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Abstract— Various intelligent systems are needed for cyber-
physical systems. Such intelligent systems need to learn from
the human intelligence about concept abstraction and analogical
thinking in order to resolve complex issues using past experi-
ences. The algorithms for abstraction and analogies are based
on quick memory recall with clever information coding and
processing. The quick and accurate memory recall is based on
the fact that the memory mostly records the relations among
the constituents of the stimulating signals, rather than the
constituents themselves. Relational memories can be stored in
the form of networks of neuron clusters capable of resonating to
particular signal sequences. However, similarity testing for such
network representations is difficult. We suggest that linear dy-
namic systems that relate the system matrix and the output time
function can be used as a conversion mechanism between the
network matrix and the temporal representations of the signals.
This leads to algorithms for relational similarity testing and
concept abstraction. Transient behavior based selection rules
in ordinal optimization is important in achieving quickness in
our development.

I. INTRODUCTION

Intelligence in cyber-physical systems often needs to re-
solve problems in understanding highly complex information
and make decision choices based on analogically similar
experiences. One of the key challenges is the complexity in
robust and accurate object recognition and concept abstrac-
tion. In this paper we propose a set of algorithmic schemes
in response to these challenges.

Most machine learning algorithms are based on conver-
gence of iterative procedures, which is in sharp contrast
with the quickness of human and animal recognition. On the
other hand, it has been the foundational knowledge in control
theory that the steady-state frequency domain behavior of a
linear dynamic system and its transient responses are just the
two sides of the same coin. Nature is likely to take advantage
of such duality. In other words neuronal networks could
act in time domain to produce some seemingly stationary
capacities such as memory and recognition that are based
on frequency domain characterizations. In this paper we
develop algorithms along this line. Our algorithms are aimed
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at computer implementations with biological plausibility as
a guiding principle.

We take a quite different approach to machine intelligence
than the current main stream developments centered in deep
learning networks and statistical methods. The achievements
of these modern neural networks with supervising objec-
tive functions and back propagating gradient learning are
undoubtedly impressive and surpass all the past records in
multiple areas of machine learning. However it is hard to see
a clear path toward cognitive functions such as metaphori-
cal analogies that is considered a hallmark of the human
intelligence [13][11]. Our view toward the development of
intelligent systems is that one needs to aim at the capability
of abstract concept similarity testing and work downward
to specify the requirements for the lower level algorithms.
In future intelligent systems one will encounter problems
requiring human level abstraction to handle unforeseeable
events. In these scenarios the past experiences that are
similar in abstract ways are very useful. Interestingly our
development indicates that the biological intelligence based
on abstract similarity testing is an evolutionary inevitabil-
ity, since the recognition algorithms for abstract relational
similarity were already developed for concrete geometric
shape similarity. Furthermore as we argue later the seemingly
advanced intelligence capacities are also used in concrete
object recognition tasks because relations among parts of
the object is crucial in identifying the object. In this sense
the division of being abstract vs concrete is artificial.

To deliver human mind-like capabilities an intelligent
system has to let the sensory signals excite stored experiences
accurately, robustly and analogically. When we see a tree
leave, we see many details accurately. This allows us to pick
a subset of the details and their relations to form a robust
recognition of the kind of the trees. It also allows us to tell
the difference from another leaf of the same tree. We can
also be reminded of another tree half earth away and many
years ago, and this may poetically lead to the analogy of a
leaf and a person’s life.

All these can be accomplished if the intelligent system has
a coding scheme that allows a huge memory capacity with
quick and accurate recall. Superficially these goals conflict
with each other. Nature must address such conflicts with all
plausible resources, including resonance to oscillatory signal-
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s, time ordered sequences for memory, and spatial-temporal
signal conversions. These are used in our developments.

II. RESONANCE TRANSIENTS FOR SIGNAL COMPONENT
RECOGNITION

We consider a signal as superposition of many exponen-
tially decayed sine functions (sometimes referred as Boils
functions). The expressing power of such a superposition
has been illustrated in literature such as [1][2]. For the
current discussion we limit ourselves to the case where all
components start at time zero. The generalizations to signals
with delayed components is straightforward.

Motivated by biological arguments we study the transient
behavior of a second order dynamic system stimulated by a
decayed sine function input. Specifically we check

h(t) = e−λt sin(nt) ∗ e−µt sin(mt)

=

∫ t

0

e−λt sin(nτ)e−µt sin(m(t− τ))dτ.

We assume the neural circuits are efficient high Q filters
with a very small µ. We also assume the input signal does
not decay very fast and thus is with a small µ. The latter can
be relaxed. Under these assumptions we carry out a transient
behavior analysis.

We have (treating both λ and µ as zero):

h(t)

=
m sin(nt)− n sin(mt)

m2 − n2

=
m

m2 − n2
[sin(nt)− sin(mt)] +

m− n
m2 − n2

sin(mt)

=
m

m2 − n2
[sin(nt)− sin(mt)] +

1

m+ n
sin(mt)

=
2m

m2 − n2

[
sin(

n−m
2

t) cos(
n+m

2
t)

]
+

1

m+ n
sin(mt).

When m and n are large the impact of the last term is
minimal. The first term is a sine wave at frequency |n +
m)|/2 modulated by a low frequency sine wave at frequency
|n−m|/2. When n−m→ 0 it can be shown that this term
goes to t, a basic phenomena in resonance. When n and
m are close this term results in an envelop starting going
down at around 0.25/|n−m|. When the difference |n−m|
increases this point moves closer to the time origin. We can
check the location of this point in the filter response to decide
whether the input signal contains the component or not. Note
that this is independent of the amplitude of the components
in the incoming signal. Check Figure 1 for a small scale
experiment.

functions and legends of Figure 1.
t=0.0:0.01:20.0;
a=exp(-0.1*t).*sin(500*t);
b=exp(-0.1*t).*sin(505*t);
c=exp(-0.1*t).*sin(510*t);
d=exp(-0.1*t).*sin(515*t);
e=exp(-0.1*t).*sin(495*t);
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Fig. 1. Using Resonance Transients to Recognize Input Components

f=exp(-0.1*t).*sin(490*t);
g=exp(-0.1*t).*sin(520*t);
x=conv(a+b+c+d,a, red;
y=conv(a+b+c+d,b), cyan;
z=conv(a+b+c+d,c), magenta;
w=conv(a+b+c+d,d), yellow;
u=conv(a+b+c+d,e), green;
v=conv(a+b+c+d,f), blue;
s=conv(a+b+c+d,g), black
The usefulness of recognizing an exponentially decayed
sinusoid component has been demonstrated in many works
in speech signal processing. More importantly the spatial
geometric shapes can be represented by superpositions of
exponentially decayed sinusoids based on spectral analysis.
A simple example in this regard is to consider two “white
noise” images generated by independent random numbers.
They look very similar to our eyes, suggesting that our
perception is based on the frequency domain signals since
the two white noise images has the same spectrum of sinu-
soid decompositions despite that they are “mathematically”
independent.

III. MEMORY UNIT

To take advantage of the resonance transient behavior
exhibited above we assume that in an intelligent system the
concepts are represented by exponentially decayed sinusoid
(EDS) signal and their combinations. The question now
is how to code the EDS signal combinations in memory.
To this end we consider a set of resonators sequentially
arranged so that each would get excited in the time order
in which the matching frequency occurs in the input signal.
We call this arrangement a Resonant Chain Unit, or RCU.
The importance of time ordering in memory coding has been
emphasized in the immensely successful Long Short-Term
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Fig. 2. Basic structure of a Resonator Chain Unit (RCU)

Memory (LSTM) in machine learning [16]. Our unit is much
closer to physical layer of intelligence and is not designed
or even suitable for the back propagation training. RCU
depends on the resonance mechanism to code information
in a unsupervised manner.

A RCU is composed of several resonators with mostly
different resonating frequencies. There are fixed time delays
between the successive resonators. For an illustrative exam-
ple consider the case of a RCU consisted of 4 resonators
R1 ∼ R4 with frequencies f1 ∼ f4, respectively. The RCU
is build as f1 → d→ f2 → d→ f3 → d→ f4. When f1 is
excited by a matching frequency in the input its output go
through the delay d and get the f2 resonator ready. But f2
has to also receive a signal with a matching frequency to get
excited. This process goes on until all resonators are excited,
or the unit excitation is aborted. The RCUs in a region can
get all excited by receiving a signal with many frequency
components. Figure 2 is a schematic basic structure of a
RCU. RCU could be forced to excite by a signal at the circled
box E. Such signals could be due to group connection via
simultaneity, attention, and other learning-based connections.

When a RCU is excited it generates output as the sum of
all its resonators with the delays between them. Note that
in Figure 2 the sum signal can go out only when R4 is
excited. The sum signal goes on to other parts looking for
similar RCUs to excite. In the areas immediately behind the
signal sensors the RCUs reset to rest condition shortly after
the excitation input signal vanishes. However the RCUs in
the memory region would sustain the excitation states longer
in order to form connections with other excited RCUs to
form a network recording the simultaneously excited RCU
signals. For computer implementation such period could be
very small.

Take visual signal processing as an example. The photo
sensory signals are converted into time functions and go
through a random fabric that channels the time function
to many RCUs. The spatial-temporal signal conversation
algorithm is discussed later, which is generally applicable to
convert the signal of a small cluster of spatially connected
RCUs to a time function.

Now consider two clusters of RCUs, A and B. When the
two clusters send RCU output signals to each other the RCUs
that resonant would form strong connection links and those
who do not would remain connected only in their original
clusters. The resonated ones form a new cluster A ?B. The
others, suppressed by the resonant ones form clusters C =
A − A ? B and D = B − A ? B, respectively. Now we
have clusters A,B,A ? B,C,D. This way A,B and their
generated clusters together form the relations between A and

B. These clusters can be modeled as a complex valued time
varying matrix. The matrix can be converted into temporal
representations via the spatial-temporal conversion scheme
discussed in the next section. The temporal representations
would be coded into a new cluster of RCUs in memory as
the relations between A and B.

A RCU could also serve as a node in a super RCU to
code more complicated sequences. There are other uses of
RCUs to code spatial-temporal information and to construct
hierarchies of memory trees to facilitate fast retrieval of
information coded by long RCU sequences.

The RCU interactions are quick for the following reasons.
When an oscillatory time function hits a group of second
order filters its components will selectively excite the res-
onators with natural frequencies very close to the frequency
of one of the components, a phenomena similar to the famous
Barton’s pendulums. While most resonance phenomena takes
a while to signify and most textbooks analyze only the steady
state behavior, resonance effect in fact accumulates from the
moment when external signal arrives. In other words, when
a sinusoid function hits a group of resonators the resonating
response curve deviates from others immediately. While the
initial differences are small, they are enough for inhibiting
other resonators. This is similar to the selection rule in the
ordinal optimization method [8] referred as horse race rule.
As the name implies, simulation based optimization decision
can often be decided long before reaching steady state. Often
times the transient behavior of a system reveals its potential
when ordinal comparison is the decision base. In our current
situation it is known in neuroscience that most neurons
when excited tend to inhibit other neighboring neurons and
render them silent. Such feature is known to be crucial
for edge detection in human and animal vision systems,
and is observed in other brain neurons. If we restrict to a
mathematically simplified scenario where a causal sinusoid
function convolve with the impulse response function of a
seconder order linear system, it can be seen that with the
above convolutional horse race selection the input sinusoid
function would very quickly select a receiver system that
resonances with it. We believe this is the basis for the
quickness of image recognition exhibited in human and many
animals. In fact we believe this is also the base for the
quickness of abstract thoughts where relevant concepts in
the memory are recalled very quickly.

Resonance transients based quick recall assumes linear
signal processing and enables signal aggregation and decom-
position in large scale, which are necessary for all kinds
of intelligence activities. In previous works [5][6][7] we
connect the spatial-temporal conversion in linear control
theory to the researches relating the geometric shapes to their
Laplacian spectrums [10], [14]. In contrast to the biological
memory theories based on nonlinear circuits, we suggest that
signal processing in linear dynamic systems has advantages
in making a large scale content addressable memory. Al-
though nonlinear mechanisms are ubiquitous in biological
systems including the brain, linear signal processing in these
systems could nevertheless be essential in certain signal
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range. The usage of nonlinear elements in neural networks is
to facilitate function approximation so the focus is different
than ours.

IV. SPATIAL-TEMPORAL SIGNAL CONVERSION

As we mentioned the most obvious case for spatial-
temporal signal conversion is in image processing, although
the idea is generally applicable for converting a cluster of
RCUs to a summarizing time function. Various attempts
of using diffusion for obtaining multiscale images, gener-
ally referred to as scale space method, are based on the
property of Gaussian-like diffusion kernels that they do not
introduce extrinsic features into the diffused image. This is
fundamentally due to the fact that Gaussian distribution is a
model for the sum of many nearly i.i.d. random components.
As such if one views the diffusion on image as to spread
the intensity of every pixel around with random jolts for
nearly i.i.d directions and strengths then the above property
is not surprising. One does not want to use deterministic
averaging since the boundary and other parameter choices
bring extrinsic features. This has led researchers to conclude
that the best blurring is via Gaussian kernel.

Our visual system has to code the image information
and transmit it elsewhere for memory recall. In human-
made engineering systems such coding and transmission are
often based on resonance of oscillatory signals. Since an
image is represented as a static matrix of pixel intensity we
need to code the information into oscillatory signals. Recent
study [15] indicates that the microsaccades during fixation
of the fovea would turn a stationary image patch into a
dynamical one in order to maintain the sensitivity of the
photo sensors in the retina. It is reasonable to assume that
the visual signals generated from images are composed of
oscillatory time signals. We will represent visual images as
spatially connected RCUs. For each time point we consider
a complex n×n matrix V (x) where x is the RCU position.
The adjacency matrix of V (x) is a n2 × n2 matrix denoted
as A with the entries representing the link weights between
the row node and the column node as

axy =
G|V (x)− V (y)|
‖x− y‖2

which is a complex number. G is a real constant. Now we
consider the Laplacian matrix for V (x) as

L = D −A

where D is the diagonal matrix with the row sum of A as
the diagonal entries. We use L to form a linear differential
equation for the “state” vector ψ(t) as

ψ̇(t) = −Lψ(t), ψ(0) = uniform

and the complex valued ψ(t) is turned to a real time function
by

y(t) = Cψ(t)ψ∗(t)C∗

with vector C representing a summation over the given image
region. This time function y(t) is the temporal representation
of the image patch defined by C that we are pursuing. We

note that only a small segment of C is non-zero to reflect the
physical range of a summarizing neuron. It also enables the
coding of the spectral component phase as the sum of the
eigenvector entries at the non-zero C segment. This deviates
from the usual approaches using Dirichlet or other well-
known boundary conditions for Laplacian spectral analysis
of domain shapes.

The above procedure assumes that a spatial signal is a
complex number matrix. Then the diffusion like equation
is to use peer pressure to smooth out the value changes
in the neighborhood. The diffusion currents resulted from
such smoothing action are collected as the temporal repre-
sentation of the spatial signal. When the system matrix is
real the realization theory of linear time invariant systems
guarantees that one can recover the original spatial signal
from such temporal representations under general conditions.
This can be generalized to time varying complex spatial
signals and indicates that the information is preserved in
such conversions. One can see that the above resonance
transients based “realization” is much less demanding on
the numerical accuracy than the Markov parameter based
realization algorithms.

V. ABSTRACTION AND ANALOGICAL THINKING

One of the magic the biological intelligence perform is to
abstract, which is the basis for analogy. In [13] Steven Pinker
argued forcefully that metaphorical analogy is the niche
for human intelligence evolution. To perform metaphorical
analogy it is necessary that signals in brain travel in ag-
gregated form and find content in other places with many
similar components. This demands signal superposition and
decomposition which are the hallmarks of linear signal
processing. We outline an algorithmic model for concept
abstraction here.

Abstraction is the process of sifting the similarities from
the instances or the differences among the instances. One
of the impressive examples of abstract similarity testing is
the psychology phenomena referred as analogical remind-
ing, where a sequence of current events remind a possibly
remote experience that is only similar in an abstract manner
[9][12]. Analogical reminding is featured by the quickness,
the abstractness, and the involuntariness of a memory recall
carried out by the relatively slow neurons. The quickness
calls for large scale content addressable memory. The ab-
stractness needs the ability to sift commons from instances.
And the involuntariness demands automatical recall. The
spatial/temporal signal conversion described above could
help achieving these.

To explain the idea of abstraction we use an example of
shape relation similarity testing. The shapes in the visual field
are represented as clusters of connected RCUs. Using the
above conversion scheme one has the temporal representation
of a RCU cluster, which codes the spectral information of
the shape images. A temporal function is just a vector when
discretized and the relation between two vectors can be
coded in a matrix/network/RCU cluster. Now we consider
simple analogies in which one tests the similarity between
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the relations that relate more concrete concepts. Consider two
pairs of geometrical shapes (A,B) and (X,Y ). Suppose it
makes sense to say that “A is to B as X is to Y ”, for
example “a square A is to a rectangle B as a circle X is to
an ellipse Y ”. The following diagram shows the relational
matrices RAB and RXY (which would be coded into RCU
clusters) between the shape pairs.

Now the relational similarity statement that “A is to B as
X is to Y ” can be understood as the similarity of matrices
RAB and RXY , which is algorithmically the same as the
similarity testing of the two concrete shapes such as two
squares.

A X

B Y

RAB RXY

More concretely let A be a square and X be a circle, and B
and Y are their stretched versions namely a horizontal ellipse
and a horizontal rectangle, respectively. In terms of the
RCU cluster representations one checks the similarity of the
similar components between A and B and those between X
and Y , as well as the similarities of the differences between
A and B and those between X and Y . The information
that X is a stretched version of A and Y is a stretched
version of B would emerge from these comparisons. In fact
the concept of “stretching a shape” would be represented by
the commonalities emerged from such comparisons, forming
the RCU cluster representation of the abstract concept of
“stretching a shape”. Specifically the RCU cluster represen-
tations for the circle and the ellipse would differ since the
spatial-temporal conversion would make different temporal
representations for them. The differences would be coded in
the RCU cluster representations and such differences would
have similar components with the differences between the
square and the rectangle. This commonality is a prototype
of the concept “shape stretching”.

The similarity testing for relations discussed above does
not need conscious instructional effort and leads to an invol-
untary experience, not unlike recognizing facial expressions.
Recognizing facial expressions such as a smile is crucial
for human interactions. Consider two faces A and X , and
their smile versions B and Y . The relational matrices RAB
and RXY are similar and the similarity defines the concept
of “smile”. Human babies perhaps sift this out from smile
faces early on. The relational network of smile could make
connections to relevant concepts and it is possible that the
silly smiles and sounds made by adults when holding a baby
form the neurological base for the sense of humor, which
would be triggered by concrete or abstract silliness depends
on the storage of abstractions in the mind.

The relational networks RAB and RXY are generated
automatically (due to resonance among components of the
temporal representations A,B,X, Y ) and stored in the mem-
ory as part of the experiences. Such relational networks,
and the relational networks for these relational networks, are
all generated in subconscious and sitting there ready to be

excited. This may help explaining the analogical reminding
phenomena mentioned before.

Furthermore, since the above scheme in testing the rela-
tional similarity is the same as the “concrete” shape similar-
ity, the process can be repeated to extract multiple levels of
relations that exists between different lower level relations.
The spatial-temporal signal conversion plays a central role in
this recursion. Since a RCU cluster can be represented by a
matrix, the algorithm capable of converting the information
carried in a matrix or by a time function back and forth
enables such recursion. This process generates many RCU
clusters representing all sorts of relations which serve as cues
and constraints for memory recall.

Historically mathematician Mark Kac asked “Can one
hear the shape of a drum” in [10] where the mathematical
question is can one recover the geometrical shape of a
continuous domain by checking only the heat kernel time
function generated from a linear dynamic system acting on
the domain. His topic and approach has a long and broad
impact in mathematical research. Our discussion here can be
expressed as a similar question of “Can one hear the shape
of a concept?”[5]. Basically if a concept, represented by a
network of RCUs, can also be represented by a (short) time
function, then the above scheme will be able to generate
many relational networks of RCUs to be stored in memory
and to be used for intelligence functions such as metaphorical
analogies.

We emphasize again the following important point in the
above discussions. As far as representations in the brain is
concerned, there is no difference between abstract concepts
and concrete objects. All contents in memory are represented
by the same type of RCU clusters with their connecting
networks. An object or concept is the collection of relations
among its constituent components as well as the relations
with other objects or concepts. Memory recall is achieved
by matching the relation constraints through the similarity
testing algorithm described above. In this process oftentimes
a portion of relation matching is enough to single out the
wanted object or content, similar to reading emails with
misspelled words. This “80-20” phenomena has been studied
in the topic of ordinal optimization in discrete event systems
[8][3].

VI. STATIONARY VS TRANSIENT - SOME CONNECTIONS
TO SYSTEMS AND CONTROL RESEARCH

The topic of recovering the shape of a domain from
the Laplacian eigenvalues belongs to the spectral inversion
problem and has a long history. It is interesting to systems
and control people to note that originally Hendrik Lorentz
formulated the problem as a wave problem in 1910. He
said that in an enclosure with a perfectly reflecting surface
there can form standing electromagnetic waves analogous to
tones of an organ pipe. He then conjectured that for a 2D
domain (a membrane) the number of Laplacian eigenvalues
less than λ would approach ‖D‖λ/2π when λ→∞ which
was proved by Herman Weyl soon after. The original problem
and the approaches were all about waves and wave equations
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(including the Schrodinger equation) and thus the phrase
“hearing the drum”. It was Mark Kac who started treating
the problem using diffusion theory, making use of the fact
that both waves and diffusions are the acting of the same
Laplacian operator. While in the wave approach the steady
state behavior was the focus of analysis, in the diffusion
approach of Kac the subject was the transient behavior of the
diffused “stuff”. We all know in control theory there are two
alternative approaches to system identification for a linear
time invariant system, namely either to use the sinusoidal
input to obtain steady state frequency domain data, or to use
an impulse or step input for transient time domain data. The
latter is less practical in control engineering. However as
we discussed in this paper it turns out that the time domain
transient method becomes quite useful in the identification
of a sinusoid components early on, and this can serve for
tasks such as abstract relational similarity testing.

In the study of using heat diffusion quantities to recover
the domain shapes along the lines of Mark Kac researchers
have considered a uniform initial distribution of temperature
and formulate a problem like the following [17].

Consider a compact Riemannian manifold (M, g) with a
smoothly closed domain D ∈M . Consider a Laplace opera-
tor acting on functions with a Dirichlet boundary condition.
Let pD(x, y, t) be the kernel associated to D, and dg be the
volume form associated to the metric, let

u(x, t) =

∫
D

pD(x, y, t)dg(y)

be the solution to the initial value problem

1

2
∆u =

∂u

∂t
on D × (0,∞),

u(x, 0) = 1 if x ∈ D and 0 if x ∈ ∂D,

u(x, t) = 0 if x ∈ ∂D.

Letting q(t) be the heat content of D at time t:

q(t) =

∫
D

u(x, t)dg,

[17] has shown that q(t) admits a small time asymptotic
expansion

q(t) ∼
∞∑
n=0

qnt
n/2

where the coefficients qn are geometric invariants of D.
The line of mathematical works pioneered by Mark Kac

[10] provide a motivation for the development of the random
walk algorithms for concept abstraction [4][6]. Random
walks on graphs serve as a high level of analogy to neu-
ronal spikes moving around a neural network. In computer
algorithms one can use spectral computation as we discussed.
In fact even the computation of the resonance transients can
be significantly simplified in computer implementations.

VII. CONCLUDING REMARKS

Linear dynamic systems are powerful for signal aggre-
gation, decomposition and spatial-temporal conversion. The
superposition property enables the signal aggregation and
decompostion required for searching the similar components
in other different regions via a fabric of random connections.
Linear systems with oscillatory responses are particularly
useful for signal transmission and similarity testing. We
suggest that linear systems with complex valued system
matrices can be used to perform conversions between the
temporal and spatial representations of signals. We also
propose using clusters of Resonator Chain Unit (RCU) to
code information and to form relations between time signals.
While time functions are good for transmission, RCU cluster
are plausible for memory and reliable retrieval . Combined,
they offer possibilities to explain certain functions in biolog-
ical intelligence such as the quick recall of similar contents
and analogical thinking, as well as for the development of
computer algorithms having similar functions. The transient
behavior based selection rules in ordinal optimization is
very useful in this development and may lead to efficient
implementations for intelligent systems
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