001)

13. Tonelli, R., Concas, G., Locci, M.: Three efficient algorithms for implementing the preferential attachment

mechanism in Yule-Simon Stochastic Process. WSEAS Transactions on Information Science & Applications

(2010)

14. Aragon, C.R., Seidel, R.G.: Randomized search trees. Foundations of Computer Science, 540–545 (1989)

15. Price, D.d.S.: A general theory of bibliometric and other cumulative advantage processes. Journal of the

American Society for Information Science 27(5), 292–306 (1976)

16. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science, 509–512 (1999)

17. Krapivsky, P., Rodgers, G., Redner, S.: Degree Distributions of Growing Networks. Physical Review Letters

86(23), 5401–5404 (2001)

18. Capocci, A., Servedio, V., Colaiori, F., Buriol, L.S., al, e.: Preferential attachment in the growth of social

networks: The internet encyclopedia Wikipedia. Physical Review E 74(3), 036116 (2006)

19. Ren, W., Li, J.: A fast algorithm for simulating scale-free networks. ICCTA, 264–268 (2009)

20. Hruz, T., Geisseler, S., Schöngens, M.: Parallelism in simulation and modeling of scale-free complex networks.

Parallel Computing 36(8), 469–485 (2010)

21. D’Angelo, G., Ferretti, S.: Simulation of scale-free networks. In: 2nd International ICST Conference on

Simulation Tools and Techniques (2009)

22. Machta, B., Machta, J.: Parallel dynamics and computational complexity of network growth models. Physical

Review E 71(2), 026704 (2005)

Figures

Atwood et al. Page 10 of 16

Price(n,λ):
G ← G0

for i ← 1 to n− |G0| do
existing node ← sample in degree(G, λ)
new node = add node(G)
add edge(G, new node, existing node)

end for
return G

Krapivsky(n, p, λ, µ):
G ← G0

while |V | < n do
u ← uniform draw
if u < p then

existing node ← sample in degree(G, λ)
new node = add node(G)
add edge(G, new node, existing node)

else
existing node tail ← sample in degree(G, λ)
existing node head ← sample out degree(G, µ)
add edge(G, existing node tail, existing node head)

end if
end while
return G

Figure 1 Generating a network with n nodes under Price and Krapivsky’s models. G0 is some
small seed network. λ and µ are scalers which give the fitness of nodes for incoming and outgoing
edges, respectively.

Sample(tree):
sampled node ← NULL
u← uniform sample
if tree.root != NULL then

sampled node ← SampleItem(tree, tree.root, 0., u)
end if
return sampled node

SampleItem(item, η, u):
if item.left != NULL then

if u < (η + item.left.subtree mass) / tree.total mass then
return SampleItem(tree, item.left, η, u)

end if
η ← η + item.left.subtree mass

end if
η ← η + item.node mass
if u < observed mass / tree.total mass then

return item.node
end if
if item.right != NULL then

return SampleItem(tree, item.right, η, u)
end if

Figure 2 General algorithm to sample from the augmented tree structure. η is the mass observed
thus far and u is a sample from the standard uniform distribution.

Atwood et al. Page 11 of 16

treeindexer.pdf

Figure 3 An example of an augmented tree structure. Each node is annotated with (µn, µs),
where µn the node mass and µs is the subtree mass. The preference function associated with this
tree is f(d) = d+ 2.0. The sample path through the tree structure is illustrated for u = 0.75.

heapexchangeomni.pdf

Figure 4 A diagram of the heap exchange process in the augmented heap. Each node is
annotated with (µn, µs), where µn the node mass and µs is the subtree mass. Note that
exchanges maintain the subtree mass invariant.

Increment(heap,item,new mass):
additional mass ← new mass - item.mass
item.mass ← new mass
item.subtree mass += additional mass
while item != heap.root && parent(item).mass ¡ item.mass do

parent(item).subtree mass += additional mass
heap exchange(heap, item, parent(item))
item ← parent(item);

end while
while item != heap.root do

parent(item).subtree mass += additional mass
item ← parent(item);

end while

Figure 5 The Increment operation of the heap-based tree structure. The constant-time operation
heap exchange is demonstrated in Figure 4. The two while loops collectively over an item’s
O(log|V |) ancestors, so Increment is a O(log|V |) operation.

Insert(heap, item):
heap.add(item)
node mass ← item.node mass
while item has a parent do

item ← parent(item)
item.subtree mass += node mass

end while

Figure 6 The Insert operation of the heap-based tree structure. Note that each item has
O(log|V |) ancestors, so Insert is a O(log|V |) operation.

depth.pdf

Figure 7 The empirical distribution of the depth of a sampled node within the heap as a function
of network size. The solid line indicates the expected depth and the dashed lines provide the 95%
confidence interval. Note that the expected depth grows logarithmically with size of the network,
which is consistent with the theoretical bounds presented in Section 3.

empiricalruntime.pdf

Figure 8 The empirical run time of the simulator using different index types. The three-letter
acronyms in the legend indicate the preference function type (‘l’ for linear), the sort key (‘s’ for
subtree mass or ‘n’ for node mass), and the definition of priority (‘n’ for node mass or ‘u’ for
uniform) for different variants of the treap structure. Twenty networks were generated for each
configuration and size. Error bars, barely visible, indicate the 95% confidence interval.

Atwood et al. Page 12 of 16

krapivskylinearlogccdfformat2.pdf krapivskyparetologccdfformat2.pdf krapivskynormallogccdfformat2.pdf

Figure 9 A comparison of the generated and theoretical marginal distributions of in- and
out-degree under Krapivsky’s model. The model was parameterized with λ = 3.5 and µ = 1.8 and
10 networks with 107 nodes were generated. We plot the degree distribution of a single example
network. Three variants are investigated: The unaltered model (top), a model with
Pareto-distributed fitnesses (center), and a model with normally-distributed fitnesses (bottom).
αo = µo ± 2σSE(α

∗
o) specifies the inferred exponent of the marginal out-degree distribution,

where µo is the observed mean of the exponent, σSE is the standard error, and α∗o is the
predicted exponent for the unaltered model. The same form holds for αi.

robustness.png

Figure 10 The robustness of the Krapivsky model to superlinear preference functions. α indicates
the exponent of a preference function of the form f(d) = dα + c. dmax is the maximum degree

the generated network; dmax|E| gives the proportion of edges that involve the maximum degree

node. dmax|E| = 1 indicates a star formation. Note that there is a phase transition from scale-free

to star-structured networks between α = 1.0 and α = 1.2. 100 networks with 106 nodes each were
generated for each value of α. Error bars indicate the 95% confidence interval.

