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ABSTRACT
In this paper, we proposed a complex network comparison
method based on mathematical theory of diffusion over man-
ifolds using random walks over graphs. We show that our
method not only distinguishes between graphs with differ-
ent degree distributions, but also different graphs with same
degree distributions. We compare the undirected power law
graphs generated by Barabasi-Albert (B-A) model and di-
rected power law graphs generated by Krapivsky’s model to
the random graphs generated by Erdos-Renyi model. We
also compare power law graphs generated by four different
generative models with the same degree distribution.

Keywords
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1. INTRODUCTION
The asymptotic behavior of the heat content has been used
as a tool to understand the geometry of a manifold domain
[2, 16] or the connectivity structure of a graph [12, 13]. Heat
content, as the solution of the heat equation associated with
the Laplacian operator, summarizes the heat diffusion in
the domain as a function of time for a given initial heat
distribution. One property of the heat content method is
that its asymptotic behavior as t → 0 separates the heat
content curves of different structures. This enables one to
develop fast algorithms for complex graphs comparison. In
[6, 7] it was pointed out that Monte-Carlo simulations of
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diffusion are effective in testing the similarity of complex
graphs and that such simulations provide plausible mech-
anisms for many brain activities. In this paper we apply
the random walk method to distinguish between complex
networks, with experiments on graph comparison between
graphs with different distributions and the graphs with the
same distributions but different connectivity structures.

Graph comparison is a challenging task since graph sizes in-
crease extremely fast in diverse areas, such as social networks
(Facebook, Twitter), Web graphs (Google), knowledge net-
works (Wikipedia), etc.. Many graph comparison methods
have been proposed to quantitatively define the similarity
between graphs. In [10] the authors summarize the existing
methods into three categories: graph isomorphism, iterative
methods and feature extraction. The graph isomorphism
and iterative methods are not scalable and thus not effec-
tive for large networks. Feature extraction methods extrac-
t features like degree distribution, eigenvalues to compare.
These methods are closer in spirit to our method. Howev-
er previously proposed features may not reflect the network
connectivity structure very well. For example, in [13], the
authors give an example where two isospectral nonisometric
planar graphs can be distinguished by the heat content, de-
spite the fact they share the same set of eigenvalues. In [8],
the authors analysed the structural properties of graphs with
the same degree distribution and found that different net-
works with the same degree distribution may have distinct
structural properties. In [15], the authors discussed meth-
ods for similarity testing in directed web graphs, including
vertex ranking, sequence similarity and signature similarity,
among others. However, like most of the algorithms in [10],
they need to know the node correspondence, which is the
mapping between the graphs’ nodes. It is already a hard
problem for many complex networks.

Our algorithm exhibits the following features. First, our
method summarizes graph structure into a single time func-
tion so as to facilitate similarity testing. Second, the behav-
ior of this function around time t = 0 is the most important
for the comparison. Practically we only need the beginning
part of the heat content so that we can greatly reduce the
computation time. Third, we use lazy random walk to esti-
mate the heat content function, thereby avoid computing the



eigenvalues and eigenvectors of the graph Laplacian while re-
taining the spectral information. Fourth, our algorithm only
compares the connectivity structure and does not use node
correspondence. Hence it avoids the need to identify a map-
ping between the graphs’ nodes. Finally we note that our
method is robust to minor changes in large graphs according
to the interlacing theorem in [3]. With these features, our al-
gorithm is capable of handling very large complex networks.
Using experiments, we show that our algorithm perform-
s better in distinguishing networks comparing to the other
feature extraction methods, such as eigenvalues and degree
distributions.

The rest of the paper is organized as follows. In Section 2,
we give the notations and review the concept of heat equa-
tion and heat content for graphs. In Section 3, we use the
lazy random walk simulation method to estimate the heat
content. In Section 4, the graph generative models used in
experiment part are introduced. Experiment settings and
results are presented in Section 5. Section 6 summarizes the
main results and discusses future work.

2. HEAT EQUATION AND HEAT CONTENT
2.1 Notations
Let G = (V,E) denote a graph with vertex set V and edge
set E ⊆ V × V with adjacency matrix A = [auv]. auv = 1
if there is an edge from u to v; otherwise auv = 0. The
out-degree matrix D = diag[du] with du =

∑
v auv.

The graph Laplacian of a graph is defined as L = D−A and
the normalized Laplacian is defined as [4]

L = D−1/2LD−1/2.

With the random walk Laplacian Lr = D−1L, we have the
following relation between L and Lr

Lr = D−1/2LD1/2.

Without loss of generality, we assume that the Laplacian
matrix L is diagonalizable and hence L is diagonalizable.
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L and
φi, i = 1, · · · , n be the corresponding eigenvectors. With
Λ = diag[λi] and Φ = [φ1, · · · , φn] we can diagonalize L as

L = ΦΛΦ−1,

where Φ−1 = [π1;π2; · · · ;πn].

Furthermore we have

Lr = (D−1/2Φ)Λ(D−1/2Φ)−1. (1)

Lr and L share the same set of eigenvalues, but the cor-
responding eigenvectors are different. L is the normalized
graph Laplacian used in the heat equation on a graph. We
use the relationship between L and Lr to develop a random
walk simulation method in the later section.

2.2 Heat equation and heat content
Vertex set V is partitioned into two subsets, the set of all
interior nodes iD and the set of all boundary nodes ∂D. We
have V = iD ∪ ∂D. The heat equation associated with the
normalized graph Laplacian is{

∂Ht
∂t

= −LHt
Ht(u, v) = 0 for u ∈ ∂D, (2)

with initial condition

H0(u, u) =

{
1 if u ∈ iD
0 else .

Assuming the total number of vertices is N and the number
of interior vertices is n, Ht is an N × N matrix. Ht(u, v)
measures the amount of heat that flows from vertex u to
vertex v at time t. All heat that flows to the boundary
vertices is absorbed. We label the interior vertices 1, · · · , n
and the boundary vertices n + 1, · · · , N . The normalized
Laplacian L can be partitioned into four parts

L =

[
LiD,iD L∂D,iD
LiD,∂D L∂D,∂D

]
.

Since we are only interested in the heat remaining in the
interior domain, define the n× n matrix ht with

ht(u, v) = Ht(u, v) for u, v ∈ iD.

The solution to the heat equation is ht = e−LiD,iDt. For
convenience, we slightly abuse notation and still use Λ and
Φ as the eigenvalue matrix and eigenvector matrix of LiD,iD.
We have

ht = Φe−ΛtΦ−1.

For each entry of ht, we have

ht(u, v) =

n∑
i=1

e−λitφi(u)πi(v). (3)

The heat content Q(t) is defined as the sum of all the entries
in ht:

Q(t) =
∑
u

∑
v

ht(u, v) (4)

=
∑
u

∑
v

n∑
i=1

e−λitφi(u)πi(v). (5)

Letting αi =
∑
u

∑
v φi(u)πi(v) yields

Q(t) =

n∑
i=1

αie
−λit. (6)

The heat content can be viewed as the sum of exponen-
tially decaying functions with different rates and different
strengths. The rates and strengths are determined by the
graph Laplacian eigenvalues and eigenvectors, respectively.
To emphasize the larger eigenvalues more, we can use the
following derivatives of the heat content for comparison:

Q̇(t) = −
m∑
i=1

αiλie
−λit,

3. RANDOM WALK METHODS FOR HEAT
CONTENT ESTIMATION

Computing eigenvalues and eigenvectors of the Laplacian
matrix needed for evaluating the heat content is very time
consuming for large complex networks. In this section, we
use a discrete time random walk method to approximate the
heat content.

We consider a random walk where the random walker moves
from vertex u to a neighboring vertex v with probability



auv/du. Define the transition matrix M = D−1A and the
lazy random walk transition matrix as

ML = (1− δ)I + δM.

In other words, a random walker either moves to one of
the neighboring vertex with probability δ or remains at the
current vertex with probability 1 − δ. For any given time
t = kδ, we have

Pt = Mk
LP0 = [I − t

k
Lr]

kP0 → e−LrtP0. (7)

Here the arrow (→) implies taking the limit with k →∞ (at
the same time δ → 0 while keeping kδ = t). P0 is the initial
distribution of a random walker. We have Mk

L → e−Lrt. It
can be seen from equation (1) that each entry in matrix Mk

L

converges to

Mk
L(u, v)→

n∑
i=1

e−λitφi(u)πi(v)

√
dv
du
.

Comparing to equation (3), we have

Mk
L(u, v)

√
du
dv
→ ht(u, v).

Mk
L(u, v) measures the probability that a random walker

starting at vertex u ends up at vertex v in k steps in the
lazy random walk. Now, with equation (5), we obtain the
approximation for Q(t):

Q̂(t) =
∑
u∈iD

∑
v∈iD

Mk
L(u, v)

√
du
dv
. (8)

With the lazy random walk approximation, our algorithm
avoids the computation of the eigenvalues and the eigenvec-
tors. Instead of computing Mk

L(u, v) with matrix multipli-
cations, we can use the Monte Carlo method to estimate
Mk
L(u, v). In the Monte-Carlo simulation, we start with the

same number of random walkers on every vertex. By the law
of large numbers (LLN), the variance of the estimated value
is inversely proportional to the amount of random walkers.
Therefore, our method provides a trade off between preci-
sion and computation time. In fact, we find that a small
number of the random walkers at each vertex works well on
large graphs with a large number of vertices.

4. GENERATIVE MODELS
We consider the following generative models for complex
graphs: (1) Barabasi-Albert model [1], which generates undi-
rected graphs with power law degree distributions; (2) Erdos-
Renyi model, which generates random graphs with binomial
degree distribution. (3) Krapivsky’s model[11], which gen-
erates directed graphs with bi-variate power law degree dis-
tributions. (4) Four models to generate random graphs with
a given distribution. They are Molloy-Reed model; Kalisky
model; model A and model B [8].

4.1 Generative models for undirected random
graphs

Erdos-Renyi (E-R) model
The graph is constructed by connecting nodes randomly and
independently. An edge is added to each pair of vertices with
a given probability.

Barabasi-Albert (B-A) model
The construction starts with m0 initial nodes. Each new
node is connected to m(m ≤ m0) existing nodes with a
probability proportional to the number of links that the ex-
isting nodes already have. The degree distribution follows
P (D = d) ∼ d−3.

In the experiment section, we will compare the graphs with
power law degree distributions generated by the B-A model
to the E-R random graphs. We will also compare the graphs
generated by the same generative model (B-A model) with
different parameters.

4.2 Generative models for directed graphs
In [11], the authors proposed a graph generative model to
describe growing processes in the Web Graphs (WG). This
model includes two separated processes: (1) with probability
p, a new node is introduced and immediately attaches to an
existing node u with probability proportional to din

u + λin,
where din

u is the in-degree of node u; (2) with probability
q, a new edge is created. From existing node v to node
u, a new edge is created with probability proportional to
(din
u + λin)(dout

v + λout), where dout
v is the out-degree of n-

ode v. This model produces directed graphs with marginal
in-degree and out-degree distributions that are both heavy
tailed. Let P (din = i) ∼ i−vin and P (dout = j) ∼ j−vout .
We have vin = 2 + pλin and vout = 1 + q−1 + pλout/q. The
average in-degree and out-degree both equals to 1/p.

In the experiment part, we will apply our method to compare
the directed power law graphs generated by the ‘WG’ model
to the directed graphs generated by the E-R model. Directed
E-R graphs are generated by independently adding directed
edges from a node to a target node with a given probability.

4.3 Generative models for power law graphs
with a given degree distribution

In [8], the authors used the following four models to generate
different networks with the same degree distribution.

Molloy-Reed Model (M-R Model) [14]
Assign a degree to each vertex. Randomly connect a pair of
vertices and select each vertex with probability proportional
to its number of open connections.

Kalisky Model [9]
Assign a degree to each vertex. Start from the vertex with
the maximal degree and exhaust its open connections by
randomly connecting it to other vertices. These vertices are
the first layer vertices. The second layer vertices are selected
by randomly connecting the remaining open connections in
the first layer. Repeat until there is no open connection.

Model A
Assign a degree to each vertex. Randomly connect maximal
degree node to the available vertices. Repeat the procedure
until there is no open connection.

Model B
Model B is the same as model A, except that the vertices
connecting to the maximal degree node are selected in se-
quence according to a given vertices list.



Both model A and model B are new methods proposed in
[8]. In our experiments, we will reuse the four models in [8]
to generate groups of networks to compare. We will show
that our feature, heat content, is better in representing the
network structure comparing to the degree distribution.

5. EXPERIMENT RESULTS
We first test our method for comparing between graphs with
different degree distributions but similar Laplacian spectra.
In the last experiment, we illustrate the experiment results
on graphs with the same degree distribution to show our
method’s ability in detecting graphs’ structural differences.

5.1 Undirected Graphs with different degree
distributions (B-A model vs. E-R model)

Two groups of graphs are generated using the B-A model
and E-R model respectively. The total number of nodes is
2000. Each group includes four graphs with average degree
varying from 20 to 50. Boundary vertices are defined to be
the 40 vertices with the smallest degrees. The approximated
heat contents Q̂(t) for the 8 graphs are plotted in Fig. 1(a).

As shown in the figure, the heat contents of the two groups
of graphs follow different patterns. When t is close to zero,
the heat contents for power law graphs drops faster than for
E-R random graphs, but the decrease speed slows down once
t > 5. On the other hand, the decrease rate for heat contents
associated with E-R random graphs is comparatively more
constant throughout the process. The difference between
the heat contents of these two types of graphs is illustrated
more clearly if we focus on the time derivative of the heat
content, as shown in Fig. 1(b). When we compare the heat
content derivatives for the power law graphs, the derivatives
at the beginning part are in the order of the average degrees
(as shown in Figure 2(b)). Using the heat content method,
we can also differentiate graphs with different mean degrees
generated from the same B-A model.

Spectrum of the Laplacian: For the spectra of these two
kinds of graphs, Chung et.al.[5] proved that eigenvalues of
the normalized Laplacian satisfy the semicircle law under
the condition that the minimum expected degree is relative-
ly large. Both E-R random graphs and power law graphs
satisfy this condition as indicated in [5]. Meanwhile, the
paper also proves that if two graphs have the same mean
degree, the circle radius will be almost the same (as shown
in Fig. 3).

We observe that using only the Laplacian spectrum we can
hardly distinguish the two types of graphs. However, accord-
ing to equation (6), the values of αi also play an important
role in the heat contents. In Fig. 4, the Laplacian eigen-
values (except the smallest one) and corresponding α values
are plotted with the x-axis as the index. The eigenvalues
of the two graphs, which are plotted in dashed line, are too
similar to compare. But the strengths (α) for the power law
graph are much larger than those for the E-R random graph.
With the larger α values, the effect of the larger eigenvalues
on the heat content are highlighted. The heat content for
the power law graphs decreases faster at the beginning part
in Fig. 1(a). For E-R random graphs, which are more homo-
geneous in terms of graph structure, the larger eigenvalues

Figure 3: The Laplacian spectrum distribution of
one power law graph and one random graph with
mean degree 20

in the Laplacian spectrum have much smaller weights, thus
do not impact the heat content behavior much.

Figure 4: Eigenvalues and corresponding α values

Our analysis shows that the eigenvalues of the Laplacian
alone cannot distinguish complex networks. The eigenvec-
tors are obviously needed although computing both the eigen-
values and eigenvectors is itself a big obstacle in large scale
networks. However, our algorithm can avoid this difficulty
by estimating the heat content of the graphs using random
walks on graph.

5.2 Directed Graphs with different degree dis-
tributions (Krapivsky’s model vs. E-R mod-
el)

Two groups of directed graphs are generated using Krapivsky’s
‘WG’ model and the E-R model respectively. The total num-
ber of nodes is 2000. Each group contains four graphs with
different average degrees. We change the average degrees of
directed power law graphs by setting p to be 0.1, 0.15, 0.2
and 0.25. Boundary vertices are defined to be the 200 ver-
tices with the smallest in-degree out-degree products (ver-
tices with zero in-degrees are not candidates for boundaries).

The approximated heat contents Q̂(t) and derivatives are
plotted in Fig. 5.

As shown in the figure, the directed power law graphs and
E-R random graphs exhibit similar behavior to undirected
graphs. The two groups of graphs can be separated imme-
diately by comparing the heat contents.



(a) Heat Content (b) Heat Content Derivatives

Figure 1: Undirected graph comparison (red: power law graphs; blue: E-R random graphs)

(a) Degree Distributions (b) Heat Content Derivatives

Figure 2: Degree distributions and heat content derivatives for power law graphs with different mean degree

5.3 Graphs with the same degree distribution
In this section, we test our algorithm’s ability in distinguish-
ing graphs with the same degree distribution. We first gen-
erate a 2000 nodes power law graph using B-A model with
m = 2. Then we generate 3 graphs for each 4 generative
models (Molloy-Reed model, Kalisky model, model A and
model B) with the same total number of nodes and degree
distribution. The heat contents and derivatives of all the 13
graphs are shown in Figure 6(a) and 6(b).

As we can see from the results, graphs with the same degree
distribution can still be well distinguished according to their
heat contents behaviors. The heat contents for graphs gen-
erated by the same model are clustered. And at the same
time, although with the same degree distributions, the differ-
ences of the heat contents between the 5 generative models
are also noticeable. We also notice that the heat contents for
model B (the yellow curves) perform much differently from
the other four models (Molloy-Reed model, Kalisky model,
model A and the B-A model). This result is consistent with
the conclusion in [8] that, model B gives decentralized and
low efficient network, while the others are more centralized
and high efficient.

6. CONCLUSION
In this paper, we proposed a random walk method to esti-
mate the heat content on graphs. We first apply the method

to compare graphs with different degree distributions. Graph-
s with heavy tailed degree distribution have different heat
content curves comparing to the random graphs generat-
ed by the E-R model: the decrease rate for the previous
is much larger than that for the later at the very begin-
ning part. Our method can also distinguish graphs with the
same degree distribution but different structural properties.
Experiments show that, our algorithm is better in graph
comparison than some other feature extraction methods like
eigenvalues and degree distributions. In our future work, we
will apply our approach to more general problems in graph
comparison. For example, we will use the method on graphs
other than those generated by E-R and B-A models. We
will also consider real world network datasets.
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