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Estimating distributions of node characteristics (labels) such as number of connections or citizenship of
users in a social network via edge and node sampling is a vital part of the study of complex networks. Due to
its low cost, sampling via a random walk (RW) has been proposed as an attractive solution to this task. Most
RW methods assume either that the network is undirected or that walkers can traverse edges regardless
of their direction. Some RW methods have been designed for directed networks where edges coming into a
node are not directly observable. In this work, we propose Directed Unbiased Frontier Sampling (DUFS),
a sampling method based on a large number of coordinated walkers, each starting from a node chosen uni-
formly at random. It is applicable to directed networks with invisible incoming edges because it constructs,
in real-time, an undirected graph consistent with the walkers trajectories, and due to the use of random
jumps which prevent walkers from being trapped. DUFS generalizes previous RW methods and is suited for
undirected networks and to directed networks regardless of in-edges visibility. We also propose an improved
estimator of node label distributions that combines information from the initial walker locations with sub-
sequent RW observations. We evaluate DUF'S, compare it to other RW methods, investigate the impact of its
parameters on estimation accuracy and provide practical guidelines for choosing them. In estimating out-
degree distributions, DUFS yields significantly better estimates of the head of the distribution than other
methods, while matching or exceeding estimation accuracy of the tail. Last, we show that DUF'S outperforms
uniform node sampling when estimating distributions of node labels of the top 10% largest degree nodes,
even when sampling a node uniformly has the same cost as RW steps.
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1. INTRODUCTION

A number of studies [Boccaletti et al. 2006} [Eagle et al. 2009; |[Leskovec and Falout-
sos 2006; |[Leskovec et al. 2008; [Mislove et al. 2007; Ribeiro et al. 2010; [Rasti et al.
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2009; [Volz and Heckathorn 2008} |Gjoka et al. 2010; Kurant et al. 2011b; [Chiericetti
et al. 2016|] are dedicated to the characterization of complex networks. Examples of
networks of interest include the Internet, the Web, social, business, and biological net-
works. Characterizing a network consists of computing or estimating a set of statistics
that describe the network. In this work we model a network as a directed or undirected
graph with labeled vertices. A label can be, for instance, the degree of a node or, in a so-
cial network setting, someone’s hometown. Label statistics (e.g., average, distribution)
are often used to characterize a network.

Characterizing a network with respect to its labels requires querying vertices and/or
edges; associated with each query is a resource cost (time, bandwidth, money). For ex-
ample, information about web pages must be obtained by querying web servers subject
to a maximum query rate. Characterizing a large network by querying the entire net-
work is often too costly. Even if the network is stored on disk it may constitute several
terabytes of data. As a result, researchers have turned their attention to the charac-
terization of networks based on incomplete (sampled) data.

Simple strategies such as uniform node and uniform edge sampling possess desir-
able statistical properties: the former yields unbiased samples of the population and
the bias introduced by the latter is easily removed. However, these strategies are often
rendered unfeasible because they require either a directory containing the list of all
node (edge) ids, or an API that allows uniform sampling from the node (edge) space.
Even when the space of possible node (edge) ids is known, its occupancy is usually so
low that querying randomly generated ids is expensive. An alternate, cheaper, way to
sample a network is via a random walk (RW). A RW samples a network by moving a
particle (walker) from a node to a neighboring node. It is applicable to any network
where one can query the edges connected to a given node. Furthermore, RWs share
some of the desirable properties of uniform edge sampling (i.e., easy bias removal,
accurate estimation of characteristics such as the tail of the degree distribution).

On one hand, a great deal of research has focused on the design of sampling meth-
ods for undirected networks using RWs [Heckathorn 1997 Rasti et al. 2009]. Ribeiro
and Towsley proposed Frontier Sampling (F'S), a multidimensional random walk that
uses n coupled random walkers. This method yields more accurate estimates than the
standard RW and also outperforms the use of n independent walkers. In the presence
of disconnected or loosely connected components, F'S is even better suited than the
standard RW and independent RWs to sample the tail of the degree distribution of the
graph. On the other hand, few works have focused on the development of tools for char-
acterizing directed networks in the wild. A network is said to be directed when edges
are not necessarily reciprocated. Characterizing directed networks through crawling
becomes especially challenging when only outgoing edges from a node are visible (in-
coming edges are hidden): unless all vertices have a directed path to all other vertices,
a walker will eventually be restricted to a (strongly connected) component of the graph.
Furthermore, a standard RW incurs a bias that can only be removed by conditioning
on the entire graph structure. [Ribeiro et al. 2012]] addressed these issues by proposing
Directed Unbiased Random Walk (DURW), a sampling technique that builds a virtual
undirected graph on-the-fly and performs degree-proportional jumps to obtain asymp-
totically unbiased estimates of the distribution of node labels on a directed graph.

In this WOI‘kEL we propose Directed Unbiased Frontier Sampling (DUFS), a method
that generalizes the F'S and the DURW algorithms (see Figure[I). Building on ideas in
[Ribeiro et al. 2012], we extend F'S to allow the characterization of networks regard-
less of whether they are undirected, directed with observable incoming edges, or di-

1 Parts of this work are based on previous papers from the authors: [Ribeiro and Towsley 2010]] and [Ribeiro
et al. 2012].
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Fig. 1: Proposed method (DUFS) generalizes Frontier Sampling and DURW.
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Fig. 2: Comparison between proposed method (DUFS) and previous state-of-the-art re-
spectively for visible and for invisible incoming edges scenarios; (a) NRMSE ratios be-
tween DUFS (w = 0.1,b = 10) and FS (b = 10) of the estimated joint in- and out-degree
distribution on the soc-Slashdot0902 dataset; (b) NRMSESs associated with DUFS and
DURW of the estimated out-degree distribution on the livejournal-links dataset.

rected with unobservable incoming edges. From another perspective, we adapt DURW
to use multiple coordinated walkers. DUFS matches or exceeds the accuracy of F'S and
DURWEL as illustrated in Figure [2l Method parameters (w and b), simulation setup,
datasets and the error metric — NRMSE (normalized root mean square error) — are
described in Section[5.1]

Contributions. Our main contributions are as follows:

(1) Directed Unbiased Frontier Sampling (DUFS): we propose a new algorithm based
on multiple coordinated random walks that extends Frontier Sampling (F'S) to di-
rected networks. DUFS extends DURW to multiple random walks.

(2) A more accurate estimator for node label distribution: when the number of walkers
is a large fraction of the number of random walk steps (e.g., 10%), a considerable
amount of information is thrown out by not accounting for the walkers initial loca-

2The software and all results presented in this work are available at http:/bitbucket.com/after-acceptance,
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tions as observations. We introduce a new estimator that combines these observa-
tions with those made during the walks to produce better estimates.

(3) Practical recommendations: we investigate the impact of the number of walkers
and the probability of jumping to an uniformly chosen node (controlled via a pa-
rameter called random jump weight) on DUFS estimation error, given a fixed
budget. By increasing the number of walkers the sequence of sampled edges ap-
proaches the uniform distribution faster, but this also increases the fraction of
the budget spent to place the walkers in their initial locations. Moreover, increas-
ing the random jump weight favors sampling node labels with large probability
masses, which translates into more accurate estimates for these labels, but worse
estimates for those in the tail. We study these trade-offs through simulation and
propose guidelines for choosing DUFS parameters.

(4) Comprehensive evaluation: we compare DUFS to other random walk-based meth-
ods applied to directed networks w.r.t. estimation errors, both when incoming edges
are directly observable and when they are not. In the first scenario, in addition
to some graph properties evaluated in previous works, we evaluate DUFS per-
formance on estimating joint in- and out-degree distributions, and on estimating
distribution of group memberships among the 10% largest degree nodes.

(5) Theoretical analysis: we derive expressions for the normalized mean squared error
associated with uniform node and uniform edge sampling on power law networks
and show that in both cases error behaves asymptotically as a power law function
of the observed degree. This helps explain our evaluation results.

Outline. Definitions are presented in Section [2| In Section (3 we review FS and
DURW methods. In Section we propose Directed Unbiased Frontier Sampling
(DUFS) (along with some estimators), which generalizes previous methods. We inves-
tigate the impact of DUF'S parameters on estimation accuracy of degree distributions
and node label distributions respectively in Sections[5|and[6], providing practical guide-
lines on how to set them. A comparison to other random walk techniques is also pro-
vided. Section [7|discusses the performance of DUFS when the uniform node sampling
mechanism is faulty. We present some related work and present our conclusions in
Sections[8 and [9] respectively.

2. TERMINOLOGY SETTING

In what follows we present terminology used throughout the paper. We also present
two scenarios considered in our work. Let G4 = (V, E;) be a labeled directed graph
representing the network graph, where V is a set of vertices and F; is a set of ordered
pairs of vertices (u,v) representing a connection from « to v (a.k.a. edges). We refer to
an edge (u,v) as an in-edge with respect to v and an out-edge with respect to u. The in-
degree and out-degree of a node u in G4 are the number of distinct edges respectively
into and out of u. We assume that each node in G; has at least one edge (either an
in-edge or an out-edge). Some networks can be modeled as undirected graphs. In this
case, G4 is a symmetric directed graph, i.e., (u,v) € E4 iff (v,u) € E4.

Let £, and L. be finite (possibly empty) sets of node labels and edge labels, re-
spectively. Each edge (u,v) € E, is associated with a set of labels £.(u,v) C L. For
instance, one label ¢ € L.(u,v) could be the nature of the relationship between two
individuals (e.g., family, work, school) in a social network represented by nodes v and
v. Similarly, we can associate a set of labels to each node, £,(v) C L, Vv € V.

Input scenarios

When performing a random walk, we assume that a walker retrieves the out-edges of
node where it resides by performing a query (e.g., followers list on Twitter) and that
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vertices are distinguishable. We define two scenarios depending on whether the walker
can also retrieve in-edges.

In the first scenario, both out- and in-edges can be retrieved and it is possible to move
the walker over any edge regardless of the edge direction (if the edge is (u,v) € Fy4 a
walker can move from u to v and vice versa). In this case, the walker can be seen as
moving over G = (V, E), an undirected version of Gy, i.e., E = {(u,v) : (u,v) € E4V
(v,u) € Eq}. Define deg(v) = [{(u,v) : (u,v) € E}|. Let vol(S) = Zfes deg(v), VS C V,
denote the volume of the set of verticesin S C V.

In the second scenario, only out-edges are directly observable and we can build on-
the-fly an undirected graph G, based on the out-edges that have been sampled. Note
that GG, is not an undirected version of G; as some of the in-edges of a node may not
have been observed. By moving the walker over G,, — possibly traversing edges in G4 in
the opposite direction — we can compute its stationary behavior and thus, remove any
bias by accounting for the probability that each observation appears in the sample.

While this has been mostly overlooked by other works, we emphasize that, in either
scenario, it is useful to keep track of some variant of the observed graph during the
sampling process. Storing information about visited nodes in memory saves resources
that would be consumed to query those nodes in subsequent visits — i.e., revisiting
a node has no cost. The specific variant of the observed graph to be stored will be
described in the context of two random walk-based methods in the following section.

3. BACKGROUND

The method proposed in this paper generalizes two representative random-walk based
methods designed for each of the respective scenarios described in Section[2] Therefore,
we dedicate this section to briefly reviewing these methods. First, we describe the Fron-
tier Sampling algorithm proposed in [Ribeiro and Towsley 2010]], an n-dimensional
random walk that benefits from starting its walkers at uniformly sampled vertices.
This technique can be applied to undirected graphs and to directed graphs provided
that edges coming into a node are observable. Then, we describe the Directed Unbiased
Random Walk algorithm proposed in [Ribeiro et al. 2012], that adapts a single random
walk to a directed graph when incoming edges are not directly observable. The goal of
these methods is to obtain samples from a graph, which are then used to infer graph
characteristics via an estimator. An estimator is a function that takes a sequence of ob-
servations (sampled data) as input and outputs an estimate of an unknown population
parameter (graph characteristic).

3.1. Frontier Sampling: a multidimensional random walk for undirected networks

In essence, Frontier Sampling (FS) is a random walk-based algorithm for sampling and
estimating characteristics of an undirected graph. FS performs n coordinated random
walks on the graph. One of the advantages of using multiple walkers is that they
can cover multiple connected components (when they exist), while a single walker is
restricted to one component in the absence of a random jump or restart mechanism.
By coordinating multiple random walkers, F'S is able to sample edges uniformly at
random in steady state regardless of how the walkers are initially placed.

Algorithm [1| describes F'S. There are three parameters: the sampling budget B, the
initial cost of placing a walker ¢ > 1 and the average number of nodes b sampled by a
walker. The initial walker locations are chosen uniformly at random over the node set
(line 2). Note that the number of walkers is taken to be n = B/(c + b), that the cost of
a random walk step is one (except for previously sampled nodes) and that the cost of
initially placing a walker, ¢, can be greater than one because uniform node sampling
is often expensive. F'S keeps a list L of n vertices representing the locations of the n
walkers. At each step, a walker is chosen from L in proportion to the degree of the node
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© OO ;AW N

A:6 F. Murai et al.

ALGORITHM 1: Frontier Sampling (F'S)

Input: sampling budget B, budget per walker b, cost of uniform node sampling ¢
n<« B/(c+b);
Initialize L = (v1,...,vn) with n randomly chosen vertices (uniformly);
i < N x c¢ {7 is the used portion of the budget};
while i < B do
Select u € L with probability deg(u)/ >, deg(v) ;
Select an edge (u,v), uniformly at random;
Replace u by v in L and add (u, v) to sequence of sampled edges;
i < i+ 1 {can be skipped if node was previously sampled} ;
end

where it is currently located (line 5). The walker then moves from « to an adjacent node
v (lines 6 and 7).

Frontier sampling is equivalent to the sampling process of a single random walker
over the n-th Cartesian power of G. For this reason, Frontier Sampling can be thought
of as an n-dimensional random walk (see [Ribeiro and Towsley 2010, Lemma 5.1]).

Using FS samples to estimate node label distributions is simple when the input
corresponds to the first scenario described in Section [2| The probability of sampling
a given node is proportional to its undirected degree in GG. Hence, each sample must
be weighted inversely proportional to the respective node’s undirected degree. Storing
the undirected version of the observed graph along with labels associated with sampled
nodes allows the sampler to avoid having to pay the cost of revisiting a node.

Conversely, when incoming edges are not observed, Frontier Sampling can still be
adapted to remove bias. We present this method in Section

3.2. Directed Unbiased Random Walk: a random walk adapted for directed networks with
unobservable in-edges

The presence of hidden incoming edges but observable outgoing edges makes charac-
terizing large directed graphs through crawling challenging. Edge (u,v) is a hidden
incoming edge of node v if (u,v) can only be observed from node w. For instance, in
Wikipedia we cannot observe the edge (“Columbia Records”, “Thomas Edison”) from
Thomas Edison’s wiki entry (but this edge is observable if we access the Columbia
Records’s wiki entry).

These hidden incoming edges make it impossible to remove any bias incurred by
walking on the observed graph, unless we crawl the entire graph. Moreover, there may
not even be a directed path from a given node to all other nodes. Graphs with hidden
outgoing edges but observable incoming edges exhibit essentially the same problem.
In [Ribeiro et al. 2012], we proposed the Directed Unbiased Random Walk (DURW)
algorithm, which obtains asymptotically unbiased estimates of node label densities
on a directed graph with unobservable incoming edges. Our random walk algorithm
follows two main principles to achieve unbiased samples and reduce variance:

— Backward edge traversals: in real-time we construct an undirected graph G, us-
ing nodes that are sampled by the walker on the directed graph G,. The role of
the undirected graph is to guarantee that, at the end of the sampling process, we
can approximate the probability of sampling a node, even though in-edges are not
observed. The random walk proceeds in such a way that its trajectory on G, is con-
sistent with that of a random walk on G,. The walker is allowed to traverse some
of the edges in G4 in a reverse direction. However, we prevent some of the observed
edges to be traversed in the reverse direction by not including them in G,. More
precisely, once a node z is visited at the i-th step, no in-edges to z observed at step
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ALGORITHM 2: Construction of undirected graph (common to DURW and DUFS)

Input: sampling budget B, random jump weight w, cost of uniform node sampling ¢
Select s € V uniformly at random {s = s} ;

Initialize S = {s} and E = £(s) ;

i < ¢ {i is the used portion of the budget};

while i < B do

p ~ Uniform(0, 1) ;

if p < w/(w + deg(s)) then

Select s uniformly at random from V' {random jump} ;

L4 14+c;

else

Select s uniformly at random from {v : (s,v) € E} {random walk step} ;
i1+ 1;

end

if s ¢ S then

S+ SU{s};

E<+ EU{(s,v) €&(s):v ¢S}

end

end

j > i (by visiting nodes s such that (s, z) € E,;) are added to G,. This is an important
feature to reduce the random walk transient and thus, reduce estimation errors.

— Degree-proportional jumps: the walker makes a limited number of random jumps
to guarantee that different parts of the directed graph are explored. In DURW, the
probability of randomly jumping out of a node v, Vv € V, is w/(w + deg(v)), w > 0.
The steady state probability of visiting a node v on G, is (w + deg(v))/(vol(V) +
w|V). Similar to the cost of placing a F'S walker through uniform node sampling, we
assume that each random jump incurs cost ¢ > 1.

The DURW algorithm. DURW is a random walk over a weighted undirected connected
graph G,, = (V, E,), which is built on-the-fly. We build an undirected graph using the
underlying directed graph G, and the ability to perform random jumps. Let G =
(V, E®) denote the undirected graph constructed by DURW at step i, where V is the
node set and E(%) is the edge set. In what follows we describe the construction of G(¥ in
Algorithm 2] since this is one of the building blocks of the proposed algorithm, DUFS.

Let £(v) denote the set of out-edges from a node v in G4. Let S®) = {s;,...,s;} be
the set of nodes from V' sampled by the random walk up to step ¢, where s; denotes the
node on which the walker resides at step j. Since V is not known, we track G(* using
variables S = 8() and F = E(®. The walker starts at node s; € V (line 1). We initialize
G = (V,EM), where E(") = £(s;) (line 2). The next node, s; 1, is selected uniformly
at random from V with probability w/(w + deg(s;)) (lines 6 to 8), where deg(s;) is
the degree of s; in G(*). With probability 1 — w/(w + deg(s;)), node s;,; is selected by
performing a random walk step from s;, i.e. by selecting a node adjacent to s; in E(*)
uniformly at random (lines 9 to 12). When node s;; is visited for the first time, it is
necessary to set SUtY) to SO U{s; 11} and ECTY to EOU{(ss,v) € E(s) : v & SW} (lines
13 to 16). By restricting the set of new edges to {(s;,v) € £(s;) : v € S} instead of all
edges visible from s; (i.e., £(s;)), we comply with the requirement that once a node z,
Vz € V, is visited by the RW, no edge can be added to GG, with z as an endpoint.

In order to estimate node label distributions from DURW observations, we weight
samples in proportion to the inverse probability that the corresponding vertices are
visited by a random walk in G,, in steady state. Storing labels and edges associated
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with nodes in S* saves the cost of querying repeated nodes. Such savings could be
reflected in Algorithm [2]by conditioning the increase in i (lines[8land[1I) on s ¢ S.

4. GENERALIZING FS AND DURW: A NEW METHOD APPLICABLE REGARDLESS OF
IN-EDGE VISIBILITY

This section is divided into two parts. In Section we propose Directed Unbiased
Frontier Sampling (DUFS), which generalizes FS to allow estimation on directed
graphs with unobservable in-edges (second scenario described in Section[2). DUF'S also
generalizes DURW: the latter is a special case of DUFS where the number of walkers
is one. Next, in Section [4.2] we describe two ways to estimate node label distributions
using DUFS. The first uses only on the observations collected during the walks. The
second estimator we leverages observations obtained from the initial walker locations
in addition to observations obtained during the walks.

4.1. Directed Unbiased Frontier Sampling

Like FS, Directed Unbiased Frontier Sampling (DUFS) samples a network through
n coordinated walks. At each step, it selects a walker in proportion to the degree of
the node where it currently resides. Similar to the Directed Unbiased Random Walk,
it constructs an undirected graph in real-time that allows backward edge traversals.
Denote by G() = (V, E() the undirected graph constructed by DUFS at step i. DUFS
does not include edges in G(* that would cause walkers to have a view of the graph
inconsistent with the view at a previous point in time. In other words, when node «
is visited for the first time at step i, u is inserted in GV along with all edges (u,v) €
E,; such that v has not been sampled. Thus, the degree of v is fixed in G, for all
j > i. Alternatively, letting the degree of u change at a given point would require us to
discard the the entire sample up to that point, otherwise the resulting estimator would
not be consistent. In fact, even that approach would not yield a consistent estimator
for an infinite power law graph: node degrees would never stop changing.

It may seem that there is no need to include degree-proportional jumps to visit differ-
ent graph components when a large number of walkers are initially spread throughout
the graph (e.g., on nodes chosen uniformly). However, including degree-proportional
jumps in DUFS is extremely beneficial because it prevents walkers from being trapped
when initially located on vertices whose out-degree is zero or in components with no
outgoing edges. More generally, it allows walkers to move from small volume to large
volume components and, hence, obtain more samples among large degree nodes.

Algorithm [3|describes DUFS. In addition to F'S’ three parameters, it takes a random
jump weight w as input. The number of walkers and their initial locations are chosen
as in FS (lines 1-3). In the extreme case where b = 0, DUFS degenerates to uniform
node sampling. When the underlying graph is symmetric and the jump weight is w = 0,
it becomes FS. When in-edges are invisible and the number of walkers is 1, DUFS
degenerates to DURW. We initialize S = L and E®) = U,c.€(s) (line 4). Unlike in FS,
a walker is chosen from L in proportion to the sum of the random jump weight w and
the degree of node where it is currently located based on E(* (line 6). Similar to DURW,
the next node is selected based on either a random jump or on following an edge (lines
7-14). Last, the undirected graph is updated (lines 15-18) and so is set L (line 19).

4.2, Estimation

In this section we describe two estimators of node label distributions from samples ob-
tained by DUFS. The first estimator is based on the observations obtained from edges
traversed by the random walks. The second estimator combines these observations
with those obtained from the walkers initial locations. When used with a variance re-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.



© B T O O W e

B e e e e e e e
S ® ® OV e W= O

Characterizing Directed and Undirected Networks via Multidimensional Walks with Jumps A:9

ALGORITHM 3: Directed Unbiased Frontier Sampling (DUFS)
Input: sampling budget B, budget per walker b, cost of uniform sampling ¢, jump weight w

n < B/(c+b) {n is the number of walkers};
Initialize L = {v1,...,vn} with n randomly chosen vertices (uniformly);
i < N x ¢ {i is the used portion of the budget};
Initialize S = L and E = Usc.E(s)
while i < B do
Select v € L with probability (w + deg(v))/(nw + ZVUJ cr deg(vy)) ;
Sample p ~ Uniform(0, 1);
if p < w/(w + deg(v)) then
Select a node v € V uniformly at random;
i 1+ ¢
else
Select an outgoing edge of v, (v,v"), uniformly at random,;
1141
end
if s ¢ S then
S+ SU{s};
E<+ EU{(s,v) €&(s):v ¢S}
end
Replace v by v" in L and add (v, v’) to sequence of sampled edges;
end

duction heuristic, the latter produces better estimates than the former. For a descrip-
tion of estimators of edge label distribution and other graph characteristics, please
refer to [Ribeiro and Towsley 2010].

4.2.1. Node Label Distribution: random edge-based estimator. Let s; denote the i-th node
visited by DUFS, i =1,...,¢,t < B— Nc. Let 6, be the fraction of nodes in V' with label
¢ € L,. Let w(v) be the steady state probability of sampling node v in G,,, Vv € V. The
node label distribution is estimated at step ¢ as

t
b= Ly ML)y p i1 BN, 1
i=1 (si)
where 1{P} takes value one if predicate P is true and zero otherwise, and 7(s;) is an
estimate of 7(s;): 7(s;) = (w + deg(s;))S. Here deg(v) is the degree of v in G(>) and

t

1
5= t ; + deg(s;) 2)

—_

The following theorem states that 7(s;) is asymptotically unbiased.
THEOREM 4.1. 7(s;) is an asymptotically unbiased estimator of w(s;).

PROOF. To show that #(s;) is asymptotically unbiased, we first note that the limit
lim_,oo B = E() exists, since after visiting all vertices we will never add any ad-
ditional edges. We then invoke Theorem 4.1 of [Ribeiro and Towsley 2010, yielding
limy 00 S = |V|/(|EC)| + |I‘w) almost surely. Thus, lim;_, 7(s;) = 7(s;) almost surely.

Taking the expectation of (1) in the limit as ¢ — oo yields E[lim; é[] = #,, which con-
cludes our proof. O

4.2.2. Node Label Distribution: leveraging information from walkers’ initial locations. The esti-
mator presented in (1) does not make use of information associated with the initial set
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Variable Description

number of node samples with label 7

fraction of nodes in G*) with label i and undirected degree j
number of edge samples with label ¢ and bias j

total number of edge samples with label ¢

total number of node samples

total number of edge samples

total budget

Table I: Notation used in hybrid estimator.

of nodes on which the walkers are placed. When the number of walkers is large this
results in the loss of a considerable amount of statistical information. However, includ-
ing these observations is challenging because subsequent observations from random
walk steps are not independent of the initial observations. Moreover, the normaliz-
ing constant for the random walk observations is no longer given by (2), since degree
distribution estimates also depend on the information contained in the node samples.

In this section, we derive a new estimator that circumvents these problems by ap-
proximating the likelihood of RW samples by that associated with random edge sam-
pling. We call it the hybrid estimator because it combines observations from initial
walker locations and random walks steps. The hybrid estimator significantly improves
the estimation accuracy for labels associated with large probability masses.

Let us index the node labels £, from 1 to W, where W = |£,|. We refer to the sum
deg(v) + w in DUFS as the random walk bias for node v € V. To simplify the notation,
we assume that each node has exactly one label and that random walk biases take
on integer values in [1,..., Z], for some maximum value Z. Denote the node label dis-
tribution as 6 = (64,...,0w). Let n; denote the number of walkers starting on label ¢
nodes and m; ; the number of subsequent observations of label i and bias j nodes. The
notation is summarized in Table[Il

We approximate random walk samples in DUFS by uniform edge samples from G,,.
Experience from previous studies shows us that this approximation works very well

in practice. Hence, the likelihood function given samples n = {n; : « = 1,..., W} and
m={m;;:i=1,...,Wandj=1,...,7Z}is expressed as
07 1. (k6 1) ™
L(6fn, m) = UL )70 @

(Z i 10, t)

The maximum likelihood estimator 6* is the Value of 6 that maximizes (3) subject to
0<#6;, <land ) ,M0; = 1. This defines a constrained non-convex optimization problem.
However, we can ¢onvert this optimization problem into an unconstrained problem us-
ing the reparameterization ¢; = ¢%i/ ", ¢ fori = 1,...,W. As shown in Appendix
the partial derivatives of the resulting objective function are

0L(Bn, m) Nebi Meﬁimi/ui ,
= ny i — =1,...,W, 4
g, it ,(e e @
where m; = >, m;; and p; = /k. Setting one of the variables to a constant

(say, Sw = 1) for identifiability and then using the gradient descent method to change
the remaining variables according to is guaranteed to converge provided that we
make small enough steps. An interesting interpretation of (4) is obtained by setting
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the derivatives to zero and substituting back 6, = €%/ 3", e”:

* mi/,ui - .
91_(nl+ml)<N+M2(9§ms/us> , i=1,...,W. (5)
According to (5), the estimated fraction\of nodes with label i is the total number of
times label : was observed (i.e., n; +m;) normalized by sum of (i) the number of random
node samples and (ii) the number of random edge samples weighted by the probability
of sampling label i from one random edge sample. In the limit as V and M go to infinity,
we can show that 8* = 0 is a solution, but we cannot prove that it is unique or that 6*
converges to 0. Hence, we cannot prove that 6” is asymptotically unbiased.

The system of non-linear equations determined by (5) cannot be solved directly, but
can be tackled by Expectation Maximization (EM). In this case, the term > /0 m/us
in the denominator is replaced by its expected value given 6;’s from the prevjous iter-
ation. Based on the same idea, if we replace ) _60;m,/u, with an edge sampled-based

estimator d for the average degree in G,,, we obtain the following non-recursive variant
of the hybrid estimator,

—1

éi—(ni+ml-)(N+Mmi> L =1, W, (6)
pid

where d = M/(Y, ju;). Theorem below states the conditions under which 6; is

asymptotically unbiased (see appendix for proof). In practice, we find no significant

difference between #* and 6;, except when the number of walkers N is very large and

the jump weight w is very small. For those cases, 67 tends to be slightly more accurate

than 6, for small values of i, which in some applications may justify the additional
computational cost of executing gradient descent or EM.

THEOREM 4.1. Let N = aBand M = (1 — a)B, for some 0 < o < 1. In the limit as
B — oo, the estimator 0; is an unbiased estimator of 6;.

In the special case where the label is the undirected degree itself, we have p;, = m;/i.
Hence, eq. (6) reduces to
= (7)
N+ Mi/d
where d is the estimated average degree. When the average degree is known, we can
show that 6, is unbiased and, moreover, the minimum variance unbiased estimator
(MVUE) of 6; (see appendix for proof).

When n; > 0 but m; = 0, the estimator in eq. (6) reduces to 0; = n; /N, which is essen-
tially the MLE for uniform node sampling. It is well known that this estimator is not
nearly as accurate as a random walk based estimator for large out-degree values with
small probability mass. In some sense, the estimator 6; = n;/N does not account for the
fact that the number of random walk samples is zero. As a result, mass estimates for
large out-degrees tend to have very large variance when no random walk samples are
observed. Fortunately, we find that the following heuristic rule can drastically reduce
the estimator variance in these cases.

Variance reduction rule. If no random edge samples are observed for out-degree i,

we set the estimate §; = 0. This implies that we ignore any random node samples seen
of nodes that have out-degree i. While this clearly results in a biased estimate, as the
budget per walker b goes to infinity, the probability of invoking this rule goes to zero.
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Fig. 3: (visible in-edges) Effect of variance reduction rule on NRMSE, when B = 0.1|V|
and ¢ = 1. Using information contained in random node samples can increase variance
for large out-degree estimates. However, the proposed rule effectively controls for that
effect without decreasing head estimates accuracy.

Hence, it produces an asymptotically unbiased estimate. This rule can be interpreted
as a combination of node-based and edge-based estimates in proportion to the recipro-
cals of their estimated variances. That is, when no random edge samples are observed
for a given out-degree, the corresponding estimated variance is zero and hence, ran-
dom node samples should be ignored. We note that the converse rule (i.e., set §; = 0 if
no random node samples were observed) would not perform well, as the probability of
sampling large out-degrees with random node sampling is very small.

We simulate DUFS on several datasets and compare the results obtained with the
hybrid estimator when the rule is used and when it is not. Simulation details, datasets
and the error metric (normalized root mean square error) will be described in Sec-
tion[5.1] Figure [3|shows representative results of the impact of the rule when estimat-
ing out-degree distributions using DUFS in conjunction with the hybrid estimator on
two network datasets (averaged over 1000 runs). The results show that the rule con-
sistently reduces estimation error in the distribution tail without affecting estimation
quality for small values of i.

In-degree distribution: impossibility result. The fact that long random walks are of-
ten approximated by random edge sampling brings up the question of whether they
can be used to estimate in-degree distributions when the in-degree is not observed
directly. Under random edge sampling, the number of observed edges pointing to a
node is binomially distributed and a maximum likelihood estimator can be derived for
estimating the in-degree distribution. This problem is related to the set size distribu-
tion estimation problem, where elements are randomly sampled from a collection of
non-overlapping sets and the goal is to recover the original set size distribution from
samples. In addition to in-degree distribution in large graphs, this problem is related
to the uncovering of TCP/IP flow size distributions on the Internet.

In [Murai et al. 2013, we derive error bounds for the set size distribution estima-
tion problem from an information-theoretic perspective. The recoverability of original
set size distributions presents a sharp threshold with respect to the fraction of ele-
ments sampled from the sets. If this fraction lies below the threshold, typically half of
the elements in power-law and heavier-than-exponential-tailed distributions, then the
original set size distribution is unrecoverable (see [Murai et al. 2013, Theorem 2]).
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5. RESULTS ON DEGREE DISTRIBUTION ESTIMATION

Here we focus on the estimation of degree distributions on directed networks. This
section is divided into four parts. In Section [5.1] we investigate the impact of DUFS
parameters on estimation accuracy. We then compare DUFS against other random
walk-based methods when both outgoing and incoming edges are visible in Section[5.2]
In Section [5.3] we perform a similar comparison when only out-edges are visible. Last,
in Section we provide some analysis to explain the relationship observed between
the NRMSE and the out-degree (in-degree) in the results. We will refer to the edge-
based estimator defined in (1) as E-DUFS.

The 15 directed network datasets in our evaluation were obtained from Stanford’s
SNAP [Leskovec and Krevl 2014]. These datasets describe the topology of a variety of
social networks, communication networks, web graphs, one Internet peer-to-peer net-
works and one product co-purchasing networks. We found it informative to extract the
largest strongly connected component of each directed network and to apply our meth-
ods to the resulting datasets — hereby referred to as LCC datasets — as well as to the
original datasets. Figure |4 shows the out-degree probability mass function (p.m.f.) for
each network, along with the out-degree p.m.f. for the corresponding LCC dataset. We
opt to show the p.m.f. instead of the complementary cumulative distribution function
(CCDF) because the estimation task in this work is defined in terms of the p.m.f’s.
Defining the estimation task in terms of the CCDF would give DUF'S an unfair advan-
tage, as we will explain in Section

Simulations consist of sampling the network until a budget B = 0.1|V] (i.e., 10% of
the number of vertices) is depleted. Note that budget is decremented when walkers
are initially placed and each time one of them moves to a node and when they perform
random jumps. We construct an undirected graph in the background throughout each
simulation. As a result, we assume that the cost to revisit a node is zero, even if this
visit occurs due to a random jum

When both outgoing and incoming edges are observable, random walks disregard
edge direction, and move as if the network is undirected. In this scenario, we focus
either on the estimation of the marginal out- and in-degree distributions or the joint
distribution. The methods we investigate here can be used to estimate other node label
distributions. For instance, if the underlying network is undirected, we can estimate
the (undirected) degree distribution or even non-topological properties, such as the
distribution of user nationalities in a social network. In the light of the impossibility
results described in the end of Section[4.2] we focus on out-degree distribution estima-
tion when incoming edges are not directly observable.

Let 6 = {0;}vicc denote the node label distribution, where 6, is the fraction of ver-

tices with label ¢. Denote by 6, the estimate for 6,. We use normalized root mean square

error (NRMSE ) of 6, as the error metric, which is a normalized measure of the disper-
sion of the estimates, defined as

NRMSE(¢) — [(0;; i 8)

In the case of marginal in-degree (out-degree) distribution, we refer to in-degrees (out-

degrees) smaller than the average as the head of the distribution. We refer to the
largest 1% in- (out-degree) values as the tail of the distribution.

3Note that the alternative, i.e. always taking c units off the budget per random jump, is unlikely to impact
results significantly when B = 0.1|V/|, since the vast majority of random jumps will find a non-visited node.
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Fig. 4: Out-degree probability mass function (p.m.f.) for each network and its largest
strongly connected component (LCC). A large difference between these p.m.f.s suggests
it is beneficial to use multiple walkers and/or random jumps.
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Table II: Practical guidelines on setting DUFS parameters to obtain accurate head or
tail estimates depending on in-edge visibility and node sampling cost c.

uniform node sampling cost
c=1 c=10
in-edges visible not visible visible not visible
most accurate for | w =10 w =10 w=1 w =10
small out-degrees | b=1 b=1 b= 102 b=1
most accurate for | w=1 w=1 w=0.1 w=0.1
large out-degrees | b=10 | b= 10,102,103 | b=10% | b= 10,102,103

5.1. Impact of DUFS parameters and practical guidelines

To provide intuition on how random jump weight w and budget per walker b affect the
accuracy of DUFS estimates, assume for now that we replace samples collected via
random walks by uniform edge samples from the weighted undirected graph G,. In
this hypothetical scenario, the budget B is used to collect NV > 1 uniform node samples
and B — Nc¢ uniform edge samples. Clearly, when the edge-based estimator defined
in (1) is used, the most accurate node label distribution estimates are obtained by
setting N = 1, (i.e. b = B — ¢). Hence, we focus on the case where the hybrid-estimator
defined in (5) is used. In particular, consider estimation of the out-degree distribution.

For a given value of b, the number of uniform node samples will be B/(c + b). For
each of the remaining B — B/(c + b) samples, a vertex v is sampled in proportion to
deg(v) + w, where deg(v) is the undirected degree of v in G,. The choice of w and b
impose, individually, a trade-off between estimation accuracy of the head and of tail
of the distribution. For a fixed value of w, smaller values of b translate into better
estimates of the head (and worse estimates of the tail) because we collect more (less)
information about that region of the distribution from uniform node samples. For a
fixed value of b, larger values of w also translate into more (less) accurate estimates of
the head (tail), because random jumps are more likely to move a node to low in- and
out-degree nodes (as they tend to occur more frequently).

In what follows, we observe through simulations that despite the uniform edge sam-
pling approximation, the previous intuition holds for DUFS head estimates, but not
always for tail estimates. In many cases, as we increase the number of walkers (i.e.,
decrease b) or increase w, we still obtain good estimates of the tail. This occurs because
varying w or b changes the transition probability matrix that governs the sampling
process, and thus, the sample distribution.

We simulate DUFS on each original network dataset for combinations of random
jump weight w € {0.1,1,10} and budget per walker b € {1,10,10%,10%} (1000 runs
each). For small values of w, DUFS behaves as FS, except for using the improved
estimator. For large values of w, DUFS behaves as uniform node sampling. Last, for
large values of b, DUFS behaves as DURW. We consider four scenarios that correspond
to whether the incoming edges are directly observable or not and to two different costs
of uniform node sampling ¢ = 1 or ¢ = 10. Evaluating these parameter combinations
is useful to establish practical guidelines for choosing DUFS parameters, which we
summarize in Table [l We observe that estimation accuracy tends to be lower for
extreme values of these parameters, suggesting that combinations other than ones
investigated here would not provide large accuracy gains (if any).

Visible in-edges, ¢ = 1. Figure [5| (all except bottom right) show typical results when
varying w and b. To avoid clutter, we show only estimates for powers of two (or the
closest out-degree values) and omit results for b = 103 as they are similar to those for
b = 102. Figure [5| (bottom right) shows similar results for amazon-0312, the dataset
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Fig. 5: (visible in-edges, ¢ = 1) Effect of DUFS parameters on datasets with many
connected components, when B = 0.1|V| and ¢ = 1. Legend shows the average budget
per walker (b) and jump weight (w). Trade-off shows that configurations that result in
many uniform node samples, such as (w = 10,b = 1), yield accurate head estimates,
whereas configurations such as (w = 1,b = 10) yield accurate tail estimates.

with the smallest maximum out-degree (max. is 10). Similar to our intuition for uni-
form edge sampling, the NRMSE associated with the head increases with b and de-
creases with w, on virtually all datasetﬂ Also as expected, for a fixed values of w, b = 1
yields larger errors in the tail than b € {10,100} (except for amazon-0312). However,
contrary to the intuition for uniform edge sampling, w = 1 matches or outperforms
w = 0.1 for (except for b = 1). This is best visualized in Figure [5| (bottom right). This
happens because setting w = 1 allows DUFS to sample regions with large probabil-
ity mass (in this case, the head) and, at the same time, allows the sampler to move
walkers from low volume to high volume components more often than w = 0.1. We also
observe that b = 10 outperforms b € {10%,10%} for w € {0.1,1}. Dataset amazon-0312
is the only dataset where (w = 10,b = 1) obtained the best results over the entire
out-degree distribution. As a side note, we observe that for most datasets used here, in
log-log scale, the NRMSE grows approximately linearly as a function of the out-degree
up to a certain point and then starts to decrease, roughly linearly too. In Section
we explain why this is the case.

Invisible in-edges, c = 1. The results we obtained are similar to those obtained for the
visible in-edge scenario, but NRMSEs tend to be larger. Figure [6] shows typical re-

4For simplicity, the observations regarding the distribution head (tail) are based on the single smallest
(largest) out-degree on each dataset. Similar conclusions are obtained when combining NRMSEs associated
with several of the smallest (largest) out-degrees.
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Fig. 6: (invisible in-edges, ¢ = 1) Effect of DUFS parameters on datasets with many
connected components, when B = 0.1|V] and ¢ = 1. Legend shows the average bud-
get per walker (b)) and jump weight (w). Configurations that result in many walkers
which jump too often, such as (w > 10,b = 1) yield accurate head estimates, whereas
configurations such as (w = 1,b = 10%), yield accurate tail estimates.

sults for different DUFS parameters, represented by two datasets (also shown in the
previous figure). Once again, the intuition for uniform edge sampling holds for the dis-
tribution head: decreasing b and increasing w yield more accurate estimates for the
smallest out-degrees. While b = 1 results in poor estimates for the largest out-degrees,
our intuition regarding w does not hold true for the tail. More precisely, in most cases
w = 1 outperforms w = 0.1 (one exception being dataset soc-Epinions1). As opposed to
the visible in-edge scenario, increasing b tends to provide more accurate tail estimates
for w = 1. We investigate this effect in Section We find that, for a fixed w, larger
values of b make the random walks jump more often, moving them from small volume
components to large volume components, yielding better tail estimates.

Visible in-edges, ¢ = 10. Consider the case where the cost of obtaining uniform node
samples is large, more precisely, 10 times larger than the cost of moving a walker.
Plots for this setting can be found in our technical report [Murai et al. 2018]. It is no
longer clear that using many walkers and frequent random jumps achieves the most
accurate head estimates, as this could rapidly deplete the budget. In fact, we observe
that setting w = 10 or b = 1 yields poor estimates for both the smallest and largest
out-degrees. While increasing the jump weight w or decreasing b sometimes improves
estimates in the head, it rarely does so in the tail. The best results for the smallest
out-degrees are often observed when setting w = 1 and b = 10 or 102. On the other
hand, setting (w = 0.1,b = 10%) or (w = 1,b = 10?) usually achieves relatively small
NRMSEs for the largest out-degree estimates.

Invisible in-edges, ¢ = 10. Plots for this setting can be found in our technical report
[Murai et al. 2018]. Unlike the scenario with visible in-edges, setting w = 10 and
b = 1 often produces the most accurate estimates for the smallest out-degrees. This is
because many of the datasets have nodes with no out-edges; these nodes can only be
reached through a neighbor or through random node sampling. Conversely, the general
trends for tail estimates are similar to those observed for the visible in-edges case:
large values of w and small values of b yield less accurate estimates for the largest
out-degree values. For w = 1, however, b = 102 often outperforms b = 10. On the other
hand, for w = 0.1 there is little difference in the estimates for different values of 5.
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