
ParaBox: Exploiting Parallelism for Virtual Network
Functions in Service Chaining

Yang Zhang∗† Bilal Anwer∗ Vijay Gopalakrishnan∗ Bo Han∗
Joshua Reich∗ Aman Shaikh∗ Zhi-Li Zhang†

∗AT&T Labs – Research †University of Minnesota
ABSTRACT
Service Function Chains (SFCs) comprise a sequence of Net-
work Functions (NFs) that are typically traversed in-order by
data �ows. Consequently, SFC delay grows linearly with the
length of the SFC. Yet, for highly latency sensitive applica-
tions, this delay may be unacceptable—particularly when
the constituent NFs are virtualized, running on commodity
servers. In this paper, we investigate how SFC latency may
be reduced by exploiting opportunities for parallel packet
processing across NFs. We propose ParaBox, a novel hybrid
packet processing architecture that, when possible, dynami-
cally distributes packets to VNFs in parallel and merges their
outputs intelligently to ensure the preservation of correct se-
quential processing semantics. To demonstrate the feasibility
of our approach, we implement a ParaBox prototype on top
of the DPDK-enabled Berkeley Extensible So�ware Switch.
Our preliminary experiment results show that ParaBox can
not only signi�cantly reduce the service chaining latency,
but also improve throughput.

CCS CONCEPTS
•Networks →Middle boxes / network appliances; Traf-
�c engineering algorithms;

KEYWORDS
Network Function Virtualization; Service Function Chaining

1 INTRODUCTION
A Service Function Chain (SFC) de�nes a sequence of Network
Functions (NFs), e.g., �rewalls and load balancers (LBs), and
stitches them together [14]. SFC has been a key enabler for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permi�ed. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
© 2017 ACM. 978-1-4503-4947-5/17/04. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3050220.3050236

Router
VPN Gateway

IDS

Traffic Shaper

VPN Gateway Traffic ShaperIDS Router

Serial Structure

Hybrid Structure
(serial + parallel)

Figure 1: Hybrid service function chain.

network operators to o�er diverse services and an important
application of So�ware De�ned Networking (SDN) [10, 29, 34].
Recently operators have begun to apply Network Functions
Virtualization (NFV) [15] to SFC, using virtualized NFs run-
ning on commodity servers. While NFV ameliorates some of
the challenges operators face in deploying SFC (e.g., elastic
service provisioning [31]), it exacerbates others. In particular,
tra�c traversing virtualized SFCs may su�er from reduced
throughput and increased latency [13, 19, 22, 25]. Moreover,
it is likely that the �exibility o�ered by the combination of
SDN and NFV will result in SFC length increasing as net-
works become ever more highly automated—making this
challenge ever more relevant.

In response, we present ParaBox, a novel packet process-
ing architecture, that, when possible, mirrors packets to
NFs in parallel and then intelligently merges together the
output. To ensure correctness, the tra�c emi�ed by our
merge function must be identical to that which would have
been emi�ed had the tra�c traversed the NFs in the tradi-
tional sequential manner. As not all VNFs are parallelizable,
ParaBox identi�es opportunities for parallelism through its
analysis function (see Section 2). In a nutshell, ParaBox is a
hybrid architecture that leverages both sequential and paral-
lel packet processing, as shown in Figure 1. In this example,
the Intrusion Detection System (IDS) and Tra�c Shaper are
parallelizable, while the VPN gateway and Router are not.
When using ParaBox, data packets �rst traverse the Virtual

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA Y. Zhang et al.

Private Network (VPN) gateway, then the IDS and Tra�c
Shaper in parallel, and �nally the router.

While parallelism has been well studied in the wider space
of computer networks [7, 12, 23, 24, 33], to the best of our
knowledge, we are the �rst to explore parallel packet pro-
cessing to reduce SFC latency. It is an important problem
for network operators as the latency of a service chain with
multiple VNFs may be unacceptable for latency-sensitive ap-
plications. In the following, we focus on applying ParaBox
to service chains with VNFs on the same physical server. �e
scenario of service chains on a server has been studied in the
literature [19] and it has use cases in real-world networking
services [1]. We discuss how to extend to Physical Network
Functions (PNFs) and SFCs spanning servers in Section 6.
Enabling parallel packet processing among VNFs is chal-

lenging due to following reasons. First, the mirror and merge
functions should be lightweight, avoiding the introduction
of too much latency; otherwise, the bene�t of parallel packet
processing will be negated by this extra delay. Second, we
need to determine what VNFs are parallelizable by carefully
analyzing the VNF order dependency in each given SFC. Fi-
nally, to enable incremental deployment, ParaBox should
not require any changes to VNFs.

We make the following contributions towards addressing
these challenges in this paper.
•We investigate the feasibility of VNF-level parallel packet
processing by carefully examining VNF order dependency
in SFC (Section 2).
• We design ParaBox, a hybrid architecture that supports
both sequential and parallel processing (Section 3).
•We implement a proof-of-concept of ParaBox built on top
of a high-performance virtual switch (Section 4).
•We evaluate the performance of ParaBox and demonstrate
that it can reduce the latency by up to 37.7% for a service
chain consisting of two VNFs (Section 5).

2 PARALLELIZING NFS
In this section, we introduce SFC and address the key ques-
tion of whether it is possible to parallelize VNFs.

2.1 Introduction to SFC
Network functions such as �rewall, Network Address Trans-
lation (NAT), Intrusion Prevention System (IPS), WAN opti-
mizer (WANX), etc. are generally deployed as inline services
of whose existence end users are typically unaware. SFCs are
sequences of such NFs through which network tra�c must
pass and are have proven useful in a wide range of network
scenarios [13, 22, 26]. �ere are multiple ways of steering
data �ows through a service chain. �e basic one is to stati-
cally place NFs in network and physically wire them together.
It is hard to recon�gure such a prede�ned service chain,

VNFs HDR PL Add Examples
R/W R/W Bits

Probe T/F F/F F Flowmon
IDS T/F T/F F Snort/Bro
Firewall T/F F/F F iptables
NAT T/T F/F F iptables
L4 LB T/F F/F F iptables
WANX T/T T/T T WANProxy
Shaper T/F F/F F tc
Proxy T/F T/T F Squid

Table 1: NF operations on packet header (HDR) and payload (PL).

which is prone to errors and increases the management com-
plexity of network operators. �e advent of NFV and SDN
has greatly facilitated tra�c steering in SFC [10, 29, 34], by
leveraging logically centralized control plane and providing
the programmability of forwarding plane.

2.2 Order Dependency of NFs
At a high level, we can parallelize packet processing among
NFs only if they are independent of each other in a service
chain. Otherwise, we may break the correctness of network
and service policies as illustrated later on.

�ere are multiple factors that impact the NF order depen-
dency for service chaining: 1) the read and write operations
of NFs on data packets; 2) termination of �ows (e.g., dropped
by a �rewall) in an NF that a�ects the correctness/e�ciency
of the next NF; 3) packet reconstruction (e.g., merged by
a WAN optimizer); and 4) a load balancer before multiple
instances of the same NF.
In Table 1, we examine the read and write operations on

both packet header and payload (beyond the TCP header) for
NFs commonly used in the literature. Some NFs, e.g., WANX,
may add extra bits to packets. �is table shows operations
performed by the listed NF examples on a per-packet basis
(to the best of our knowledge). �e read/write behavior
of an NF can change from one implementation to another.
Similarly con�guration of individual NFs can impact their
packet operations. �is table represents an abstraction that
can be used to perform order-dependency analysis of NFs
for service chains.
�e following relationships can be present between NFs

based on their operations of packet data, Read a�er Read
(RAR), Read a�er Write (RAW), Write a�er Read (WAR) and
Write a�er Write (WAW) [17]. Two NFs that perform RAR
and WAR operations can be safely parallelized. Two VNFs
that perform WAW and RAW operations cannot be paral-
lelized if the packet data that is being wri�en/read in the
second NF overlaps with what is wri�en in the �rst one.
We use an example to illustrate the problems caused by

�ow termination and the other two cases (i.e., packet recon-
struction and multiple NF instances a�er an LB) are easy to
understand. When there is a �rewall before a proxy or an

ParaBox: Exploiting Parallelism
for Virtual Network Functions in Service Chaining SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA

Probe IDS Firewall NAT L4 LB WANX Shaper Proxy
Probe Y Y Y Y Y Y Y
IDS Y Y Y Y Y Y Y

Firewall N N Y N Y Y N
NAT N N N N N N N
L4 LB N N N N N N N
WANX Y X X X X Y X
Shaper N Y Y Y Y Y Y
Proxy Y Y Y Y Y N Y

Table 2: Pairwise NF order dependency. �e NF in the le�most column is the �rst one in a chain and the one in the top row is the second.

IDS, parallelization will cause them to generate reports for
�ows that might be dropped by the �rewall, which a�ects
correctness. If there is an LB a�er a �rewall, parallel pro-
cessing will send dropped �ows to the LB which impacts the
e�ciency of its load balancing algorithm. For other cases,
such as a �rewall before an NAT, parallelization may in-
crease the resource utilization on the NAT. We can fall back
to the sequential processing when the �rewall drops a large
number of �ows.

Table 2 shows if various two-NF chains can be parallelized
using ParaBox. �e �rst NF of the chain is in the le�most
column and the second one is in the top row. �e service
chains that can be parallelized by ParaBox are marked with
a “Y”. �ose that cannot be parallelized or do not have a de-
ployment case are marked as “N”/“X” respectively. Note that,
all the service chains that have a NAT as the �rst hop are not
parallelizable. �e reason is that the policy of next hop (e.g.,
�rewall rules) may be de�ned based on modi�ed IP address,
which brings in dependency between NAT and the next hop.
In the ParaBox approach, data packets arriving at the next
hop have unmodi�ed IP address, which makes the regular
rules not e�ective. However, if the policy con�guration is
ParaBox-aware (e.g., de�ning the �rewall rules on the origi-
nal source IP address, instead of the one assigned by NAT),
many of these chains can be parallelized. We assume that
WANX is applied to outgoing network tra�c and thus should
not be deployed before IDS, �rewall, NAT etc. Nonetheless,
there are a number of NF pairs that are parallelizable.

3 DESIGN OF PARABOX
In this section, we describe the system architecture and key
components of ParaBox.

3.1 Overview
As mentioned before, there are three key requirements for
ParaBox. First, the additional components added to service
chains should be lightweight without adding extra noticeable
latency and require minimal knowledge of the VNFs for scal-
ability. Second, we need a service orchestrator and controller
to analyze VNF order-dependency in a de�ned chain. �ird,

User Space

Linux/KVM

NIC

ParaBox

Soft Switch (DPDK)

Packets

Packets

…
…

Memory

Controller

VNF

User Space

Kernel Space

VNF

User Space

Kernel Space

state table

PID PKTR BUFCNT

RX TX RX TX

analysis

Steering
Policies

configuration
merge

FID SC MNF
mirror

steering table

TMO

Figure 2: System architecture of ParaBox.

we should not require changes to network functions, in order
to leverage existing VNFs from various vendors and deploy
ParaBox incrementally. Modifying commercial o�-the-shelf
VNFs to adapt to new proposals is non-trivial.

To satisfy these requirements, ParaBox consists of three
major components: the order-dependency analysis function
in a controller, and the mirror and merge functions on a
so�ware switch. We show the architecture of ParaBox in
Figure 2. �e analysis function takes SFCs as input and
examines whether data packets in certain service chain can
be processed in parallel. Based on the output of the analysis
function, the mirror function sends copies of data packets
to parallelizable VNFs. �e merging function then combines
packets a�er they are processed in parallel by these NFs.

3.2 Dependency Analysis Function
�e order-dependency analysis function of ParaBox con-
troller is responsible for generating a SFC layout with par-
allel components. �is layout is sent to the con�guration
module of ParaBoxwhich uses it to determine how to mirror
the tra�c to VNF instances. To decide what parts of a ser-
vice chain can be parallelized, the order-dependency analysis

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA Y. Zhang et al.

function takes into account the principles based on NF mod-
els, as summarized in Section 2. It also considers the actions
performed by NFs. For example, �rewall would terminate
a session, but it should not modify the packets. In contrast,
NAT would rewrite a packet header, but not terminate a ses-
sion. ParaBox controller sends selected information of VNFs
to the con�guration module that is required by the merge
function, as to be shown next.

3.3 Mirror and Merge Functions
�e mirror function is simple. Based on the service chain, if
the next hop is a parallel component, it will create a copy
of the packet and send it to each VNF in parallel. For the
merge function, we model network packet as a {0|1}∗, i.e., a
sequence of bits. We �rst discuss the case where VNFs do
not insert extra bits into packets. Assume PO is the original
packet, and there are two VNFs A and B in the chain with
PA and PB as their outputs. �e �nal merged packet PM =
[(PO ⊕ PA) |(PO ⊕ PB)] ⊕ PO . We xor every output packet
of a VNF with the original one to get the modi�ed bits and
keep this result in an intermediate bu�er. Since parallelizable
VNFs do not modify the same �eld of a packet, we can get
all modi�ed bits from multiple VNFs by combining (or) the
above xor results incrementally. For example, assume PA
arrives �rst. We will get its modi�ed bits PO ⊕ PA. A�er the
merge function receives PB , it will orB’smodi�ed bits PO⊕PB
with A’s. �e operations are done when the merge function
receives packets from all parallel VNFs, which triggers the
xor of all modi�ed bits with PO . A�er that, checksum gets
updated before packet is sent out. �e advantage of this
approach is that the merge function does not need to know
in advance which �eld a VNF modi�es. For VNFs that insert
extra bits, the merge function needs to �rst remove these
bits and add them back to the above PM . Note that there
will be a mirror and merge for every parallel component of
a service chain.
Based on the above description of the mirror and merge

functions, we summarize the structure of two tables that are
required by them. �e �rst one is a tra�c steering tablewhich
describes service chains. �ere are three �elds in this table:
1) �ow ID; 2) service chain; and 3) description of VNFs if
necessary. For example, we can write a hybrid service chain
as A, {B, C}, D, {E, F, G}, H with two parallel components and
three sequential NFs A, D, and H. We need the description
for VNFs that add data to packets (e.g., L7 LB and WANX).
�e second one is a packet state table which has �ve �elds:
1) per-packet unique ID; 2) packet reference; 3) intermediate
packet bu�er; 4) VNF counter array; and 5) timeout. We use
the packet ID as the key of each item in the table and for
the mapping among packets in the merge function. Packet
reference is a pointer to the memory address of the original
packet, which we keep for the merge function. We use the

Controller

Client Server

VNF Box

NAT FW TS

Figure 3: Experiment setup (TS stands for Tra�c Shaper).

packet bu�er to hold the intermediate results of the merge
function. �e VNF counter array records the number of
VNFs in each parallel component of a service chain. For
instance, the array for the above example will be {1, 2, 1, 3,
1} (in which non-parallelizable NF is taken as a special case
in parallelization). A�er a packet goes through a VNF, the
corresponding counter will decrease by 1. When a counter
reaches 0, it would trigger the �nal merge operation. We use
timeout to handle packet drops.

4 IMPLEMENTATION
We have implemented a prototype of ParaBox. �e so�ware
switch used in the current implementation is BESS (Berkeley
Extensible So�ware Switch) [2], a modular framework na-
tively integrated with DPDK [4]. �e reason we chose BESS
is because of its �exibility and high performance. BESS lever-
ages batch processing to improve e�ciency and developers
can de�ne their own customized logic. Note that we can
also use other so�ware switches, such as Open vSwitch [5],
mSwitch [18], Vector Packet Processing [3], etc.
We implement the mirror and merge functions as BESS

modules. Our extensions to BESS have around 1100 lines of
code (150 for the mirror function, 600 for the merge func-
tion, 200 for the con�guration module, and 150 for others).
�e controller utilizes a customized protocol to communi-
cate with ParaBox’s con�guration module. In the current
implementation, we use the hash value of selected bytes of a
packet as its ID. Following the recommendation by Henke et
al. [16], we use the one-at-a-time hash function and choose
high entropy bytes based on the protocols (e.g., the IP ID
�eld, TCP sequence and acknowledgment numbers, etc.).

5 PERFORMANCE EVALUATION
In this section, we present our preliminary experimental re-
sults to demonstrate the feasibility and e�ciency of ParaBox.

�e experimental setup is shown in Figure 3. We use three
NFs: a Network Address Translator (NAT), a �rewall (FW),
and a Tra�c Shaper (TS). We use Linux kernel iptables for

ParaBox: Exploiting Parallelism
for Virtual Network Functions in Service Chaining SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA

Uplink Downlink
Mean MED Stdev Mean MED Stdev

S-C1 32 20 33 74 25 71
P-C1 21 17 13 45 21 62
S-C2 117 118 58 292 316 80
P-C2 96 71 85 252 264 68
S-C3 141 157 47 319 319 82
P-C3 107 87 68 284 305 88

Table 3: Comparison of the latency in microseconds for ParaBox and serial
service chaining. S stands for serial processing and P for ParaBox. C1 is NAT
→ FW, C2 is NAT→ Tra�c Shaper and C3 is NAT→ FW→ Tra�c Shaper.

the NAT and FW. For the Tra�c Shaper we use the Linux tc

utility. We run each in its own docker container with dedi-
cated CPU. Each container is bound to a BESS VPort that uses
an e�cient ring-based driver to exchange data bu�ers. �e
machine running ParaBox is equipped with Intel(R) Xeon(R)
CPU E5-2620 (2.00GHz, 12 cores, hyperthreading o�) and
32GB memory. �ere are two other machines. �e second
which acts as a client, downloads a large �le from a server
running on the third machine. �ese three machines are
directly connected via Ethernet cables.

We use twometrics to evaluate the performance ofParaBox:
(a) service chain latency, and (b) end-to-end throughput. We
evaluate the performance for three service chains: NAT→
FW, NAT→ TS, and NAT→ FW→ TS. We assume FW rules
are based on host original ip, which decouples the depen-
dency between NAT and FW. We calculate the latency for
both uplink and downlink. Note that this is the latency of
the service chain with all VNFs on the same server.

We compareParaBoxwith sequential chaining and present
the CDFs of the per-packet downlink latency for the three
chains in Figure 4. For the �rst chain, the latency of 80%
downlink packets in ParaBox is within 30 microseconds,
while only 50% for the serial service chain. Similarly for the
second and third chains we can see marked improvement
in latency for 90% of the packets when compared with se-
rialized service chaining. As we can see from these �gures,
ParaBox can reduce the latency for all three service chains.
We also report the mean, median and standard devia-

tion (stdev) of all data packets in Table 3. �is table shows
ParaBox can reduce the latency in both directions. Note
that the downlink takes more time because of the larger
packet size (data packets vs. ACKs). For the service chain of
NAT→ FW, ParaBox can reduce the service chain latency
by up to 37.7% and increase the downloading throughput by
up to 10.8% (729 vs. 658 Mbps). For the other two chains,
the latency reduction is around 14.9% as the Tra�c Shaper
thro�les tra�c and acts as a bo�leneck.

6 DISCUSSION
In this section, we discuss how to extend ParaBox and high-
light several open issues as future directions.

Dependency Analysis. To analyze the VNF order de-
pendency, we need to have a formal model to describe di-
verse functionality and deployment con�gurations of net-
work functions [20]. For real-world use cases we also need
to consider di�erent implementations of the same VNF type
within its context of deployment to perform correct order-
dependency analysis. �e current VNF con�gurations are
generated by network administrators or SDN controllers
with an assumption that VNFs are not parallelized. �is re-
sults in many chains in Table 2 not parallelizable (e.g., all
chains with NAT at the �rst hop). We can build a plugin for
controllers that is ParaBox aware and is able to transform the
con�gurations of other VNFs accordingly when parallelized
with a NAT. �is controller plugin will ultimately result in
more VNF pairs that can be parallelized in Table 2.

Merge Function. We aim to minimize the VNF speci�c
information conveyed to the merge function. We can further
improve the performance of ParaBox by exposing more in-
formation to it. For example, if the merge function knows
that a �ow is dropped by a �rewall, it does not need to use
the timeout for packets from other VNFs. For the mapping of
packets in the merge function, the ID of a packet is the hash
value of its selected bytes. Other options include the recently
proposed Network Service Header [30] which de�nes per-
packet service metafuturedata. ParaBox can generate global
unique per-packet ID (within a packet processing platform)
and keep it in the metadata. We can also borrow the existing
�elds in packet headers, e.g., VLAN Identi�er and IPv6 Flow
Label, if they are not used for other purposes.

SFCs spanning Multiple Physical Servers. In this pa-
per, we focus on the scenario where multiple VNFs of a
service chain are running on the same physical server. �e
VNF-level parallel data processing is also applicable for VNFs
across multiple servers and PNFs. We can potentially lever-
age the port mirroring of hardware switches for ParaBox’s
mirror function. We can implement the merge operation as
a network function and chain it together with the parallel
VNFs/PNFs as their immediate next hop. Another option is
to select the server running one of the VNFs as the merge
point and steer the outputs of other VNFs to it.

Layer 3 VNFs and Mobility VNFs. We have considered
layer 4+ VNFs for parallel data processing. �ere are also
layer 3 VNFs, such as virtual routers, and mobility VNFs,
including virtual Packet Data Network Gateway, Serving
Gateway, Mobility Management Entity, etc. In general, we
cannot parallelize routers and gateways with other VNFs,
as the routers determine the tra�c path and the gateways
create/handle various tunnels. However, bene�ting from the
hybrid nature of ParaBox, we can still chain them together
with parallelizable VNFs, as shown in Figure 1. We will
investigate mobility VNFs, e.g., various Call Session Control
Functions in the IP Multimedia Subsystem in future work.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA Y. Zhang et al.

Downlink Latency
0 20 40 60 80 100 120 140

E
m

pi
ri

ca
l C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Serial
Parallel

(a) NAT→ FW
Downlink Latency

0 100 200 300 400 500

E
m

pi
ri

ca
l C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Serial
Parallel

(b) NAT→ Tra�c Shaper
Downlink Latency

0 50 100 150 200 250 300 350 400

E
m

pi
ri

ca
l C

D
F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Serial
Parallel

(c) NAT→ FW→ Tra�c Shaper
Figure 4: Empirical CDF of downlink latency in microseconds for di�erent VNF chains.

Performance Evaluation. �e performance evaluation
of ParaBox is preliminary. We examined the performance of
ParaBox for short service chains with two VNFs. We did not
evaluate the scenarios where multiple service chains sharing
common VNFs run at the same time. We used open source
so�ware running in containers for the evaluation, having
not conducted experiments on production VNFs. We plan to
address these limitations in our future work.

7 RELATEDWORK
Parallelism in Computer Networks. Parallel processing
is a well-established technology in various areas of computer
networks. P4 [7] is a domain-speci�c protocol-independent
language for programming packet forwarding dataplanes,
which supports parallel table lookups. ClickNP [23] utilizes
parallelism in FPGA to optimize packet processing. MapRe-
duce [9] is a programming model (plus an associated im-
plementation) for large data set processing, which paral-
lelizes jobs on a cluster of servers. Graphene [12] is a cluster
scheduler for improving job completion time in a directed
acyclic graph with many parallel chains. WebProphet [24]
and WProf [33] expedite web page load time by parallelizing
object downloading based on dependency graph analysis.
In contrast, the parallelism target of ParaBox is network
functions in service chains, which has not been exploited.

Service Function Chaining. Service function chaining
has been extensively studied in the literature. �eDelegation-
Oriented Architecture [32] facilitates incremental middlebox
deployment and chaining by leveraging global identi�ers
in packets and endpoint-based delegation. PLayer [21] real-
izes a policy-aware switching layer to explicitly steer traf-
�c through middleboxes. SIMPLE [29] is a policy enforce-
ment platform for e�cient middlebox speci�c tra�c steering.
STEERING [34] provides a �exible way to route tra�c for
inline services based on SDN schema. FlowTags [10] of-
fers �ow tracking capability by using tags associated with
necessary middlebox context to ensure consistent policy en-
forcement. PGA [28] proposes a network policy expression
and leverages graph structure to resolve service chaining
policy con�icts. Slick [6] implements an integrated platform

which handles both middlebox placement and tra�c steering
for e�cient use of network resources. �e above tra�c steer-
ing and policy enforcement applied in SFC are orthogonal
to ParaBox whose goal is to improve chaining latency.
Network Functions Virtualization. �ere is a plethora

of work on improving the performance and manageability
of VNFs. FreeFlow [31] provides a systems-level and state-
centric abstraction, called Split/Merge, for elastic execution
of VNFs. NetVM [19] allows zero-copy packet delivery across
a chain of VMs within a trust boundary on the same physical
server. ClickOS [25] proposes a high-performance virtu-
alized so�ware platform to reduce VM instantiation time.
OpenNF [11] is a framework that o�ers coordinated con-
trol of network function state. E2 [27] proposes an NFV
framework which makes developers focus on core applica-
tion logics by automating and consolidating common man-
agement tasks. OpenBox [8] decouples control plane from
data plane of VNFs and allows reuse of so�ware modules
across network functions. Di�erently from the above work,
ParaBox leverages VNF-level parallel packet processing to
reduce service chain latency.

8 CONCLUSIONS
To the best of our knowledge, we have proposed the �rst hy-
brid service function chaining architecture, called ParaBox,
that processes data packets among VNFs in parallel when
possible. ParaBox has three key components, dependency
analysis function that determines whether VNFs are paral-
lelizable, mirror function that distributes copies of packets
to multiple VNFs and merge function that combines their
outputs. To demonstrate its feasibility and e�ectiveness, we
have implemented a prototype of ParaBox mainly using the
BESS virtual switch. Our initial experiment results show
that ParaBox can reduce latency by up to 37.7% and increase
throughput by up to 10.8% when parallelizing data process-
ing between two VNFs (e.g., a NAT and a �rewall). �e work
that has been illustrated in this paper so far is only a start-
ing point of VNF-level parallel data processing for service
function chaining. It serves as our initial a�empt towards a
full-�edged realization of the ParaBox architecture.

ParaBox: Exploiting Parallelism
for Virtual Network Functions in Service Chaining SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA

9 ACKNOWLEDGMENTS
We thank all SOSR reviewers for their valuable comments.
�is research was supported in part by NSF grants CNS-
1411636, CNS 1618339 andCNS 1617729, DTRAgrant HDTRA1-
14-1-0040 and DoD ARO MURI Award W911NF-12-1-0385.

REFERENCES
[1] AT&T Universal Customer Premises Equipment (uCPE).

h�ps://www.business.a�.com/content/productbrochures/
universal-customer-premises-equipment-brief.pdf, 2016.

[2] Berkeley Extensible So�ware Switch. h�p://span.cs.berkeley.edu/bess.
html, 2016.

[3] Cisco’s Vector Packet Processing. h�ps://wiki.fd.io/view/VPP, 2016.
[4] DPDK. h�p://dpdk.org/, 2016.
[5] DPDK OVS. h�ps://clearlinux.org/documentation/ac-ovs-dpdk.html,

2016.
[6] B. Anwer, T. Benson, N. Feamster, and D. Levin. Programming Slick

Network Functions. In Proc. SOSR, 2015.
[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-Independent Packet Processors. In SIGCOMM
CCR, 2014.

[8] A. Bremler-Barr, Y. Harchol, and D. Hay. OpenBox: A So�ware-
De�ned Framework for Developing, Deploying, and Managing Net-
work Functions. In Proc. SIGCOMM, 2016.

[9] J. Dean and S. Ghemawat. MapReduce: Simpli�ed Data Processing on
Large Clusters. In Proc. OSDI, 2004.

[10] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforc-
ing Network-Wide Policies in the Presence of Dynamic Middlebox
Actions using FlowTags. In Proc. NSDI, 2014.

[11] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella. OpenNF: Enabling Innovation in Network
Function Control. In Proc. SIGCOMM, 2014.

[12] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. GRAPHENE:
Packing and Dependency-Aware Scheduling for Data-Parallel Clusters.
In Proc. OSDI, 2016.

[13] W. Hae�ner, J. Napper, M. Stiemerling, D. R. Lopez, and J. U�aro.
Service Function Chaining Use Cases in Mobile Networks. Internet-
Dra� dra�-hae�ner-sfc-use-case-mobility-02, IETF, 2014.

[14] J. M. Halpern and C. Pignataro. Service Function Chaining (SFC)
Architecture. RFC 7665, 2015.

[15] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function vir-
tualization: Challenges and opportunities for innovations. In IEEE
Communications Magazine, 2015.

[16] C. Henke, C. Schmoll, and T. Zseby. Empirical Evaluation of Hash
Functions for Multipoint Measurements. In SIGCOMM CCR, 2008.

[17] J. L. Hennessy and D. A. Pa�erson. Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[18] M. Honda, F. Huici, G. Le�ieri, and L. Rizzo. mSwitch: A Highly-
Scalable, Modular So�ware Switch. In Proc. SOSR, 2015.

[19] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: High Perfor-
mance and Flexible Networking Using Virtualization on Commodity
Platforms. In Proc. NSDI, 2014.

[20] D. Joseph and I. Stoica. Modeling middleboxes. IEEE Network: �e
Magazine of Global Internetworking, 2008.

[21] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching
Layer for Data Centers. In Proc. SIGCOMM, 2008.

[22] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma. Service
Function Chaining Use Cases In Data Centers. Internet-Dra� dra�-
ietf-sfc-dc-use-cases-06, IETF, Feb. 2017.

[23] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and
E. Chen. ClickNP: Highly Flexible and High Performance Network
Processing with Recon�gurable Hardware. In Proc. SIGCOMM, 2016.

[24] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y. Wang.
WebProphet: Automating Performance Prediction for Web Services.
In Proc. NSDI, 2010.

[25] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici. ClickOS and the Art of Network Function Virtualization. In
Proc. NSDI 14, 2014.

[26] T. Nadeau and P. �inn. Problem Statement for Service Function
Chaining. RFC 7498, 2015.

[27] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker. E2: A Framework for NFV Applications. In Proc. SOSP,
2015.

[28] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang. PGA: Using Graphs to Express and
Automatically Reconcile Network Policies. In Proc. SIGCOMM, 2015.

[29] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. In Proc. SIGCOMM,
2013.

[30] P. �inn and U. Elzur. Network Service Header. Internet-Dra� dra�-
ietf-sfc-nsh-10, IETF, 2016.

[31] S. Rajagopalan, D.Williams, H. Jamjoom, and A.War�eld. Split/Merge:
System Support for Elastic Execution in Virtual Middleboxes. In Proc.
NSDI, 2013.

[32] M. Wal�sh, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker. Middleboxes No Longer Considered Harmful. In Proc.
OSDI, 2004.

[33] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystifying Page Load Performance with WProf. In Proc. NSDI,
2013.

[34] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvret, R. Manghirmalani,
R. Mishra, R. Patney, M. Shirazipour, R. Subrahmaniam, C. Truchan,
and M. Tatipamula. StEERING: A so�ware-de�ned networking for
inline service chaining. In Proc. ICNP, 2013.

https://www.business.att.com/content/productbrochures/universal-customer-premises-equipment-brief.pdf
https://www.business.att.com/content/productbrochures/universal-customer-premises-equipment-brief.pdf
http://span.cs.berkeley.edu/bess.html
http://span.cs.berkeley.edu/bess.html
https://wiki.fd.io/view/VPP
http://dpdk.org/
https://clearlinux.org/documentation/ac-ovs-dpdk.html

	Abstract
	1 Introduction
	2 Parallelizing NFs
	2.1 Introduction to SFC
	2.2 Order Dependency of NFs

	3 Design of ParaBox
	3.1 Overview
	3.2 Dependency Analysis Function
	3.3 Mirror and Merge Functions

	4 Implementation
	5 Performance Evaluation
	6 Discussion
	7 Related Work
	8 Conclusions
	9 Acknowledgments
	References

