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Fig. 7: Comparison of single random walk (SingleRW), multiple independent random 
walks (MultiRW), DUFS with edge-based estimator (E-DUFS) and with hybrid esti-
mator (DUFS). MultiRW yields the worst results, as the edge sampling probability is 
not the same across different connected components. Both DUFS variants outperform 
SingleRW, but DUFS is slightly more accurate in the head. 

5.2. Evaluation of DUFS in the visible in-edges scenario 

In this section we compare two variants of Directed Unbiased Frontier Sampling: E-
DUFS, which uses the edge-based estimator and DUFS, which uses the hybrid estima-
tor, to each other and to a single random walk (SingleRW) and multiple independent 
random walks (MultiRW). We do not include Frontier Sampling in the comparison as 
it is a special case of DUFS where w = 0 and we know from Section 5.1 that allowing 
random jumps effectively reduce estimation errors. 

5.2.1. Out-degree and in-degree distribution estimates. Here we focus on estimating the 
marginal in- and out-degree distributions. Each simulation consists of 1000 runs from 
which we compute the empirical NRMSE. For MultiRW, E-DUFS and DUFS we set 
the average budget per walker to be b = 10. For conciseness, we only show a few repre-
sentative results. 

Figure 7 shows typical results obtained when using SingleRW, MultiRW, E-DUFS 
and DUFS to estimate out-degree distributions on the datasets. In 8 out of 15 datasets, 
MultiRW yields much larger NRMSEs than does the SingleRW. As pointed out in 
[Ribeiro and Towsley 2010, Section 4.5], this is due to the fact that the estimator in (1) 
assumes that all edges are sampled with the same probability. This assumption is vio-
lated by MultiRW because the stationary sampling probability depends on the size of 
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the connected component within which each walker is located. E-DUFS estimates are 
consistently more accurate than those of MultiRW and SingleRW, except on datasets 
where the original graph and its LCC have similar out-degree distributions. In some 
of these cases SingleRW slightly outperforms E-DUFS in the tail (see top-right fg.). 
DUFS, in turn, outperforms E-DUFS in the head of the out-degree distribution and has 
similar performance when estimating other out-degree values. For this reason, defn-
ing the estimation task in terms of the CCDF would give DUFS an unfair advantage. 

When restricted to the largest connected component, the performance differences 
between SingleRW and E-DUFS and those between SingleRW and DUFS become 
smaller, for B = 0.1|V |. Results for in-degree distribution estimation are qualitatively 
similar and are omitted. 

5.2.2. Joint in- and out-degree distributions. We compare the NRMSEs associated with 
DUFS and SingleRW for the estimates of the joint in- and out-degree distribution. 
We observe that DUFS consistently outperforms SingleRW on all datasets. On 10 out 
of 15 datasets, the estimates corresponding to low in-degree and low out-degree ex-
hibit much smaller errors when using DUFS than when using SingleRW. Furthermore, 
DUFS also achieves smaller estimation errors for most of the remaining points of the 
joint distribution in 11 out of 15 datasets. Figures 8(a-b) show heatmaps correspond-
ing to typical NRMSE results for DUFS and SingleRW. Interestingly, we note that 
on the web graph datasets and on the email-EuAll dataset, DUFS outperforms Sin-
gleRW by one or two orders of magnitude, as illustrated by Figure 8(c), which shows 
the heatmap comparison for dataset web-Google. Although the NRMSE exhibited by 
SingleRW applied to the LCC datasets is much smaller, the comparison between DUFS 
and SingleRW is qualitatively similar and is, therefore, omitted. 

We then investigated the performance gains obtained by using the hybrid estimator 
instead of the original estimator. Figures 9(a-b) show the ratios between the NRMSEs 
obtained with DUFS (hybrid) to those obtained with the E-DUFS (original) for two 
networks. We chose to use the NRMSE ratio (or equivalently, the root MSE ratio) to 
make it easier to visualize the differences. We observe that DUFS consistently outper-
forms E-DUFS on all datasets. More precisely, the error ratio is rarely above one and, 
for points corresponding to small in- and out-degrees, it often lies below 0.9. Results 
on most datasets are similar to that depicted in Figure 9(a), but results on social net-
works datasets are closer to that shown in Figure 9(b), where large in- and out-degrees 
also seem to beneft from the information contained in the walkers’ initial locations. 
Results for the LCC datasets are qualitatively similar, with accuracy gains from the 
hybrid estimator slightly larger on these datasets than on the original datasets. 

5.3. Evaluation of DUFS in the invisible in-edges scenario 

In this section, we compare the NRMSEs associated with DUFS and Directed Un-
biased Random Walk (DURW) method when estimating out-degree distributions in 
the case where in-edges are not directly observable. We note that DURW is known 
to outperform a reference method for this scenario proposed in [Bar-Yossef and Gure-
vich 2008]. For a comparison between DURW and this reference method, please refer 
to [Ribeiro et al. 2012]. 

As we mentioned in Section 5.1, DURW results are similar to those obtained with 
DUFS when the budget per walker b is large, since DURW is a special case of DUFS 
where b = B − c. Therefore, we focus on comparing DUFS for small values of b and 
DURW, when the total number of uniform node samples collected by each method 
is roughly the same. More precisely, we simulate DUFS for b = 10 and w = 1 and 
set the DURW parameter w so that the number of node samples differs by at most 

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. 



     A:20 F. Murai et al. 

NRMSE(DUFS)

10 0 10 1 10 2 10 3 10 4

indegree+1

10 0

10 1

10 2

10 3

10 4
ou

td
eg

re
e+

1

NRMSE(SingleRW)

10 0 10 1 10 2 10 3 10 4

indegree+1

0.01

0.0316

0.1

0.316

1

3.16

(a) fickr-links 

NRMSE(DUFS)

10 0 10 1 10 2 10 3 10 4

indegree+1

10 0

10 1

10 2

10 3

10 4

ou
td

eg
re

e+
1

NRMSE(SingleRW)

10 0 10 1 10 2 10 3 10 4

indegree+1

0.0316

0.1

0.316

1

3.16

10

31.6

100

(b) youtube-links 

(c) web-Google 

Fig. 8: Comparison between DUFS and SingleRW w.r.t. NRMSE when estimating the 
joint in- and out-degree distribution. In most cases SingleRW will exhibit “hot spots” 
(regions with large NRMSE), which are mitigated by DUFS. 
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Fig. 9: NRMSE ratios between DUFS and E-DUFS of the estimated joint in- and out-
degree distribution for two datasets. DUFS is typically better than E-DUFS at low in 
and out-degree regions (left), but in social network graphs presented improvements 
over most of the joint distribution (right). 

1% (averaged over 1000 runs). This aims to provide a fair comparison between these 
methods. 

We fnd that neither of the two methods consistently outperforms the other over all 
datasets. The extra random jumps performed by DURW will prevent the walker from 
spending much of the budget in small volume components. As a result, DURW tends 
to exhibit larger errors in the head but smaller errors in the tail of the out-degree 
distribution than DUFS. Figure 10 show typical results for w = 1 and b = 10. DUFS 
exhibited lower estimation errors in the head of the distribution on 11 datasets, being 
outperformed by DURW on one dataset and displaying comparable performance on 
the others. In 6 out of 15 datasets, DURW had better performance in the tail, while 
DUFS yielded better results on other fve datasets. Results for w = 1 and b ∈ {102 , 103}
are similar and are, therefore, omitted. As b increases, differences between DUFS and 
DURW start to vanish. 

To better understand the impact of multiple connected components in DUFS and 
DURW performances, we simulate each method on the largest strongly connected 
component of each dataset (i.e., on the LCC datasets). Figure 11 shows typical re-
sults among the LCC datasets. In most networks, DUFS yields smaller NRMSE than 
DURW in the head and yield similar results in the tail. Once again, for larger b the 
performances of DUFS and DURW become equivalent. 

5.4. Relationship between NRMSE and out-degree distribution 

Throughout Section 5 we observed that the NRMSE associated with RW-based meth-
ods tends to increase with out-degree up to a certain out-degree and to decrease after 
that. Moreover, for some out-degree ranges the log NRMSE seems to vary linearly with 
the log out-degree. Figure 5). For simplicity, we discuss the undirected graph case, but 
the extension to directed graphs is straightforward. The RW methods discussed here 
combine uniform node sampling with RW sampling approximated as uniform edge 
sampling. For simplicity, we analyze below the accuracy of uniform node and uni-
form edge sampling. We assume that each sampled edge produces one observation, 
obtained by retrieving the set of labels associated with one of the adjacent vertices 
chosen equiprobably. Therefore both node sampling and edge sampling collect node 
labels. 
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Fig. 10: NRMSEs associated with DUFS (w = 1, b = 10) and DURW (w0 chosen to match 
average number of node samples) when estimating out-degree distribution. DURW 
performs more random jumps, thus better avoiding small volume components. This 
improves DURW results in the tail, but often results in lower accuracy in the head 
(left). In one third of the datasets, DUFS yielded similar or better results than DURW 
over most out-degree points (right). 
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0Fig. 11: NRMSEs associated with DUFS (w = 1, b = 10) and DURW (w chosen to 
match average number of node samples) when estimating out-degree distribution. 
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Fig. 12: NRMSE associated with uniform node sampling and uniform edge sampling 
when estimating degree distribution of the Flickr dataset (for B = 0.1|V |). 

Let S = {s1, . . . , sB } be the sequence of sampled vertices. For uniform node sampling, 
the probability of observing a given label ` in L(si) is θ`, for any i = 1, . . . , B. The 
minimum variance unbiased estimator of θ` is 

B 
1 X 

` Tvs(S) = 1{` ∈ L(si)}. (9)
B 

i=1 

Note that the summation in (9) is binomially distributed with parameters B and θ`. It 
`follows that the mean squared error (MSE) of T (S) isvs 

` `MSE(T (S)) = E[(T (S) − θ`)
2],vs vs 

=
1 
θ`(1 − θ`). (10)

B 

For uniform edge sampling, the probability of observing a given label ` ∈ L in the 
sample L(si) for i = 1, . . . , B, equalsP 

1{` ∈ L(v)} deg(v)v∈Vπ` = P . 
u∈V deg(u) 

In that case, the following estimator can be shown to be asymptotically unbiased 

1 
PB 

1{` ∈ L(sk)} deg−1(sk)` k=1Tes(S) = PB . (11)
B deg−1(sj )j=1 

In particular, when node labels are the undirected degrees of each node, the probabil-
ity of observing a given degree d becomes πd = dθd/d̄, where d̄ is the average undirected 
degree. The estimator for B = 1 reduces to T d (S1) = 1{s1 = d}, which is a random vari-es 
able distributed according to a Bernoulli with parameter πd. As a result, the MSE for 
B > 1 independent samples is � � 

1 1 dθd dθdMSE(Tes 
d (S)) = πd(1 − πd) = 1 − (12)¯ ¯B B d d 

Equations (10) and (12) characterize the conditions under which each sampling 
model is more accurate. More precisely, for all i such that θd > πd (or equivalently, 
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d < d̄), uniform node sampling yields better estimates than uniform edge sampling. 
This dichotomy is illustrated in Figure 12, which shows the NRMSE associated with 
degree distribution estimates resulting from each sampling model on the fickr-links 
dataset, for B = 0.1|V |. 

Note that in log-log scale, both curves resemble a straight line for d = 2, . . . , 103 , 
which indicates a power law. For degrees larger than 5 × 103 , the NRMSE associated 
with node sampling is constant, while the NRMSE associated with edge sampling de-
creases linearly with the degree. We show that these observations are direct conse-
quences of the fact that the degree distribution in this network (as well as many other 
real networks) approximately follows a power law distribution. However, the degree 
distribution of a fnite network cannot be an exact power law distribution because the 
tail is truncated. As a result, most of the largest degree values are observed exactly 
once. This can be seen in Figure 4 by noticing that on the fickr-links (and many other 
datasets) the p.m.f. is constant for the largest out-degrees. Assume, for instance, that 
the degree distribution can be modeled as � 

d−β /Z , 1 ≤ d ≤ τ 
θd = 

1/|V | , d > τ, 

for some β ≥ 1 and some normalizing constant Z. 
From (10), we have for uniform node sampling, p

NRMSE(T d (S)) = (1/θd − 1)/B. (13)vs 

For θd � 1, this implies (p
Zdβ /B , 1 ≤ d ≤ τNRMSE(T d (S)) ≈ pvs |V |/B , d > τ. 

For d > τ , the NRMSE is constant. Otherwise, taking the log on both sides yields 

log(NRMSE(T d (S))) ≈ 
β 
log d + 

1
(log Z − log B), 1 ≤ d ≤ τ, (14)vs 2 2 

which explains the relationship observed for uniform node sampling in Fig. 12. 
From (12), we have for uniform edge sampling, p

NRMSE(T d (S)) = (1/πd − 1)/B. (15)es 

For θd � 1, this implies (p
Zdd̄ β−1/B , 1 ≤ d ≤ τqNRMSE(T d (S)) ≈es |E| /B , d > τ. d 

Taking the log on both sides, it follows that �β−1 1log d + (log Z + log d̄− log B) , 1 ≤ d ≤ τ2 2log(NRMSE(T d (S))) ≈ (16)es − 1 (log d − log |E| − log B) , d > τ, 2 

which explains the linear increase followed by the linear decrease observed in Fig. 12. 
Although some RW-based methods can collect uniform node samples (e.g., via random 
jumps), NRMSE trends for large degrees are better described by (16) than by (14), 
since most of the information about these degrees comes from RW samples. 
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6. RESULTS ON NODE LABEL DISTRIBUTIONS ESTIMATION 

This section focuses on network datasets which possess (non-topological) node labels. 
Using these datasets, all of which represent undirected networks, we investigate which 
combinations of DUFS parameters outperform uniform node sampling when estimat-
ing node label distributions of the top 10% largest degree nodes. These nodes often 
represent the most important objects in a network. 

Two of the four undirected attribute-rich datasets we use are social networks 
(DBLP and LiveJournal) obtained from Stanford SNAP, while two are information 
networks (DBpedia and Wikipedia) obtained from CMU’s Auton Lab GitHub reposi-
tory active-search-gp-sopt [Ma et al. 2015]. In these datasets, node labels corre-
spond to some type of group membership and a node is allowed to be part of multiple 
groups simultaneously. Figure 13 shows, on the left, the degree distribution for each 
network. On the right, it displays the relative frequency of each attribute in decreas-
ing order (blue bars/dots) along with attribute frequency among the top 10% largest 
degree nodes (red bars/dots). 
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Fig. 13: Degree and node attribute distribution for undirected attribute-rich networks. 
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Fig. 14: Comparison of hybrid estimator (DUFS) with uniform node sampling. DUFS 
curves on DBLP plot are smoothed by a local regression using weighted linear least 
squares and a second degree polynomial model to avoid clutter. DUFS with w ∈ 
{0.1, 1.0} and b ∈ {10, 102} yields comparable or superior accuracy than uniform node 
sampling. 

We simulate 1000 DUFS runs on each undirected network for all combinations of 
random jump weight w ∈ {0.1, 1, 10} and budget per walker b ∈ {1, 10, 102}. Figure 14 
compares the NRMSE associated with DUFS for different parameter combinations 
against uniform node sampling. Uniform node sampling results are obtained analyt-
ically using eq. (13). On DBpedia, Wikipedia and DBLP, almost all DUFS confgura-
tions outperform uniform node sampling. On LiveJournal, node sampling outperforms 
DUFS for attributes associated with large probability masses, but underperforms 
DUFS for attributes with smaller masses. In summary, we observe that DUFS with 
w ∈ {0.1, 1.0} and b ∈ {10, 102} yields superior accuracy than uniform node sampling 
when estimating node label distributions among the top 10% largest degree nodes. 

7. DISCUSSION: DUFS PERFORMANCE IN THE ABSENCE OF UNIFORM NODE SAMPLING 

In this section, we investigate the estimation accuracy of {E,H}-DUFS when random 
walkers are not initialized uniformly over V . We consider two simple non-uniform dis-
tributions over V to determine the initial walker locations walker positions: 
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Fig. 15: Effect of initializing walkers non-uniformly over V on E-DUFS accuracy. 
NRMSE decreases with budget per walker until b = 102 . 

— Distribution PROP: proportional to the undirected degree, that is, 

deg(v)
P (initial walker location is v) = P ; (17) 

u∈V deg(u) 

— Distribution INV: proportional to the reciprocal of the undirected degree, that is, 

deg−1(v)
P (initial walker location is v) = P . (18)

deg1(u)u∈V 

We simulate E-DUFS and DUFS on each network dataset setting the budget per 
walker to b ∈ {1, 10, 102, B − 1} in a scenario where in-edges are visible, performing 
100 runs. Note that b = B − 1 corresponds to the case of a single random walker. 
Since we assume uniform node sampling (VS) is not available, we must set the random 
jump weight to w = 0. We include, however, results obtained when the initial walker 
locations are determined via VS for comparison. Figure 15 shows typical values of 
NRMSE associated with E-DUFS out-degree distribution estimates. We observe that 
NRMSE decreases with the budget per walker until b = 102 , both for PROP and INV. 
Simulations for the case of a single walker (b = B − 1) yielded poor results and are 
omitted. 

Intuitively, using the hybrid estimator when the initial walker locations come from 
some non-uniform distribution can incur unknown – and potentially large – biases. We 
conducted a set of simulations with DUFS, which corroborated this intuition. These 
results are omitted for conciseness. 

In summary, our results indicate that when the initial walker locations are deter-
mined according to some unknown distribution, a practitioner should use E-DUFS 
with moderately large b (e.g., 102). 

8. RELATED WORK 

Crawling methods for exploring undirected graphs: A number of papers inves-
tigate crawling methods (e.g., breadth-frst search, random walks, etc.) for generating 
subgraphs with similar topological properties as the underlying network [Leskovec 
and Faloutsos 2006; Hubler et al. 2008]. On the other hand, [Maiya and Berger-Wolf 
2011] empirically investigates the performance of such methods w.r.t. specifc mea-
sures of representativeness that can be useful in the context of specifc applications 
(e.g., fnding high-degree nodes for outbreak detection). However, these works focus 
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on techniques that yield biased samples of the network and do not possess any ac-
curacy guarantees. [Achlioptas et al. 2009; Kurant et al. 2011b] demonstrate that 
Breadth-First-Search (BFS) introduces a large bias towards high degree nodes, and 
that is diffcult to remove these biases in general, although they can be reduced if the 
network in question is almost random [Kurant et al. 2011b]. Random walk (RW) is 
biased to sample high degree nodes, however its bias is known and can be easily cor-
rected [Ribeiro and Towsley 2010]. Random walks in the form of Respondent Driven 
Sampling (RDS) [Heckathorn 2002; Salganik and Heckathorn 2004] have been used 
to estimate population densities using snowball samples of sociological studies. The 
Metropolis-Hasting RW (MHRW) [Stutzbach et al. 2009] modifes the RW procedure to 
adjust for degree bias, in order to obtain uniform node samples. [Ribeiro and Towsley 
2012; Chiericetti et al. 2016] analytically prove that MHRW degree distribution es-
timates perform poorly in comparison to RWs. Empirically, the accuracy of RW and 
MHRW has been compared in [Rasti et al. 2009; Gjoka et al. 2010] and, as predicted 
by the theoretical results, RW is consistently more accurate than MHRW. 

Reducing the mixing time of a regular RW is one way of improving the performance 
of RW based crawling methods. [Avrachenkov et al. 2010] proves that random jumps 
increase the spectral gap of the random walk, which in turn, leads to faster conver-
gence to the steady state distribution. [Kurant et al. 2011a] assigns weights to nodes 
that are computed using their neighborhood information, and develop a weighted RW-
based method to perform stratifed sampling on social networks. They conduct experi-
ments on Facebook and show that their stratifed sampling technique achieves higher 
estimation accuracy than other methods. However, the neighborhood information in 
their method is limited to helping fnd random walk weights and is not used in the 
estimation of graph statistics of interest. To solve this problem, [Dasgupta et al. 2012] 
randomly samples nodes (either uniformly or with a known bias) and then uses neigh-
borhood information to improve its unbiased estimator. [Zhou et al. 2016] modifes the 
regular random walk by “rewiring” the network of interest on-the-fy in order to reduce 
the mixing time of the walk. 

Crawling methods for exploring directed graphs: Estimating observable char-
acteristics by sampling a directed graph (in this case, the Web graph) has been the 
subject of [Bar-Yossef and Gurevich 2008] and [Henzinger et al. 2000], which trans-
form the directed graph of web-links into an undirected graph by adding reverse 
links, and then use a MHRW to sample webpages uniformly. The DURW method 
proposed in [Ribeiro et al. 2012] adapts the “backward edge traversal” of [Bar-Yossef 
and Gurevich 2008] to work with a pure random walk and random jumps. Both of 
these Metropolis-Hastings RWs ([Bar-Yossef and Gurevich 2008] and [Henzinger et al. 
2000]) are designed to sample directed graphs and do not allow random jumps. How-
ever, the ability to perform random jumps (even if jumps are rare) makes DURW and 
DUFS more effcient and accurate than the MetropolisHastings RW algorithm. Ran-
dom walks with PageRank-style jumps are used in [Leskovec and Faloutsos 2006] to 
sample large graphs. In [Leskovec and Faloutsos 2006], however, no technique is pro-
posed to remove the large biases induced by the random walk and the random jumps, 
which makes this method unft for estimation purposes. More recently, another method 
based on PageRank was proposed in [Salehi and Rabiee 2013], but it assumes that 
obtaining uniform node samples is not feasible. In the presence of multiple strongly 
connected components, this method offers no accuracy guarantees. 

In the last decade, there has been a growing interest in graph sketching for process-
ing massive networks. A sketch is a compact representation of data. Unlike a sample, 
a sketch is computed over the entire graph, that is observed as a data stream. For a 
survey on graph sketching techniques, please refer to [McGregor 2014]. 
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9. CONCLUSION 

In this paper, we proposed the Directed Unbiased Frontier Sampling (DUFS) method 
for characterizing networks. DUFS generalizes the Frontier Sampling (FS) and the Di-
rected Unbiased Random Walk (DURW) methods. DUFS extends FS to make it appli-
cable to directed networks when incoming edges are not directly observable by building 
on ideas from DURW. DUFS adapts DURW to use multiple coordinated walkers. Like 
DURW, DUFS can also be applied to undirected networks without any modifcation. 

We also proposed a novel estimator for node label distribution that can account for 
FS and DUFS walkers initial locations – or more generally, uniform node samples – 
and a heuristic that can reduce the variance incurred by node samples that happen to 
sample nodes whose labels have extremely low probability masses. When the proposed 
estimator is used in combination with the heuristic, we showed that estimation errors 
can be signifcantly reduced in the distribution head when compared with the estima-
tor proposed in [Ribeiro and Towsley 2010], regardless of whether we are estimating 
out-degree, in-degree or joint in- and out-degree distributions. 

We conducted an empirical study on the impact of DUFS parameters (namely, bud-
get per walker and random jump weight) on the estimation of out-degree and in-degree 
distributions using a large variety of datasets. We considered four scenarios, corre-
sponding to whether incoming edges are directly observable or not and whether uni-
form node sampling has a similar or larger cost than moving random walkers on the 
graph. This study allowed us to provide practical guidelines on setting DUFS param-
eters to obtain accurate head estimates or accurate tail estimates. When the goal is a 
balance between the two objectives, intermediate confgurations can be chosen. 

Last, we compared DUFS with random walk-based methods designed for undirected 
and directed networks. In our simulations for the scenario where in-edges are visible, 
DUFS yielded much lower estimation errors than a single random walk or multiple 
independent random walks. We also observed that DUFS consistently outperforms FS 
due to the random jumps and use of the improved estimator. In the scenario where 
in-edges are unobservable, DUFS outperformed DURW when estimating the proba-
bility mass associated with the smallest out-degree values (for equivalent parameter 
settings). In addition, more often than not, DUFS slightly outperformed DURW when 
estimating the mass associated to the largest out-degrees. In the presence of multiple 
strongly connected components, DURW tends to move from small to largest compo-
nents more often than DUFS, sometimes exhibiting lower estimation errors in the 
distribution tail. However, when restricting the estimation to the largest component, 
DUFS outperforms DURW in virtually all datasets used in our simulations. 

Appendices 

A. HYBRID ESTIMATOR AND ITS STATISTICAL PROPERTIES 

Let us recall variables and constants used in the defnition of the hybrid estimator: 
ni number of node samples with label i 
θi,j fraction of nodes in G(t) with label i and undirected degree j 
mi,j number of edge samples with label i and bias jP 

mi = j mi,j total number of edge samples with label iP 
N = i ni total number of node samplesP 
M = i mi total number of edge samples 
B = N + M total budget 

In this appendix, we derive the recursive variant of the hybrid estimator. From that 
we derive its non-recursive variant. Next, we show that the non-recursive variant is 
asymptotically unbiased. In the case of undirected networks where the average degree 
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is given, we show that the resulting hybrid estimator of the undirected degree mass is 
the minimum variance unbiased estimator (MVUE). 

We approximate random walk samples in DUFS by uniform edge samples from Gu. 
Experience from previous papers shows us that this approximation works very well in 
practice. This yields the following likelihood functionQ Q

θni (kθi,k)
mi,k 

i i kL(θ|n, m) = �P �M . (19) 
s,t tθs,t 

The key idea in our derivation is that we can bypass the numerical estimation of 
the θi,j ’s by noticing that θi,j ∝ θi, θi,j ∝ mi,j and θi,j ∝ 1/j. Hence, the maximum 
likelihood estimator of θi,j for j = 1, . . . , Z is the Horvitz-Thompson estimator 

θimi,j
θ̂  
i,j = , (20)

jµiP
where µi = k mi,k/k. 

Substituting (20) in (19) yields Q Q
θni (θimi,k/µi)

mi,k 
i i kL(θ|n, m) = P P . (21)

M
( θs ms,z/µs)s z 

The log-likelihood approximation is then given by!X X X Xms,zL(θ|n, m) = −M log θs + ni log θi + mi,k(log θi + log mi,k − log µi). 
µs s z i k 

(22)P P
We rewrite θi as eβi / j e

βj to account for the distribution constraints θi = 1 andi 

θi ∈ [0, 1]. Hence, we have ⎛ ⎞!X eβs ms 
X X 

βjL(β|n, m) = −M log + (ni + mi)βi − N log e ⎠+ C, (23)⎝ 
µs s i j P 

where mi = k mi,k and C is a constant that does not depend on β. 
The partial derivative w.r.t. βi is given by 

∂L(β|n, m) Meβi mi/µi Neβi 

= − P + ni + mi − P . (24)
∂βi eβs ms/µs j e

βj 
s 

Setting ∂L(β|n, m)/∂βi = 0 and substituting back θi yields 
ni + mi

θ? = . (25)i mi/µiPN + M θ?ms/µss s 

THEOREM A.1. Let N = cB and M = (1 − c)B, for some 0 < c < 1. The estimator 
ni + mi

θ̂  
i = , (26)

N + M mi 

µid̂  P P 
where µi = k mi,k/k and d̂ = M/ i µi, is an asymptotically unbiased estimator of θi. 

PROOF. In the limit as B →∞, we have P Pkθi,k kθi,kkE[ni] = Nθi, E[mi,k] = M , E[mi] = M P , 
s,l lθsl s,l lθs,l 
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and thus, P � � P 
k kθi,k/k θi mi kθi,kkE[µi] = M P = M P and E = . 

lθsl lθsl µi θis,l s,l 

It follows that XM 
lim E[d̂] = P = lθsl. 

B→∞ P i θiM s,llθsls,l 

Substituting the above in eq. (26), we have P 
kθi,kkNθi + M P 

s,l lθs,llim E[θi
?] = P = θi. 

B→∞ k kθi,k /θiPN + M 
s,l lθs,l 

This concludes the proof. 

In Section 4.2.2 we mentioned a special case of the previous estimator, where the 
node label is the undirected degree itself. We prove that this estimator, denoted by θ̂  

i 
is the minimum variance unbiased estimator (MVUE) of θi. 

THEOREM A.2. The estimator 
ni + mi

θ̄i = ,
N + Mi/µ̄ P 

where µ̄ = j jθj , is an unbiased estimator of θi. 

PROOF. We know that ni ∼ Binomial(N, θi) and mi ∼ Binomial(M, iθi/µ̄). Hence, 

B(mi)A(ni ) z }| { z }| {� � � �� �mi 
� �M−miX ni + mi N M iθi iθi

E[θ̂  
i] = θni (1 − θi)

N−ni 1 −iN + Mi/µ̄ ni mi µ̄ µ̄ 
ni,mi !X X X X1 

= niA(ni) B(mi) + miB(mi) A(ni)
N + Mi/µ̄ 

ni mi mi ni!X X1 
= niA(ni) + miB(mi)

N + Mi/µ̄ 
ni mi 

1 
= (Nθi + Miθi/µ̄) 

N + Mi/µ̄ 
= θi. 

Having proved that θ̂  
i is unbiased, we are now ready to show that it is also the min-

imum variance unbiased estimator (MVUE). In order to do so, we prove Lemmas A.1 
and A.3 that show respectively that ni + mi is a suffcient and complete statistic of θi. 

LEMMA A.1. The statistic ni + mi is a suffcient statistic with respect to the likeli-
hood of θi. 
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PROOF. The log-likelihood equation for estimator (7) is given byQ Q
θni (jθj )

mj 
i i j

L(θ|n, m) = 
µ̂M Q 

jmj Y 
j 

θni +mi= . (27)i µ̂M 
i 

We can see from eq. (27) that the likelihood function L(θ|n, m) can be factored into Q 
Ma product such that one factor, j j

mj /µ̂ , does not depend on θi and the other factor, 
which does depend on θi, depends on n and m only through ni + mi. From the Fisher-
Neyman factorization Theorem [Lehmann et al. 1991], we conclude that ni + mi is a 
suffcient statistic for the distribution of the sample. 

We now prove that ni + mi is also a complete statistic for the distribution of the 
sample. 

Defnition A.2. Let X be a random variable whose probability distribution belongs 
to a parametric family of probability distributions Pθ parametrized by θ. The statistic 
s is said to be complete for the distribution of X if for every measurable function g 
(which must be independent of θ) the following implication holds: 

E(g(s(X))) = 0 for all θ ⇒ Pθ(g(s(X)) = 0) = 1 for all θ. 

LEMMA A.3. The statistic ni + mi is a complete statistic w.r.t. the likelihood of θi. 

PROOF. 

E[g(ni + mi)] = 0X 
g(ni + mi)Pθ(ni,mi) = 0 

ni,miX 
g(ni + mi)A(ni)B(mi) = 0 (28) 

ni,mi 

The LHS of (28) is a polynomial of degree M + N on θi. Hence, it can be written as 

C0 + C1θi + C2θ
2 + . . . + CN+M θ

N+M = 0. (29)i i 

We prove that Pθ(g(s(X)) = 0) = 1 for all θ by contradiction. Suppose that there is a 
θ such that Pθ(g(s(X)) 6= 0) > 0. In order to have E(g(s(X))) = 0, there must be terms 
for which g(.) is strictly positive and terms for which g(.) is strictly negative. Let g(h1) 
be the smallest h1 such that g(h1) > 0. Let g(h2) be the smallest h2 such that g(h2) < 0. 
Let h = min(h1, h2). 

Expanding A(ni)B(mi) in eq. (28) we note that the degree of the resulting polynomial 
is at least ni + mi on θi. Therefore, the coeffcient Ch in eq. (29) associated with θh 

i 
cannot have terms of g(.) larger than h. Then Ch can only be zero if h1 = h2 which is a 
contradiction. 

¯THEOREM A.3. The unbiased estimator θi is the minimum variance unbiased esti-
mator (MVUE) of θi. 

PROOF. According to the Lehmann-Scheffe Theorem [Lehmann et al. 1991], if T (S) 
is a complete suffcient statistic, there is at most one unbiased estimator that is a 
function of T (S). From Lemmas A.1 and A.3, we have that ni + mi is a complete suff-
cient statistic of θi. Clearly, the unbiased estimator θ̂ in eq. (26) is a function ni + mi. 
Therefore, θ̂  

i must be the MVUE. 
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Alternatively, we can prove Theorem A.3 from Lemmas A.1 and A.3 by showing that 
applying the Rao-Blackwell Theorem to the unbiased estimator θ̂  

i using the complete 
suffcient statistic ni + mi yields exactly the same estimator: h i 

θ0 = E θ̂  
i|ni + mii X 

ˆ= tj P (θi = tj |ni + mi) 
tj � �X ni + mi 

= tj 1 = tj
N + Mi/µ̄ 

tj 

ni + mi 
= . 

N + Mi/µ̄ 

ELECTRONIC APPENDIX 

The electronic appendix for this article can be accessed in the ACM Digital Library. 
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