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Estimating distributions of node characteristics (labels) such as number of connections or citizenship of 
users in a social network via edge and node sampling is a vital part of the study of complex networks. Due to 
its low cost, sampling via a random walk (RW) has been proposed as an attractive solution to this task. Most 
RW methods assume either that the network is undirected or that walkers can traverse edges regardless 
of their direction. Some RW methods have been designed for directed networks where edges coming into a 
node are not directly observable. In this work, we propose Directed Unbiased Frontier Sampling (DUFS), 
a sampling method based on a large number of coordinated walkers, each starting from a node chosen uni-
formly at random. It is applicable to directed networks with invisible incoming edges because it constructs, 
in real-time, an undirected graph consistent with the walkers trajectories, and due to the use of random 
jumps which prevent walkers from being trapped. DUFS generalizes previous RW methods and is suited for 
undirected networks and to directed networks regardless of in-edges visibility. We also propose an improved 
estimator of node label distributions that combines information from the initial walker locations with sub-
sequent RW observations. We evaluate DUFS, compare it to other RW methods, investigate the impact of its 
parameters on estimation accuracy and provide practical guidelines for choosing them. In estimating out-
degree distributions, DUFS yields signifcantly better estimates of the head of the distribution than other 
methods, while matching or exceeding estimation accuracy of the tail. Last, we show that DUFS outperforms 
uniform node sampling when estimating distributions of node labels of the top 10% largest degree nodes, 
even when sampling a node uniformly has the same cost as RW steps. 
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1. INTRODUCTION 
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2009; Volz and Heckathorn 2008; Gjoka et al. 2010; Kurant et al. 2011b; Chiericetti 
et al. 2016] are dedicated to the characterization of complex networks. Examples of 
networks of interest include the Internet, the Web, social, business, and biological net-
works. Characterizing a network consists of computing or estimating a set of statistics 
that describe the network. In this work we model a network as a directed or undirected 
graph with labeled vertices. A label can be, for instance, the degree of a node or, in a so-
cial network setting, someone’s hometown. Label statistics (e.g., average, distribution) 
are often used to characterize a network. 

Characterizing a network with respect to its labels requires querying vertices and/or 
edges; associated with each query is a resource cost (time, bandwidth, money). For ex-
ample, information about web pages must be obtained by querying web servers subject 
to a maximum query rate. Characterizing a large network by querying the entire net-
work is often too costly. Even if the network is stored on disk it may constitute several 
terabytes of data. As a result, researchers have turned their attention to the charac-
terization of networks based on incomplete (sampled) data. 

Simple strategies such as uniform node and uniform edge sampling possess desir-
able statistical properties: the former yields unbiased samples of the population and 
the bias introduced by the latter is easily removed. However, these strategies are often 
rendered unfeasible because they require either a directory containing the list of all 
node (edge) ids, or an API that allows uniform sampling from the node (edge) space. 
Even when the space of possible node (edge) ids is known, its occupancy is usually so 
low that querying randomly generated ids is expensive. An alternate, cheaper, way to 
sample a network is via a random walk (RW). A RW samples a network by moving a 
particle (walker) from a node to a neighboring node. It is applicable to any network 
where one can query the edges connected to a given node. Furthermore, RWs share 
some of the desirable properties of uniform edge sampling (i.e., easy bias removal, 
accurate estimation of characteristics such as the tail of the degree distribution). 

On one hand, a great deal of research has focused on the design of sampling meth-
ods for undirected networks using RWs [Heckathorn 1997; Rasti et al. 2009]. Ribeiro 
and Towsley proposed Frontier Sampling (FS), a multidimensional random walk that 
uses n coupled random walkers. This method yields more accurate estimates than the 
standard RW and also outperforms the use of n independent walkers. In the presence 
of disconnected or loosely connected components, FS is even better suited than the 
standard RW and independent RWs to sample the tail of the degree distribution of the 
graph. On the other hand, few works have focused on the development of tools for char-
acterizing directed networks in the wild. A network is said to be directed when edges 
are not necessarily reciprocated. Characterizing directed networks through crawling 
becomes especially challenging when only outgoing edges from a node are visible (in-
coming edges are hidden): unless all vertices have a directed path to all other vertices, 
a walker will eventually be restricted to a (strongly connected) component of the graph. 
Furthermore, a standard RW incurs a bias that can only be removed by conditioning 
on the entire graph structure. [Ribeiro et al. 2012] addressed these issues by proposing 
Directed Unbiased Random Walk (DURW), a sampling technique that builds a virtual 
undirected graph on-the-fy and performs degree-proportional jumps to obtain asymp-
totically unbiased estimates of the distribution of node labels on a directed graph. 

In this work1, we propose Directed Unbiased Frontier Sampling (DUFS), a method 
that generalizes the FS and the DURW algorithms (see Figure 1). Building on ideas in 
[Ribeiro et al. 2012], we extend FS to allow the characterization of networks regard-
less of whether they are undirected, directed with observable incoming edges, or di-

1Parts of this work are based on previous papers from the authors: [Ribeiro and Towsley 2010] and [Ribeiro 
et al. 2012]. 
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Fig. 1: Proposed method (DUFS) generalizes Frontier Sampling and DURW.
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Fig. 2: Comparison between proposed method (DUFS) and previous state-of-the-art re-
spectively for visible and for invisible incoming edges scenarios; (a) NRMSE ratios be-
tween DUFS (w = 0.1, b = 10) and FS (b = 10) of the estimated joint in- and out-degree
distribution on the soc-Slashdot0902 dataset; (b) NRMSEs associated with DUFS and
DURW of the estimated out-degree distribution on the livejournal-links dataset.

rected with unobservable incoming edges. From another perspective, we adapt DURW
to use multiple coordinated walkers. DUFS matches or exceeds the accuracy of FS and
DURW2, as illustrated in Figure 2. Method parameters (w and b), simulation setup,
datasets and the error metric – NRMSE (normalized root mean square error) – are
described in Section 5.1.

Contributions. Our main contributions are as follows:

(1) Directed Unbiased Frontier Sampling (DUFS): we propose a new algorithm based
on multiple coordinated random walks that extends Frontier Sampling (FS) to di-
rected networks. DUFS extends DURW to multiple random walks.

(2) A more accurate estimator for node label distribution: when the number of walkers
is a large fraction of the number of random walk steps (e.g., 10%), a considerable
amount of information is thrown out by not accounting for the walkers initial loca-

2The software and all results presented in this work are available at http://bitbucket.com/after-acceptance.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

http://bitbucket.com/after-acceptance
http://bitbucket.com/after-acceptance


     

   

   
  

    
   

  

 

        
  

      
   

 
     

  

A:4 F. Murai et al. 

tions as observations. We introduce a new estimator that combines these observa-
tions with those made during the walks to produce better estimates. 

(3) Practical recommendations: we investigate the impact of the number of walkers 
and the probability of jumping to an uniformly chosen node (controlled via a pa-
rameter called random jump weight) on DUFS estimation error, given a fxed 
budget. By increasing the number of walkers the sequence of sampled edges ap-
proaches the uniform distribution faster, but this also increases the fraction of 
the budget spent to place the walkers in their initial locations. Moreover, increas-
ing the random jump weight favors sampling node labels with large probability 
masses, which translates into more accurate estimates for these labels, but worse 
estimates for those in the tail. We study these trade-offs through simulation and 
propose guidelines for choosing DUFS parameters. 

(4) Comprehensive evaluation: we compare DUFS to other random walk-based meth-
ods applied to directed networks w.r.t. estimation errors, both when incoming edges 
are directly observable and when they are not. In the frst scenario, in addition 
to some graph properties evaluated in previous works, we evaluate DUFS per-
formance on estimating joint in- and out-degree distributions, and on estimating 
distribution of group memberships among the 10% largest degree nodes. 

(5) Theoretical analysis: we derive expressions for the normalized mean squared error 
associated with uniform node and uniform edge sampling on power law networks 
and show that in both cases error behaves asymptotically as a power law function 
of the observed degree. This helps explain our evaluation results. 

Outline. Defnitions are presented in Section 2. In Section 3, we review FS and 
DURW methods. In Section 4, we propose Directed Unbiased Frontier Sampling 
(DUFS) (along with some estimators), which generalizes previous methods. We inves-
tigate the impact of DUFS parameters on estimation accuracy of degree distributions 
and node label distributions respectively in Sections 5 and 6, providing practical guide-
lines on how to set them. A comparison to other random walk techniques is also pro-
vided. Section 7 discusses the performance of DUFS when the uniform node sampling 
mechanism is faulty. We present some related work and present our conclusions in 
Sections 8 and 9, respectively. 

2. TERMINOLOGY SETTING 

In what follows we present terminology used throughout the paper. We also present 
two scenarios considered in our work. Let Gd = (V, Ed) be a labeled directed graph 
representing the network graph, where V is a set of vertices and Ed is a set of ordered 
pairs of vertices (u, v) representing a connection from u to v (a.k.a. edges). We refer to 
an edge (u, v) as an in-edge with respect to v and an out-edge with respect to u. The in-
degree and out-degree of a node u in Gd are the number of distinct edges respectively 
into and out of u. We assume that each node in Gd has at least one edge (either an 
in-edge or an out-edge). Some networks can be modeled as undirected graphs. In this 
case, Gd is a symmetric directed graph, i.e., (u, v) ∈ Ed iff (v, u) ∈ Ed. 

Let Lv and Le be fnite (possibly empty) sets of node labels and edge labels, re-
spectively. Each edge (u, v) ∈ Ed is associated with a set of labels Le(u, v) ⊆ Le. For 
instance, one label ` ∈ Le(u, v) could be the nature of the relationship between two 
individuals (e.g., family, work, school) in a social network represented by nodes u and 
v. Similarly, we can associate a set of labels to each node, Lv(v) ⊆ Lv, ∀v ∈ V . 

Input scenarios 

When performing a random walk, we assume that a walker retrieves the out-edges of 
node where it resides by performing a query (e.g., followers list on Twitter) and that 
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vertices are distinguishable. We defne two scenarios depending on whether the walker 
can also retrieve in-edges. 

In the frst scenario, both out- and in-edges can be retrieved and it is possible to move 
the walker over any edge regardless of the edge direction (if the edge is (u, v) ∈ Ed a 
walker can move from u to v and vice versa). In this case, the walker can be seen as 
moving over G = (V, E), an undirected version of Gd, i.e., E = {(u, v) : (u, v) ∈ Ed ∨P 
(v, u) ∈ Ed}. Defne deg(v) = |{(u, v) : (u, v) ∈ E}|. Let vol(S) = deg(v), ∀S ⊆ V ,∀v∈S 
denote the volume of the set of vertices in S ⊆ V . 

In the second scenario, only out-edges are directly observable and we can build on-
the-fy an undirected graph Gu based on the out-edges that have been sampled. Note 
that Gu is not an undirected version of Gd as some of the in-edges of a node may not 
have been observed. By moving the walker over Gu – possibly traversing edges in Gd in 
the opposite direction – we can compute its stationary behavior and thus, remove any 
bias by accounting for the probability that each observation appears in the sample. 

While this has been mostly overlooked by other works, we emphasize that, in either 
scenario, it is useful to keep track of some variant of the observed graph during the 
sampling process. Storing information about visited nodes in memory saves resources 
that would be consumed to query those nodes in subsequent visits – i.e., revisiting 
a node has no cost. The specifc variant of the observed graph to be stored will be 
described in the context of two random walk-based methods in the following section. 

3. BACKGROUND 

The method proposed in this paper generalizes two representative random-walk based 
methods designed for each of the respective scenarios described in Section 2. Therefore, 
we dedicate this section to briefy reviewing these methods. First, we describe the Fron-
tier Sampling algorithm proposed in [Ribeiro and Towsley 2010], an n-dimensional 
random walk that benefts from starting its walkers at uniformly sampled vertices. 
This technique can be applied to undirected graphs and to directed graphs provided 
that edges coming into a node are observable. Then, we describe the Directed Unbiased 
Random Walk algorithm proposed in [Ribeiro et al. 2012], that adapts a single random 
walk to a directed graph when incoming edges are not directly observable. The goal of 
these methods is to obtain samples from a graph, which are then used to infer graph 
characteristics via an estimator. An estimator is a function that takes a sequence of ob-
servations (sampled data) as input and outputs an estimate of an unknown population 
parameter (graph characteristic). 

3.1. Frontier Sampling: a multidimensional random walk for undirected networks 

In essence, Frontier Sampling (FS) is a random walk-based algorithm for sampling and 
estimating characteristics of an undirected graph. FS performs n coordinated random 
walks on the graph. One of the advantages of using multiple walkers is that they 
can cover multiple connected components (when they exist), while a single walker is 
restricted to one component in the absence of a random jump or restart mechanism. 
By coordinating multiple random walkers, FS is able to sample edges uniformly at 
random in steady state regardless of how the walkers are initially placed. 

Algorithm 1 describes FS. There are three parameters: the sampling budget B, the 
initial cost of placing a walker c ≥ 1 and the average number of nodes b sampled by a 
walker. The initial walker locations are chosen uniformly at random over the node set 
(line 2). Note that the number of walkers is taken to be n = B/(c + b), that the cost of 
a random walk step is one (except for previously sampled nodes) and that the cost of 
initially placing a walker, c, can be greater than one because uniform node sampling 
is often expensive. FS keeps a list L of n vertices representing the locations of the n 
walkers. At each step, a walker is chosen from L in proportion to the degree of the node 
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ALGORITHM 1: Frontier Sampling (FS) 
Input: sampling budget B, budget per walker b, cost of uniform node sampling c 

1 n ← B/(c + b) ; 
2 Initialize L = (v1, . . . , vN ) with n randomly chosen vertices (uniformly); 
3 i ← N × c {i is the used portion of the budget}; 
4 while i < B do P 
5 

6 

7 

8 

9 end 

Select u ∈ L with probability deg(u)/ ∀v∈L deg(v) ; 
Select an edge (u, v), uniformly at random; 
Replace u by v in L and add (u, v) to sequence of sampled edges; 
i ← i + 1 {can be skipped if node was previously sampled} ; 

where it is currently located (line 5). The walker then moves from u to an adjacent node 
v (lines 6 and 7). 

Frontier sampling is equivalent to the sampling process of a single random walker 
over the n-th Cartesian power of G. For this reason, Frontier Sampling can be thought 
of as an n-dimensional random walk (see [Ribeiro and Towsley 2010, Lemma 5.1]). 

Using FS samples to estimate node label distributions is simple when the input 
corresponds to the frst scenario described in Section 2. The probability of sampling 
a given node is proportional to its undirected degree in G. Hence, each sample must 
be weighted inversely proportional to the respective node’s undirected degree. Storing 
the undirected version of the observed graph along with labels associated with sampled 
nodes allows the sampler to avoid having to pay the cost of revisiting a node. 

Conversely, when incoming edges are not observed, Frontier Sampling can still be 
adapted to remove bias. We present this method in Section 4. 

3.2. Directed Unbiased Random Walk: a random walk adapted for directed networks with 
unobservable in-edges 

The presence of hidden incoming edges but observable outgoing edges makes charac-
terizing large directed graphs through crawling challenging. Edge (u, v) is a hidden 
incoming edge of node v if (u, v) can only be observed from node u. For instance, in 
Wikipedia we cannot observe the edge (“Columbia Records”, “Thomas Edison”) from 
Thomas Edison’s wiki entry (but this edge is observable if we access the Columbia 
Records’s wiki entry). 

These hidden incoming edges make it impossible to remove any bias incurred by 
walking on the observed graph, unless we crawl the entire graph. Moreover, there may 
not even be a directed path from a given node to all other nodes. Graphs with hidden 
outgoing edges but observable incoming edges exhibit essentially the same problem. 
In [Ribeiro et al. 2012], we proposed the Directed Unbiased Random Walk (DURW) 
algorithm, which obtains asymptotically unbiased estimates of node label densities 
on a directed graph with unobservable incoming edges. Our random walk algorithm 
follows two main principles to achieve unbiased samples and reduce variance: 

— Backward edge traversals: in real-time we construct an undirected graph Gu us-
ing nodes that are sampled by the walker on the directed graph Gd. The role of 
the undirected graph is to guarantee that, at the end of the sampling process, we 
can approximate the probability of sampling a node, even though in-edges are not 
observed. The random walk proceeds in such a way that its trajectory on Gd is con-
sistent with that of a random walk on Gu. The walker is allowed to traverse some 
of the edges in Gd in a reverse direction. However, we prevent some of the observed 
edges to be traversed in the reverse direction by not including them in Gu. More 
precisely, once a node z is visited at the i-th step, no in-edges to z observed at step 
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ALGORITHM 2: Construction of undirected graph (common to DURW and DUFS) 
Input: sampling budget B, random jump weight w, cost of uniform node sampling c 

1 Select s ∈ V uniformly at random {s = s1} ; 
2 Initialize S = {s} and E = E(s) ; 
3 i ← c {i is the used portion of the budget}; 
4 while i < B do 
5 p ∼ Uniform(0, 1) ; 
6 if p ≤ w/(w + deg(s)) then 
7 Select s uniformly at random from V {random jump} ; 
8 i ← i + c ; 
9 else 

10 Select s uniformly at random from {v : (s, v) ∈ E} {random walk step} ; 
11 i ← i + 1 ; 
12 end 
13 if s / then∈ S 
14 S ← S ∪ {s} ; 
15 E ← E ∪ {(s, v) ∈ E(s) : v 6∈ S} 
16 end 
17 end 

j > i (by visiting nodes s such that (s, z) ∈ Ed) are added to Gu. This is an important 
feature to reduce the random walk transient and thus, reduce estimation errors. 

— Degree-proportional jumps: the walker makes a limited number of random jumps 
to guarantee that different parts of the directed graph are explored. In DURW, the 
probability of randomly jumping out of a node v, ∀v ∈ V , is w/(w + deg(v)), w > 0. 
The steady state probability of visiting a node v on Gu is (w + deg(v))/(vol(V ) + 
w|V |). Similar to the cost of placing a FS walker through uniform node sampling, we 
assume that each random jump incurs cost c ≥ 1. 

The DURW algorithm. DURW is a random walk over a weighted undirected connected 
graph Gu = (V, Eu), which is built on-the-fy. We build an undirected graph using the 
underlying directed graph Gd and the ability to perform random jumps. Let G(i) = 
(V, E(i)) denote the undirected graph constructed by DURW at step i, where V is the 
node set and E(i) is the edge set. In what follows we describe the construction of G(i) in 
Algorithm 2, since this is one of the building blocks of the proposed algorithm, DUFS. 

Let E(v) denote the set of out-edges from a node v in Gd. Let S(i) = {s1, . . . , si} be 
the set of nodes from V sampled by the random walk up to step i, where sj denotes the 
node on which the walker resides at step j. Since V is not known, we track G(i) using 
variables S = S(i) and E = E(i). The walker starts at node s1 ∈ V (line 1). We initialize 
G(1) = (V, E(1)), where E(1) = E(s1) (line 2). The next node, si+1, is selected uniformly 
at random from V with probability w/(w + deg(si)) (lines 6 to 8), where deg(si) is 
the degree of si in G(i). With probability 1 − w/(w + deg(si)), node si+1 is selected by 
performing a random walk step from si, i.e. by selecting a node adjacent to si in E(i) 

uniformly at random (lines 9 to 12). When node si+1 is visited for the frst time, it is 
necessary to set S(i+1) to S(i) ∪{si+1} and E(i+1) to E(i) ∪{(si, v) ∈ E(si) : v 6∈ S(i)} (lines 
13 to 16). By restricting the set of new edges to {(si, v) ∈ E(si) : v 6∈ S(i)} instead of all 
edges visible from si (i.e., E(si)), we comply with the requirement that once a node z, 
∀z ∈ V , is visited by the RW, no edge can be added to Gu with z as an endpoint. 

In order to estimate node label distributions from DURW observations, we weight 
samples in proportion to the inverse probability that the corresponding vertices are 
visited by a random walk in Gu, in steady state. Storing labels and edges associated 
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with nodes in S(i) saves the cost of querying repeated nodes. Such savings could be 
refected in Algorithm 2 by conditioning the increase in i (lines 8 and 11) on s /∈ S. 

4. GENERALIZING FS AND DURW: A NEW METHOD APPLICABLE REGARDLESS OF 
IN-EDGE VISIBILITY 

This section is divided into two parts. In Section 4.1 we propose Directed Unbiased 
Frontier Sampling (DUFS), which generalizes FS to allow estimation on directed 
graphs with unobservable in-edges (second scenario described in Section 2). DUFS also 
generalizes DURW: the latter is a special case of DUFS where the number of walkers 
is one. Next, in Section 4.2, we describe two ways to estimate node label distributions 
using DUFS. The frst uses only on the observations collected during the walks. The 
second estimator we leverages observations obtained from the initial walker locations 
in addition to observations obtained during the walks. 

4.1. Directed Unbiased Frontier Sampling 

Like FS, Directed Unbiased Frontier Sampling (DUFS) samples a network through 
n coordinated walks. At each step, it selects a walker in proportion to the degree of 
the node where it currently resides. Similar to the Directed Unbiased Random Walk, 
it constructs an undirected graph in real-time that allows backward edge traversals. 
Denote by G(i) = (V, E(i)) the undirected graph constructed by DUFS at step i. DUFS 
does not include edges in G(i) that would cause walkers to have a view of the graph 
inconsistent with the view at a previous point in time. In other words, when node u 
is visited for the frst time at step i, u is inserted in G(i) along with all edges (u, v) ∈ 
Ed such that v has not been sampled. Thus, the degree of u is fxed in G(j), for all 
j ≥ i. Alternatively, letting the degree of u change at a given point would require us to 
discard the the entire sample up to that point, otherwise the resulting estimator would 
not be consistent. In fact, even that approach would not yield a consistent estimator 
for an infnite power law graph: node degrees would never stop changing. 

It may seem that there is no need to include degree-proportional jumps to visit differ-
ent graph components when a large number of walkers are initially spread throughout 
the graph (e.g., on nodes chosen uniformly). However, including degree-proportional 
jumps in DUFS is extremely benefcial because it prevents walkers from being trapped 
when initially located on vertices whose out-degree is zero or in components with no 
outgoing edges. More generally, it allows walkers to move from small volume to large 
volume components and, hence, obtain more samples among large degree nodes. 

Algorithm 3 describes DUFS. In addition to FS’ three parameters, it takes a random 
jump weight w as input. The number of walkers and their initial locations are chosen 
as in FS (lines 1-3). In the extreme case where b = 0, DUFS degenerates to uniform 
node sampling. When the underlying graph is symmetric and the jump weight is w = 0, 
it becomes FS. When in-edges are invisible and the number of walkers is 1, DUFS 
degenerates to DURW. We initialize S = L and E(i) = ∪s∈LE(s) (line 4). Unlike in FS, 
a walker is chosen from L in proportion to the sum of the random jump weight w and 
the degree of node where it is currently located based on E(i) (line 6). Similar to DURW, 
the next node is selected based on either a random jump or on following an edge (lines 
7-14). Last, the undirected graph is updated (lines 15-18) and so is set L (line 19). 

4.2. Estimation 

In this section we describe two estimators of node label distributions from samples ob-
tained by DUFS. The frst estimator is based on the observations obtained from edges 
traversed by the random walks. The second estimator combines these observations 
with those obtained from the walkers initial locations. When used with a variance re-
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Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:9 

ALGORITHM 3: Directed Unbiased Frontier Sampling (DUFS) 
Input: sampling budget B, budget per walker b, cost of uniform sampling c, jump weight w 

1 n ← B/(c + b) {n is the number of walkers}; 
2 Initialize L = {v1, . . . , vN } with n randomly chosen vertices (uniformly); 
3 i ← N × c {i is the used portion of the budget}; 
4 Initialize S = L and E = ∪s∈LE(s) ; 
5 while i < B do P 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Select v ∈ L with probability (w + deg(v))/(nw + deg(vj )) ;∀vj ∈L 

Sample p ∼ Uniform(0, 1); 
if p < w/(w + deg(v)) then 

Select a node v ∈ V uniformly at random; 
i ← i + c; 

else 
Select an outgoing edge of v, (v, v 0), uniformly at random; 
i ← i + 1; 

end 
if s / then∈ S 

S ← S ∪ {s} ; 
E ← E ∪ {(s, v) ∈ E(s) : v 6∈ S} 

end 
Replace v by v 0 in L and add (v, v 0) to sequence of sampled edges; 

20 end 

duction heuristic, the latter produces better estimates than the former. For a descrip-
tion of estimators of edge label distribution and other graph characteristics, please 
refer to [Ribeiro and Towsley 2010]. 

4.2.1. Node Label Distribution: random edge-based estimator. Let si denote the i-th node 
visited by DUFS, i = 1, . . . , t, t ≤ B − Nc. Let θ` be the fraction of nodes in V with label 
` ∈ Lv . Let π(v) be the steady state probability of sampling node v in Gu, ∀v ∈ V . The 
node label distribution is estimated at step t as 

t
1 X 1{` ∈ Lv (v)}

θ̂  ̀
 = , ` ∈ Lv, t = 1, . . . , B − Nc, (1) 

n π̂(si)i=1 

where 1{P } takes value one if predicate P is true and zero otherwise, and π̂(si) is an 
estimate of π(si): π̂(si) = (w + deg(si))S. Here deg(v) is the degree of v in G(∞) and 

tX 
S =

1 1 
. (2)

t w + deg(si)i=1 

The following theorem states that π̂(si) is asymptotically unbiased. 

THEOREM 4.1. π̂(si) is an asymptotically unbiased estimator of π(si). 

PROOF. To show that π̂(si) is asymptotically unbiased, we frst note that the limit 
limt→∞ E

(t) = E(∞) exists, since after visiting all vertices we will never add any ad-
ditional edges. We then invoke Theorem 4.1 of [Ribeiro and Towsley 2010], yielding 
limt→∞ S = |V |/(|E(∞)|+ |V |w) almost surely. Thus, limt→∞ π̂(si) = π(si) almost surely. 
Taking the expectation of (1) in the limit as t →∞ yields E[limt→∞ θ̂  ̀] = θ`, which con-
cludes our proof. 

4.2.2. Node Label Distribution: leveraging information from walkers’ initial locations. The esti-
mator presented in (1) does not make use of information associated with the initial set 

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. 



     

 

 

   
   
    

     

 
   

  
 

     
     

    
   

       
        

  
     

  

  
       

     
   

    
              

  
   

       
 

A:10 F. Murai et al. 

Variable Description 
ni 

θi,j 
mi,jP 

mi = j mi,jP 
N = i niP 
M = i mi 
B = N + M 

number of node samples with label i 
fraction of nodes in G(t) with label i and undirected degree j 
number of edge samples with label i and bias j 
total number of edge samples with label i 
total number of node samples 
total number of edge samples 
total budget 

Table I: Notation used in hybrid estimator. 

of nodes on which the walkers are placed. When the number of walkers is large this 
results in the loss of a considerable amount of statistical information. However, includ-
ing these observations is challenging because subsequent observations from random 
walk steps are not independent of the initial observations. Moreover, the normaliz-
ing constant for the random walk observations is no longer given by (2), since degree 
distribution estimates also depend on the information contained in the node samples. 

In this section, we derive a new estimator that circumvents these problems by ap-
proximating the likelihood of RW samples by that associated with random edge sam-
pling. We call it the hybrid estimator because it combines observations from initial 
walker locations and random walks steps. The hybrid estimator signifcantly improves 
the estimation accuracy for labels associated with large probability masses. 

Let us index the node labels Lv from 1 to W , where W = |Lv|. We refer to the sum 
deg(v) + w in DUFS as the random walk bias for node v ∈ V . To simplify the notation, 
we assume that each node has exactly one label and that random walk biases take 
on integer values in [1, . . . , Z], for some maximum value Z. Denote the node label dis-
tribution as θ = (θ1, . . . , θW ). Let ni denote the number of walkers starting on label i 
nodes and mi,j the number of subsequent observations of label i and bias j nodes. The 
notation is summarized in Table I. 

We approximate random walk samples in DUFS by uniform edge samples from Gu. 
Experience from previous studies shows us that this approximation works very well 
in practice. Hence, the likelihood function given samples n = {ni : i = 1, . . . ,W } and 
m = {mi,j : i = 1, . . . ,W and j = 1, . . . , Z} is expressed as Q Q

θni (kθi,k)
mi,k 

i i kL(θ|n, m) = . (3)�P �M 

s,t tθs,t 

The maximum likelihood estimator θ? is the value of θ that maximizes (3) subject to P 
0 ≤ θi ≤ 1 and θi = 1. This defnes a constrained non-convex optimization problem. i 
However, we can convert this optimization problem into an unconstrained problem us-P
ing the reparameterization θi = eβi / k e

βk for i = 1, . . . ,W . As shown in Appendix A, 
the partial derivatives of the resulting objective function are 

∂L(β|n, m) Neβi Meβi mi/µi 
= ni + mi − P − P , i = 1, . . . , W, (4)

∂βi j e
βj eβs ms/µss P P

where mi = k mi,k and µi = k mi,k/k. Setting one of the variables to a constant 
(say, βW = 1) for identifability and then using the gradient descent method to change 
the remaining variables according to (4) is guaranteed to converge provided that we 
make small enough steps. An interesting interpretation of (4) is obtained by setting 

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. 



           

     
 

 
 

      
 

       
 

 
  

   
    

 

 

  

 
 
              

 

   
 
 

   
  

 
 
 

         
  

 

  

      
   

 

 

 

    
 
  

 
   

 
 

 

Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:11 P
the derivatives to zero and substituting back θi = eβi / k e

βk : � �−1 
mi/µi?θi = (ni + mi) N + M P , i = 1, . . . , W. (5)
θ?ms/µss s 

According to (5), the estimated fraction of nodes with label i is the total number of 
times label i was observed (i.e., ni +mi) normalized by sum of (i) the number of random 
node samples and (ii) the number of random edge samples weighted by the probability 
of sampling label i from one random edge sample. In the limit as N and M go to infnity, 
we can show that θ? = θ is a solution, but we cannot prove that it is unique or that θ? 

converges to θ. Hence, we cannot prove that θ? is asymptotically unbiased. 
The system of non-linear equations determined by (5) cannot be solved directly, butP 

can be tackled by Expectation Maximization (EM). In this case, the term θ?ms/µss s 
in the denominator is replaced by its expected value given θi’s from the previous iter-P
ation. Based on the same idea, if we replace θ?ms/µs with an edge sampled-based s s 

estimator d̂ for the average degree in Gu, we obtain the following non-recursive variant 
of the hybrid estimator, � �−1 

mi
θ̂  
i = (ni + mi) N + M , i = 1, . . . , W, (6) 

µid̂  P
where d̂ = M/( i µi). Theorem 4.1 below states the conditions under which θ̂  

i is 
asymptotically unbiased (see appendix for proof). In practice, we fnd no signifcant 
difference between θi? and θ̂  

i, except when the number of walkers N is very large and 
the jump weight w is very small. For those cases, θ? tends to be slightly more accuratei 

than θ̂  
i for small values of i, which in some applications may justify the additional 

computational cost of executing gradient descent or EM. 

THEOREM 4.1. Let N = αB and M = (1 − α)B, for some 0 < α < 1. In the limit as 
B →∞, the estimator θ̂  

i is an unbiased estimator of θi. 

In the special case where the label is the undirected degree itself, we have µi = mi/i. 
Hence, eq. (6) reduces to 

ni + mi
θ̄i = , (7)

ˆN + Mi/d 

where d̂  is the estimated average degree. When the average degree is known, we can 
¯show that θi is unbiased and, moreover, the minimum variance unbiased estimator 

(MVUE) of θi (see appendix for proof). 
When ni > 0 but mi = 0, the estimator in eq. (6) reduces to θ̂  

i = ni/N , which is essen-
tially the MLE for uniform node sampling. It is well known that this estimator is not 
nearly as accurate as a random walk based estimator for large out-degree values with 
small probability mass. In some sense, the estimator θ̂  

i = ni/N does not account for the 
fact that the number of random walk samples is zero. As a result, mass estimates for 
large out-degrees tend to have very large variance when no random walk samples are 
observed. Fortunately, we fnd that the following heuristic rule can drastically reduce 
the estimator variance in these cases. 

Variance reduction rule. If no random edge samples are observed for out-degree i, 
we set the estimate θ̂  

i = 0. This implies that we ignore any random node samples seen 
of nodes that have out-degree i. While this clearly results in a biased estimate, as the 
budget per walker b goes to infnity, the probability of invoking this rule goes to zero. 

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. 



     

  
 

 
  

A:12 F. Murai et al. 

100 101

10 2

10 1

100

101

DUFS no var. reduction
DUFS

100 101 102

10 1

100

p2p-Gnutella31 web-Stanford

outdegree+1

NR
M

SE

Fig. 3: (visible in-edges) Effect of variance reduction rule on NRMSE, when B = 0.1|V |
and c = 1. Using information contained in random node samples can increase variance 
for large out-degree estimates. However, the proposed rule effectively controls for that 
effect without decreasing head estimates accuracy. 

Hence, it produces an asymptotically unbiased estimate. This rule can be interpreted 
as a combination of node-based and edge-based estimates in proportion to the recipro-
cals of their estimated variances. That is, when no random edge samples are observed 
for a given out-degree, the corresponding estimated variance is zero and hence, ran-
dom node samples should be ignored. We note that the converse rule (i.e., set θ̂  

i = 0 if 
no random node samples were observed) would not perform well, as the probability of 
sampling large out-degrees with random node sampling is very small. 

We simulate DUFS on several datasets and compare the results obtained with the 
hybrid estimator when the rule is used and when it is not. Simulation details, datasets 
and the error metric (normalized root mean square error) will be described in Sec-
tion 5.1. Figure 3 shows representative results of the impact of the rule when estimat-
ing out-degree distributions using DUFS in conjunction with the hybrid estimator on 
two network datasets (averaged over 1000 runs). The results show that the rule con-
sistently reduces estimation error in the distribution tail without affecting estimation 
quality for small values of i. 

In-degree distribution: impossibility result. The fact that long random walks are of-
ten approximated by random edge sampling brings up the question of whether they 
can be used to estimate in-degree distributions when the in-degree is not observed 
directly. Under random edge sampling, the number of observed edges pointing to a 
node is binomially distributed and a maximum likelihood estimator can be derived for 
estimating the in-degree distribution. This problem is related to the set size distribu-
tion estimation problem, where elements are randomly sampled from a collection of 
non-overlapping sets and the goal is to recover the original set size distribution from 
samples. In addition to in-degree distribution in large graphs, this problem is related 
to the uncovering of TCP/IP fow size distributions on the Internet. 

In [Murai et al. 2013], we derive error bounds for the set size distribution estima-
tion problem from an information-theoretic perspective. The recoverability of original 
set size distributions presents a sharp threshold with respect to the fraction of ele-
ments sampled from the sets. If this fraction lies below the threshold, typically half of 
the elements in power-law and heavier-than-exponential-tailed distributions, then the 
original set size distribution is unrecoverable (see [Murai et al. 2013, Theorem 2]). 
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Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:13 

5. RESULTS ON DEGREE DISTRIBUTION ESTIMATION 

Here we focus on the estimation of degree distributions on directed networks. This 
section is divided into four parts. In Section 5.1, we investigate the impact of DUFS 
parameters on estimation accuracy. We then compare DUFS against other random 
walk-based methods when both outgoing and incoming edges are visible in Section 5.2. 
In Section 5.3, we perform a similar comparison when only out-edges are visible. Last, 
in Section 5.4 we provide some analysis to explain the relationship observed between 
the NRMSE and the out-degree (in-degree) in the results. We will refer to the edge-
based estimator defned in (1) as E-DUFS. 

The 15 directed network datasets in our evaluation were obtained from Stanford’s 
SNAP [Leskovec and Krevl 2014]. These datasets describe the topology of a variety of 
social networks, communication networks, web graphs, one Internet peer-to-peer net-
works and one product co-purchasing networks. We found it informative to extract the 
largest strongly connected component of each directed network and to apply our meth-
ods to the resulting datasets – hereby referred to as LCC datasets – as well as to the 
original datasets. Figure 4 shows the out-degree probability mass function (p.m.f.) for 
each network, along with the out-degree p.m.f. for the corresponding LCC dataset. We 
opt to show the p.m.f. instead of the complementary cumulative distribution function 
(CCDF) because the estimation task in this work is defned in terms of the p.m.f.’s. 
Defning the estimation task in terms of the CCDF would give DUFS an unfair advan-
tage, as we will explain in Section 5.2. 

Simulations consist of sampling the network until a budget B = 0.1|V | (i.e., 10% of 
the number of vertices) is depleted. Note that budget is decremented when walkers 
are initially placed and each time one of them moves to a node and when they perform 
random jumps. We construct an undirected graph in the background throughout each 
simulation. As a result, we assume that the cost to revisit a node is zero, even if this 
visit occurs due to a random jump3. 

When both outgoing and incoming edges are observable, random walks disregard 
edge direction, and move as if the network is undirected. In this scenario, we focus 
either on the estimation of the marginal out- and in-degree distributions or the joint 
distribution. The methods we investigate here can be used to estimate other node label 
distributions. For instance, if the underlying network is undirected, we can estimate 
the (undirected) degree distribution or even non-topological properties, such as the 
distribution of user nationalities in a social network. In the light of the impossibility 
results described in the end of Section 4.2, we focus on out-degree distribution estima-
tion when incoming edges are not directly observable. 

Let θ = {θi}∀i∈L denote the node label distribution, where θ` is the fraction of ver-
tices with label ̀ . Denote by θ̂  ̀

 the estimate for θ`. We use normalized root mean square 
error (NRMSE ) of θ̂  ̀

 as the error metric, which is a normalized measure of the disper-
sion of the estimates, defned as q 

E[(θ̂  ̀
 − θ`)2]

NRMSE(`) = . (8)
θ` 

In the case of marginal in-degree (out-degree) distribution, we refer to in-degrees (out-
degrees) smaller than the average as the head of the distribution. We refer to the 
largest 1% in- (out-degree) values as the tail of the distribution. 

3Note that the alternative, i.e. always taking c units off the budget per random jump, is unlikely to impact 
results signifcantly when B = 0.1|V |, since the vast majority of random jumps will fnd a non-visited node. 
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Fig. 4: Out-degree probability mass function (p.m.f.) for each network and its largest 
strongly connected component (LCC). A large difference between these p.m.f.s suggests 
it is benefcial to use multiple walkers and/or random jumps. 
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Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:15 

Table II: Practical guidelines on setting DUFS parameters to obtain accurate head or 
tail estimates depending on in-edge visibility and node sampling cost c. 

uniform node sampling cost 
c = 1 c = 10 

in-edges visible not visible visible not visible 
most accurate for 
small out-degrees 

w = 10 
b = 1 

w = 10 
b = 1 

w = 1 
b = 102 

w = 10 
b = 1 

most accurate for 
large out-degrees 

w = 1 
b = 10 

w = 1 
b = 10, 102 , 103 

w = 0.1 
b = 103 

w = 0.1 
b = 10, 102 , 103 

5.1. Impact of DUFS parameters and practical guidelines 

To provide intuition on how random jump weight w and budget per walker b affect the 
accuracy of DUFS estimates, assume for now that we replace samples collected via 
random walks by uniform edge samples from the weighted undirected graph Gu. In 
this hypothetical scenario, the budget B is used to collect N ≥ 1 uniform node samples 
and B − Nc uniform edge samples. Clearly, when the edge-based estimator defned 
in (1) is used, the most accurate node label distribution estimates are obtained by 
setting N = 1, (i.e. b = B − c). Hence, we focus on the case where the hybrid-estimator 
defned in (5) is used. In particular, consider estimation of the out-degree distribution. 

For a given value of b, the number of uniform node samples will be B/(c + b). For 
each of the remaining B − B/(c + b) samples, a vertex v is sampled in proportion to 
deg(v) + w, where deg(v) is the undirected degree of v in Gu. The choice of w and b 
impose, individually, a trade-off between estimation accuracy of the head and of tail 
of the distribution. For a fxed value of w, smaller values of b translate into better 
estimates of the head (and worse estimates of the tail) because we collect more (less) 
information about that region of the distribution from uniform node samples. For a 
fxed value of b, larger values of w also translate into more (less) accurate estimates of 
the head (tail), because random jumps are more likely to move a node to low in- and 
out-degree nodes (as they tend to occur more frequently). 

In what follows, we observe through simulations that despite the uniform edge sam-
pling approximation, the previous intuition holds for DUFS head estimates, but not 
always for tail estimates. In many cases, as we increase the number of walkers (i.e., 
decrease b) or increase w, we still obtain good estimates of the tail. This occurs because 
varying w or b changes the transition probability matrix that governs the sampling 
process, and thus, the sample distribution. 

We simulate DUFS on each original network dataset for combinations of random 
jump weight w ∈ {0.1, 1, 10} and budget per walker b ∈ {1, 10, 102 , 103} (1000 runs 
each). For small values of w, DUFS behaves as FS, except for using the improved 
estimator. For large values of w, DUFS behaves as uniform node sampling. Last, for 
large values of b, DUFS behaves as DURW. We consider four scenarios that correspond 
to whether the incoming edges are directly observable or not and to two different costs 
of uniform node sampling c = 1 or c = 10. Evaluating these parameter combinations 
is useful to establish practical guidelines for choosing DUFS parameters, which we 
summarize in Table II. We observe that estimation accuracy tends to be lower for 
extreme values of these parameters, suggesting that combinations other than ones 
investigated here would not provide large accuracy gains (if any). 

Visible in-edges, c = 1. Figure 5 (all except bottom right) show typical results when 
varying w and b. To avoid clutter, we show only estimates for powers of two (or the 
closest out-degree values) and omit results for b = 103 as they are similar to those for 
b = 102 . Figure 5 (bottom right) shows similar results for amazon-0312, the dataset 
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Fig. 5: (visible in-edges, c = 1) Effect of DUFS parameters on datasets with many 
connected components, when B = 0.1|V | and c = 1. Legend shows the average budget 
per walker (b) and jump weight (w). Trade-off shows that confgurations that result in 
many uniform node samples, such as (w = 10, b = 1), yield accurate head estimates, 
whereas confgurations such as (w = 1, b = 10) yield accurate tail estimates. 

with the smallest maximum out-degree (max. is 10). Similar to our intuition for uni-
form edge sampling, the NRMSE associated with the head increases with b and de-
creases with w, on virtually all datasets4. Also as expected, for a fxed values of w, b = 1 
yields larger errors in the tail than b ∈ {10, 100} (except for amazon-0312). However, 
contrary to the intuition for uniform edge sampling, w = 1 matches or outperforms 
w = 0.1 for (except for b = 1). This is best visualized in Figure 5 (bottom right). This 
happens because setting w = 1 allows DUFS to sample regions with large probabil-
ity mass (in this case, the head) and, at the same time, allows the sampler to move 
walkers from low volume to high volume components more often than w = 0.1. We also 
observe that b = 10 outperforms b ∈ {102 , 103} for w ∈ {0.1, 1}. Dataset amazon-0312 
is the only dataset where (w = 10, b = 1) obtained the best results over the entire 
out-degree distribution. As a side note, we observe that for most datasets used here, in 
log-log scale, the NRMSE grows approximately linearly as a function of the out-degree 
up to a certain point and then starts to decrease, roughly linearly too. In Section 5.4 
we explain why this is the case. 

Invisible in-edges, c = 1. The results we obtained are similar to those obtained for the 
visible in-edge scenario, but NRMSEs tend to be larger. Figure 6 shows typical re-

4For simplicity, the observations regarding the distribution head (tail) are based on the single smallest 
(largest) out-degree on each dataset. Similar conclusions are obtained when combining NRMSEs associated 
with several of the smallest (largest) out-degrees. 

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY. 



           

 
    

     
   

  
  

 
    

 
 

 

     

     
  

      

        

     
   

  

  
       

  

Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:17 

100 101 102 103 104
10 3

10 2

10 1

100

w=0.1, b=1
w=0.1, b=10
w=0.1, b=100

w=1, b=1
w=1, b=10
w=1, b=100

w=10, b=1
w=10, b=10
w=10, b=100

100 101 102 103

10 1

100flickr-links soc-Epinions1

outdegree

NR
M

SE

Fig. 6: (invisible in-edges, c = 1) Effect of DUFS parameters on datasets with many 
connected components, when B = 0.1|V | and c = 1. Legend shows the average bud-
get per walker (b) and jump weight (w). Confgurations that result in many walkers 
which jump too often, such as (w ≥ 10, b = 1) yield accurate head estimates, whereas 
confgurations such as (w = 1, b = 103), yield accurate tail estimates. 

sults for different DUFS parameters, represented by two datasets (also shown in the 
previous fgure). Once again, the intuition for uniform edge sampling holds for the dis-
tribution head: decreasing b and increasing w yield more accurate estimates for the 
smallest out-degrees. While b = 1 results in poor estimates for the largest out-degrees, 
our intuition regarding w does not hold true for the tail. More precisely, in most cases 
w = 1 outperforms w = 0.1 (one exception being dataset soc-Epinions1). As opposed to 
the visible in-edge scenario, increasing b tends to provide more accurate tail estimates 
for w = 1. We investigate this effect in Section 5.3. We fnd that, for a fxed w, larger 
values of b make the random walks jump more often, moving them from small volume 
components to large volume components, yielding better tail estimates. 

Visible in-edges, c = 10. Consider the case where the cost of obtaining uniform node 
samples is large, more precisely, 10 times larger than the cost of moving a walker. 
Plots for this setting can be found in our technical report [Murai et al. 2018]. It is no 
longer clear that using many walkers and frequent random jumps achieves the most 
accurate head estimates, as this could rapidly deplete the budget. In fact, we observe 
that setting w = 10 or b = 1 yields poor estimates for both the smallest and largest 
out-degrees. While increasing the jump weight w or decreasing b sometimes improves 
estimates in the head, it rarely does so in the tail. The best results for the smallest 
out-degrees are often observed when setting w = 1 and b = 10 or 102 . On the other 
hand, setting (w = 0.1, b = 103) or (w = 1, b = 102) usually achieves relatively small 
NRMSEs for the largest out-degree estimates. 

Invisible in-edges, c = 10. Plots for this setting can be found in our technical report 
[Murai et al. 2018]. Unlike the scenario with visible in-edges, setting w = 10 and 
b = 1 often produces the most accurate estimates for the smallest out-degrees. This is 
because many of the datasets have nodes with no out-edges; these nodes can only be 
reached through a neighbor or through random node sampling. Conversely, the general 
trends for tail estimates are similar to those observed for the visible in-edges case: 
large values of w and small values of b yield less accurate estimates for the largest 
out-degree values. For w = 1, however, b = 102 often outperforms b = 103 . On the other 
hand, for w = 0.1 there is little difference in the estimates for different values of b. 
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