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Abstract Active search on graphs focuses on collecting certain labeled nodes (targets) 
given global knowledge of the network topology and its edge weights (encoding pair-
wise similarities) under a query budget constraint. However, in most current networks, 
nodes, network topology, network size, and edge weights are all initially unknown. 
In this work we introduce selective harvesting, a variant of active search where the 
next node to be queried must be chosen among the neighbors of the current queried 
node set; the available training data for deciding which node to query is restricted to 
the subgraph induced by the queried set (and their node attributes) and their neighbors 
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188 F. Murai et al. 

(without any node or edge attributes). Therefore, selective harvesting is a sequen-
tial decision problem, where we must decide which node to query at each step. A 
classifer trained in this scenario can suffer from what we call a tunnel vision effect: 
without any recourse to independent sampling, the urge to only query promising nodes 
forces classifers to gather increasingly biased training data, which we show signif-
icantly hurts the performance of active search methods and standard classifers. We 
demonstrate that it is possible to collect a much larger set of targets by using multiple 
classifers, not by combining their predictions as a weighted ensemble, but switching 
between classifers used at each step, as a way to ease the tunnel vision effect. We 
discover that switching classifers collects more targets by (a) diversifying the training 
data and (b) broadening the choices of nodes that can be queried in the future. This 
highlights an exploration, exploitation, and diversification trade-off in our problem 
that goes beyond the exploration and exploitation duality found in classic sequential 
decision problems. Based on these observations we propose D3TS, a method based 
on multi-armed bandits for non-stationary stochastic processes that enforces classifer 
diversity, which outperforms all competing methods on fve real network datasets in 
our evaluation and exhibits comparable performance on the other two. 

Keywords Active search · Network search · Tunnel vision effect · Model selection 

1 Introduction 

Active search on graphs (Garnett et al. 2011; Ma et al. 2015; Wang et al. 2013) is a  
technique for fnding the largest number of target nodes—i.e., nodes with a certain 
label—in a network by querying nodes in a weighted graph, under a query budget 
constraint. Nodes have hidden labels but the network topology and edge weights are 
fully observable and any node can be queried at any time. Edge weights encode some 
form of node similarity that can be used to improve querying effciency. Unfortunately, 
edge weights, network topology and node information are rarely available to be down-
loaded from one centralized place (except by the network’s owner, if any). As a result, 
today’s prevalent method to collect network data is to query neighbors of already 
queried nodes (crawling). Like active search on graphs, other similar techniques such 
as learning to crawl (Gouriten et al. 2014; Pant and Srinivasan 2005), also assume 
that edge weights between the queried nodes and their neighbors are observed. But 
in a variety of network crawling problems, such as crawling online social networks, 
(micro) blog networks, and citation networks, a node query often reveals only node 
attributes. This process poses an entirely new set of challenges for active search and 
other similar methods. 

In this paper we introduce selective harvesting, where the goal is the same as 
in active search, but instead of assuming that the network topology is given, our 
node querying is subject to a partial and evolving understanding of the network More 
precisely, the knowledge about the network is restricted to the set of queried nodes 
and their connections to the rest of the network. Selective harvesting starts from a 
seed node (typically a target) and proceeds by querying nodes from the border set, i.e. 
neighbors of already queried nodes. Selective harvesting generalizes active sampling, a 

123 
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similar task where node attributes are not observed (Pfeiffer et al. 2012). By leveraging 
information contained in these attributes, selective harvesting algorithms can attain 
better performance in applications of active sampling, such as (i) identifying students 
involved in academic dishonesty at a college/university; (ii) investigating securities 
fraud and (iii) identifying students who smoke/drink for intervention purposes. In 
these cases, target nodes are individuals that have a given trait. 

Training a classifer for selective harvesting is a challenging task due to the fact 
that the classifer must be trained over observations that depend on previous choices of 
the same classifer, the hidden network topology, and the distribution of node features 
over the network. We call this the tunnel vision effect. Unlike active search, selective 
harvesting has no recourse to true randomness or sample independence that can ease 
the tunnel effect. Under partially observed networks, traditional active search methods 
perform quite poorly. 

We discover that it is possible to collect a much larger set of target nodes by using 
a round robin scheme, which switches between different types of classifers (e.g., 
Logistic Regression, Random Forests) when predicting labels in different steps. We 
show that this strategy collects more target nodes by (a) diversifying the training data 
and (b) broadening the choices of nodes that can be queried in the future. Based on these 
observations, we propose Directed Diversity Dynamic Thompson Sampling (D3TS), 
a multi-armed bandit (MAB) algorithm for non-stationary stochastic processes that 
intelligently selects a classifer at each step to decide which neighbor to query. This is 
in sharp contrast with ensemble techniques, which combine predictions from several 
classifers at each step. We show that these techniques (e.g., bagging and boosting) do 
not perform as well as D3TS due to the tunnel vision effect. 

Unlike typical MAB problems, where there is a clear exploration and exploitation 
tradeoff, the standard MAB approach, which forces convergence to the “best classi-
fer”, would be suboptimal in the presence of the tunnel vision effect. This gives rise 
to what we refer as exploration, exploitation, and diversification tradeoff. D3TS aims 
to induce continual diversifcation w.r.t. training data and potential node choices by 
using multiple distinct classifers, which plays a similar role to sample independence 
and eases the tunnel vision effect. 

Interestingly, we fnd that even a round-robin selection of fve distinct classifers 
often performs better than just using the best classifer or the best active search method 
for each dataset. Consider simulation results shown in Fig. 1 (the simulation is further 
explained in Sect. 6.1, for now we focus only on the overall results). Figure 1 shows 
the number of queries (x-axis) against the number of target nodes found in the CiteSeer 
paper co-citation network (NIPS papers as targets) normalized by the number of target 
nodes found by a round robin selection of fve distinct simple classifers (y-axis); the 
details of these simple classifers are given in Sect. 3.Note that over time the cumulative 
gain of the best active search method for this dataset (Wang et al. 2013) slowly erodes 
until it is worse than the naïve round-robin approach. Our analysis shows that this 
erosion can be attributed to the tunnel vision effect. Each of the fve simple classifers 
when used on their own are consistently outperformed by the round-robin approach, 
and the best such classifers also suffer from a performance erosion over time. In 
contrast, our proposed method, D3TS, consistently and signifcantly outperforms state-
of-the-art methods, the round-robin approach, and naïve approaches. 
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CiteSeer: NIPS papers 
Round−Robin 
MOD 
Active Search 
SV Regression 
Random Forest 
ListNet 
D3TS

# 
ta

rg
et

s 
fo

un
d 

(n
or

m
. b

y 
R

ou
nd

−R
ob

in
)

0.
90

 
0.

95
 

1.
00

 
1.

05
 

1.
10

 

0 500 1000 1500 

# queried nodes (t) 

Fig. 1 Lines show the (scaled) average number of targets found by round-robin, fve naïve classifers and 
D3TS against the total number of queries (t). Shadows indicate 95% confdence intervals over 80 runs, each 
starting at a seed uniformly chosen from target population. Surprisingly, round-robin use of fve classifers 
(including poor-performing ones) outperforms any single classifer in the CiteSeer network. We also see 
that the best-performing active search method (Wang et al. 2013) has its relative accuracy eroded over time 
(and we will see why this is likely due to the tunnel vision effect). We include the proposed method (D3TS) 
results, which are consistently better than all competing methods for t ≥ 500. 

The contributions of this work are as follows: 

1. Formulation and characterization of Selective Harvesting and Classifier Diversity 
We introduce selective harvesting and show that state-of-the-art methods such as 
active sampling (Pfeiffer et al. 2012; Bnaya et al. 2013) and active search (Garnett 
et al. 2011; Wang et al. 2013; Ma et al. 2015) perform poorly in these settings. We 
show that switching between various classifers is helpful to achieve greater per-
formance. This works not because we are exploring classifers in order to fnd the 
best one or because we are combining their predictions as an ensemble. Instead, the 
use of multiple classifers—helps improve accuracy in two complementary ways. 
It achieves border set diversity, by exploring regions and thus avoiding remaining 
in a region where target nodes have been depleted. It also achieves training sample 
diversity, where diverse classifers create enough diversity of observations to ease 
the tunnel vision effect. 

2. Directed Diversity Dynamic Thompson Sampling (DTS3) we propose D3TS, a 
method for selective harvesting which combines different classifers, and show 
that it consistently outperforms state-of-the-art methods. We evaluate the proposed 
framework on several real-world networks and observe that D3TS outperforms all 
tested methods on fve out of seven datasets and exhibits similar performance on 
the other two.1 

Outline In Sect. 2 we formalize the selective harvesting problem and present 
a generic algorithm for solving it. In Sect. 3 we describe existing and potential 
approaches to solve this problem and show that the tunnel vision effect hurts their 

1 The software and scripts to reproduce results presented in this work are available as an R package http:// 
bitbucket.com/after-acceptance. All the data used in this work is publicly available from different sources. 
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performance. In Sect. 4 we investigate why classifer diversity—i.e., using multiple 
classifers—can mitigate the tunnel vision effect. We propose D3TS in Sect. 5. Datasets 
and results of our evaluation are described in Sect. 6. Related work is described 
in Sect. 7. In Sect. 8 we discuss alternatives to the proposed method and explain 
why they cannot be applied or why they do not perform well. Last, our conclusions 
are presented in Sect. 9. 

2 Problem formulation 

In this section we formalize the selective harvesting problem and introduce notation 
used throughout this work. Let G = (V, E) denote an undirected graph representing 
the network topology. Each node v ∈ V has M attributes (domain-related properties 
of the nodes) encoded without loss of generality as an attribute vector av ∈ R

M . 
In active search problems, the goal is to fnd a large set of nodes in V that satisfy a 

given search criterion (e.g., nodes that exhibit a given attribute) under the constraint 
that no more than T nodes can be queried. The search criterion is a boolean function 
f : V → {0, 1}. Formally, let V+ ⊂ V be the set of all target nodes, i.e. all v such that 
f (v) = 1. We defne node labels yv as 

� 
1  if  v  ∈ V+, yv = f (v) = ∀v ∈ V
0 otherwise. 

Selective harvesting is a variant of active search. In active search, the topology is 
assumed to be known. In selective harvesting, the search is subject to a limited but 
evolving knowledge of the network. This knowledge is expanded by querying nodes 
in V , which reveals their labels, neighbors and attribute vectors. A set of pre-queried 
nodes Q0 ⊂ V is given as input (typically consisting of one target node). Subsequent 
queries are restricted to neighbors of already queried nodes. 

At any step t , nodes belong to one of three sets: Qt , the set of previously queried 
nodes; Bt , the set of neighbors of queried nodes that have not been queried (referred 
as border nodes or border set); or Wt , the set of unobserved nodes, which are invisible 
to the algorithm. Figure 2 illustrates a snapshot of the search process (see caption for 
details). � �Let Gt = (Qt , Et ) denote the subgraph of G given by the subgraph induced by 
nodes in Qt  Bt minus edges in the subgraph induced by Bt (i.e., Gt contains all � 

�edges between nodes in Qt plus edges connecting Qt to Bt ). The graph Gt is the 
portion of the network visible at step t . In  G�t , label yv is only known for nodes in Qt . 

Generic solution Given an initial input graph G0, an algorithm for selective har-� 

vesting must decide at each step t = 1, . . . , T what action to take, i.e., what border 
node v ∈ Bt to query, given the currently available network information. This action 
returns v’s label, attributes and connections, which is included as additional input to 
the search in step t + 1. Node v label (0 or 1) can be thought of as the payoff obtained 
by querying that node. The algorithm’s output is the list of target nodes found in T 
steps. The best algorithm is the one that yields the largest total payoff, i.e., yields the 
largest number of target nodes. 
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Fig. 2 Representation of the 
search state over an unknown 
graph G after t = 4 steps. Solid 
nodes and edges show the 
subgraph Gt . Black nodes � 

represent queried nodes. 
Unknown labels of nodes in Bt 
are represented by a question 
mark “?”. 

3 Background 

In this section, we review methods for searching networks that can be used for or 
adapted to selective harvesting. These methods exploit correlation between labels of 
connected nodes to fnd targets. In addition, we review statistical models that could 
be used as an alternative (data-driven) approach. In contrast to existing methods, 
this approach can leverage node attributes by training a statistical model to infer the 
node’s label from the observed graph. As a slight abuse of terminology, we may refer 
to existing methods and base learners generically as classifers, since both are used to 
infer border nodes’ labels. 

3.1 Existing methods 

A few works in the literature provide methods that can be used for or adapted to 
selective harvesting. A subclass of selective harvesting methods known as active sam-
pling (Pfeiffer et al. 2012; Bnaya et al. 2013) does not account for node attributes. 
Our problem is closely related to the graph-theoretic myopic budgeted online cover-
ing problem (Avrachenkov et al. 2014; Khuller et al. 2014; Borgs et al. 2012). In this 
problem, all nodes are relevant (equivalently, all nodes are targets) and the task is to 
fnd a connected set of nodes that yields the largest cover (i.e., the largest set Qt   Bt 

set). The closest problem to ours is that addressed by active search on graphs (Garnett 
et al. 2011; Wang et al. 2013; Ma et al. 2015), where nodes have hidden labels but the 
topology and edge weights are fully observed and any node can be queried at any time. 
Algorithms for myopic budgeted online covering and active search can be adapted for 
selective harvesting; active sampling methods require little or no modifcation. 

We adapt four representative methods of the above to selective harvesting: active 
sampling (Pfeiffer et al. 2012) (PNB—in reference to the authors surnames), max-
imum observed degree (MOD) (Avrachenkov et al. 2014), social network UCB1 
(SN-UCB1) (Bnaya et al. 2013), and active search (AS) (Wang et al. 2013). Table 1 
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Table 1 Comparison of heuristics for selective harvesting 

PNB (Pfeiffer SN-UCB1 (Bnaya MOD (Avrachenkov AS (Wang D3TS 
et al. 2012) et al. 2013) et al. 2014) et al. 2013) (ours) 

Unknown network � � � – � 
Uses node features – – – – � 
Unknown – – – – � 
neighbor 
attributes 

Fits model to – � – – � 
evolving 
observations 

Scalable – � � � � 

PNB Active sampling, SN-UCB1 social network UCB1, MOD maximum observed degree, AS active search 

summarizes the key differences between these methods and the proposed method, 
D3TS. 

Active Sampling (PNB) PNB is a representative algorithm from the class of active 
sampling approaches proposed in Pfeiffer et al. (2012). PNB estimates a border node’s 
payoff value yv using a weighted average of the payoffs of observed nodes two hops 
away from v, where weights are the number of common neighbors with v. Border 
nodes are included among these observed nodes, requiring all payoffs to be collectively 
estimated by a label propagation procedure based on Gibbs Sampling. PNB also tracks 
a running average of payoff values acquired from random jumps, which we do not 
allow in our simulations since these are not possible in selective harvesting. Please 
see Pfeiffer et al. (2012) for a detailed description of PNB’s parameters. 

Social Network UCB1 (SN-UCB1) The SN-UCB1 search algorithm proposed 
in Bnaya et al. (2013) divides border nodes into equivalence classes and samples 
from theses classes using a multi-armed bandit algorithm. Equivalence classes are 
composed of all border nodes connected to the same set of queried nodes. These 
classes are volatile: they split, disappear and appear over time, requiring the use of a 
variant of the UCB1 called VUCB1. Although this method learns about the equiva-
lence classes, it does not learn a statistical model that can account for node attributes. 
Similar to selective harvesting, it assumes partial but evolving knowledge about the 
network. 

Maximum Observed Degree (MOD) MOD is a myopic algorithm proposed in 
Avrachenkov et al. (2014) to maximize the network cover as it explores a graph. 
MOD is the optimal greedy cover algorithm in a fnite random power law network 
[under the Confguration Model (Newman 2003)] with degree distribution coeffcient 
either one or two. In our simulations we adapt MOD to select the border node with the 
maximum number of target neighbors in the queried set (ties are resolved randomly). 
From the expected excess degree results in Avrachenkov et al. (2014) such border 
nodes are rich with target neighbors provided that the underlying network exhibits 
strong homophily with respect to node labels. 

Active Search this method, proposed by Wang et al. (2013), attempts to fnd target 
nodes by assuming that labels are defned by a smooth function over the graph edges. 
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To estimate the unknown labels, it attaches to each labeled instance a virtual node 
containing the instance’s label and then performs label propagation on the original 
graph. It assumes that the graph is known, which allows it to estimate the future impact 
of choosing a given border node. We adapt Active Search to run label propagation only 
on the observed graph.2 

3.2 Data-driven methods 

A data-driven selective harvesting algorithm trains a statistical model to estimate the 
expected payoff μt (v) obtained from querying border node v ∈ Bt , based on v’s �relationship with the observed graph Gt at step t . We encode this relationship as a 
“local” feature vector x � , which we describe next. Note that v’s features differ from v|Gt 
v’s attributes (denoted by av). Since v’s attributes are not observable until it is queried, �we compute v’s local features from the observed graph Gt to use as training data for 
base learners. 

3.2.1 Feature design 

We defne features for each border node in v ∈ Bt . They are divided into: 

– Pure structural features observed degree and number of triangles formed with 
observed neighbors. 

– Structure-and-attribute blends number and fraction of target neighbors, number 
and fraction of triangles formed with two non-target (and with two target) neigh-
bors, number and fraction of neighbors mostly surrounded by target nodes, fraction 
of neighbors that exhibit each node attribute, probability of fnding a target exactly 
after two random walk steps from border node.3 

We build upon features typically used in the literature (Robins et al. 2007a, b). We 
also use a Random Walk (RW) transient distribution to build features: we consider the 
expected payoff observed by a RW that departs from node u ∈ Bt and performs two 
steps, given by � � 

(RW) (u,v)∈E�t (v,w)∈E�t ,w∈Qt
yw 

x = (1) �u|Gt C �u|Gt

�where C � is the number of such paths of length two in Gt . Note that the RW is u|Gt 
not restricted to the immediate neighbors of u. Also, this is not an average among the 
nodes two hops away from u; this feature depends on the connectedness of the border 
node’s neighborhood in the observed graph. 

2 Although the method proposed by Wang et al. (2013) is outperformed by a more recent proposal Ma et al. 
(2015) in active search problems, we found the opposite to be true when the graph is not fully observable. 
In addition to being highly sensitive to the parameterization, the most recent method computes and stores 
a dense correlation matrix between all visible nodes, which is hard to scale beyond 105 nodes. 
3 Other seemingly obvious features (e.g., number of non-target neighbors) are not considered due to 
collinearity. Longer random walk paths are too expensive to be used in most real networks. 
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3.2.2 Base learners 

The feature vector described above can be given as input to any learning method 
able to generate a ranking of border nodes. We consider classifcation, regression and 
ranking methods as suitable candidates for this task. The classifcation representatives 
include Logistic Regression and Random Forests, because they provide ways to rank 
border nodes according to how confdent the model is that each border node is a target. 
Exponentially Weighted Least Squares (EWLS) and Support Vector Regression are 
included by modeling the task as a regression problem, and the list-wise learning-
to-rank method ListNet (Cao et al. 2007) for directly outputting ranks. We briefy 
describe EWLS and ListNet below and refer the reader to Friedman et al. (2009) for  
descriptions of other methods. 

Exponentially Weighted Least Squares (EWLS) computes weights w that, given 
a forgetting factor 0 � β ≤ 1 and regularization parameter λ, minimize the loss 
function 

t � � � 2 
t−i � � t 2β �yt − xt w� + β λ w . 

i=1 

EWLS gives more weight to recent observations. The weights w are suitable for fast 
online updates (Liu et al. 2011, Section 4.2). Setting β = 1 reduces EWLS to �2-
regularized Linear Regression. 

ListNet This is a representative method from the list-wise approaches for learning to 
rank (a Machine Learning task where the goal is to learn how to rank objects according 
to their relevance to a query) (Cao et al. 2007). It assumes that the observed ranking π 
is a random variable that depends on the objects’ scores (where π1 is the top-ranked 
object). The scores are determined by a neural network that is trained by minimizing 
the K–L divergence between the probability distribution over π̂ and the probability 
distribution over a ranking π derived from ground-truth scores. In our context, P(π) 
is given by 

⎡ ⎤ |Bt | |Bt |�   �  �  � ⎦P π =� π1, ..., π|Bt | = ⎣exp yπi exp yπ j . 
i=1 j=i 

Since the goal is not to predict the object-wise relevance, all of the statistical power 
of this method goes into learning the ranking. 

As with any learning approach, in the “small data” regime (few observations 
collected) a base learner may perform worse than heuristic methods that assume 
homophily w.r.t. node labels. To mitigate issues related to ftting a learner to few 
observations and yet allow a fair comparison with the heuristic methods, we query the 
frst 20 nodes using MOD.4 

4 In comparison to other combinations of length and heuristic used in the “cold start” phase, this was found 
to work best. 
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4 Tunnel vision and the power of classifer diversity 

In selective harvesting the goal is to fnd the most number of target nodes with a 
limited query budget. This requires methods to try to sample only promising target 
nodes, which causes a given classifer to gather increasingly biased training data, a 
phenomenon that we call tunnel vision effect. Unfortunately, it is unlikely that we can 
fnd a method which provably compensates for this bias in our training data, Qt . Even  
if we query border nodes randomly at each step, we cannot determine the probability 
of seeing any given node in the border set Bt , as this would require assessing the 
probability of all possible sample paths from the given seed nodes, which includes 
paths containing nodes not yet observed, i.e., nodes in Wt in Fig. 2, an unfeasible task 
as we do not know the network topology. This is likely why active search and base 
learners by their own do not work well for selective harvesting tasks. This is also why 
importance weighted sampling (Beygelzimer et al. 2009) cannot be used to remove 
the bias in these tasks. 

To demonstrate the tunnel vision effect and show how classifer diversity can 
mitigate it, we conduct a large set of simulations. We simulate searches using four 
heuristics—MOD, PNB, Social Network-UCB1 (SN-UCB1) and Active Search, fve 
base learners—Logistic Regression, Exponentially Weighted Least Squares (EWLS), 
Support Vector Regression, Random Forest and ListNet on seven networks and sum-
marize the results in Table 2 (network datasets and target populations are described in 
Sect. 6.1). We observe that the best classifer varies across datasets. More surprisingly, 
the best classifer for one dataset may be the worst for another (see Active Search on 
Wikipedia and on DonorsChoose). 

We then consider a set of classifers M that typically exhibit good performance 
and cycle between them during the search, in a round-robin (RR) fashion. Based on 
Table 2, we pick  M={MOD, Active Search, Support Vector Regression, Random 
Forest, ListNet}.5 We use this set of classifers throughout the rest of this paper, 
unless otherwise noted. One might expect RR’s performance to be the average of the 
performance results yielded by the standalone counterparts, but this is not the case. 
Interestingly, switching classifers at each step outperforms the best classifer in M 
on the CiteSeer and Kickstarter datasets, and fnds at least 92% as many target nodes 
as the best classifer on other datasets. In what follows we investigate why the use of 
multiple classifers can improve selective harvesting’s performance. 

4.1 Leveraging diversity through the use of multiple classifers 

We observe that RR outperforms all fve classifers in M on CiteSeer (Table 2). 
Consequently, at least one of them must perform better under RR than on its own. In 
order to identify which ones do, we show in Fig. 3 the hit ratio—number of target nodes 
found divided by number of queries performed using each classifer up to time t— 

5 We choose MOD in lieu of PNB because MOD is orders of magnitude faster. Among the base learners, 
we choose one representative of regression (SV Regression), classifcation (Random Forest) and ranking 
(ListNet) methods. 
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Table 2 Average number of targets found by each method after T queries based on 80 runs 

Methods Datasets (budget T ) 

CS DBP WK DC KS DBL LJ 
(1500) (700) (400) (100) (700) (1200) (1200) 

PNB 833.2∗ 260.6∗ 107.7∗ 24.3∗ 178.3∗ 599.5∗ 632.4∗ 

SN-UCB1 568.9∗ 272.3∗ 71.8∗ 23.2∗ 133.2∗ 399.1∗ 573.7∗ 

MOD � 746.8∗ 403.0∗ 140.9∗ 35.7∗ 159.6∗ 580.3∗ 584.1∗ 

Active Search � 808.9∗ 412.2∗ 143.4 22.6∗ 215.3∗ 684.9∗ 654.2∗ 

Logistic Regression 764.5∗ 452.5 86.2∗ 35.8 122.1∗ 744.4 732.0 

Random Forest � 738.5∗ 454.0∗ 127.2∗ 37.2 215.6∗ 725.4 728.3∗ 

EWLS 808.2∗ 462.4 82.5∗ 35.2∗ 142.3∗ 656.9∗ 694.4∗ 

SV Regression � 770.6∗ 456.3∗ 85.0∗ 37.6 205.3∗ 757.1∗ 736.1 

ListNet � 742.0∗ 448.0∗ 92.5∗ 34.4∗ 146.3∗ 730.7 742.8 

Round-robin (all �) 822.2∗ 454.5∗ 135.3∗ 37.3 234.9∗ 696.0∗ 716.0∗ 

D3TS (all �) 851.2 464.0 144.7 37.9 247.6 729.5 737.3 

Target population size 1583 725 202 56 1457 7556 1441 

Budget T is respectively set to number of targets ×1, ×1, ×2, ×2, × 12 , × 16 , × 6
5 truncated to hundreds. 

First four rows correspond to existing methods; fve subsequent rows are base learners. Round-robin and 
D3TS combine methods indicated by (�). Means whose difference to D3TS’s is statistically signifcant at 
the 95% confdence level are indicated by (∗). Best two results on each dataset are shown in bold. 
Datasets: CS CiteSeer, DBP DBpedia, WK Wikipedia, DC DonorsChoose, DBL DBLP, KS Kickstarter and 
LJ LiveJournal 
Parameters: PNB same as in Pfeiffer et al. (2012), Active Search same as in Wang et al. (2013), ELWS 
β = .99, λ = 1.0, Logistic Regression and SV Regression penalty C set using fast heuristic implemented in√ 
R package LiblineaR (Helleputte 2015), Random Forest no. variables = no. features, number of trees 
= 100 [DBL and LJ use classical decision trees for speed, others use conditional inference trees (Hothorn 
et al. 2006)], ListNet no. iterations = 100, tolerance = 10−5 

under RR and when used by itself, averaged over 80 runs. Interestingly, after t = 400 
all classifers exhibit similar (relative difference ≤10%) or better performance under 
RR than when used alone. 

We propose two hypotheses to explain this performance improvement: 

(a) Border hypothesis RR explores regions of the graph containing more targets that 
are likely to be scored high by a classifer, i.e. RR infuses diversity in the border 
set. 

(b) Training hypothesis Observations from different classifers can be used to train 
the others to generalize better and cope with self-reinforcing sampling biases, i.e., 
diversity in the training set produces a classifer that is better at fnding target 
nodes. 

Note that these hypotheses are not mutually exclusive. In what follows, we perform 
controlled simulations to isolate and study each hypothesis. 

Training set diversity directly impacts model parameters. Model parameters, in 
turn, determine how the border set will change. Therefore, to assess the impact of 
training set diversity we must hold the border set diversity constant and vice-versa. 
This is the key idea behind the two controlled sets of simulations described next. To 
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Fig. 3 Round-robin can have higher hit ratios for each of its classifers than their standalone counterparts 

perform them, we instrumented our simulator to load, from another simulation run, 
(i) the feature vector x � of node σt queried in step t , and label yσt , and (ii) the σt |Gt 

observed graph G�t at each step t . In what follows, we show the results obtained using 
the support vector regression (SVR) model. We denote node σt ’s feature vector and 
label simply by xt and yt , respectively, to make it easier to follow. 

Border hypothesis Our experiment consists of three stages (Fig. 4a). First, 
we store the sequence of observations (i.e., pairs feature vector, label) OSVR = 
((x1, y1), . . . , (xT , yT )) corresponding to nodes queried when searching a network 
dataset D using SVR. Second, we store the sequence of observed graphs GRR = �  � � �G1, . . . ,GT when searching D by cycling between models in the set M. Last,  we  
simulate another SVR-based search on D, loading the observed graph at each time step 
t from G�RR. However, instead of training the SVR model with observations collected 
on that run (which most likely differ from those collected during the frst stage), we 
gradually feed it with observations from OSVR, one for each simulation step t . There-
fore, we will reproduce the sequence of classifers from the frst stage, but subject to 
a different sequence of observed graphs. 

Training hypothesis As before, our experiment consists of three stages (Fig. 4b). In  � � �the frst stage, we store the sequence of observed graphs G�SVR = G1 � , . . . ,G� whenT 
searching D using a SVR model. Second, we store the sequence of observations ORR =  �� � � �(x1, y1), . . . , (xT , yT ) collected when searching D by cycling among classifers in 
M. Last, we simulate another SVR-based search, loading the observed graph at each 
time step t from G�SVR, but feeding it observations from ORR, one by one. Hence, the 
classifer is ft to a different set of observations, but the search is subject to the same 
sample path as the SVR-based search from the frst stage. 

Figure 5 contrasts the average number of target nodes found by the original SVR-
based search on CiteSeer against those obtained in each set of simulations based on 
80 runs. The 95% confdence intervals for the mean at t = 700 are [393.8, 413.1], 
[416.6, 427.5] and [417.1, 436.7]. These statistics corroborate the hypotheses that 
the border set and the training data collected by the round-robin policy contribute to 
improving the performance of the SVR model. 

Intuitively, when a base learner is ft to the nodes it queried, it tends to specialize 
in one region of the feature space and the search consequently only explores similar 
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(a) Simulations for studying Border Hypothesis 

(b) Simulations for studying Training Hypothesis 

Fig. 4 a We study the border hypothesis by recreating the sequence of SVR models from the original 
simulation run (stage 1) and using them to query nodes on a sequence of observed graphs collected using 
round-robin (stage 2). b We study the training hypothesis by recreating the sequence of observed graphs from 
the original simulation run (stage 1) and using a SVR trained on the samples collected using round-robin 
(stage 2) to query nodes 

parts of the graph, which can severely undermine its potential to fnd target nodes. One 
way to mitigate this overspecialization would be to sample nodes from the border set 
probabilistically, as opposed to deterministically querying the node with the highest 
score. This alternative is investigated in Appendix B, where the ranking associated 
with each classifer is mapped into a probability distribution. The results show no 
signifcant performance improvement over those obtained when a single classifer 
chooses nodes to query deterministically. 

The round-robin policy infuses diversity in the training set without sacrifcing per-
formance. This diversity is achieved by “asking another classifer” what is the best 
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Fig. 5 SVR classifer and two ways to ease the tunnel vision effect: border set diversity and training set 
diversity improve performance by ensuring greater diversity in query choices and by diversifying the training 
data, respectively. 

node to query at a given step. In scenarios where all classifers would have performed 
reasonably well if used alone, learning from another’s classifer query is likely to 
improve one classifer’s ability to fnd targets, especially when they disagree. 

Yet, different classifers inherently exhibit different performances on a dataset. 
Clearly, we want to choose more accurate classifers more often, but in order to do so, 
three challenges must be addressed: 

1. We do not know a priori which classifers are more accurate on a dataset; 
2. Classifers’ accuracy varies as their parameters are updated and the border set 

changes; 
3. Continual exploration must be ensured, since converging to an arm would make 

the search more susceptible to the tunnel vision effect. 

Challenge (1) is typically addressed by multi-armed bandit (MAB) algorithms. Chal-
lenge (2) constrains the set of possible MAB algorithms to those designed for MAB 
problems with non-stationary reward distributions. Challenge (3) is specifc to selec-
tive harvesting (the exploration-exploitation-diversifcation trade-off). In the following 
section, we propose a method that addresses all these challenges. We call it Directed 
Diversity Dynamic Thompson Sampling because it is based on the Dynamic Thomp-
son Sampling algorithm for MAB problems and because it leverages diversity in a 
“directed way” as opposed to randomly sampling nodes. 

5 Directed Diversity Dynamic Thompson Sampling (D3TS) 

This section is divided in two parts. First, we discuss the relationship between selective 
harvesting and multi-armed bandits. Then, in the light of this discussion, we propose 
the D3TS algorithm. 
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5.1 Relationship between selective harvesting and multi-armed bandits 

Selective harvesting with multiple classifers can be cast as a multi-armed bandit 
(MAB) problem. In a MAB problem, a forecaster is given the number of arms K 
and the number of rounds T . For each round t , nature generates a payoff vector 
rt = (r1,t , . . . , rK ,t ) ∈ [0, 1]K unobservable to the forecaster.6 The forecaster chooses 
an arm It ∈ {1, . . . , K } and receives payoff rIt ,t , with the other payoffs hidden. The 
goal is to maximize the cumulative payoff obtained. MAB problems can be classifed 
according to how the payoff vector is generated. In stochastic bandit problems, each 
entry ri,t in the payoff vector is sampled independently, from an unknown distribution 
 i , regardless of t . In adversarial bandit problems, the payoff vector rt is chosen by an 
adversary which, at time t , knows the past, but not It . Stochastic and adversarial bandits 
do not cover the entire problem space, as the payoff vector distribution may vary over 
time in a less arbitrary way than in adversarial bandits. In stochastic bandit problems 
with non-stationary distributions or dynamic bandit problems, the mean payoff vector 
can evolve according to random shocks or change at pre-determined points in time. 
MAB problems may also include context, which provides the forecaster with side 
information about the optimal action at a given step. In contextual bandits, a context 
xa,t is drawn (from some unknown probability distribution) for each action a ∈ At 

available in step t . The contextmaybe provided explicitly or through recommendations 
of a set of experts. 

In selective harvesting, the sequential decision problem consists of choosing the 
node to query at each step, given recommendations from several models. There are 
two ways of mapping selective harvesting to a MAB problem. The frst (and simplest) 
mapping is context-free. Eachmodel is represented by an arm (i.e., the problem reduces 
to one of choosing a model at each time step). Models are treated as black boxes that 
will “internally” query a node and return the node’s label. The queried node’s label 
is seen as the model’s payoff. The second mapping falls into the class of contextual 
bandits. Each border node represents an action and eachmodel represents an expert that 
provides recommendations on how to choose the actions. Node features correspond 
to action contexts, which are used by the experts to compute their recommendations. 

Despite the potential advantage of accounting for node features directly and com-
bining the advice of several models, most algorithms for contextual bandits assume 
fxed and small (relative to the time horizon) sets of actions, whereas the border 
set is dynamic and potentially orders of magnitude larger than the query budget. 
Among context-free bandits, we claim that algorithms for stochastic bandits with non-
stationary distributions are the best candidates for combining classifers in selective 
harvesting, as we observe that the average hit ratio can drift over time (Fig. 3). While 
adversarial bandits allow payoff distributions to change arbitrarily, they cannot exploit 
the fact that the mean payoff evolves in awell-behavedmanner. A thorough comparison 
of several bandit algorithms described in Appendix C supports our claim. Our compar-
ison includes the Exp4 and Exp4.P algorithms for contextual bandits, which combine 
the prediction of all classifers in a similar way that traditional ensemble methods do. 

6 In general, rewards can be normalized to be in [0, 1]. 
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Algorithm 1 D3TS (budget T , model set M, threshold C ≥ 2) 
1: � Assume Bt is updated after each iteration. 
2: for t in 1, . . . ,  T do 
3: for k in 1, . . . ,  |M| do 

(k)4: r̂t ∼ Beta(αk , βk ) 
(k)5: It = arg maxk∈1,...,K r̂t �6: ŷ = estimate payoffs using classifer It and Gt

7: b = arg max ŷvv∈Bt 
8: rt = yb = query(b) 
9: if αIt + βIt < C then 
10: αIt = αIt + rt 
11: βIt = βIt + (1 − rt ) 
12: else 
13: αIt = (αIt + rt ) × C/(C + 1) 
14: βIt = (βIt + (1 − rt )) × C/(C + 1) 

15: M = update or retrain classifers given new point (xb| � , yb)Gt 

5.2 Proposed algorithm 

For the reasons above, we adapt the Dynamic Thompson Sampling (DTS) algorithm 
Gupta et al. (2011) proposed for MABs with non-stationary distributions to the selec-
tive harvesting problem. DTS is based on the Thompson Sampling (TS) algorithm for 
stochastic MABs, where binary outcomes associated with each arm k = 1, . . . ,  K are 
modeled as Bernoulli trials. The uncertainty on the probability parameter associated 
with arm k is typically modeled as a distribution Beta(αk, βk). The Beta distribution 
is the conjugate prior for the Bernoulli distribution (thus providing computational 
savings on Bayesian updates). TS performs exploration by choosing arms proba-
bilistically, according to samples drawn from the corresponding distributions. More 

(k)precisely, at step t , TS samples r̂ ∼ Beta(αk, βk) and selects the arm with the largest t 
(k)sample, i.e., It = arg maxk∈1,...,K r̂ . Given the binary payoff rt received after select-t 

ing arm It , the distribution parameters are updated according to the Bayesian rule, i.e., 
αIt = αIt +rt and βIt = βk +(1−rt ). In essence, DTS normalizes arm k’s parameters 
such that αk +βk ≤ C , where C is a bounding parameter. We adapt DTS in two senses: 
(i) we combine DTS with the steps needed to perform search in selective harvesting 
problems and (ii) we set the threshold C to a much smaller value than the ones used 
in Gupta et al. (2011), which allows us to incur more diversity. This highlights an 
exploration, exploitation and diversification tradeoff in selective harvesting that goes 
beyond the duality found in classic MAB problems, as simply converging to one arm 
would be suboptimal. The pseudo-code for D3TS is shown in Algorithm 1. In what 
follows we compare D3TS against all approaches for selective harvesting discussed 
in Sect. 3. 

6 Simulations 

This section describes the datasets used in our simulations, together with simulation 
results and comparisons with baseline methods. 
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Table 3 High-level description of each network 

Dataset Nodes Edges Node attributes Target nodes 

DBpedia Places Hyperlinks Place type Admin. regions 

CiteSeer Papers Citations Venues Top venue 

Wikipedia Wikipages Links Topics OOP pages 

Kickstarter Donors Co-donors Backed projects DFA donors 

DonorsChoose Donors Co-donors Awarded projects P donors 

LiveJournal Users Friendship Enrolled groups Top group 

DBLP Authors Co-authorship Conference Top conference 

Table 4 Basic statistics of each Dataset |V| |E | M |V+|/|V| (%)
network 

DBpedia 5.00K 26.6K 5 14.5 

CiteSeer 14.1K 42.0K 10 13.1 

Wikipedia 5.27K 64.6K 93 3.83 

Kickstarter 27.8K 2.77M 180 5.27 

DonorsChoose 1.15K 6.60K 284 4.96|V| (number of nodes), |E |
(number of edges), M (number LiveJournal 4.00M 34.7M 5K 0.04 
of attributes) and |V+|/|V| DBLP 317K 1.05M 5K 2.38 
(fraction of target nodes) 

6.1 Datasets 

To evaluate the above search methods, we use seven datasets corresponding to undi-
rected and unweighted networks containing node attributes. In the following we 
describe each of the datasets summarized in Table 3. Basic statistics for each net-
work are shown in Table 4. 

The frst three datasets have been used as benchmarks for Active Search (Wang et al. 
2013; Ma et al. 2015). Despite the fact that Active Search assumes that the network 
topology is known, we can use these datasets to evaluate active search methods by only 
revealing parts of the graph as the search proceeds. We defne the target population as 
in the Active Search work. 

DBpedia A network of 5000 populated places from the DBpedia ontology formed 
by linking pairs whose corresponding Wikipedia pages link to each other, in either 
direction. Places are marked as “administrative regions”, “countries”, “cities”, “towns” 
or “villages”. Target nodes are the “administrative regions”. 

CiteSeer A paper citation network composed of the top ten venues in Computer 
Science. Papers are annotated with publication venue. Target nodes are the NIPS 
papers. 

Wikipedia A web-graph of wikipages related to programming languages. Pages are 
annotated with topics obtained by thresholding a pre-computed topic vector (Wang 
et al. 2013). Target nodes are webpages related to “object oriented programming”. 
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Two network datasets from the Stanford SNAP repository (Leskovec and Krevl 
2014) typically used to validate community detection algorithms are also used. We 
label nodes belonging to the largest ground-truth community as targets. Other com-
munity memberships are used to defne a binary attribute vector av ∈ {0, 1}M for all 
v ∈ V . 

LiveJournal A blog community with OSN features, e.g.: users declare friendships 
and create groups that others can join. Users are annotated with the groups they joined. 

DBLP A scientifc collaboration network where two authors are connected if 
they have published together. Authors are annotated with their respective publication 
venues. 

Last, we use datasets containing donations to projects posted on two online crowd-
funding websites. To assess the performance of each classifer in low correlation 
settings, we build a social network connecting potential donors where edges are weak 
predictors of whether or not neighbors of a donor will also donate. We label nodes as 
targets if they donated to a specifc campaign. Historical donation data prior to that is 
used to build the network and defne node attributes. 

Kickstarter(.com) An online crowdfunding website. This dataset was collected by 
GitHub user neight-allen and consists of 3.04M donors that together made 5.87M 
donations to 87.3K projects. We create a donor-to-donor network by connecting donors 
that donated to the same projects in the past. More precisely, we assume that backers 
of small unsuccessful campaigns (between 100 and 600 backers) are all connected in 
a co-donation network—say, their names are published on the campaign’s website. 
We choose campaigns with few donors so that the resulting network is sparse and the 
network discovery problem challenges D3TS. Our dataset has 180 small unsuccessful 
projects between 04/21/2009 and 05/06/2013, containing a total of 27.8K donors. We 
then choose the 2012 project (denoted DFA) that has the largest number of donors in 
our dataset. The goal of the recruiting algorithm is to recruit the 2012 DFA donors 
through the donor-to-donor network of past donations (2009–2011). 

DonorsChoose(.org) An online crowdfunding website where teachers of US public 
schools post classroom projects requesting donations (e.g., for a science project). The 
dataset is part of the KDD 2014 Cup containing 1.29M donors that together made 
3.10M donations to 664K projects from 57K schools. Donations include information 
such as donor location, donation amount, awarded project, among other node features. 
As donors tend to be loyal to the same schools, we focus on the school that received 
the most donations in the dataset. We use projects from 2007 to 2012 to construct a 
donor-to-donor network where an edge exists between two donors if they donated to 
the same project less than 48 hours apart. We then select the project P in 2013 with 
the largest number of donations. 

6.2 Results 

In this section, we compare the performances of D3TS, round-robin (RR) and stan-
dalone classifers, w.r.t. the number of targets found at several points in time. We set 
the threshold C = 5 in D3TS and parameters of all classifers as in Table 2. 

We simulate selective harvesting on each dataset for a large budget T , chosen in 
proportion to the target population size (e.g., for DonorsChoose we set T = 100, 
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Table 5 Performance ratios: Dataset
between RR (D3TS) and average 
of top k = 1, 3, 5 standalone 
classifers 

CiteSeer 

DBpedia 

Wikipedia 

DonorsChoose 

Kickstarter 

DBLP 

LiveJournal 

Avg top 5 

RR D3TS 

1.04 1.07 

1.01 1.03 

1.16 1.20 

1.06 1.05 

1.23 1.24 

0.96 1.00 

0.98 1.02 

Avg top 3 

RR D3TS 

1.02 1.05 

1.00 1.02 

1.05 1.08 

1.04 1.04 

1.13 1.14 

0.94 0.98 

0.97 1.00 

205 

Avg top 1 

RR D3TS 

1.00 1.03 

0.98 1.01 

0.97 1.01 

1.01 1.00 

1.11 1.12 

0.92 0.96 

0.96 0.99 

for Kickstarter we set T = 1500). In order to contrast RR’s and D3TS’ performance 
against that obtained if side information about the identity of the top k performing 
classifers on a given dataset were available, Table 5 lists ratios between RR’s (and 
D3TS’) performance and the average performance of the top k = 1, 3, 5 standalone 
classifers.Note thatwe consider the top k from all nine standalone classifers described 
in Sect. 3, not only the classifers used by RR (and D3TS). Top classifers vary across 
datasets. 

Overall, we observe that RR’s performance is comparable to that of the top three 
classifers and can sometimes outperform them (by up to 13%). In the worst case, RR’s 
performance is 92% of that of the best standalone classifer (DBLP). D3TS consistently 
improves upon RR and yields results at least as good as the best standalone classifer 
on all datasets except DBLP and LiveJournal, where its performance is respectively 
96 and 99% of that of the best classifer. D3TS outperforms the best classifer by up 
to 15% (Kickstarter). 

We now describe the results for each dataset in detail, except for CiteSeer, which 
was discussed in the introduction. Figure 6 contrasts the average number of targets 
found by RR and D3TS against those found by standalone classifers, scaled by RR’s 
performance. We include results for fve out of nine classifers (the same ones used in 
M) to avoid clutter. 

On DBpedia, LiveJournal, DonorsChoose and Kickstarter, even RR was able to out-
perform the existing methods, except for the initial steps (where absolute differences 
are small anyway). Moreover, on the frst two datasets, base learners outperformed 
existing methods. However, as shown in DonorsChoose and Kickstarter plots, a data-
driven classifer by itself does not guarantee good performance. 

On most datasets D3TS matches or exceeds the performance of the best standalone 
classifer. In particular, on Kickstarter, both RR and D3TS fnd signifcantly more target 
nodes than standalone classifers. While RR can leverage diversity from using multiple 
classifers to avoid the tunnel vision effect, D3TS goes beyond and intelligently decides 
which classifer to use without harming diversity. To illustrate this, we look at the 
fraction of times D3TS used a given classifer at turn t in 80 runs. Figure 7 shows this 
time series for DBpedia. From the small fraction of uses, we fnd that MOD performs 
poorly not only on its own, but also when used under D3TS. Fortunately, D3TS can 
learn classifers’ relative performances and adjust accordingly. 
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Fig. 6 Average number of targets found by round-robin (RR), D3TS and fve standalone classifers over 80 
runs. Shaded areas represent 95% confdence intervals. Arrows indicate minimum values for corresponding 
colors’ classifers, when off-the-chart. Standalone classifers are often outperformed by RR. D3TS improves 
upon RR

 DBpedia: admin. regions 

MOD 
ActiveSearch 
SV Regression 
RForest 
ListNet 

0 200 400 600 800 1000 
# queried nodes (t) 

Fig. 7 D3TS: fraction of runs in which each classifer was used in step t (smoothed over fve steps) 

A closer look at the distribution of the number of targets found by each method 
highlights an important advantage of leveraging diversity. Figure 8 shows boxplots of 
RR and D3TS performance in each dataset, for several points in time.7 On Wikipedia, 
DonorsChoose and Kickstarter, although some of the classifers used by RR and D3TS 

7 The box extremes in our boxplots indicate lower and upper quartiles of a given empirical distribution; its 
median in marked in between them. Whiskers indicate minimum and maximum values. 
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Fig. 8 RR and D3TS can perform well even when including classifers that perform poorly as standalone 

yield poor results on their own, RR and D3TS still attain large mean and low vari-
ance. D3TS was only outperformed by a standalone classifer on DBLP (statistically 
signifcant). Because DBLP has the largest number of target nodes in the border set 
(on average) over all datasets, classifers are less likely to be penalized by the tunnel 
vision effect on DBLP. 

In Appendix A we provide complementary results from ten additional datasets 
derived from the same data. Once again these results attest for the robustness of the 
proposed method. 

6.3 Classifer combinations 

We also conducted an exhaustive set of simulations where we consider all 31 com-
binations of these fve classifers under D3TS. We restrict this analysis to a set of 
networks D composed of the fve smaller datasets. Suppose we had an oracle that 
could tell which combination of classifers performs best on a dataset D ∈ D. We can 
then defne the (normalized) regret of a classifer set M on D as 

N+(M, D)
R(M, D) = 1 − 

maxM� N+(M� , D) 

where N+(M, D) is the number of target nodes found by M on D. If we defne the 
optimal combination to be the one that minimizes the maximum regret, i.e., M = 
arg minM maxD∈D R(M, D), then M indeed includes all fve classifers (maxi-
mum regret is 2.8%). Otherwise, if we defne the optimal combination M† to be the � 
one that minimizes the average regret, i.e., M† = arg minM D∈D R(M, D)/|D|, 
then M† is the combination composed of MOD, Active Search, SVR and Random 
Forest (average regret is 0.9%). We note, however, that the performance obtained 
by combination M on each dataset is at most 0.7% smaller than that obtained by 
M† (in the case of CiteSeer). Moreover, we observed that combining two classifers 
improves results in about 84% of the cases w.r.t. the cases where either classifer is 
used in isolation. This attests to the robustness of using D3TS as the classifer selection 
policy. 
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Table 6 Average wall-clock time to fnd a target (in seconds) 

Methods Datasets 

CS DBP WK DC KS DBL LJ 

MOD 0.06 0.08 0.14 0.29 3.55 0.33 0.46 

Active Search 0.05 0.11 0.17 0.37 1.71 0.30 0.45 

SV Regression 0.37 0.80 1.26 5.88 9.35 6.57 8.19 

Random Forest 2.54 4.27 6.75 16.75 43.80 20.96 21.06 

ListNet 0.35 0.31 1.76 2.13 8.42 22.65 21.85 

Round-robin 0.18 0.14 0.31 0.34 2.49 11.13 10.92 

D3TS 0.13 0.14 0.28 0.27 2.77 13.41 13.28 

D3TS benefts from more sophisticated classifers while only incurring the computational cost for the steps 
in which they are used 

6.4 Running time 

Table 6 shows the average wall-clock time to fnd a target based on 80 single-threaded 
runs on an Intel Xeon E5-2660%2.60GHz processor for MOD, Active Search, SVR, 
Random Forest, ListNet, RR and D3TS. On all datasets except DBLP and LiveJournal, 
Random Forest is based on conditional inference trees (from R package party), 
which are recommended when different types of features (e.g., discrete, continuous) 
are present (Hothorn et al. 2006). On the other two datasets, Random Forest is based 
on classical decision trees (from R package randomForest), due to the large scale 
of these datasets. In both cases the average number of targets found was similar, but 
conditional inference trees tend to yield smaller variances. 

Among standalone classifers, MOD and Active Search were the fastest, followed 
by ListNet and SVR. We emphasize that MOD and Active Search require no ftting, 
which is the most expensive step for a base learner. In spite of their good performance 
at fnding target nodes on DBLP and LiveJournal, Random Forest and ListNet take 
much longer to ft than other classifers on datasets with a relatively large number of 
features, thus exhibiting the longest average time between successful queries. 

One of the advantages of D3TS is that it can beneft from more sophisticated clas-
sifers while only incurring the computational cost for the steps in which they are 
used. D3TS exhibits smaller ratios than round-robin, except on datasets where D3TS 
tends to use Random Forest or ListNet more often than round-robin does. Note that 
D3TS running time is determined by the classifers it uses and their implementations. 
Replacing methods used in this paper by online counterparts can lead to signifcant 
reductions in running time. In particular, Random Forest—which has the largest run-
ning time—can, in principle, be replaced by online random forests when bounds on 
feature values are known in advance.8 

8 We attempted to replace Random Forests by Mondrian Forests (Lakshminarayanan et al. 2014), but the 
only publicly available implementation is not optimized enough to be used in our application. 
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6.5 Dealing with disconnected seeds 

In the previous simulations, the search starts from a single seed (starting node). When 
more than one seed is available, the search process may end up exploring various 
regions of the graph at the same time. In this approach, the question arises as to how to 
adequately model the observations in these regions. In some cases, it is better to ft clas-
sifers to specifc regions of the network where they operate (i.e., using observations 
collected only from that region), while ftting all classifers to all observations is prob-
ably best all regions are very similar to each other. One can also consider hierarchical 
models, which model each region separately but allow some information sharing. 

In this section, we consider standalone classifers and compare their performance 
in two extreme approaches: using a single classifer and starting from S seeds (thus 
modeling all S regions together), or using S models, each initially associated with a 
single seed (each simulation run uses the same S seeds in either approach to reduce 
variance). In particular, we use the EWLS regression model. 

In the multiple classifer approach, the classifer associated with each region is 
used to rank its corresponding border set at each time t . A single node to be queried 
must then be selected among all border nodes. We select the node with the highest 
estimated payoff across all rankings, and the model responsible for this estimation is 
then updated with the new observation. 

We compare the search performance under these two approaches, for S = 2, . . . , 6. 
On the datasets with larger number of attributes, we found that either there is no 
signifcant difference between the average payoffs (Donors, CiteSeer) or the single 
classifer approach yields better performance (Wikipedia), at the 95% confdence level. 
On the other hand, on datasets with a small number of attributes, some improvement 
is obtained when using multiple classifers, each with its own model. For instance, on 
DBpedia, which has only 5 attributes, the average number of targets found increases 
from 523.9 to 562.5 at  t = 1000, for S = 3. 

When D3TS is used in place of standalone classifers, our recommendation is to ft 
base learners to region-specifc observations in the case of datasets with few attributes, 
and ft to the entire training set in the case of datasets with many attributes. However, 
if new seeds are included during the search (i.e., S increases over time), it is likely 
benefcial to ft the initial classifers corresponding to the new regions using observa-
tions from other regions as priors, even if the number of attributes is large. We leave 
this investigation for future work. 

7 Related work 

The closest work to ours is on active search. The goal of active search is to uncover as 
many nodes of a target class as possible in a network where the topology is known (Gar-
nett et al. 2011, 2012; Wang et al. 2013; Ma et al. 2015). Like selective harvesting, 
active search considers situations where only members of a target class (e.g., malicious 
class) are sought. Since obtaining labels is associated with a cost (time or money), 
it is paramount to avoid spending resources on nodes that are unlikely to be targets. 
Unlike our problem, active search assumes the network topology is known and that 
any node can be queried at any time. 
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In Pfeiffer et al. (2014) a problem similar to selective harvesting is investigated 
and a learning-based method called Active Exploration (AE) is proposed. Unlike 
in selective harvesting, border nodes attributes are assumed to be observable. Since 
node attributes often carry considerable information about the node’s label, AE is not 
directly comparable with other selective harvesting methods. Our solution differs from 
AE in that it leverages heuristics in addition to base learners and is applicable to a 
wider range of applications. 

Similarly to selective harvesting, active learning is an interactive framework for 
deciding what data points to collect in order to train a classifer or a regression model. 
Unlike active search, (i) Itsmain objective is to improve the generalization performance 
of a model with as few label queries as possible, and (ii) the set of unlabeled points 
does not grow based on the collected points. A slew of active learning techniques have 
been proposed for non-relational data settings, including some tailored for Logistic 
Regression (Schein and Ungar 2007), for dealing with streamed data (Attenberg and 
Provost 2011) and for the case of extreme class imbalance (Attenberg et al. 2010). 
Although the retrieval of target nodes can beneft from an accurate model, it is unlikely 
that active learning heuristics (e.g., uncertainty sampling Settles 2010) for training a 
single classifer can be used for selective harvesting without sacrifcing performance. 
However, it may be possible to adapt active learning techniques proposed for training 
classifer ensembles (e.g., query by committee Seung et al. 1992) in such a way that, 
at the same time we collect points on which many classifers disagree, we ensure that 
promising candidates among border nodes are queried before the sampling budget is 
exhausted. 

Despite these differences, there is an interesting parallel between selective harvest-
ing with many models and a body of research on active learning with a set of active 
learners (or heuristics). Both problems can be cast as MABs, where border nodes are 
analogous to unlabeled data points. In active learning, a reward is indirectly related 
to the collected point: it is computed as some proxy for or estimate of the model’s 
performance on a test set, when ft to all points collected up to a given step. In contrast, 
rewards in selective harvesting are simply the node labels. Like selective harvesting, 
active learning can either map heuristics directly as arms (Baram et al. 2004) or map  
heuristics as experts that give recommendations on how to choose the unlabeled points 
(Hsu and Lin 2015). In both cases it has been observed that combining heuristics may 
often outperform the single best heuristic. While these works apply algorithms for 
adversarial bandits to active learning, we fnd that Dynamic Thompson Sampling for 
stochastic bandits with non-stationary rewards seem to exploit better the fact that arms 
rewards are slowly changing in selective harvesting. 

Last, another variant of active learning considers the task of learning an ensemble of 
models (Ali et al. 2014) or fnding a low risk hypothesis h ∈ H (Ganti and Gray 2012, 
2013) while labeling as fewpoints as possible. Since the labeled points are biased by the 
collection process, estimating the models’ generalization performances requires either 
building an uniformly random validation set, or sampling probabilistically at every 
step and then using importance weighted estimates. In selective harvesting, however, 
the models relative performances can be directly measured from the queried nodes 
payoffs. Moreover, building a random validation set is bound to degrade performance 
in scenarios where target nodes are scarce. 
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8 Discussion 

In this section, we discuss the technical challenges in accounting for the future impact 
of a query and contrast the proposed solution with classical ensemble learning. 

8.1 Accounting for the future impact of querying a node 

Active search assigns a score to each potential border node v that consists of a sum 
of two terms (Wang et al. 2013, Eq. (2)): the expected value of v’s label and sum of 
the expected changes in the labels of all other nodes multiplied by a discount factor 
α � 1. The discounted term tries to account for the impact of querying node v, going 
one step beyond the greedy solution. In selective harvesting, however, the observed 
graph is limited to the set of queried nodes and their neighbors, i.e. we cannot compute 
the impact of choosing a node beyond the border set. Even if we could observe the 
entire graph, accounting for the future impact of querying a node would require us 
to ft one statistical learning model to each border node and predict all the remaining 
labels at each step, which is too expensive even for a single online model. 

8.2 Using classifer ensembles in selective harvesting 

Ensemble methods generate a set of models in order to combine their predictions, pos-
sibly using weights. These methods perform very well in many classifcation problems 
and can be applied to selective harvesting problems too. Note that although D3TS uses 
multiple statistical models, it cannot be considered a classifer ensemble, since only 
one classifer is used for prediction at each step. 

We simulate two popular ensemble methods—Bagging and AdaBoost—on fve 
datasets (DBLP and LiveJournal were not included due to the prohibitive execution 
time). For Bagging, we varied the number of trees in {5, 10, 100}, minimum num-
ber of observations to split a node in {5, 10} and maximum tree depth in—{1, 5, 10}. 
For Boosting, we set the maximum tree depth to 1 and varied the number of trees in 
{100, 200}. Table 7 displays the results associated with the confgurations that obtained 
the best overall results—Bagging (ntree = 100, minsplit = 10, maxdepth = 5)  
and Boosting (maxdepth = 1,  ntree = 100)—along with the results obtained by 
D3TS. We fnd that D3TS consistently outperforms these ensemble methods. We con-
jecture that ensembles are only slightly less susceptible to the tunnel vision effect than 
standalone models, as combining predictions tends to decrease border set and training 
set diversity. 

What if we do not combine their predictions? In other words, what if we generate a 
decision tree from bootstrap sampling at each step and use that to make predictions? 
We simulated the performance of this mechanism, varying the minimum number of 
observations to split a node in {5, 10} and maximum tree depth in {5, 10}. However, 
this approach did not perform as well as D3TS (or even RR). We report in Table 7 
the parameter confguration that achieved the best overall results, (minsplit = 10, 
maxdepth = 10), under “Bootstrap + Decision Tree”. The poor performance of this 
approach can be explained by the fact that predictions made from a single tree are not 
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Table 7 Average number of targets found by each method after T queries based on 80 runs 

Methods Datasets (budget T ) 

CS DBP WK DC KS 
(1500) (700) (400) (100) (700) 

Bagging 745.6 445.6  99.1  34.7 223.1 

AdaBoost 751.5 443.5  98.0  34.5 218.4 

D3TS 851.2 464.0 144.7  37.9 247.6 

Bootstrap + Decision Tree 754.5 293.4  95.2  27.2 155.7 

very accurate. By making predictions with a single tree, we lose the generalization 
benefts that come from classifer ensembles. 

8.3 Contrasting diversity in ensembles and diversity in selective harvesting 

Diversity is known to be a desirable characteristic in ensemble methods (Kuncheva 
2003; Tang et al. 2006; Xie et al. 2016). The intuition is that if one can combine 
accurate models that make uncorrelated mistakes, the overall accuracy will be higher 
than those of the individual models. There are two main classes of techniques for 
generating diverse ensembles (Stapenhurst 2012): (i) overproduce and select, where a 
large set of base learners is generated, among which a subset is selected to maximize 
a given measure of diversity, (ii) building ensembles, where the diversity measure 
is directly used to drive the ensemble creation. In the ensemble literature there are 
several metrics proposed for quantifying diversity, all of which can be computed from 
the predictions made by different models. Many of these metrics are shown to have 
positive correlation with the overall accuracy of the ensemble. 

In selective harvesting, the relationship between correlations in models’ mistakes 
and overall performance is more indirect. For a single query, whether mistakes made 
by different models are uncorrelated or not is immaterial, since we use only one model 
to decide which node to query at each step. On the other hand, every query choice 
impacts future steps. Therefore, differences in models’ predictions dictate the levels 
of border set and training set diversity that will be achieved over time. This is in sharp 
contrast with the static notion of diversity referred in the ensemble literature. A deeper 
characterization of the sets of models that can achieve the type of diversity that leads 
to good performance in selective harvesting is left as future work. 

9 Conclusions 

This paper introduced selective harvesting, where the goal is to fnd the largest 
number of target nodes given a fxed budget and subject to a partial—but evolving— 
understanding of the network. The key distinctions of selective harvesting w.r.t. related 
problems are that (i) the network is not fully observed and/or (ii) a model must be 
learned during the search. These distinctions combined make the problem much harder 
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than the related problems. We discussed existing methods that can be adapted to selec-
tive harvesting and an alternative approach based on statistical models. However, we 
showed that the tunnel vision effect incurred by the nature of the selective harvesting 
task severely impacts the performance of a classifer trained on these conditions. We 
show that using multiple classifers is helpful in mitigating the tunnel vision effect. 
In particular, simulation results showed that methods used in isolation often perform 
worse than when combined through a round-robin scheme. We raised two hypothesis 
to explain this observation, which were investigated to show that classifer diversity— 
i.e., switching among classifers at each querying step—is important for collecting 
a larger set of target nodes in selective harvesting. Classifer diversity increases the 
diversity of the training set while broadening the choices of nodes that can be queried 
in the future. Based on these observations we proposed D3TS, a method based on 
multi-armed bandits and classifer diversity, able to account for what we named the 
exploration, exploitation and diversifcation trade-off. D3TS differs from traditional 
ensembles, in which it does not combine predictions from different models at a given 
step. D3TS also differs from traditional MABs, in which the goal is not to converge 
to  a single arm. D3TS outperforms all competing methods on fve out of seven real 
network datasets and exhibited comparable performance on the others. While we 
evaluated D3TS’s performance when used with fve specifc classifers (MOD, Active 
Search, Support Vector Regression, Random Forest and ListNet), the proposed method 
is fexible and can be used with any set of classifers (not shown here, replacing SVR 
with Logistic Regression yielded similar results). Moreover, we showed that combin-
ing two classifers through D3TS improves results in about 84% of the cases w.r.t. the 
cases where either classifer is used in isolation. 
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Appendix A: Complementary results 

In Sect. 6.2 we presented results obtained when defning the target populations either 
as in prior work or as the largest subpopulation in the network. We extend these results 
by running simulations on ten additional datasets derived by taking the two largest 
subpopulations as targets (other than the original targets) from CiteSeer, DBpedia, 
Wikipedia, DonorsChoose and Kickstarter. These datasets are indicated by CS, DBP, 
WK, DC and KS, followed by 1 and 2, respectively. Table 8 shows performance results 
for fve standalone models and for their combinations using round-robin and D3TS. 
Except for DBP1 and WK1, D3TS consistently fgures among the two best performing 
methods. 
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Table 8 Simulation results on ten datasets derived from the original data attest 

Methods Datasets 

CS1 CS2 DBP1 DBP2 WK1 WK2 DC1 DC2 KS1 KS2 

MOD 673 431 581 436 79 128 23 20 126 163 

Active Search 666 568 550 403 79 124 15 10 115 213 

SV Regression 615 492 515 428 71 91 22 18 161 200 

Random Forest 596 498 524 406 77 104 23 18 183 246 

Round-robin 675 561 569 439 70 124 23 18 175 239 

D3TS 675 562 557 450 72 128 23 18 191 240 

Best two methods on each dataset are shown in bold. D3TS performs consistently well 

Appendix B: Can we leverage diversity using a single classifer? 

Intuitively, when a learning model is ftted to the nodes it chose to query, it tends to 
specialize in one region of the feature space and the search will consequently only 
explore similar parts of the graph, which can severely undermine its potential to fnd 
target nodes. 

One potential way to mitigate this overspecialization would be to sample nodes 
probabilistically, as opposed to deterministically querying the node with the highest 
score. Clearly, we should not query nodes uniformly at random all the time. It turns out 
that querying nodes uniformly at random periodically does not help either, according 
to the following experiment. We implemented an algorithm for selective harvesting 
that samples at each step t , with probability p, an uniformly random node from B(t), 
and with 1 − p, the best ranked node according to a support vector regression (SVR) 
model. Table 9 shows the results for p = 2.5, 5.0, 10, 15 and 20%. 

We observe that the performance does not improve signifcantly for p ≥ 2.5%, 
either because the diversity is not increasing in a way that translates into performance 
improvements or because all gains are offset by the samples wasted when querying 
nodes at random. 

Instead of querying uniformly at random, we could query nodes according to a 
probability distribution that concentrates most of the mass on the top k nodes w.r.t. 
model scores. We experimented with several ways of mapping scores to a probability 
distribution P . In particular, we considered two classes of distributions: 

– truncated geometric distribution (0 < q < 1): 

P(v) ∝ (1 − q)π(v)−1q, and 

Table 9 Results for SVR w/uniformly random queries on CiteSeer (at t = 1500) averaged over 40 runs 

0.0% 2.5% 5.0% 10% 15% 20% 

760.5 ± 52.1 773.85 ± 34.5 768.0 ± 32.3 770.8 ± 34.1 753.0 ± 59.8 764.7 ± 28.0 

Top line shows probabilty of random query; bottom line shows number of target nodes found 
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– truncated Zeta distribution (r ≥ 1): 

P(v) ∝ π(v)−r , 

where π(v) is the rank of v based on the scores given by the model to v ∈ B(t). In  
each experiment, we set q or r at each step in one of nine ways: 

1. Top 10 have x% of the probability mass; for x ∈ {70, 90, 99}. 
2. Top 10% nodes have x% of the probability mass; for x ∈ {90, 99, 99.9}. 
3. Top k(t) = min{10 × (1 − t/T ), 1} have x% of the probability mass; for x ∈ 
{70, 90, 99}. 

None of the mappings was able to substantially increase the search’s performance. In 
contrast to almost 20% performance improvement seen by SVR under round-robin on 
CiteSeer at T = 1500 (Fig. 3), mapping scores to a probability distribution increased 
the number of targets nodes found by at most 3%. 

Appendix C: Evaluation of MAB algorithms applied to Selective Harvest-
ing 

We experiment with representative algorithms of each of the following bandit classes: 

– Stochastic Bandits: UCB1, Thompson Sampling (TS), -greedy, 
– Adversarial Bandits: Exp3 (Auer et al. 2002), 
– Non-stationary stochastic bandits: Dynamic Thompson Sampling (DTS) (Gupta 
et al. 2011), 

– Contextual Bandits: Exp4 (Auer et al. 2002) and Exp4.P (Beygelzimer et al. 2011). 

UCB1 and TS are parameter-free. For -greedy, Exp3 and Exp4.P we set the proba-
bility of uniformly random pulls, to ∈ {0.10, 0.20, 0.50}, γ ∈ {0.10, 0.20, 0.50} and 
Kpmin ∈ {0.01, 0.05, 0.10, 0.20, 0.50} (respectively). We set parameter γ in Exp4 as 
Kpmin in Exp4.P. For DTS, we set the cap on the parameter sum C ∈ {5, 10, 20, 50}. 
Interestingly, for each MAB algorithm, there was always one parameter value that 
outperformed all the others in almost all seven datasets. In Fig. 9 we show three rep-
resentative plots of the performance comparison between the best parameterizations 
of each MAB algorithm. Since Exp4 was slightly outperformed by Exp4.P, Exp4 
is not shown. These results corroborate our expectations (Sect. 5) that DTS would 
outperform other bandits in selective harvesting problems. 
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