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Estimating distributions of labels associated with nodes (e.g., number of connections or citizenship of users

in a social network) in large graphs via sampling is a vital part of the study of complex networks. Due to

their low cost, sampling via random walks (RWs) has been proposed as an a�ractive solution to this task.

Most RW methods assume either that the network is undirected or that walkers can traverse edges regardless

of their direction. Some RW methods have been designed for directed networks where edges coming into

a node are not directly observable. In this work, we propose Directed Unbiased Frontier Sampling (DUFS),

a sampling method based on a large number of coordinated walkers, each starting from a node chosen

uniformly at random. It is applicable to directed networks with invisible incoming edges because it constructs,

in real-time, an undirected graph consistent with the walkers trajectories, and due to the use of random

jumps which prevent walkers from being trapped. DUFS generalizes previous RW methods and is suited for

undirected networks and to directed networks regardless of in-edges visibility. We also propose an improved

estimator of vertex label distributions which combines information from the initial walker locations with

subsequent RW observations. We evaluate DUFS, comparing it against other RW methods, investigating the

impact of its parameters on estimation accuracy and providing practical guidelines for choosing them. In

estimating out-degree distributions, DUFS yields signi�cantly be�er estimates of the head than other methods,

while matching or exceeding estimation accuracy of the tail. Last, we show that DUFS outperforms VS when

estimating distributions of node labels of the top 10% largest degree nodes, even when uniform vertex sampling

has the same cost as RW steps.
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1 INTRODUCTION
A number of studies [4, 5, 7, 8, 14, 16, 18, 22, 24, 25, 32] are dedicated to the characterization of

complex networks. A complex network is a network with topological features that do not occur

in simple networks such as la�ices or random networks. Examples of such networks include the

Internet, the Web, social, business, and biological networks. Characterizing a network consists

of computing or estimating a set of statistics that describe the network. In this work we model

a complex network as a directed or undirected graph with labeled vertices. A label can be, for

instance, the degree of a vertex or, in a social network se�ing, someone’s hometown. Label statistics

(e.g., average, distribution) are o�en used to characterize a network.

Characterizing a network with respect to its labels requires querying vertices and/or edges;

associated with each query is a resource cost (time, bandwidth, money). For example, information

about web pages must be obtained by querying web servers while subject to a maximum query

rate. Characterizing a large network by querying the whole graph is o�en too costly. Even if the

network is stored in disk it may constitute several terabytes of data. As a result, researchers have

turned their a�ention to estimation of network characteristics based on incomplete (sampled) data.

Simple strategies such as uniform vertex and uniform edge sampling possess desirable statistical

properties: the former yields unbiased samples of the population and the bias introduced by the

la�er is easily removed. However, these strategies are o�en rendered unfeasible because they

require either a directory containing the list of all vertex (edge) ids, or an API that allows uniform

sampling from the vertex (edge) space. Even when the space of possible vertex (edge) ids is known,

its occupancy is usually so low that querying randomly generated ids is expensive. An alternate,

cheaper, way to sample a network is via a random walk (RW). A RW samples a network by moving

a particle (walker) from a vertex to a neighboring vertex. It is applicable to any network where we

can query the edges connected to a given vertex. Furthermore, RWs share some of the desirable

properties of uniform edge sampling (i.e., easy bias removal, accurate estimation of characteristics

such as the tail of the degree distribution).

On one hand, a great deal of research has focused on designing sampling methods for undirected
networks using RWs [9, 24]. Ribeiro and Towsley proposed Frontier Sampling (FS), an n-dimensional

random walk that uses n coupled random walkers. �is method yields more accurate estimates

than the uniform RW and also outperforms the use of n independent walkers. In the presence of

disconnected or loosely connected components, FS is even be�er suited than the uniform RW and

independent RWs to sample the tail of the degree distribution of the graph. On the other hand,

few works have focused on developing tools for characterizing directed networks in the wild. A

network is said to be directed when edges are not necessarily reciprocated. Characterizing directed

networks through crawling becomes challenging when only outgoing edges from a node are visible

(incoming edges are hidden): unless all vertices have a directed path to all other vertices, a walker

will eventually be restricted to a (strongly connected) component of the graph. Furthermore, classic

RWs incur biases that can only be removed by conditioning on the entire graph structure. In [27],we

addressed these issues by proposing Directed Unbiased Random Walk (DURW), a random walk

sampling technique that performs degree-proportional jumps to obtain asymptotically unbiased

estimates of the distribution of vertex labels on a directed graph.

In this work
1
, we propose the Directed Unbiased Frontier Sampling (DUFS) method, that general-

izes the FS and the DURW algorithms. Building on the ideas in [27], we extend Frontier Sampling

to allow the characterization of networks regardless of whether they are undirected, directed with

observable incoming edges, or directed with unobservable incoming edges. DUFS matches or

1
Parts of this work are based on previous papers from the authors: [28] and [27].
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Fig. 1. Comparison between proposed method (DUFS) and previous state-of-the-art respectively for visible
and for invisible incoming edges scenarios; (a) NRMSE ratios between DUFS (w = 1,b = 10) and FS (b = 10)
of the estimated joint in- and out-degree distribution on the soc-Slashdot0902 dataset; (b) NRMSEs associated
with DUFS and DURW of the estimated out-degree distribution on the livejournal-links dataset.

exceeds the performances of FS and DURW
2
. �is is illustrated in Figure 1. Methods’ parameters

(w and b), simulation setup, datasets and the error metric (normalized root mean square error) will

be described in Section 5.1.

Contributions. Our main contributions are as follows:

(1) Directed Unbiased Frontier Sampling (DUFS): we propose a new algorithm based on multiple

coordinated random walks that extends Frontier Sampling (FS) to directed networks. DUFS

generalizes FS and DURW.

(2) More accurate estimator for vertex label distribution: when the number of walkers is a large

fraction of the number of random walk steps (e.g., 10%), we lose a considerable source

of information by not accounting for the walkers initial locations as observations. We

introduce a new estimator that combines these observations with those made during the

walks to produce be�er estimates.

(3) Practical recommendations: we investigate the impact of the number of walkers and the

probability of jumping to an uniformly chosen vertex (controlled via a parameter called

random jump weight) on DUFS estimation errors, given a �xed budget. By increasing the

number of walkers the sequence of sampled edges approaches the uniform distribution

faster, but this also increases the fraction of the budget spent to place the walkers in their

initial locations. Moreover, increasing the random jump weight favors sampling vertex

labels with large probability masses, which translates into more accurate estimates for

these labels, but worse estimates for those in the tail. We study these trade-o�s through

simulations and propose guidelines for choosing DUFS parameters.

(4) Comprehensive evaluation: we compare DUFS against other random walk-based methods

w.r.t. estimation errors when applied on directed networks, both when incoming edges are

directly observable and when they are not. In the �rst scenario, in addition to some graph

properties evaluated in previous works, we evaluate DUFS performance on estimating joint

in- and out-degree distributions, and on estimating distribution of group memberships

among the 10% largest degree nodes.

2
�e so�ware and all results presented in this work are available at h�p://bitbucket.com/a�er-acceptance.
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(5) �eoretical analysis: we derive expressions for the normalized mean squared error associated

with uniform vertex and uniform edge sampling on power law networks and show that

in both cases the error behaves asymptotically as a power law function of the observed

degree. �is helps explain our evaluation results.

Outline. De�nitions are presented in Section 2. In Section 3, we review FS and DURW methods.

In Section 4, we propose the Directed Unbiased Frontier Sampling (DUFS) algorithm (along with

some estimators), which generalizes the previous methods. We investigate the impact of DUFS

parameters on estimation accuracy of degree distributions and vertex label distributions respectively

in Sections 5 and 6, providing practical guidelines on how to set them. A comparison against other

random walk techniques is also provided. Section 7 discusses the performance of DUFS when the

uniform vertex sampling mechanism is faulty. We present some related work and present our

conclusions in Sections 8 and 9, respectively.

2 DEFINITIONS
In what follows we present some de�nitions. Let Gd = (V ,Ed ) be a labeled directed graph repre-

senting the network graph, where V is a set of vertices and Ed is a set of ordered pairs of vertices

(u,v ) representing a connection from u to v (a.k.a. edges). We refer to an edge (u,v ) as an in-edge
with respect to v and an out-edge with respect to u. �e in-degree and out-degree of a vertex u in

Gd are the number of distinct edges respectively into and out of u. We assume that each vertex

in Gd has at least one edge (either an in-edge or an out-edge). Some networks can be modeled as

undirected graphs. In this case, Gd is a symmetric directed graph, i.e., (u,v ) ∈ Ed i� (v,u) ∈ Ed .

Let Lv be a �nite set of vertex labels. We associate a set of labels (possibly empty) to each vertex,

Lv (v ) ⊆ Lv , ∀v ∈ V .

Input scenarios
When performing a random walk, we assume that a walker retrieves the out-edges of node where

it resides by performing a query and that vertices are distinguishable. We de�ne two scenarios

depending on whether the walker can also retrieve in-edges. In the �rst scenario (both out- and

in-edges can be retrieved) it is possible to move the walker over any edge regardless of the edge

direction (if the edge is (u,v ) ∈ Ed a walker can move from u to v and vice versa). In this case, the

walker can be seen as moving overG = (V ,E), an undirected version ofGd , i.e., E = {(u,v ) : (u,v ) ∈
Ed ∨ (v,u) ∈ Ed }. De�ne deg(v ) = |{(u,v ) : (u,v ) ∈ E}|. Let vol(S ) =

∑
∀v ∈S deg(v ), ∀S ⊆ V ,

denote the volume of the set of vertices in S ⊆ V .

In the second scenario (only out-edges are directly observable), we can build on-the-�y an

undirected graph Gu based on the out-edges that have been sampled. Note that Gu is not an

undirected version of Gd as some of the in-edges of a node may not have been observed. By

moving the walker over Gu – possibly traversing edges in Gd in the opposite direction – we can

compute its stationary behavior and thus, remove the bias by accounting for the probability that

each observation appears in the sample.

While this has been mostly overlooked by other works in the literature, we emphasize that,

in either scenario, it is useful to keep track of some variant of the observed graph during the

sampling process. Storing information about visited nodes in memory saves resources that would

be consumed to query those nodes in subsequent visits – i.e., revisiting a node has no cost. �e

speci�c variant of the observed graph to be stored will be described in the context of two random

walk-based methods in the following section.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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ALGORITHM 1: Frontier Sampling (FS)

Input :budget per walker b
n ← B/(c + b) {c is the cost of uniform vertex sampling};

i ← 0 {i is step counter};

Initialize L = (v1, . . . ,vn ) with n randomly chosen vertices (uniformly);

repeat
Select u ∈ L with probability deg(u)/

∑
∀v ∈L deg(v ) ;

Select an edge (u,v ), uniformly at random;

Replace u by v in L and add (u,v ) to sequence of sampled edges;

i ← i + 1;

until i ≥ B − nc;

3 BACKGROUND
In what follows, we review a representative random-walk based method proposed for each of the

two scenarios proposed in Section 2. First, we describe the Frontier Sampling algorithm proposed

in [28], an n-dimensional random walk that bene�ts from starting its walkers at uniformly sampled

vertices. �is technique can be applied to undirected graphs and to directed graphs provided that

the edges coming into a node are observable. �en, we describe the Directed Unbiased Random

Walk algorithm we proposed in [27], that adapts a single random walk to directed graphs when

incoming edges are not directly observable. �e goal of these methods is to obtain samples from a

graph, which are then used for inferring graph characteristics via an estimator. An estimator is a

function that takes a sequence of observations (sampled data) as input and outputs an estimate of

an unknown population parameter (graph characteristic).

3.1 Frontier Sampling: a multidimensional random walk for undirected networks
In essence, Frontier Sampling (FS) is a random walk-based algorithm for sampling and estimating

characteristics of an undirected graph. FS performs n coordinated random walks on the graph. One

of the advantages of using multiple walkers is that they can cover multiple connected components

(when they exist), while a single walker is restricted to one component in the absence of a random

jump or restart mechanism. However, when random walks are independent (not coordinated) the

number of samples obtained from a component is proportional to the number of walkers in that

component. �erefore, the probability of sampling an edge in steady state will di�er for di�erent

components, unless the number of walkers in each component is set to be proportional to its

volume. Unfortunately, initializing the walkers in such a way requires knowing the component

volumes in advance, which cannot be done in practice. By coordinating multiple random walkers,

FS is able to sample edges uniformly at random in steady state regardless of how the walkers are

initially placed.

Algorithm 1 describes FS. �ere are three parameters, the total sampling budget B, the initial cost

of placing a walker c ≥ 1 and the average number of new nodes sampled by a walker b. �e initial

walker locations are chosen uniformly at random over the vertex set. Note that the number of

walkers is taken to be n = bB/(c + b)c, that the cost of taking a random walk step is one (except for

previously sampled nodes) and that the cost of initially placing a walker, c , can be greater than one

because uniform vertex sampling is o�en expensive. FS maintains a list L of n vertices representing

the locations of the n walkers. At each step, a walker is chosen from L in proportion to the degree

of the node where it is currently located. �e walker then moves from u to an adjacent vertex v .

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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�e Frontier sampling process is equivalent to the sampling process of a single random walker

over the n-th Cartesian power of G, Gn = (V n ,En ), where

V n = {(v1, . . . ,vn ) |v1 ∈ V ∧ · · · ∧vn ∈ V }

is the n-th Cartesian power ofV . For all v, u ∈ V n
, (v, u) ∈ En if there exists an index i ∈ {1, . . . ,n}

such that (vi ,ui ) ∈ E and uj = vj for j ∈ {1, . . . ,n}/{i} [28, Lemma 5.1]. For this reason, Frontier

Sampling can be thought of as an n-dimensional random walk (see Fig. 2).

u, v k, v

α

u, h

j, v

βα

ζ
α

ω

Legend

α = 1/(deg(u) + deg(v))

β = 1/(deg(k) + deg(v))

ζ = 1/(deg(u) + deg(h))

ω = 1/(deg(j) + deg(v))

ωω

ζ

β

Fig. 2. Illustration of the Markov chain associated to FS with dimension n = 2.

Let Lt = (v1, . . . ,vn ) denote the state of FS before the t-th step, t = 1, . . .. �eorem 3.1 establishes

key statistical properties of Frontier Sampling. A more complete version of this theorem is presented

and proved in [28, �eorem 5.2].

Theorem 3.1. Recall that G is an undirected graph. If G is connected and non-bipartite, then the
stationary behavior FS exhibits the following properties:

(I) sampled edges form a stationary sequence and their marginal distribution is uniform on E,
(II) L∞ = (v1, . . . ,vn ) has the unique distribution

πv =

∑n
i=1

deg(vi )

n |V |n−1
vol(V )

, for v ∈ V n .

Using FS samples to estimate vertex label distributions is simple when the input corresponds to

the �rst scenario described in Section 2. �e probability of sampling a given node is proportional

to its undirected degree in G. Hence, each sample must be weighted inversely proportional to the

respective node’s undirected degree. Storing the undirected version of the observed graph along

with labels associated with sampled nodes allows the sampler to avoid having to pay the cost of

revisiting a node.

Conversely, when incoming edges are not observed, there is a less straightforward way to adapt

Frontier Sampling, which we propose in Section 4.

3.2 Directed Unbiased RandomWalk: a random walk adapted for directed networks
with unobservable in-edges

�e presence of hidden incoming edges but observable outgoing edges makes characterizing large

directed graphs through crawling challenging. Edge (u,v ) is a hidden incoming edge of node v
if (u,v ) can only be observed from node u. For instance, in Wikipedia we cannot observe the

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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edge (“Columbia Records”, “�omas Edison”) from �omas Edison’s wiki entry (but this edge is

observable if we access the Columbia Records’s wiki entry).

�ese hidden incoming edges make it impossible to remove the bias incurred by walking on the

observed graph, unless we crawl the entire graph. Moreover, there may not even be a directed path

from a given node to all other nodes. Graphs with hidden outgoing edges but observable incoming

edges exhibit essentially the same problem. In [27], we proposed the Directed Unbiased Random

Walk (DURW) algorithm, which obtains asymptotically unbiased estimates of vertex label densities

on a directed graph with unobservable incoming edges. Our random walk algorithm resorts to two

main principles to achieve unbiased samples and reduce variance:

• Backward edge traversals: in real-time we construct an undirected graphGu using the nodes

that are sampled by the walker on the directed graph Gd . �e role of the undirected graph

is to guarantee that, at the end of the sampling process, we can approximate the probability

of sampling a node, even though in-edges are not observed. �e random walk proceeds

in such a way that its trajectory on Gd is consistent with that of a random walk on Gu .

�e walker is allowed to traverse some of the edges in Gd in a reverse direction. However,

we prevent some of the observed edges to be traversed in the reverse direction by not

including them in Gu . More precisely, once a node v is visited at the i-th step, no in-edges

to v observed at step j > i (by visiting nodesw such that (w,v ) ∈ Ed ) are added toGu . �is

is important to reduce the random walk transient and thus, reduce estimation errors.

• Degree-proportional jumps: the walker makes a limited number of random jumps to guar-

antee that di�erent parts of the directed graph are explored. In DURW, the probability of

randomly jumping out of a node v , ∀v ∈ V , is w/(w + deg(v )), w > 0. �is modi�cation

is based on the following observation: let Gu be a weighted undirected graph formed by

adding a virtual node σ such that σ is connected to all nodes inV with edges having weight

w . All remaining edges have unit weight. In a weighted graph a walker transverses a given

edge with probability proportional to the weight of this edge. �e steady state probability

of visiting a node v on Gu is (w + deg(v ))/(vol(V ) +w |V |). Similar to the cost of placing

a FS walker through uniform vertex sampling, we assume that each random jump incurs

cost c ≥ 1.

The DURW algorithm. DURW is a random walk over a weighted undirected connected graph
Gu = (V ,Eu ), which is built on-the-�y. We build an undirected graph using the underlying directed

graph Gd and the ability to perform random jumps. Let G (i ) = (V ,E (i ) ) denote the undirected

graph constructed by DURW at step i , where V is the node set and E (i )
is the edge set. Denote by

Gu ≡ limi→∞G
(i )

. In what follows we describe the construction of G (i )
.

Let N (v ) denote the set of out-edges of a node v in Gd . To simplify our exposition, we include a

virtual node σ in the constructed graph, which represents a random jump. Let S (i ) = {s1, . . . , si } be

the set of nodes from V ∪ {σ } sampled by the random walk up to step i , where sj denotes the node

on which the walker resides at step j . �e walker starts at node s1 ∈ V . We initializeG (1) = (V ,E (1) ),
where E (1) = N (s1) ∪ {(u,σ ) : ∀u ∈ V }, where {(u,σ ) : ∀u ∈ V } is the set of all undirected virtual

edges to node σ . Let

W (u,v ) =



w if u = σ or v = σ

1 otherwise

denote the weight of edge (u,v ), ∀(u,v ) ∈ E (i )
. �e next node, si+1, is selected from E (i )

with

probability W (si , si+1)/
∑
∀(si ,v )∈E (i ) W (si ,v ). Upon selecting si+1 we update G (i+1) = (V ,E (i+1) ),

where

E (i+1) = E (i ) ∪ N ′(si+1) , (1)

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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and

N ′(si+1) = {(si+1,v ) : ∀(si+1,v ) ∈ N (si+1) s.t. v < S (i ) }

is the set of all edges (u,v ) in N (si+1) where node v < S (i )
. Note that N ′(si+1) ⊆ N (si+1). By

using N ′(si+1) instead of N (si+1) in equation (1) we guarantee that no node in S (i )
changes its

degree, i.e., ∀v ∈ S (i )
the degree of v in G (i )

is also the degree of v in Gu . �us, we comply with

the requirement that once a node v , ∀v ∈ V , is visited by the RW no edge can be added to Gu with

v as an endpoint.

In the actual implementation, it is only necessary to keep track of nodes inS (i )∪
⋃
v ∈S (i )\{σ }N (v )

and the edges in Ed leaving each node v ∈ S (i ) \ {σ }. In fact, while the virtual node σ is connected

to all nodes inV , the sampler does not have access to the identities of nodes other than the ones that

were already observed. In order to estimate vertex label distributions from DURW observations, we

weight samples in proportion to the reciprocal of the probability that the corresponding vertices

are visited by a random walk in Gu , in steady state. Storing the labels associated with nodes in

S (i ) \ {σ } saves the cost of querying repeated nodes.

4 GENERALIZING FS: A NEWMETHOD APPLICABLE REGARDLESS OF IN-EDGES
VISIBILITY

�is section is divided into two parts. In Section 4.1 we propose the Directed Unbiased Frontier

Sampling (DUFS) method, which generalizes FS to allow estimation also on directed graphs with

unobservable in-edges (second scenario described in Section 2). DUFS also generalizes DURW:

the la�er is a special case of DUFS where the number of walkers is one. Next, in Section 4.2, we

describe two ways to estimate node label distributions from DUFS samples. �e �rst uses only on

the observations collected when moving the walkers. �e second is a new estimator we propose to

leverage information contained in the initial walker locations in addition to the walker subsequent

steps.

4.1 Directed Unbiased Frontier Sampling
Like FS, the Directed Unbiased Frontier Sampling (DUFS) samples a network through n coordinated

walkers. At each step, it selects a walker in proportion to the degree of the node where it currently

resides.

Similarly to the Directed Unbiased Random Walk, it constructs an undirected graphGu = (V ,Eu )
in real-time that allows backward edge traversals. Denote by G (i ) = (V ,E (i ) ) the undirected graph

constructed by DUFS at step i . DUFS does not include edges in G (i )
that would cause walkers to

have a view of the graph that is inconsistent with the view at a previous point in time. In other

words, when node u is visited for the �rst time at step i , u is inserted in G (i )
along with all edges

(u,v ) ∈ Ed such that v has not been sampled. �us, the degree of u is �xed in G (j )
, for all j ≥ i .

It may seem that there is no need to include degree-proportional jumps to visit di�erent graph

components when a large number of walkers are initially spread throughout the graph (e.g., on

vertices chosen uniformly at random). However, including degree-proportional jumps in DUFS

is extremely bene�cial because it prevents walkers from being trapped when initially located on

vertices whose out-degree is zero. More generally, it allows walkers to move from small volume to

large volume components and, hence, obtain more samples among large degree nodes.

Algorithm 2 gives a high-level pseudo-code description of DUFS. At each step i , DUFS needs to

keep track of G (i )
for i = 1, . . . ,B − nc . In the extreme case where n = B/c , walkers are initialized

but no budget is le� to perform steps (i.e., b = 0). �us, DUFS degenerates to uniform vertex

sampling. When the underlying graph is symmetric and the jump weight is w = 0, it becomes FS.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.
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ALGORITHM 2: Directed Unbiased Frontier Sampling (DUFS)

Input :budget per walker b, random jump weight w
n ← B/(c + b) {n is the number of walkers};

i ← 0 {i is the current number of steps};

Initialize L = {v1, . . . ,vn } with n randomly chosen vertices (uniformly);

repeat
Select v ∈ L with probability

w+deg(v )
nw+

∑
∀vj ∈L deg(vj )

;

Sample p ∼ Uniform(0, 1);

if p < w
w+deg(v ) then

Select a vertex v ∈ V uniformly at random;

else
Select an outgoing edge of v , (v,v ′), uniformly at random;

end
Replace v by v ′ in L and add (v,v ′) to sequence of sampled edges;

i ← i + 1;

until i ≥ B − nc;

4.2 Estimation
In this section we describe two estimators of vertex label distributions from samples obtained by

DUFS. �ese estimators generalize estimators proposed for FS and DURW. For a description of

estimators of edge label distribution and other graph characteristics, please refer to [28].

4.2.1 Vertex Label Distribution: random edge-based estimator. Let si denote the i-th node visited

by DUFS, i = 1, . . . , t , t ≤ B − nc . Let θ` be the fraction of nodes in V with label ` ∈ Lv . Let π (v )
be the steady state probability of sampling node v in Gu , ∀v ∈ V . �e vertex label distribution is

estimated at step t as

ˆθ` =
1

n

t∑
i=1

1{` ∈ Lv (v )}

π̂ (si )
, ` ∈ Lv , t = 1, . . . ,B − nc, (2)

where 1{P } takes value one if predicate P is true and zero otherwise, and π̂ (si ) is an estimate of

π (si ): π̂ (si ) = (w + deg(si ))S . Here deg(v ) is the degree of v in G (∞)
and

S =
1

t

t∑
i=1

1

w + deg(si )
. (3)

�e following theorem states that π̂ (si ) is asymptotically unbiased.

Theorem 4.1. π̂ (si ) is an asymptotically unbiased estimator of π (si ).

Proof. To show that π̂ (si ) is asymptotically unbiased, we �rst note that the limit limt→∞ E (t ) =

E (∞)
exists, since a�er visiting all vertices we do not include any additional edges. We then invoke

�eorem 4.1 of [28], yielding limt→∞ S = |V |/( |E (∞) | + |V |w ) almost surely. �us, limt→∞ π̂ (si ) =

π (si ) almost surely. Taking the expectation of (2) in the limit as t → ∞ yields E[limt→∞ ˆθ`] = θ`,
which concludes our proof. �

4.2.2 Vertex Label Distribution: leveraging information from walkers’ initial locations. Note that

the estimator presented in (2) does not make use of information associated with the initial set of

nodes on which the walkers are placed. When the number of walkers is large this results in the
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loss of a considerable amount of statistical information. However, including these observations

is challenging because subsequent observations from random walk steps are not independent of

the initial observations. Moreover, the normalizing constant for the random walk observations

is no longer given by (3), since the degree distribution estimates also depend on the information

contained in the random vertex samples.

In this section, we derive a new estimator that circumvents these problems by approximating

the likelihood of random walk samples by that associated with random edge sampling. We call

it the hybrid estimator because it combines observations from initial walker locations and from

random walks steps. �e hybrid estimator signi�cantly improves the estimation accuracy for labels

associated with large probability masses.

Let us index the vertex labels Lv from 1 toW , whereW = |Lv |. We refer to the sum deg(v ) +w
in DUFS as the random walk bias for vertex v ∈ V . To keep the notation simple, we assume that

each vertex has exactly one label and that random walk biases take on integer values in [1, . . . ,Z ].

Denote the vertex label distribution as θ = (θ1, . . . ,θW ). Let ni denote the number of walkers

starting on label i nodes andmi, j the number of subsequent observations of label i and bias j nodes.

We approximate random walk samples in DUFS by uniform edge samples fromGu . Experience from

previous studies shows us that this approximation works very well in practice. Hence, the likelihood

function given the samples n = {ni : i = 1, . . . ,W } and m = {mi, j : i = 1, . . . ,W and j = 1, . . . ,Z }
is expressed as

L(θ |n,m) =

∏
i θ

ni
i

∏
k (kθi,k )

mi,k(∑
s,t tθs,t

)M . (4)

�e maximum likelihood estimator θ? is the value of θ that maximizes (4) subject to 0 ≤ θi ≤ 1

and

∑
i θi = 1. �is de�nes a non-convex optimization problem with constraints. However, we

can turn this optimization problem into an unconstrained problem using the reparameterization

θi = eβi /
∑

k e
βk for i = 1, . . . ,W . As shown in Appendix A, the partial derivatives of the resulting

objective function are given by

∂L (β |n,m)

∂βi
= ni +mi −

Neβi∑
j e

βj
−

Meβimi/µi∑
s eβsms/µs

, i = 1, . . . ,W , (5)

wheremi =
∑

k mi,k and µi =
∑

k mi,k/k . Se�ing one of the variables to a constant (say, βW = 1)

for identi�ability and then using the gradient descent procedure to change the remaining variables

according to (5) is guaranteed to converge provided that we make small enough steps.

An interesting interpretation of (5) is obtained by se�ing the derivatives to zero and substituting

back θi = eβi /
∑

k e
βk :

θ?i =
ni +mi

N +M
mi /µi∑

s θ?s ms /µs

, i = 1, . . . ,W . (6)

According to (6), the estimated fraction of nodes with label i is the total number of times label i
was observed (i.e., ni +mi ) normalized by sum of (i) the number of random vertex samples and

(ii) the number of random edge samples weighted by the probability of sampling label i from one

random edge sample. In the limit as N and M go to in�nity, we can show that θ? = θ is a solution,

but we cannot prove that it is unique or that θ?
converges to θ . Hence, we cannot prove that θ?

is

asymptotically unbiased.

�e system of non-linear equations determined by (6) cannot be solved directly, but can be

tackled by Expectation Maximization (EM). In this case, the term

∑
s θ

?
s ms/µs in the denominator

is replaced by its expected value given θi ’s from the previous iteration. Based on the same idea, if
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we replace

∑
s θ

?
s ms/µs with an edge sampled-based estimator

ˆd for the average degree in Gu , we

obtain the following non-recursive variant of the hybrid estimator,

ˆθi =
ni +mi

N +M mi

µi ˆd

, i = 1, . . . ,W , (7)

where
ˆd = M/(

∑
i µi ). �eorem 4.1 below states the conditions under which

ˆθi is asymptotically

unbiased (see appendix for proof). In practice, we �nd no signi�cant di�erence between θ?i and
ˆθi ,

except when the number of walkers N is very large and the jump weight w is very small. For those

cases, θ?i tends to be slightly more accurate than
ˆθi for small values of i , which in some applications

may justify the additional computational cost of executing gradient descent or EM.

Theorem 4.1. Let N = αB and M = (1 − α )B, for some 0 < α < 1. In the limit as B → ∞, the
estimator ˆθi is an unbiased estimator of θi .

In the special case where the label is the undirected degree itself, we have µi = mi/i . Hence,

eq. (7) reduces to

¯θi =
ni +mi

N +Mi/ ˆd
, (8)

where
ˆd is the estimated average degree. When the average degree is known, we can show that

¯θi
is unbiased and, moreover, the minimum variance unbiased estimator (MVUE) of θi (see appendix

for proof).

When ni > 0 butmi = 0, the estimator in eq. (7) reduces to
ˆθi = ni/N , which is essentially the

MLE for random vertex sampling. It is well known that this estimator is not nearly as accurate as

a random walk based estimator for large out-degree values with small probability mass. In some

sense, the estimator
ˆθi = ni/N does not account for the fact that the number of random walk

samples is zero. As a result, mass estimates for large out-degrees tend to have very large variance

when no random walk samples are observed. Fortunately, we �nd that the following heuristic rule

can drastically reduce the estimator variance in these cases.

Variance reduction rule. If no random edge samples are observed for out-degree i , we set the

estimate
ˆθi = 0. �is implies that we ignore any random vertex samples seen of nodes that have

out-degree i . While this clearly results in a biased estimate, as the budget per walker b goes to

in�nity, the probability of invoking this rule goes to zero. Hence, it produces an asymptotically

unbiased estimate. �is rule can be interpreted as a combination of vertex-based and random

edge-based estimates in proportion to the reciprocals of their estimated variances. �at is, when no

random edge samples are observed for a given out-degree, the corresponding estimated variance is

zero and hence, random vertex samples should be ignored. We note that the converse rule (i.e., set

ˆθi = 0 if no random vertex samples were observed) would not perform well, as the probability of

sampling large out-degrees with random vertex sampling is very small.

We simulate DUFS on several datasets and compare the results obtained with the hybrid estimator

when the rule is used and when it is not. Simulation details, datasets and the error metric (normalized

root mean square error) will be described in Section 5.1. Figures 3(a-b) show representative results

of the impact of the rule when estimating out-degree distributions using DUFS in conjunction with

the hybrid estimator on two network datasets (averaged over 1000 runs). �e results show that

the rule consistently reduces estimation error in the distribution tail without a�ecting estimation

quality for small values of i .
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Fig. 3. (visible in-edges) E�ect of variance reduction rule on NRMSE, when B = 0.1|V | and c = 1. Using
information contained in uniform vertex samples can increase variance for large out-degree estimates.
However, the proposed rule e�ectively controls for that e�ect without decreasing head estimates accuracy.

In-degree distribution: impossibility result. �e fact that long random walks are o�en approximated

by random edge sampling brings up the question of whether they can be used to estimate in-degree

distributions when the in-degree is not observed directly. Under random edge sampling, the

number of observed edges pointing to a node is binomially distributed and a maximum likelihood

estimator can be derived for estimating the in-degree distribution. �is problem is related to the

set size distribution estimation problem, where elements are randomly sampled from a collection

of non-overlapping sets and the goal is to recover the original set size distribution from samples.

In addition to in-degree distribution in large graphs, this problem is related to the uncovering of

TCP/IP �ow size distributions on the Internet.

In [23], we derive error bounds for the set size distribution estimation problem from an information-

theoretic perspective. �e recoverability of original set size distributions presents a sharp threshold

with respect to the fraction of elements sampled from the sets. If this fraction lies below the thresh-

old, typically half of the elements in power-law and heavier-than-exponential-tailed distributions,

then the original set size distribution is unrecoverable. Please refer to [23, �eorem 2] for details.

5 RESULTS ON DEGREE DISTRIBUTION ESTIMATION
Here we focus on the estimation of degree distributions on directed networks. �is section is

divided in four parts. In Section 5.1, we investigate the impact of DUFS parameters on estimation

accuracy. We then compare DUFS against other random walk-based methods when both outgoing

and incoming edges are visible in Section 5.2. In Section 5.3, we perform a similar comparison when

only out-edges are visible. Last, in Section 5.4 we provide some analysis to explain the relationship

observed between the NRMSE and the out-degree (in-degree) in the results. We will refer to the

edge-based estimator de�ned in (2) and the hybrid estimator de�ned in (6) as E-DUFS and H-DUFS

respectively.

�e 15 directed network datasets in our evaluation were obtained from Stanford’s SNAP [17].

�ese datasets describe the topology of a variety of social networks, communication networks, web

graphs, one Internet peer-to-peer networks and one product co-purchasing networks. We found it

informative to extract the largest strongly connected component of each directed network and to

apply our methods to the resulting datasets – hereby referred to as LCC datasets – as well as to the

original datasets. Figure 4 shows the out-degree probability mass function (p.m.f.) for each network,

along with the out-degree p.m.f. for the corresponding LCC dataset. We opt to show the p.m.f.
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1Fig. 4. Out-degree probability mass function (p.m.f.) for each network and its largest strongly connected
component (LCC). A large di�erence between these p.m.f.s suggests it is beneficial to use multiple walkers
and/or random jumps.
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instead of the complementary cumulative distribution function (CCDF) because the estimation task

in this work is de�ned in terms of the p.m.f.’s. De�ning the estimation task in terms of the CCDF

would give H-DUFS an unfair advantage, as we will explain in Section 5.2.

Simulations consist of sampling the network until a budget B = 0.1|V | (i.e., 10% of the number

of vertices) is depleted. Note that budget is decremented when walkers are initially placed and

each time one of them moves to a vertex and when they perform random jumps. We construct an

undirected graph in the background throughout each simulation. As a result, we assume that the

cost to revisit a vertex is zero, even if this visit occurs due to a random jump
3
.

When both outgoing and incoming edges are observable, random walks disregard edge direction,

and move as if the network is undirected. In this scenario, we focus either on the estimation of the

marginal out- and in-degree distributions or the joint distribution. �e methods we investigate here

can be used to estimate other node label distributions. For instance, if the underlying network is

undirected, we can estimate the (undirected) degree distribution or even non-topological properties,

such as the distribution of user nationalities in a social network. In the light of the impossibility

results described in the end of Section 4.2, we focus on out-degree distribution estimation when

incoming edges are not directly observable.

Let θ = {θi }∀i ∈L denote the vertex label distribution, where θ` is the fraction of vertices with

label `. Denote by
ˆθ` the estimate for θ` . We use the normalized root mean square error (NRMSE )

of
ˆθ` as the error metric, which is a normalized measure of the dispersion of the estimates, given by

NRMSE(`) =

√
E[( ˆθ` − θ` )2]

θ`
. (9)

In the case of marginal in-degree (out-degree) distribution, we refer to in-degrees (out-degrees)

smaller than the average as the head of the distribution. We refer to the top 1% largest in- (out-degree)

values as the tail of the distribution.

5.1 Impact of DUFS parameters and practical guidelines
To provide some intuition on how the random jump weightw and the budget per walker b a�ect the

accuracy of DUFS estimates, assume for now that we replace samples collected via random walks

by uniform edge samples from the weighted undirected graphGu . In this hypothetical scenario, the

budget B is used to collect n ≥ 1 uniform vertex samples and B − nc uniform edge samples. Clearly,

when the edge-based estimator de�ned in (2) is used, the most accurate vertex label distribution

estimates are obtained by se�ing n = 1, or equivalently, b = B − c . �erefore, we focus on the

case where the hybrid-estimator de�ned in (6) is used. In particular, consider estimation of the

out-degree distribution.

For a given value of b, the number of uniform vertex samples will be B/(c + b). For each of the

remaining B − B/(c + b) samples, a vertex v is sampled in proportion to deg(v ) +w , where deg(v )
is the undirected degree of v in Gu . �e choice of w and b impose, individually, a trade-o� between

estimation accuracy of the head and of tail of the distribution. For a �xed value ofw , smaller values

of b translate into be�er estimates of the head (and worse estimates of the tail) because we collect

more (less) information about that region of the distribution from uniform vertex samples. For a

�xed value of b, larger values of w also translate into more (less) accurate estimates of the head

(tail), because random jumps are more likely to move a node to low in- and out-degree nodes (as

they tend to occur more frequently).

3
Note that the alternative, i.e. always taking c units o� the budget per random jump, is unlikely to impact results signi�cantly

when B = 0.1 |V |, since the vast majority of random jumps will �nd a non-visited node.
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Table 1. Practical guidelines on se�ingH-DUFS parameters to obtain accurate head or tail estimates depending
on in-edge visibility and vertex sampling cost c .

uniform vertex sampling cost

c = 1 c = 10

in-edges visible not visible visible not visible

most accurate for w = 10 w = 10 w = 1 w = 10

small out-degrees b = 1 b = 1 b = 10
2 b = 1

most accurate for w = 1 w = 1 w = 0.1 w = 0.1
large out-degrees b = 10 b = 10, 10

2, 10
3 b = 10

3 b = 10, 10
2, 10

3

In what follows, we observe through simulations that despite the uniform edge sampling approxi-
mation, the previous intuition holds for H-DUFS head estimates, but not always for tail estimates. In

many cases, as we increase the number of walkers (i.e., decrease b) or increase w , we still obtain

good estimates of the tail. �is occurs because varying w or b changes the transition probability

matrix that governs the sampling process, and thus, the sample distribution.

We simulate DUFS on each original network dataset for combinations of random jump weight

w ∈ {0.1, 1, 10} and budget per walker b ∈ {1, 10, 10
2, 10

3} (1000 runs each). Values of w much

smaller and much larger than these would be approximately equivalent to H-DUFS without jumps

and random vertex sampling, respectively. Larger values of b would approximately correspond to

DURW. We consider four scenarios that correspond to whether the incoming edges are directly

observable or not and to two di�erent costs of independent vertex sampling c = 1 or c = 10.

Evaluating these parameter combinations is useful to establish practical guidelines for choosing

H-DUFS parameters, which we summarize in Table 1. We observe that the estimation accuracy

tends to be lower for extreme values of these parameters, suggesting that combinations other than

the ones investigated here would not provide large accuracy gains (if any).

Visible in-edges, c = 1. Figures 5(a-c) show typical results when varyingw and b. To avoid clu�er,

we show only estimates for powers of two (or the closest out-degree values) and omit results for

b = 10
3

as they are similar to those for b = 10
2
. Figure 5(d) shows similar results for amazon-0312,

the dataset with the smallest maximum out-degree (max. is 10). Similarly to our intuition for

uniform edge sampling, the NRMSE associated with the head increases with b and decreases with

w , on virtually all datasets
4
. Also as expected, for a �xed values of w , b = 1 yields larger errors

in the tail than b ∈ {10, 100} (except for amazon-0312). However, contrary to the intuition for

uniform edge sampling, w = 1 matches or outperforms w = 0.1 for (except for b = 1). �is is best

visualized in Figure 5d. �is happens because se�ing w = 1 allows DUFS to sample regions with

large probability mass (in this case, the head) and, at the same time, allows the sampler to move

walkers from low volume to high volume components more o�en than w = 0.1. We also observe

that b = 10 outperforms b ∈ {10
2, 10

3} for w ∈ {0.1, 1}. Dataset amazon-0312 is the only dataset

where (w = 10,b = 1) obtained the best results over the entire out-degree distribution. As a side

note, we observe that for most datasets used here, in log-log scale, the NRMSE grows approximately

linearly on the out-degree up to a certain point and then starts to decrease, roughly linearly too. In

Section 5.4 we explain why this is the case.

4
For simplicity, the observations regarding the distribution head (tail) are based on the single smallest (largest) out-degree

on each dataset. Similar conclusions are obtained when combining NRMSEs associated with several of the smallest (largest)

out-degrees.
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Fig. 5. (visible in-edges) E�ect of DUFS parameters on datasets with many connected components, when
B = 0.1|V | and c = 1. Legend shows the average budget per walker (b) and jump weight (w). Trade-o� shows
that configurations that result in many random vertex samples, such as (w = 10,b = 1), yield accurate head
estimates, whereas configurations such as (w = 1,b = 10) yield accurate tail estimates.

Invisible in-edges, c = 1. �e results we obtained are similar to those obtained for the visible

in-edge scenario, but NRMSEs tend to be larger. Figures 6(a,b) show typical results for di�erent

DUFS parameters, represented by two datasets (also shown in the previous �gure). Once again, the

intuition for uniform edge sampling holds for the distribution head: decreasing b and increasing w
yield more accurate estimates for the smallest out-degrees. While b = 1 results in poor estimates

for the largest out-degrees, our intuition regarding w does not hold true for the tail. More precisely,

in most cases w = 1 outperforms w = 0.1 (one exception being dataset soc-Epinions1). As opposed

to the visible in-edge scenario, increasing b tends to provide more accurate tail estimates for w = 1.

We investigate this e�ect in Section 5.3. We �nd that, for a �xed w , larger values of b make the

random walks jump more o�en, moving them from small volume components to large volume

components, yielding be�er tail estimates.
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Fig. 6. (invisible in-edges) E�ect of DUFS parameters on datasets with many connected components, when
B = 0.1|V | and c = 1. Legend shows the average budget per walker (b) and jump weight (w). Configurations
that result in many walkers which jump too o�en, such as (w ≥ 10,b = 1) yield accurate head estimates,
whereas configurations such as (w = 1,b = 10

3), yield accurate tail estimates.

Visible in-edges, c = 10. Consider the case where the cost of obtaining independent vertex samples

is large, more precisely, 10 times larger than the cost of moving a walker. It is no longer clear that

using many walkers and frequent random jumps achieves the most accurate head estimates, as

this could rapidly deplete the budget. In fact, we observe that se�ing w = 10 or b = 1 yields poor

estimates for both the smallest and largest out-degrees. While increasing the jump weight w or

decreasing b sometimes improves estimates in the head, it rarely does so in the tail. �e best results

for the smallest out-degrees are o�en observed when se�ing w = 1 and b = 10 or 10
2
. On the other

hand, se�ing (w = 0.1,b = 10
3) or (w = 1,b = 10

2) usually achieves relatively small NRMSEs for

the largest out-degree estimates.

Invisible in-edges, c = 10. Unlike the scenario with visible in-edges, se�ing w = 10 and b = 1

o�en produces the most accurate estimates for the smallest out-degrees. �is is because many of

the datasets have nodes with no out-edges; these nodes can only be reached through a neighbor

or through random vertex sampling. Conversely, the general trends for tail estimates are similar

to those observed for the visible in-edges case: large values of w and small values of b yield less

accurate estimates for the largest out-degree values. Forw = 1, however, b = 10
2

o�en outperforms

b = 10
3
. On the other hand, for w = 0.1 there is li�le di�erence in the estimates for di�erent values

of b.

5.2 Evaluation of DUFS in the visible in-edges scenario
In this section we compare two variants of Directed Unbiased Frontier Sampling: E-DUFS, which

uses the edge-based estimator and H-DUFS, which uses the hybrid estimator, against a single

random walk (SingleRW) and multiple independent random walks (MultiRW).

5.2.1 Out-degree and in-degree distribution estimates. Here we focus on estimating the marginal

in- and out-degree distributions. Each simulation consists of 1000 runs used to compute the

empirical NRMSE. For MultiRW, E-DUFS and H-DUFS we set the average budget per walker to be

b = 10. For conciseness, we only show a few representative results.
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Fig. 7. Comparison of single random walk (SingleRW), multiple independent random walks (MultiRW), DUFS
with edge-based estimator (E-DUFS) and with hybrid estimator (H-DUFS). MultiRW yields the worst results,
as the edge sampling probability is not the same across di�erent connected components. Both DUFS variants
outperform SingleRW, but H-DUFS is slightly more accurate in the head.

Figure 7 shows typical results obtained when using SingleRW, MultiRW, E-DUFS and H-DUFS to

estimate out-degree distributions on the datasets. In 8 out of 15 datasets, MultiRW yields much

larger NRMSEs than does the SingleRW. As pointed out in [28, Section 4.5], this is due to the

fact that the estimator in (2) assumes that all edges are sampled with the same probability. �is

assumption is violated by MultiRW because the stationary sampling probability depends on the

size of the connected component within which each walker is located. E-DUFS estimates are

consistently more accurate than those of MultiRW and SingleRW, except on datasets where the

original graph and its LCC have similar out-degree distributions. In some of these cases SingleRW

slightly outperforms E-DUFS in the tail (see Fig. 7b). H-DUFS, in turn, outperforms E-DUFS in the

head of the out-degree distribution and has similar performance when estimating other out-degree

values. For this reason, de�ning the estimation task in terms of the CCDF would give H-DUFS an

unfair advantage.
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Fig. 8. Comparison between H-DUFS and SingleRW w.r.t. NRMSE when estimating the joint in- and out-
degree distribution. In most cases SingleRW will exhibit “hot spots” (regions with large NRMSE), which are
mitigated by H-DUFS.

When restricted to the largest connected component, the performance di�erences between

SingleRW and E-DUFS and those between SingleRW and H-DUFS become smaller, for B = 0.1|V |.
Results for in-degree distribution estimation are qualitatively similar and are omi�ed.
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Fig. 9. NRMSE ratios between H-DUFS and E-DUFS of the estimated joint in- and out-degree distribution for
two datasets. H-DUFS is typically be�er than H-DUFS at low in and out-degree regions (le�), but in social
network graphs presented improvements over most of the joint distribution (right).

5.2.2 Joint in- and out-degree distributions. We compare the NRMSEs associated with H-DUFS

and SingleRW for the estimates of the joint in- and out-degree distribution. We observe that

H-DUFS consistently outperforms SingleRW on all datasets. On 10 out of 15 datasets, the estimates

corresponding to low in-degree and low out-degree exhibit much smaller errors when using H-

DUFS than when using SingleRW. Furthermore, H-DUFS also achieves smaller estimation errors for

most of the remaining points of the joint distribution in 11 out of 15 datasets. Figures 8(a-b) show

heatmaps corresponding to typical NRMSE results for H-DUFS and SingleRW. Interestingly, we note

that on the web graph datasets and on the email-EuAll dataset, H-DUFS outperforms SingleRW by

one or two orders of magnitude, as illustrated by Figure 8(c), which shows the heatmap comparison

for dataset web-Google. Although the NRMSE exhibited by SingleRW applied to the LCC datasets

is much smaller, the comparison between H-DUFS and SingleRW is qualitatively similar and is,

therefore, omi�ed.

We then investigated the performance gains obtained by using the hybrid estimator instead of

the original estimator. Figures 9(a-b) show the ratios between the NRMSEs obtained with H-DUFS

(hybrid) to those obtained with the E-DUFS (original) for two networks. We chose to use the

NRMSE ratio (or equivalently, the root MSE ratio) to make it easier to visualize the di�erences.

We observe that H-DUFS consistently outperforms E-DUFS on all datasets. More precisely, the

error ratio is rarely above one and, for points corresponding to small in- and out-degrees, it o�en

lies below 0.9. Results on most datasets are similar to that depicted in Figure 9(a), but results on

social networks datasets are closer to that shown in Figure 9(b), where large in- and out-degrees

also seem to bene�t from the information contained in the walkers’ initial locations. Results for

the LCC datasets are qualitatively similar, with accuracy gains from the hybrid estimator slightly

larger on these datasets than on the original datasets.

5.3 Evaluation of DUFS in the invisible in-edges scenario
In this section, we compare the NRMSEs associated with DUFS and Directed Unbiased Random

Walk (DURW) method when estimating out-degree distributions in the case where in-edges are

not directly observable. We note that DURW is known to outperform a reference method for this

scenario proposed in [3]. For a comparison between DURW and this reference method, please refer

to [27].
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Fig. 10. NRMSEs associated with DUFS (b = 10,w = 1) and DURW (w ′ chosen to match average number of
vertex samples) when estimating out-degree distribution. DURW performs more random jumps, thus be�er
avoiding small volume components. On the original datasets, this improves DURW results in the tail, but
o�en results in lower accuracy in the head (top le�). In one third of the original datasets, DUFS yielded
similar or be�er results than DURW over most out-degree points (top right). On most LCC datasets, DUFS
outperforms DURW in the head and matches DURW’s performance in the tail (bottom).

As we mentioned in Section 5.1, DURW results are similar to those obtained with DUFS when

the budget per walker b is large, since DURW is a special case of DUFS where b = B − c . �erefore,

we focus on comparing DUFS for small values of b and DURW, when the total number of uniform

vertex samples collected by each method is roughly the same. More precisely, we simulate DUFS

for b = 10 and w = 1 and set the DURW parameter w so that the number of vertex samples di�ers

by at most 1% (averaged over 1000 runs). �is aims to provide a fair comparison between these

methods.

We �nd that neither of the two methods consistently outperforms the other over all datasets.

�e extra random jumps performed by DURW will prevent the walker from spending much of

the budget in small volume components. As a result, DURW tends to exhibit larger errors in
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the head but smaller errors in the tail of the out-degree distribution than DUFS. Figures 10(a,b)

show typical results for w = 1 and b = 10. DUFS exhibited lower estimation errors in the head

of the distribution on 11 datasets, being outperformed by DURW on one dataset and displaying

comparable performance on the others. In 6 out of 15 datasets, DURW had be�er performance in

the tail, while DUFS yielded be�er results on other �ve datasets. Results forw = 1 and b ∈ {10
2, 10

3}

are similar and are, therefore, omi�ed. As b increases, di�erences between DUFS and DURW start

to vanish.

To be�er understand the impact of multiple connected components in DUFS and DURW perfor-

mances, we simulate each method on the largest strongly connected component of each dataset

(i.e., on the LCC datasets). Figures 10(c,d) show typical results among the LCC datasets. In most

networks, DUFS yields smaller NRMSE than DURW in the head and yield similar results in the tail.

Once again, for larger b the performances of DUFS and DURW become equivalent.

5.4 Relationship between NRMSE and out-degree distribution
�roughout Section 5 we observed that the NRMSE associated with RW-based methods tends

to increase with out-degree up to a certain out-degree and to decrease a�er that. Moreover, for

some out-degree ranges the log NRMSE seems to vary linearly with the log out-degree. Figure 5).

For simplicity, we discuss the undirected graph case, but the extension to directed graphs is

straightforward. �e RW methods discussed here combine uniform vertex sampling with RW

sampling approximated as uniform edge sampling. For simplicity, we analyze below the accuracy

of uniform vertex and uniform edge sampling. We assume that each sampled edge results in exactly

one observation, obtained by retrieving the set of labels associated with one of the adjacent vertices

chosen equiprobably. �erefore both vertex sampling and edge sampling will collect vertex labels.

Let S = {s1, . . . , sB } be the sequence of sampled vertices. For uniform vertex sampling, the

probability of observing a given label ` in L (si ) is θ` , for any i = 1, . . . ,B. �e minimum variance

unbiased estimator of θ` is

T `
vs
(S) =

1

B

B∑
i=1

1{` ∈ L (si )}. (10)

Note that the summation in (10) is binomially distributed with parameters B and θ` . It follows that

the mean squared error (MSE) of T `
vs
(S) is given by

MSE(T `
vs
(S)) = E[(T `

vs
(S) − θ` )

2
],

=
θ` (1 − θ` )

B
. (11)

For uniform edge sampling, the probability of observing a given label ` ∈ L in the sample L (si )
for i = 1, . . . ,B, is equal to

π` =

∑
v ∈V 1{` ∈ L (v )} deg(v )∑

u ∈V deg(u)
.

In that case, the following estimator can be shown to be asymptotically unbiased

T `
es
(S) =

1

B

∑B
k=1

1{` ∈ L (sk )} deg
−1 (sk )∑B

j=1
deg

−1 (sj )
. (12)

In particular, when vertex labels are the undirected degrees of each node, the probability of

observing a given degree d becomes πd = dθd/ ¯d , where
¯d is the average undirected degree. �e

estimator for B = 1 reduces toT d
es
(S1) = 1{s1 = d }, which is a random variable distributed according
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Fig. 11. NRMSE associated with uniform vertex sampling and uniform edge sampling when estimating degree
distribution of the Flickr dataset (for B = 0.1|V |).

to a Bernoulli with parameter πd . As a result, the MSE for B > 1 independent samples is given by

MSE(T d
es
(S)) =

πd (1 − πd )

B
. (13)

Equations (11) and (13) characterize the conditions under which each sampling model is more

accurate. More precisely, for all i such that θd > πd (or equivalently, d < ¯d), uniform vertex

sampling yields be�er estimates than uniform edge sampling. �is dichotomy is illustrated in

Figure 11, which shows the NRMSE associated with degree distribution estimates resulting from

each sampling model on the �ickr-links dataset, for B = 0.1|V |.
Note that in log-log scale, both curves resemble a straight line for d = 2, . . . , 10

3
, which indicates

a power law. For degrees larger than 5 × 10
3
, the NRMSE associated with vertex sampling is

constant, while the NRMSE associated with edge sampling decreases linearly with the degree. We

show that these observations are direct consequences of the fact that the degree distribution in this

network (as well as many other real networks) approximately follows a power law distribution.

However, the degree distribution of a �nite network cannot be an exact power law distribution

because the tail is truncated. As a result, most of the largest degree values are observed exactly

once. �is can be seen in Figure 4 by noticing that on the �ickr-links (and many other datasets) the

p.m.f. is constant for the largest out-degrees. Assume, for instance, that the degree distribution can

be modeled as

θd =



d−β/Z , 1 ≤ d ≤ τ

1/|V | , d > τ ,

for some β ≥ 1 and some normalizing constant Z .

From (11), we have for uniform vertex sampling,

NRMSE(T d
vs
(S)) =

√
(1/θd − 1)/B. (14)

For θl � 1 (true for large degrees), this implies

NRMSE(T d
vs
(S)) ≈




√
Zdβ/B , 1 ≤ d ≤ τ
√
|V |/B , d > τ .
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For d > τ , the NRMSE is constant. Otherwise, taking the log on both sides yields

log(NRMSE(T d
vs
(S))) ≈

β

2

logd +
1

2

(logZ − logB), 1 ≤ d ≤ τ , (15)

which explains the relationship observed for uniform vertex sampling in Fig. 11.

From (13), we have for uniform edge sampling,

NRMSE(T d
es
(S)) =

√
(1/πd − 1)/B. (16)

For θd � 1 (true for large degrees), this implies

NRMSE(T d
es
(S)) ≈




√
Z ¯ddβ−1/B , 1 ≤ d ≤ τ√
|E |
d /B , d > τ .

Taking the log on both sides, it follows that

log(NRMSE(T d
es
(S))) ≈




β−1

2
logd + 1

2
(logZ + log

¯d − logB) , 1 ≤ d ≤ τ

− 1

2
(logd − log |E | − logB) , d > τ ,

(17)

which explains the linear increase followed by the linear decrease observed in Fig. 11. Although

RW-based methods can include uniform vertex sampling mechanisms, for large degrees NRMSE

trends are be�er described by (17) than by (15), since most of the information about these degrees

comes from RW samples.

6 RESULTS ON VERTEX LABEL DISTRIBUTIONS ESTIMATION
�is section focuses on network datasets which possess (non-topological) node labels. Using these

datasets, all of which represent undirected networks, we investigate which combinations of DUFS

parameters outperform uniform vertex sampling when estimating node label distributions of the

top 10% largest degree nodes. �ese nodes o�en represent the most important objects in a network.

Two of the four undirected a�ribute-rich datasets we use are social networks (DBLP and LiveJour-

nal) obtained from Stanford SNAP, while two are information networks (DBpedia and Wikipedia) ob-

tained from CMU’s Auton Lab GitHub repository active-search-gp-sopt [19]. In these datasets,

node labels correspond to some type of group membership and a node is allowed to be part of

multiple groups simultaneously.

We simulate H-DUFS on each undirected network for all combinations of random jump weight

w ∈ {0.1, 1, 10} and budget per walker b ∈ {1, 10, 10
2}, and perform 1000 runs. Figure 13 compares

the NRMSE associated with H-DUFS for di�erent parameter combinations against uniform vertex

sampling. Uniform vertex sampling results are obtained analytically using eq. (14). On DBpedia,

Wikipedia and DBLP, almost all H-DUFS con�gurations outperform uniform vertex sampling. On

LiveJournal, vertex sampling outperforms H-DUFS for a�ributes associated with large probability

masses, but underperforms H-DUFS for a�ributes with smaller masses. In summary, we observe

that H-DUFS with w ∈ {0.1, 1.0} and b ∈ {10, 10
2} yields superior accuracy than uniform vertex

sampling when estimating node label distributions among the top 10% largest degree nodes.

7 DISCUSSION: DUFS PERFORMANCE IN THE ABSENCE OF UNIFORM VERTEX
SAMPLING

In this section, we investigate the estimation accuracy of {E,H}-DUFS when random walkers are

not initialized uniformly over V . We consider two simple non-uniform distributions over V to

determine the initial walker locations walker positions:
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Fig. 12. Degree and node a�ribute distribution for undirected a�ribute-rich networks.
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Fig. 13. Comparison of hybrid estimator (H-DUFS) with uniform vertex sampling. H-DUFS curves on DBLP
plot are smoothed by a local regression using weighted linear least squares and a second degree polynomial
model to avoid clu�er. H-DUFS withw ∈ {0.1, 1.0} and b ∈ {10, 10

2} yields comparable or superior accuracy
than uniform vertex sampling.

• Distribution Prop: proportional to the undirected degree, that is,

P (initial walker location is v ) =
deg(v )∑

u ∈V deg(u)
; (18)

• Distribution Inv: proportional to the reciprocal of the undirected degree, that is,

P (initial walker location is v ) =
deg

−1 (v )∑
u ∈V deg

1 (u)
. (19)

We simulate E-DUFS and H-DUFS on each network dataset se�ing the budget per walker to

b ∈ {1, 10, 10
2,B − 1} in a scenario where in-edges are visible, performing 100 runs. Note that

b = B − 1 corresponds to the case of a single random walker. Since we assume uniform vertex

sampling (VS) is not available, we must set the random jump weight to w = 0. We include,

however, results obtained when the initial walker locations are determined via VS for comparison.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Characterizing Networks via Multidimensional Walks with Jumps 1:27

out-degree
10 0 10 1 10 2 10 3

N
R

M
S

E

10 -3

10 -2

10 -1

10 0

b=1, inv. prop. deg.
b=10, inv. prop. deg.
b=100, inv. prop. deg.
b=1, uniform
b=10, uniform
b=100, uniform
b=1, prop. deg.
b=10, prop. deg.
b=100, prop. deg.

(a) email-EuAll
out-degree

10 0 10 1 10 2 10 3 10 4 10 5

N
R

M
S

E

10 -2

10 -1

10 0

10 1

b=1, inv. prop. deg.
b=10, inv. prop. deg.
b=100, inv. prop. deg.
b=1, uniform
b=10, uniform
b=100, uniform
b=1, prop. deg.
b=10, prop. deg.
b=100, prop. deg.

(b) youtube-links

Fig. 14. E�ect of initializing walkers non-uniformly over V on E-DUFS accuracy. NRMSE decreases with
budget per walker until b = 10

2.

Figures 14(a,b) show typical values of NRMSE associated with E-DUFS out-degree distribution

estimates. We observe that NRMSE decreases with the budget per walker until b = 10
2
, both for

Prop and Inv. Simulations for b = B − 1 (i.e., using a single walker) yielded poor results and are

omi�ed.

Intuitively, using the hybrid estimator when the initial walker locations come from some non-

uniform distribution can incur unknown – and potentially large – biases. We conducted a set

of simulations with H-DUFS, which corroborated this intuition. �ese results are omi�ed for

conciseness. In summary, our results indicate that when the initial walker locations are determined

according to some unknown distribution, a practitioner should use E-DUFS with moderately large

b (e.g., 10
2
).

8 RELATEDWORK
Crawlingmethods for exploring undirected graphs: A number of papers investigate crawling

methods (e.g., breadth-�rst search, random walks, etc.) for generating subgraphs with similar

topological properties as the underlying network [12, 16]. On the other hand, [20] empirically

investigates the performance of such methods w.r.t. speci�c measures of representativeness that

can be useful in the context of speci�c applications (e.g., �nding high-degree nodes for outbreak

detection). However, these works focus on techniques that yield biased samples of the network

and do not possess any accuracy guarantees. [1, 14] demonstrate that Breadth-First-Search (BFS)

introduces a large bias towards high degree nodes, and it is di�cult to remove these biases in

general, although it can be reduced if the network in question is almost random [14]. Random

walk (RW) is biased to sample high degree nodes, however its bias is known and can be easily

corrected [28]. Random walks in the form of Respondent Driven Sampling (RDS) [10, 30] have

been used to estimate population densities using snowball samples of sociological studies. �e

Metropolis-Hasting RW (MHRW) [31] modi�es the RW procedure, aimed at sampling nodes with

equal probability to estimation errors introduced by sampling. [5, 26] analytically prove that MHRW

degree distribution estimates perform poorly in comparison to RWs. Empirically, the accuracy of

RW and MHRW has been compared in [8, 24] and, as predicted by the theoretical results, RW is

consistently more accurate than MHRW.
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Reducing the mixing time of a regular RW is one way of improving the performance of RW based

crawling methods. [2] proves that random jumps increase the spectral gap of the random walk,

which in turn, leads to faster convergence to the steady state distribution. [13] assigns weights to

nodes that are computed using their neighborhood information, and develop a weighted RW-based

method to perform strati�ed sampling on social networks. �ey conduct experiments on Facebook

and show that their strati�ed sampling technique achieves higher estimation accuracy than other

methods. However, the neighborhood information in their method is limited to helping �nd random

walk weights and is not used in estimators of graph statistics of interest. To solve this problem,

[6] randomly samples nodes (either uniformly or with a known bias) and then uses neighborhood

information to improve its unbiased estimator. [33] modi�es the regular random walk by “rewiring”

the network of interest on-the-�y in order to reduce the mixing time of the walk.

Crawling methods for exploring directed graphs: Estimating observable characteristics by

sampling a directed graph (in this case, the Web graph) has been the subject of [3] and [11], which

transform the directed graph of web-links into an undirected graph by adding reverse links, and

then use a MHRW to sample webpages uniformly. �e DURW method we propose in [27] adapts

the “backward edge traversal” of [3] to work with a pure random walk and random jumps. Both

of these Metropolis-Hastings RWs ([3] and [11]) are designed to sample directed graphs and do

not allow random jumps. However, the ability to perform random jumps (even if jumps are rare)

makes DURW and DUFS more e�cient and accurate than the MetropolisHastings RW algorithm.

Random walks with PageRank-style jumps are used in [16] to sample large graphs. In [16], however,

there is no technique to remove the large biases induced by the random walk and the random

jumps, which makes this method un�t for estimation purposes. More recently, another method

based on PageRank was proposed in [29], but it assumes that obtaining uniform vertex samples is

not feasible. In the presence of multiple strongly connected components, this method o�ers no

accuracy guarantees.

In the last decade, there has been a growing interest in graph sketching for processing massive

networks. A sketch is a compact representation of data. Unlike a sample, a sketch is computed over

the entire graph, that is observed as a data stream. For a survey on graph sketching techniques,

please refer to [21].

9 CONCLUSION
In this paper, we proposed the Directed Unbiased Frontier Sampling (DUFS) method for character-

izing networks. DUFS generalizes the Frontier Sampling (FS) and the Directed Unbiased Random

Walk (DURW) methods. In some sense, DUFS extends FS to make it applicable to directed networks

when incoming edges are not directly observable by building on ideas from DURW. Like DURW,

DUFS can also be applied to undirected networks without any modi�cation.

We also proposed a novel estimator for vertex label distribution that can account for FS and

DUFS walkers initial locations – or more generally, random vertex samples – and a heuristic that

can reduce the variance incurred by vertex samples that happen to sample nodes whose labels

have extremely low probability masses. When the proposed estimator is used in combination with

the heuristic, we showed that estimation errors can be signi�cantly reduced in the distribution

head when compared with the estimator proposed in [28], regardless of whether we are estimating

out-degree, in-degree or joint in- and out-degree distributions.

We conducted an empirical study on the impact of DUFS parameters (namely, budget per walker

and random jump weight) on the estimation of out-degree and in-degree distributions using a large

variety of datasets. We considered four scenarios, corresponding to whether incoming edges are

directly observable or not and whether random vertex sampling has a similar or larger cost than
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moving random walkers on the graph. �is study allowed us to provide practical guidelines on

se�ing DUFS parameters to obtain accurate head estimates or accurate tail estimates. When the

goal is a balance between the two objectives, intermediate con�gurations can be chosen.

Last, we compared DUFS against random walk-based methods designed for undirected and

directed networks. In our simulations for the scenario where in-edges are visible, DUFS yielded

much lower estimation errors than a single random walk or multiple independent random walks.

We also observed that DUFS consistently outperforms FS due to the degree proportional jumps

mechanism implemented by the former. In the scenario where in-edges are unobservable, DUFS

outperformed DURW when estimating the probability mass associated with the smallest out-

degree values (for equivalent parameter se�ings). In addition, more o�en than not, DUFS slightly

outperformed DURW when estimating the mass associated to the largest out-degrees. In the

presence of multiple strongly connected components, DURW tends to move from small to largest

components more o�en than DUFS, sometimes exhibiting lower estimation errors in the distribution

tail. However, when restricting the estimation to the largest component, DUFS outperforms DURW

in virtually all datasets used in our simulations.

A HYBRID ESTIMATOR AND ITS STATISTICAL PROPERTIES
In this appendix, we derive the recursive variant of the hybrid estimator. From that we derive its

non-recursive variant. Next, we show that the non-recursive variant is asymptotically unbiased.

In the case of undirected networks where the average degree is given, we show that the resulting

hybrid estimator of the undirected degree mass is the minimum variance unbiased estimator

(MVUE).

Let us recall variables and constants used in the de�nition of the hybrid estimator:

ni number of vertex samples with label i
θi, j fraction of nodes in G (t )

with label i and undirected degree j
mi, j number of edge samples with label i and bias j

mi =
∑

jmi, j total number of edge samples with label i
N =

∑
i ni total number of vertex samples

M =
∑

imi total number of edge samples

B = N +M total budget

We approximate random walk samples in DUFS by uniform edge samples from Gu . Experience

from previous papers shows us that this approximation works very well in practice. �is yields the

following likelihood function

L(θ |n,m) =

∏
i θ

ni
i

∏
k (kθi,k )

mi,k(∑
s,t tθs,t

)M . (20)

�e key idea in our derivation is that we can bypass the numerical estimation of the θi, j ’s by

noticing that θi, j ∝ θi , θi, j ∝mi, j and θi, j ∝ 1/j. Hence, the maximum likelihood estimator of θi, j
for j = 1, . . . ,Z is the Horvitz-�ompson estimator

ˆθi, j =
θimi, j

jµi
, (21)

where µi =
∑

k mi,k/k .

Substituting (21) in (20) yields

L(θ |n,m) =

∏
i θ

ni
i

∏
k (θimi,k/µi )

mi,k(∑
s θs

∑
zms,z/µs

)M . (22)
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�e log-likelihood approximation is then given by

L (θ |n,m) = −M log
*
,

∑
s

θs
∑
z

ms,z

µs
+
-
+

∑
i

ni logθi +
∑
k

mi,k (logθi + logmi,k − log µi ). (23)

We rewrite θi as eβi /
∑

j e
βj

to account for the distribution constraints

∑
i θi = 1 and θi ∈ [0, 1].

Hence, we have

L (β |n,m) = −M log
*
,

∑
s

eβsms

µs
+
-
+

∑
i

(ni +mi )βi − N log
*.
,

∑
j

eβj +/
-
+C, (24)

wheremi =
∑

k mi,k and C is a constant that does not depend on β .

�e partial derivative w.r.t. βi is given by

∂L (β |n,m)

∂βi
= −

Meβimi/µi∑
s eβsms/µs

+ ni +mi −
Neβi∑
j e

βj
. (25)

Se�ing ∂L (β |n,m)/∂βi = 0 and substituting back θi yields

θ?i =
ni +mi

N +M
mi /µi∑

s θ?s ms /µs

. (26)

Theorem A.1. Let N = cB andM = (1 − c )B, for some 0 < c < 1. �e estimator

ˆθi =
ni +mi

N +M mi

µi ˆd

, (27)

where µi =
∑

k mi,k/k and ˆd = M/
∑

i µi , is an asymptotically unbiased estimator of θi .

Proof. In the limit as B → ∞, we have

E[ni ] = Nθi , E[mi,k ] = M
kθi,k∑
s,l lθsl

, E[mi ] = M

∑
k kθi,k∑
s,l lθs,l

,

and thus,

E[µi ] = M

∑
k kθi,k/k∑
s,l lθsl

= M
θi∑

s,l lθsl
and E

[
mi

µi

]
=

∑
k kθi,k
θi

.

It follows that

lim

B→∞
E[

ˆd] =
M

M
∑
i θi∑

s,l lθsl

=
∑
s,l

lθsl .

Substituting the above in eq. (27), we have

lim

B→∞
E[θ?i ] =

Nθi +M
∑
k kθi,k∑
s,l lθs,l

N +M
∑
k kθi,k /θi∑
s,l lθs,l

= θi .

�is concludes the proof. �

In Section 4.2.2 we mentioned a special case of the previous estimator, where the vertex label is

the undirected degree itself. We prove that this estimator, denoted by
ˆθi is the minimum variance

unbiased estimator (MVUE) of θi .
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Theorem A.2. �e estimator
¯θi =

ni +mi

N +Mi/µ̄
,

where µ̄ =
∑

j jθ j , is an unbiased estimator of θi .

Proof. We know that ni ∼ Binomial(N ,θi ) andmi ∼ Binomial(M, iθi/µ̄ ). Hence,

E[
ˆθi ] =

∑
ni ,mi

ni +mi

N +Mi/µ̄

A(ni )︷                    ︸︸                    ︷(
N

ni

)
θnii (1 − θi )

N−ni

B (mi )︷                                ︸︸                                ︷(
M

mi

) (
iθi
µ̄

)mi
(
1 −

iθi
µ̄

)M−mi

=
1

N +Mi/µ̄
*.
,

∑
ni

niA(ni )
∑
mi

B (mi ) +
∑
mi

miB (mi )
∑
ni

A(ni )
+/
-

=
1

N +Mi/µ̄
*.
,

∑
ni

niA(ni ) +
∑
mi

miB (mi )
+/
-

=
1

N +Mi/µ̄
(Nθi +Miθi/µ̄ )

= θi .

�

Having proved that
ˆθi is unbiased, we are now ready to show that it is also the minimum variance

unbiased estimator (MVUE). In order to do so, we prove Lemmas A.1 and A.3 that show respectively

that ni +mi is a su�cient and complete statistic of θi .

Lemma A.1. �e statistic ni +mi is a su�cient statistic with respect to the likelihood of θi .

Proof. �e log-likelihood equation for estimator (8) is given by

L(θ |n,m) =

∏
i θ

ni
i

∏
j (jθ j )

mj

µ̂M

=

∏
j j

mj

µ̂M

∏
i

θni+mi
i . (28)

We can see from eq. (28) that the likelihood function L(θ |n,m) can be factored into a product

such that one factor,

∏
j j

mj /µ̂M , does not depend on θi and the other factor, which does depend on

θi , depends on n and m only through ni +mi . From the Fisher-Neyman factorization �eorem [15],

we conclude that ni +mi is a su�cient statistic for the distribution of the sample. �

We now prove that ni +mi is also a complete statistic for the distribution of the sample.

De�nition A.2. LetX be a random variable whose probability distribution belongs to a parametric

family of probability distributions Pθ parametrized by θ . �e statistic s is said to be complete for the

distribution of X if for every measurable function д (which must be independent of θ ) the following

implication holds:

E (д(s (X ))) = 0 for all θ ⇒ Pθ (д(s (X )) = 0) = 1 for all θ .

Lemma A.3. �e statistic ni +mi is a complete statistic w.r.t. the likelihood of θi .
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Proof.

E[д(ni +mi )] = 0∑
ni ,mi

д(ni +mi )Pθ (ni ,mi ) = 0∑
ni ,mi

д(ni +mi )A(ni )B (mi ) = 0 (29)

�e LHS of (29) is a polynomial of degree M + N on θi . Hence, it can be wri�en as

C0 +C1θi +C2θ
2

i + . . . +CN+Mθ
N+M
i = 0. (30)

We prove that Pθ (д(s (X )) = 0) = 1 for all θ by contradiction. Suppose that there is a θ such

that Pθ (д(s (X )) , 0) > 0. In order to have E (д(s (X ))) = 0, there must be terms for which д(.) is

strictly positive and terms for which д(.) is strictly negative. Let д(h1) be the smallest h1 such that

д(h1) > 0. Let д(h2) be the smallest h2 such that д(h2) < 0. Let h = min(h1,h2).
Expanding A(ni )B (mi ) in eq. (29) we note that the degree of the resulting polynomial is at least

ni +mi on θi . �erefore, the coe�cient Ch in eq. (30) associated with θhi cannot have terms of д(.)
larger than h. �en Ch can only be zero if h1 = h2 which is a contradiction. �

Theorem A.3. �e estimator ¯θi is the minimum variance unbiased estimator (MVUE) of θi .

Proof. According to the Lehmann-Sche�e �eorem [15], ifT (S) is a complete su�cient statistic,

there is at most one unbiased estimator that is a function of T (S). From Lemmas A.1 and A.3, we

have that ni +mi is a complete su�cient statistic of θi . Clearly, the unbiased estimator
ˆθ in eq. (27)

is a function ni +mi . �erefore,
ˆθi must be the MVUE. �

Alternatively, we can prove �eorem A.3 from Lemmas A.1 and A.3 by showing that applying

the Rao-Blackwell �eorem to the unbiased estimator
ˆθi using the complete su�cient statistic

ni +mi yields exactly the same estimator:

θ ′i = E
[

ˆθi |ni +mi
]

=
∑
tj

tjP ( ˆθi = tj |ni +mi )

=
∑
tj

tj1

{
ni +mi

N +Mi/µ̄
= tj

}
=

ni +mi

N +Mi/µ̄
.
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