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ABSTRACT

Graphs have been widely used in image processing and

understanding tasks. We introduce a novel graph generation

model which greatly reduces the size of the traditional pixel-

based graph. Based on the generated graph, we propose two

feature extraction methods which utilize spectral graph infor-

mation, and apply the features to image. Experiments show

that our proposed oscillatory image heat content and weighted

heat content spectrum features are more robust to small dis-

tortions and changes of viewpoint than the image heat content

feature we proposed previously. The features are also capa-

ble of capturing important image structural information of the

image and perform well alone or in combination with other

low-level image features.

Index Terms— Feature extraction, spectral graph infor-

mation, image classification.

1. INTRODUCTION

Image retrieval and classification is a challenging problem in-

volving tasks that include image pre-processing, feature de-

sign and learning algorithms. Among the vast literature ex-

ploring these topics, a recent trend is the use of graphs in

image representation and understanding tasks. These models

have been shown to be effective in a variety of image related

applications.

Using graphs for image understanding is natural. Human

intelligence and the human vision system are built upon the

neurons with their connections in the visual cortex, which

forms a complex network[1, 2]. In [3, 4] the author points

out that Monte-Carlo simulations of diffusion can be help-

ful in testing the similarity of complex graphs. Meanwhile,

graph based image representation allows the possibility to

apply some well-studied techniques in graph theory such as

the graph-cuts theory, similarity testing[5, 6] and the spectral

graph theory[7]. Successful applications include graph based

image segmentation[8, 9, 10, 11], image retrieval, clustering

and classification based on graph statistics[12, 13, 14].

In our recent paper[15], based on the mathematical the-

ory of diffusion over manifolds and the asymptotic behavior

of the heat content[16, 17, 18], we proposed a new low level

heat content image feature for image retrieval. Our prelimi-

nary result showed that the heat content feature could improve

the image retrieval performance when combined with existing

low level features. However, for a mid-size image with more

than 10, 000 pixels, the image heat content feature can only be

roughly estimated. Moreover, the functions that are summed

to generate the feature decay exponentially with rates given

by the graph Laplacian eigenvalues; hence, information car-

ried by larger eigenvalues is mostly lost.

In this paper, we first introduce an approach to drastically

reduce the size of the traditional pixel-based graph represen-

tation. By merging nodes, our model can generate a much

smaller graph for the same image, which makes complicated

feature extraction methods such as spectral analysis a possi-

ble option. We also propose a novel feature extraction model

based on the spectral graph information. Experiments show

that our re-designed features perform better than the origi-

nal heat content feature and is a more effective supplement to

further improve the performance of traditional feature-based

classification.

The rest of the paper is organized as follows. In Section

2, we introduce the graph generation model. In Section 3, we

propose two feature extraction models. Section 4 shows the

result of three experiments using the new models, and Section

5 is the conclusion.

2. GRAPH GENERATION OF GRAYSCALE AND
COLOR IMAGES

Traditional pixel-based graph generation precisely represent

the pixel relations in the image. However, it is a challenging

task to apply powerful tools such as spectral analysis when the

graph is very large. Even when the graph is made more sparse,

the size is still too large for a mid-size image input. In this

section, we propose a novel graph generation model which

has a far smaller number of nodes compared to traditional

methods.

2.1. Small-size graph generation by nodes merging

Our new small-size graph generation model is derived from

traditional pixel-based models. We reduce the size of the



graph by ”nodes merging”. Specifically, if some pixels form

a homogenous area, they can be clustered into an image seg-

ment. In our graph generation model, we assign a single node

for such an image segment. By doing so, the total number of

nodes in the graph is greatly decreased.

The first step of our model is similar to our original pixel-

based graph model[15]. We generate a vertex for every pix-

el in the image and the weight of any edge is determined

by a distance measurement between the corresponding pix-

els. For color images, the original RGB representation is

transformed to the CIELAB format with every pixel repre-

sented by a five-dimensional vector [L, a, b, x, y]. L is an in-

tensity measurement, a, b describes the visual color and x, y
represents the location of the pixel on the image. We com-

pute two distances to form the definition of the edge weight.

For any two pixels pi, pj , the color distance is defined as

dc =
√

(Li − Lj)2 + (ai − aj)2 + (bi − bj)2 (for grayscale

image we just use the intensity part) and the geometrical dis-

tance is defined as ds =
√

(xi − xj)2 + (yi − yj)2. The

edge weight between any two pixels pi and pj is defined as

wij = e−d2
c/σI · e−ds2/σX , (1)

where σI and σX are controlling parameters. We can also

use our original graph generation model [15] in this step to

produce pixel-based graph for the image.

The pixel-based graph describes similarities between pix-

els and captures important structural information on the im-

age. Our goal is to merge similar nodes together while keep-

ing the major structure of the graph intact. A MinMax K-

Means clustering algorithm[19] is applied to acquire a fast

segmentation for the image.

Suppose we generate k different-size segments S1, S2,

. . . , Sk after clustering. We merge all the nodes in each seg-

ment together and form k new nodes s1 to sk to be the vertices

in our new graph. All the edges connected to any node in set

Si from outside in the original graph will then become links

connected to the single node si in the new graph. At the same

time, all the inside edges in each segment are summed up to

be a self-loop edge for the corresponding new node si. Pre-

cisely, the weight between nodes sm and sn in the adjacency

matrix of our ”after-merging” graph is defined as

A(m,n) =
∑

pi∈ccm

∑
pj∈ccn

wij . (2)

We can easily prove that the total degree of the graph does not

change. The structure of the graph also remains intact. Con-

sidering a random walk on our new graph, the steady-state

distribution of the random walkers can be easily calculated

from the original distribution by adding entries from the same

cluster together. Although there is some information loss in-

side every image segment, the general heat diffusion pattern

is largely equivalent to the original one due to the fact that

these image segments are mostly homogenous patches.

A natural image usually has large image segments. De-

pending on the parameters set for the K-Means clustering, for

a standard configuration, the size of the graph normally re-

duces to less than one percent of the original size, yet most of

the structural information of the image still remains. For ex-

ample, the generated graph only contains hundreds of nodes

for a typical 128× 128 as shown input in figure 4. The model

not only generate a much smaller graph which makes eigen-

decomposition no longer a big challenge, but also naturally

captures important image information through node merging

of homogenous image segments.

3. IMAGE FEATURE BASED ON GRAPH SPECTRAL
INFORMATION

Spectral analysis is a powerful tool to extract useful struc-

tural information on the graph. For a large-size graph, fast

eigen-decomposition becomes very difficult. The image heat

content feature [15] is designed to contain all the spectral in-

formation which can also be estimated by a fast Monte-Carlo

algorithm. However, by drastically reducing the size of the

graph, we can directly acquire the precise result of the eigen-

decomposition, which gives us more possibilities for design-

ing features based on the spectral information.

3.1. The image heat content feature

We briefly introduce the original heat content feature first to

lay the foundation of our new approaches. For a symmetric

image graph representation G, let D = diag[du] be the diago-

nal degree matrix. The normalized graph Laplacian [7] of the

graph G is defined asL = D−1/2LD−1/2, where L = D−A.

Suppose that vertex set V is divided into V = iD∪∂D, where

iD is the interior nodes and ∂D is the boundary. Then the fol-

lowing heat equation describes the heat-flow dynamics on the

graph: {
∂ht

∂t = −Lht

ht(u, v) = 0 for u ∈ ∂D,
(3)

with the initial condition h0(u, u) = 1 if u ∈ iD. Suppose

Λ = diag[λi] is the diagonal eigenvalue matrix and Φ is the

eigenvector matrix of the interior part of L. The solution to

the heat equation is Ht = e−Lt = Φe−ΛtΦT and for each

entry of Ht, we have Ht(u, v) =
∑|iD|

i=1 e−λitφi(u)φi(v),
where φi is the ith column vector in Φ. The heat content

Q(t) is defined as

Q(t) =
∑

Ht(u, v) =
∑
uv

|iD|∑
i=1

e−λitφi(u)φi(v). (4)

The heat content feature can be improved in different as-

pects. We will first propose a modified oscillatory heat con-

tent feature based on an asymmetric graph in the following

subsection. Second, instead of using a summation of expo-

nentially decaying functions, which is largely determined by



the component functions with small eigenvalues, we propose

a novel feature extraction model directly based on the spectral

information of the graph.

3.2. Oscillatory image heat content

We first modify the symmetric graph into an asymmetric

one by simply giving very small weights to edges from low

average-intensity segments to high average-intensity seg-

ments. While this may seem arbitrary, the directional asym-

metry in the resulting graph actually carries more information

about the image structure.

The eigenvalues and eigenvectors of the normalized

graph Laplacian L of the asymmetric graph can be com-

plex valued, and exist as complex conjugates. The solu-

tion to the heat equation of this asymmetric graph Lapla-

cian L is Ht = Φe−ΛtΨ. Λ = diag[λi] is the diagonal

eigenvalue matrix. Φ and Ψ are the right and left eigen-

vector matrices (Ψ = Φ−1). For any complex conjugates

pairs of eigenvalues λ = a + bi and λ = a − bi with

corresponding eigenvectors φ, ψ, φ and ψ, suppose that∑
uv φ(u)ψ(v) = α + βi, then α − βi =

∑
uv φ(u)ψ(v) =

(
∑

φ)(
∑

ψ) = (
∑

φ)(
∑

ψ) =
∑

uv φ(u)ψ(v). The sum-

mation e−λt
∑

uv φ(u)ψ(v)+e−λt
∑

uv φ(u)ψ(v) is equal to

e−(a+bi)t(α+βi)+e−(a−bi)t(α−βi) = 2e−at(α cos(bt))+
β sin(bt)), which is a real-valued function. Therefore, the

total summation is still real valued and can be written as

Q(t) =

|iD|∑
i=1

e−ait(
√
α2
i + β2

i sin(bit+ arctan
βi

αi
)). (5)

Compared to the original heat content, the new oscillato-

ry heat content (OHC) is no longer a summation of purely

exponentially decaying functions. It becomes an oscillatory

function which contains components of different frequencies,

amplitudes and phases. These variations can be helpful in

classification tasks. We can also amplify the asymmetric part

of L to generate more pairs of complex eigens by defining a

new matrix Lk = (L+ L)/2 + k(L − L)/2 where k > 1.

3.3. Weighted heat content spectrum

Starting from the original heat content in equation 4, we de-

fine the heat content spectrum as [α1, . . . , α|iD|]′, in which

αi =
∑
uv

φi(u)φi(v) =

[∑
u

φi(u)

]2

. (6)

The original heat content can then be expressed as Q(t) =∑|iD|
i=1 αie

−λit. The heat content spectrum has some interest-

ing properties. First, the summation of all the αs equals the

number of interior nodes. Because λ1 ≈ 0, we have the first

eigenvector φ1 ≈
[√

di

m|iD| , . . . ,
√

dn

m|iD|
]T

(m is the mean

degree of the graph) and α1 ≈ (
∑

i

√
di)

2/(m|iD|), which is

directly related to the image intensity distribution. α1 reach-

es its maximum max(α1) ≈ |iD| only when all the vertices

have the same degree in the graph. For the rest of the spec-

trum, the general shape of the weight spectrum captures some

major structural information of the graph.

Our new feature utilizes the information of both the eigen-

value distribution and the heat content spectrum. Every eigen-

value λi of the normalized graph Laplacian satisfies λi ∈
[0, 2]. We first generate k overlapping intervals I1 to Ik on

[0, 2]. The middle point of each interval Ii is located on

(2i− 1)/k and the length of the interval is 2/k+ ε(1− |(k−
2i + 1)/k|). The weighted heat content spectrum (WHCS)

f = [f1, f2, . . . , fk] is then defined as fx =
∑

i:λi∈Ix αi.

4. EXPERIMENTAL RESULTS

We first illustrate the proposed new features (OHC and WHC-

S) by two experiments that show the ability of the OHC fea-

ture to differentiate images in different classes and the robust-

ness of the WHCS feature to view point changes. We then

show the improvement of our new features compared to the

heat content feature combined with traditional low-level fea-

tures in a handwritten digits recognition experiment.

4.1. Oscillatory heat content illustration

We select thirty-five images from seven categories in the

COREL dataset [20]. The images are shown in figure 1. We

calculate both the heat content based on the original graph in

[15] and the oscillatory heat content. Figures 2 and 3 shows

the results. The same color curves represent images in the

same category. We can see that although the original heat

content can somewhat differentiate these images, the oscilla-

tory heat content performs much better in either clustering or

differentiating. The richer frequency behavior of the new fea-

ture better represent more diverse images and textures, which

will eventually be helpful in a large scale image retrieval task.

4.2. Weighted heat content spectrum illustration

We test the weighted heat content spectrum with the COIL100

[21] dataset. K is set to be 6 in the K-Means clustering algo-

rithm. σI = 0.01 and σX = 4 in the graph generation proce-

dure. Figure 4 shows some examples of the images and their

corresponding WHCS feature vectors. We can see that the

WHCS is robust to small viewpoint changes yet still captures

the differences between images. The feature is also effective

at differentiating between different objects.

COIL100 contains 100 different objects in 72 different

view angles. We select 8 different views for each object to

form the reference set and the rest to be the testing set. Ta-

ble 1 shows the resulting classification rate using a 1-nearest-



Fig. 1. Seven categories of similar images from

COREL dataset

Fig. 2. Heat Content Fig. 3. Oscillatory HC

Fig. 4. Weighted heat content spectrum

neighbor classifier. The new WHCS is much better than the

original HC because it is directly generated by the full-size

image. When the feature is used with the multi-scale color

histogram, the classification rate is only a little less than the

state of the art hand-designed method.

Feature Classification rate

HC + Color Hist 85.3%

WHCS + Color Hist 92.1%

Typical state of the art[22] 95%

Table 1. Classification rates of COIL100

4.3. MNIST image classification experiment

The MNIST database [23] is a widely used hand written dig-

its benchmark containing a training set of 60, 000 images and

a testing set of 10, 000 images. We simulate the image clas-

sification task using combinations of different basic features

including intensity histogram (Hist), intensity moments (Mo),

Gabor coefficients (Gabor), gray-level co-occurrence matrix

(GLCM), edge directions histogram (Edge), heat content fea-

ture (HC) and the two proposed features oscillatory heat con-

tent (OHC) and weighted heat content spectrum (WHCS).

The length of the HC, OHC and WHCS is set to be the 10.

The combined feature contains all traditional features. Al-

l the features are computed for forty-nine 10 × 10 average-

positioned blocks. Logistic and linear kernel supported vector

machine (SVM) [24] classifiers are used in the experiment.

Logistic Classifier Self w/ HC w/ OHC w/ WHCS

Hist + Gabor + Edge 2.45% 2.34% 2.18% 2.20%

Hist + GLCM + Edge 2.77% 2.47% 2.41% 2.39%
Mo + Gabor + Edge 2.41% 2.37% 2.28% 2.12%
Mo + GLCM + Edge 2.54% 2.48% 2.23% 2.28%

Combined feature 2.29% 2.18% 2.08% 1.98%
SVM Classifier Self w/ HC w/ OHC w/ WHCS

Hist + Gabor + Edge 1.47% 1.45% 1.42% 1.28%
Hist + GLCM + Edge 1.69% 1.62% 1.50% 1.52%

Mo + Gabor + Edge 1.54% 1.48% 1.42% 1.37%
Mo + GLCM + Edge 1.60% 1.57% 1.45% 1.42%

Combined feature 1.39% 1.36% 1.31% 1.23%

Table 2. Classification error rate

Table 2 shows that the performance of the combined fea-

tures with the OHC and the WHCS are better than the ones

with the heat content feature in all situations. In most cases

feature sets that include WHCS perform slightly better than

those using OHC. This result further illustrates that the pro-

posed two features based on graph spectral information con-

tain unique and useful image information, and could be useful

supplement to traditional feature extraction for image classi-

fication tasks.

5. CONCLUSION

In this paper, we propose a general approach to reduce the

size of pixel-based graph generation and to use graph spec-

tral information for image feature extraction. The proposed

image features improve on the original heat content feature

and demonstrate an ability to serve as a useful supplement to

traditional image feature extraction. Although there are still

open questions on the theoretical side, in particular on detail-

s of the relationship between the heat content spectrum and

graph structure, the experiment results support that the pro-

posed method effectively captures useful image information.
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