
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

How Much to Coordinate?—Optimizing In-Network
Caching in Content-Centric Networks

1

2

Yanhua Li, Member, IEEE, Haiyong Xie, Member, IEEE, Yonggang Wen, Senior Member, IEEE,
Chi-Yin Chow, Member, IEEE, and Zhi-Li Zhang, Fellow, IEEE

3

4

Abstract—In content-centric networks, it is challenging how5
to optimally provision in-network storage to cache contents, to6
balance the tradeoffs between the network performance and the7
provisioning cost. To address this problem, we first propose a8
holistic model for intradomain networks to characterize the net-9
work performance of routing contents to clients and the network10
cost incurred by globally coordinating the in-network storage11
capability. We then derive the optimal strategy for provisioning the12
storage capability that optimizes the overall network performance13
and cost, and analyze the performance gains via numerical eval-14
uations on real network topologies. Our results reveal interesting15
phenomena; for instance, different ranges of the Zipf exponent can16
lead to opposite optimal strategies, and the tradeoffs between the17
network performance and the provisioning cost have great impacts18
on the stability of the optimal strategy. We also demonstrate that19
the optimal strategy can achieve significant gain on both the load20
reduction at origin servers and the improvement on the routing21
performance. Moreover, given an optimal coordination level �∗,22
we design a routing-aware content placement (RACP) algorithm23
that runs on a centralized server. The algorithm computes and24
assigns contents to each CCN router to store, which can minimize25
the overall routing cost, e.g., transmission delay or hop counts,26
to deliver contents to clients. By conducting extensive simulations27
using a large-scale trace dataset collected from a commercial28
3G network in China, our results demonstrate that our caching29
scheme can achieve 4% to 22% latency reduction on average over30
the state-of-the-art caching mechanisms.31

Index Terms—In-network caching, content-centric networks,32
coordinated caching.33

I. INTRODUCTION34

INTERNET has become a ubiquitous, large-scale content35

distribution system. To date, not only traditional Web con-36
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tents, but also an increasingly large number of video contents 37

have been delivered through the Internet (see, e.g., [2], [3]); 38

moreover, video content delivery over the Internet is expected 39

to grow even more tremendously in the next few years [4], [5]. 40

These have posed significant challenges to the Internet, e.g., 41

how to store and disseminate the large-scale contents to support 42

more robust, efficient, and expedited services for the users. 43

To address these challenges, content delivery networks 44

(CDNs) with built-in large-scale, distributed content caching 45

mechanisms have been adopted in the Internet. CDNs are 46

typically deployed and operated independently by third-party 47

CDN carriers (e.g., Akamai [6]), where CDNs are interdomain 48

overlays spanning across multiple underlying networks; each of 49

such underlying networks may be operated by different Internet 50

service providers (ISPs). Some other CDNs are deployed by 51

individual ISPs within their own networks for intradomain 52

content dissemination (e.g., AT&T [7] and Level3 [8]). In both 53

cases, content caching is one of the key mechanisms that make 54

CDNs successful. However, content caching is only deployed 55

as an overlay service rather than an inherent network capability, 56

due to lack of the storage capability at individual routers. 57

Recently, in the emerging content-centric networking (CCN) 58

architecture [9], [10], in-network storage (and caching) capacity 59

exhibits a promising potential to significantly improve network 60

resource utilization and energy efficiency [11]–[13], though it is 61

still under debate whether the ubiquitous caching can improve 62

the performance in CCN [14]. In this work, we consider the 63

scenario, where CCN as a content-oriented future Internet 64

architecture, content stores are available in routers; thus, con- 65

tent caching and dissemination become an inherent feature of 66

routers. In such networks, users focus only on contents, rather 67

than the physical locations from which contents can be re- 68

trieved. Moreover, the network routing and in-network storage 69

are most likely provisioned by the same network carrier in a 70

content-centric manner. It is worth noting that this networking 71

model is fundamentally different from CDNs. In CDNs, the 72

routing capability and the storage capability are completely 73

separated and are provisioned by different entities. Content 74

requests are fulfilled by routers which possess both the routing 75

and the caching capabilities in CCN. On the other hand, such 76

requests in CDNs are forwarded by routers which possess only 77

the routing capability, and fulfilled by content servers which 78

possess only the storage capability. Note that in many cases 79

content servers are usually placed in networks different from 80

where content requests are originated. 81

Content caching in CCN can be either coordinated or non- 82

coordinated, similar to that in the Internet (see, e.g., [15], [16]). 83
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On one hand, coordinated caching mechanisms require that84

CCN routers store contents in a coordinated manner, which85

allows more contents to be efficiently cached in the “cloud” of86

content stores closer to the users, thus improving the overall87

content delivery performance. Hence, it is challenging how88

to trade the content coordination cost for network routing89

performance in CCN. The coordination cost refers to the cost90

incurred by provisioning storage capacity among routers, where91

the routing performance evaluates the performance to route92

the contents from one point to another. (See Section III-B93

for more details.) On the other hand, non-coordinated caching94

mechanisms store only the locally most popular contents at95

each CCN router, without coordination with other routers.96

Therefore, such mechanisms not only incur less coordination97

cost but also are more likely to store less distinct contents98

due to lack of coordination. Furthermore, studies have shown99

that the popularity of both Web and video contents follows the100

Zipf distribution [17], [18], and that user-generated contents101

distributed through social networks are expected to become102

one of the most significant contributors to Internet traffic [5];103

hence, a dominant portion of contents are not popular. As104

a result, non-coordinated caching mechanisms are likely to105

suffer from the long-tail distribution, due to that contents are106

more likely fetched from distant origin servers that serve these107

contents.108

Therefore, there exist clear trade-offs between the network109

performance and the coordination cost when designing in-110

network caching mechanisms for CCN. More specifically,111

coordinated caching mechanisms may trade the coordination112

cost for the network performance (e.g., lower average latency),113

while non-coordinated caching mechanisms may incur a114

significantly lower cost on provisioning in-network caching115

and may degrade the network performance due to lack of116

fine-grained control on where contents are cached, retrieved117

and routed to users.118

In this paper, we focus on in-network caching mechanisms119

and their trade-offs in content-centric networks, where routers120

possess both the routing and the in-network storage capabilities.121

We make the first attempt to address the new challenge in122

CCN, namely, how to optimally provision CCN routers’ storage123

capability and investigate the trade-offs between the network124

performance and the coordination cost.125

More specifically, we develop a simple holistic model to126

systematically analyze the optimal strategy for provisioning127

the in-network storage capability. Our holistic model studies128

the intra-domain network as a whole, without bringing the129

information of each individual content and router, so it can130

provide a general and theoretical underpinning to understand131

the caching strategy design in content centric networks. We132

provide rigorous proofs for the existence and uniqueness of the133

optimal strategy, which guides us to investigate the trade-offs134

between the network performance and the coordination cost.135

We summarize our contributions as follows:136

• We develop a simple holistic model to capture the net-137

work performance of routing contents to clients and138

the network cost incurred by globally coordinating the139

provision of the in-network storage capability.140

Fig. 1. A motivating example.

• We derive the optimal strategy of provisioning the in- 141

network storage capability to optimizes the overall net- 142

work performance and cost, with mild conditions under 143

which the optimal strategy is guaranteed to be unique. 144

• To further investigate how to realize the coordinated 145

caching, i.e., placing contents to individual routers, we 146

design a routing aware content placement (RACP) algo- 147

rithm that computes the assignment of contents to each 148

CCN router, with minimized overall routing cost. 149

• Through numerical analysis, we observe interesting phe- 150

nomena that the stability of the optimal strategy is 151

sensitive to key factors such as Zipf exponent of the 152

content popularity distribution and the trade-off weights 153

for the network performance and the coordination cost. 154

Moreover, by evaluating the performance of our caching 155

framework using a large-scale trace dataset collected 156

from a commercial 3G network in China, our results 157

demonstrate that our caching scheme can achieve 4% to 158

22% latency reduction on average over non-coordinated 159

caching with least recently used (LRU) and least fre- 160

quently used (LFU) eviction policies. 161

The rest of the paper is organized as follows. In Section II, we 162

motivate our studies using a simple example. In Section III, we 163

develop a holistic model that characterizes the overall network 164

performance and cost to facilitate the analysis. In Section IV, 165

we derive and analyze the optimal strategy for provisioning 166

the in-network storage capability. In Section V, we introduce 167

routing aware content placement (RACP) algorithm to assign 168

contents among routers with minimized overall routing cost. 169

In Section VI, we perform numerical analysis on the optimal 170

caching strategy and conduct trace-driven evaluations on the 171

network performances of our caching strategy. In Section VII, 172

we present the related work. We conclude the paper with future 173

work in Section VIII. 174

II. MOTIVATION 175

We first motivate our study through an illustrative example 176

shown in Fig. 1, which shows an intradomain network consist- 177

ing of three routers R0, R1 and R2, and one origin server O 178

serving two content objects a and b. The network belongs to 179

a single administrative domain (represented by the cloud). All 180
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TABLE I
COORDINATED VS NON-COORDINATED STRATEGIES

routers have the routing capability to forward contents to peer181

routers or clients. Moreover, R1 and R2 have storage capacity to182

store one single content object only, whereas R0 does not have183

any available capacity for storing a or b.184

We assume that there are two sets of clients (not shown in185

the figure) sending two request flows to their first-hop routers186

R1 and R2, respectively. The two request flows are identical,187

represented by a repeating sequence {a, a, b}. We assume that188

the performance (e.g., latency) of fetching contents from a peer189

router is much better than from the origin server O, since in190

real network, the origin may reside quite far away from the191

network. Then, apparently, storing contents at the routers R1192

and R2 would reduce the overall delay and improve the network193

performance that clients experience. Due to the limited storage194

capacity, the problem is how to select contents to store at each195

router so as to improve the network performance and reduce the196

coordination cost.197

We consider the following two in-network caching strate-198

gies and their trade-offs: (1) Non-coordinated caching: R1 and199

R2 work independently, where they both adopt the canonical200

caching policy based on frequency or historical usage. Assume201

that the content popularity distribution is consistent, and that202

routers R1 and R2 have already cumulated the information that a203

is requested more often than b. In this case, both R1 and R2 store204

a. (2) Coordinated caching: R1 and R2 work jointly and always205

prefer each other over the origin server whenever possible. In206

this case, R1 and R2 may store a and b respectively. Without207

loss of generality, we assume that R1 stores a, and R2 stores208

b. Then, on cache misses, a requested content will always be209

retrieved from either R1 or R2, rather than the origin server O.210

We compare the coordinated and non-coordinated caching211

strategies when the network is in the steady state (i.e., the in-212

network storage at R1 and R2 has been steadily populated), by213

using three metrics: the load on origin, the routing hop count,1214

and the storage coordination cost. Note that the first two metrics215

can be used to measure the network performance, while the216

third metric can be used to measure the cost of provisioning the217

in-network storage capability. We summarize the comparison218

results in Table I.219

First of all, the load on origin is measured by the percentage220

of all requests served directly by the origin server O. With221

the non-coordinated strategy, the requests for content a will be222

directly served by R1 or R2 (recall that both R1 and R2 store a223

in this case), while the requests for b will have to be served by224

the origin server. This means a total 1/3 of all requests from two225

flows incur the traffic load on the origin server. However, with226

the coordinated strategy, since both a and b are stored locally227

1We use hop counts as an simple example for measuring the routing
performance where each hop has the same delay, and our results can be safely
extended to actual delay time, by considering the link level delay time as a
weight.

(i.e., at R1 and R2 respectively), all requests from the clients 228

can be served by either R1 or R2. Hence, the load on origin is 0 229

when using the coordinated strategy, much less than that when 230

using the non-coordinated strategy. 231

Secondly, the routing hop count is measured by the average 232

number of network hops traversed when fetching contents (we 233

focus only on the links between R0, R1, R2 and O). Using the 234

non-coordinated strategy, clients requesting for a can directly 235

fetch a from R1 or R2 without going through any peer router, 236

while requests for b have to go to the origin which is two hops 237

away via router R0 (i.e., the total hop count is 2). Therefore, 238

the average routing hop count for non-coordinated strategy 239

is 1
3 · 2 ≈ 0.67 per request. In contrast, using the coordinated 240

strategy, only requests for b sent to R1 and requests for a sent 241

to R2 trigger content fetching from their one-hop peer router, 242

namely, R2 and R1, respectively. Hence, the average routing hop 243

count is 2
6 · 1 + 1

6 · 1 = 0.5 per request. 244

Moreover, the coordination cost is measured by the number 245

of messages that have to be exchanged among routers in order 246

to reach consensus on the caching decision. Apparently, in 247

the non-coordinated strategy,routers decide which contents to 248

store purely based on their local information; therefore, non- 249

coordinated caching does not incur any coordination cost. 250

However, to implement coordinated caching, non-trivial com- 251

munication costs are necessary to coordinate the caching de- 252

cisions of both R1 and R2. In this example, to ensure that R1 253

and R2 store different contents, at least one message has to be 254

exchanged between them. 255

In this example, the coordinated caching strategy leads to a 256

lower load on origin and a lower routing hop count, while the 257

non-coordinated strategy incurs a lower coordination cost. This 258

suggests that there exist trade-offs between the coordination 259

cost and the network performance. Hence, it is important to 260

investigate how to provision the in-network caching capability 261

and understand the trade-offs. 262

III. NETWORK AND PERFORMANCE-COST MODEL 263

In this section, we develop a holistic approach to quantifying 264

the overall network performance of routing traffic and the cost 265

of coordinating the in-network storage capability. 266

A. A Simple, Holistic Network Model 267

We consider a simple, holistic network model for content- 268

centric networks. We focus on the network of a single admin- 269

istrative domain (e.g., an autonomous intra-domain system), 270

where a set of routers with both the routing and storage capabil- 271

ity serve content requests originated from end users, as shown 272

in Fig. 2. The origin server O stores all content objects, referred 273

to as the “origin”; therefore, requests for any content object 274

can always be satisfied by O. Note that O is an abstraction of 275

multiple origin servers (in practice, there are multiple origin 276

servers hosting different contents). 277

We assume that there are n routers in the network and the 278

number of contents N is sufficiently large. To simplify the 279

analysis, we also assume that contents are equally large and 280

all routers have the same storage capacity c; therefore, we are 281
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Fig. 2. A simple, holistic network model.

able to normalize the content size to one unit with respect to282

routers’ storage capacity. Note that in the recently proposed283

content-centric networking architecture [9], [10], contents are284

segmented into smaller pieces, each of which is treated as an285

individually named content object, to allow flexible distrib-286

ution and flow control. Content segmentation has also been287

adopted in many existing overlay content distribution systems,288

e.g., BitTorrent and eMule. These observations suggest that a289

homogeneous content model is reasonable in content-centric290

networks. Many studies have shown that the content popularity291

follows the Zipf distribution (see, e.g., [17], [18]). In particular,292

[19], [20] both show that after content segmentation, the popu-293

larity of content segments preserves the power-law distribution294

very well. The Zipf’s law predicts that out of a population of295

N elements, the frequency of elements of rank i, denoted by296

f (i; s, N), is297

f (i; s, N) = 1/is∑N
j=1 (1/js)

= 1/is

HN,s
, i = 1, 2, · · · (1)

where s is the Zipf exponent and HN,s = ∑N
j=1 j−s is the N-th298

generalized harmonic number of order s. Note that s is a key299

parameter of the Zipf distribution and is close to 1 but in general300

not equal to 1. We consider s ∈ (0, 1) ∪ (1, 2) in our analysis.301

In other words, f (i; s, N) is the likelihood of the i-th ranked302

content object being requested.303

The storage capability of CCN routers can be provisioned in304

either a non-coordinated or a coordinated manner. In the non-305

coordinated provision case, each router stores only the most306

popular contents locally so that clients can fetch them from307

directly connected routers. Since no coordination is necessary,308

routers make caching decisions independently and do not incur309

any cost of coordination. On the contrary, in the coordinated310

provision case, routers store popular contents in a coordinated311

and collaborative manner. Hence, more contents will be cached312

at peer routers in the network, and clients may experience less313

delay when fetching contents.314

However, the coordination among routers comes at certain315

costs. Suppose that there exists a conceptually centralized316

coordinator (i.e., C) in Fig. 2. Then in order to manage the317

coordinated caching across the network, the coordinator has to 318

collect the information of content stores from and disseminate 319

necessary messages to all routers in the network. Note that the 320

coordinator is conceptually centralized; in practice, it can be 321

implemented in a fully distributed manner. For examples, vari- 322

ous scalable controller designs discussed in [21], [22] (and the 323

references therein) can be used to implement such coordinator 324

in CCN. 325

In the following subsection, we will develop a performance- 326

cost model to characterize the network performance and costs. 327

Our model is general and unifies the coordinated and non- 328

coordinated caching mechanisms. 329

B. Performance-Cost Model 330

We primarily consider the network routing performance and 331

the coordination cost in CCN. 332

1) Routing Performance: The network routing performance 333

refers to the performance of routing contents from one point 334

to another in a content-centric network. The network carriers 335

define their own routing performance metrics, for instance, the 336

average total number of hops all traffic traverses in the network, 337

or the average latency experienced by end users. In this paper, 338

we use the average latency as the main routing performance 339

metric. When there is no ambiguity, we also refer to the average 340

latency as the routing performance. Note that our model is 341

applicable to other metrics such as the average hop count. 342

As shown in Fig. 2, we denote by d0 the average latency of 343

serving requests from clients’ closest routers (which store the 344

requested contents locally). d1 represents the average latency 345

of serving a request from a peer router in the given network, 346

namely, a directly connected router does not have the requested 347

content but can fetch it from a peer router in the same ad- 348

ministrative domain. Moreover, d2 denotes the average latency 349

of fetching contents from the origin. Note that d1 includes 350

two types of latency: the average latency between a client and 351

its corresponding router (i.e., d0), and the average latency of 352

transferring contents from peer routers. Therefore, d1 > d0. 353

Similarly, d2 > d1. Note also that d0, d1 and d2 collectively 354

reflect the average latency incurred by routing contents in the 355

network. We further define t1 = d1
d0

as the first-tier latency ratio, 356

t2 = d2
d1

as the second-tier latency ratio, and γ = d2−d1
d1−d0

as the 357

ratio of tiered latency (or tiered latency ratio for short). 358

We consider a unified general model to formulate both 359

coordinated and non-coordinated caching mechanisms by in- 360

troducing a parameter x ∈ [0, c], which denotes the amount of 361

storage capacity allocated for coordinated caching mechanisms 362

at each router. Each router stores in its local storage (i.e., the 363

c − x portion) the top ranked contents in a non-coordinated 364

manner, and all routers collaboratively store n · x contents that 365

are ranked from c − x + 1 to c − x + nx. We use f (k; s, N) to 366

characterize the probability of the k-th ranked content. More- 367

over, we compute the overall probability of requesting for the 368

top k contents by 369

F(k; s, N) =
k∑

i=1

f (i; s, N) = Hk,s

HN,s
, k = 1, 2, · · ·
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where Hk,s and HN,s are the k-th and N-th harmonic numbers370

of order s. Therefore, the average latency of serving a content371

request is372

T(x; d0, d1, d2) = F(c − x; s, N) · d0

+ [F(c−x + xn; s, N)−F(c − x; s, N)] · d1

+ [1 − F(c − x + xn; s, N)] · d2. (2)

The rationale is that each router uses the c − x portion of373

its storage to store the most popular contents, and use the374

remaining x portion to store (distinct) contents in a coordinated375

manner. As a result, the total number of unique contents stored376

in all routers is (c − x) + x · n (recall that the content object size377

is normalized to 1).378

2) Coordination Cost: The coordination cost refers to the379

cost incurred by coordinated provisioning of the storage capa-380

bility among all participating routers. We consider three types381

of costs incurred to coordinate the in-network content caching382

decisions, including the computational cost of calculating the383

optimal storage provisioning policy for all routers and all con-384

tents, the communication cost of collecting statistics from and385

distributing optimal policies to all routers, and the enforcement386

cost of implementing the optimal policy at each individual387

router.388

Among these three types of costs, the communication cost is389

a function of x. More specifically, the states of the coordinated390

storage at each router should be communicated to other routers391

in order for all routers to collectively compute the optimal392

policy. Such communication cost can contribute non-negligible393

amount of traffic. Many studies suggest that ISPs tend to define394

their own piece-wise linear functions to capture such cost (see,395

e.g., [23]); therefore, we adopt a linear function to capture the396

communication cost.397

Note that the computational cost is dependent on the number398

of contents (i.e., N), coordinated contents per router (i.e., x), and399

many other factors such as the network topology and content400

popularity distribution. Recall that the number of contents is401

typically extremely large and is most likely to dominate other402

factors. Note also that the enforcement cost is independent of x.403

For instance, when hash-based algorithms are used for match-404

ing requests to stored contents, the complexity of operations,405

such as insertion, deletion, and search, is O(1), which does406

not depend on the number of stored contents. Therefore, we407

consider both the computational cost and the enforcement cost408

as constants, and characterize the overall coordination cost in409

CCN by410

W(x; w, ŵ) = w · n · x + ŵ, (3)

where ŵ is the invariant computational and enforcement cost,411

w is the expected communication cost per content per router412

(referred to as the unit coordination cost for short), and w · n · x413

is the overall communication cost.414

IV. PROBLEM FORMULATION AND ANALYSIS415

In this section, we formulate the problem of how CCN416

routers’ storage capability should be provisioned as an opti-417

mization problem, and systematically study the optimal solu-418

tion, i.e., the optimal provisioning strategy for the in-network419

storage capability. More specifically, we provide a rigorous 420

proof for the existence and uniqueness of the optimal strategy. 421

A. Problem Formulation 422

In practice, the network routing performance and the co- 423

ordination cost may not be well aligned. Inspired by many 424

studies where there exist multiple types of network perfor- 425

mance and costs (see, e.g., [24], [25], [26]), we introduce a 426

trade-off weight parameter α ∈ [0, 1] and formulate the overall 427

performance/cost as a convex combination of the routing per- 428

formance2 and the coordination cost: 429

Tw(x;α, w, ŵ, d0, d1, d2) = α · T(x; d0, d1, d2)

+ (1 − α) · W(x; w, ŵ). (4)

The goal of coordinating in-network caching is to find the 430

optimal x∗ that minimizes Tw, namely, 431

x∗(α) = arg min
x

Tw(x;α, w, ŵ, d0, d1, d2). (5)

We define �(α) = x(α)
c as the coordination level and refer to 432

�∗(α) = x∗(α)
c as the optimal strategy, namely, the optimal 433

percentage of coordinated storage. 434

In order to ease the analysis and derive meaningful results, 435

we apply the assumption that N is sufficiently large and ap- 436

proximate F(x; s, N) using a continuous function 437

F(x; s, N) ≈
∫ x

1 t−sdt∫ N
1 t−sdt

= x1−s − 1

N1−s − 1
, s ∈ (0, 1) ∪ (1, 2). (6)

B. Existence of Optimal Strategy 438

By checking the existence of the first-order deriva- 439

tive and the positivity of the second-order derivative of 440

Tw(x;α, w, ŵ, d0, d1, d2), both with respect to x, we can for- 441

mally prove the following lemma, which suggests the existence 442

of the optimal strategy. 443

Lemma 1: Tw(x;α, w, ŵ, d0, d1, d2) is a convex function of 444

x. The optimal solution to (5) exists, if the following conditions 445

for system parameters hold: 446

• 0 ≤ x ≤ c and c > 0, 447

• The number of contents is sufficiently large (N � 1), 448

• the number of routers n > 1, 449

• 0 < s < 2 and s �= 1, and 450

• d0 < d1 ≤ d2. 451

Proof sketch: By using the approximation in (6), 452

F(x; s, N) is differentiable. We accomplish the proof by check- 453

ing the existence of the first-order derivative and the positivity 454

of the second-order derivative of Tw(x;α, w, ŵ, d0, d1, d2). � 455

We remark that the conditions for guaranteeing the existence 456

of the optimal strategy are reasonable and are most likely to 457

hold in practice. The number of contents is typically large, i.e., 458

N � 1, and s is typically a positive number between 0 and 2 459

(see, e.g., [17], [18]). The number of routers n could range from 460

a dozen to a couple of hundred in an administrative domain. 461

2Recall that we use the average latency to measure the routing performance.
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Additionally, as far as the latency is concerned, the condi-462

tion d0 < d1 ≤ d2 is most likely to hold in realistic networks.463

First, d0 can be approximated by the latency between the464

end users and their first-hop routers. Its typical values are465

about 100 milliseconds in cellular networks (see, e.g., [27]),466

10–20 milliseconds in cable access networks (see, e.g., [28]),467

and 30 milliseconds in ADSL access networks (see, e.g., [29]).468

Second, d1 − d0 can be approximated by the latency between469

routers in the same administrative domain, and its values typi-470

cally range from a few to 20 milliseconds on average, depend-471

ing on the geographical coverage of the network (e.g., [29]).472

Last, d2 typically ranges from more than one hundred to a473

couple of hundred milliseconds with heavy-tailed distribution474

(see, e.g., [30]).475

C. Uniqueness of Optimal Strategy476

The following lemma characterizes the optimal strategy �∗.477

Lemma 2: The optimal strategy �∗ satisfies the following478

equation:479

a�−s = (1 − �)−s + b, (7)

where a ≈ γ · n1−s and b ≈ 1−α
α

· N1−s−1
1−s · nw

d1−d0
cs, α ∈ [0, 1],480

γ > 0, s ∈ (0, 1) ∪ (1, 2), n > 1, N > 0, c > 0, w > 0, and481

d1 − d0 > 0.482

Proof: By letting the first-order derivative of483

Tw(x;α, w, ŵ, d0, d1, d2) equal to zero, we have484

(1 − s)α

N1−s − 1

[
(d1 − d0)(c − x)−s

−(d2 − d1)(n − 1) (c + (n − 1)x)−s] + (1 − α)wn = 0,

γ (n − 1)1−s
(

1

n − 1
+ �

)−s

= (1 − �)−s + b,

where b ≈ 1−α
α

· N1−s−1
1−s · nw

d1−d0
cs. Since n � 1 holds, we have485

n − 1 ≈ n and 1/(n − 1) ≈ 0, which yields eq. (7). �486

We next apply Lemma 2 to prove the uniqueness of �∗ in487

Theorem 1 as follows.488

Theorem 1: There exists a unique solution to (7).489

Proof: Given a particular trade-off weight parameter α,490

we define y(�) = a�−s and z(�) = (1 − �)−s + b, respectively.491

Firstly, we show that within � ∈ (0, 1), both y(�) and z(�)492

are continuous and monotonically decreasing and increasing,493

respectively.494

Continuity: Since for any � ∈ (0, 1), both derivatives of495

y(�) and z(�) exist, namely, dy(�)
d�

= −a · s�−s−1 and dz(�)
d�

=496

s(1 − �)−s−1. Thus, y(�) and z(�) are continuous with respect497

to � ∈ (0, 1).498

Monotonicity: Given any 0 < �1 < �2 < 1 and s ∈499

(0, 1) ∪ (1, 2), we have500

y(�1) − y(�2) = a
(
�−s

1 − �−s
2

) = a

�s
1�

s
2

(
�s

2 − �s
1

)
> 0,

thus y(�) monotonically decreases, when increasing � ∈ (0, 1).501

Similarly, we have 1 > 1 − �1 > 1 − �2 > 0 and the following502

inequality holds503

z(�1) − z(�2) = �s
1 − �s

2

(1 − �1)s(1 − �2)s
< 0,

which in turn proves that z(�) monotonically increases, when 504

increasing � ∈ (0, 1). 505

Moreover, we observe that lim�→0 y(�) = ∞, lim�→1 y(�) = 506

a, lim�→0 z(�) = 1 + b, and lim�→1 z(�) = ∞. Hence, y(�) and 507

z(�) must have a unique intersection point in the range (0,1). � 508

D. Optimal Strategy for Routing Performance Optimization 509

We next focus on the optimal strategy when the routing 510

performance is the dominant concern (i.e., α = 1). We will 511

derive the closed-form optimal strategy and analyze the impacts 512

of various system parameters. 513

Theorem 2: When α = 1, the unique optimal strategy for 514

(5) is 515

�∗ = x∗

c
≈ 1

γ − 1
s n1− 1

s + 1
. (8)

Proof: When α = 1, we have b = 0. Eq. (7) becomes 516

a�−s =(1−�)−s. The solution to this equation yields eq. (8). � 517

It is important to note that �∗ is a function of the tiered latency 518

ratio γ (i.e., ratio between d2 − d1 and d1 − d0), rather than the 519

absolute values of the individual latencies (such as d0, d1 and 520

d2). We refer to this property as the latency scale free property 521

(or scale free for short). This property is particularly desirable 522

and helpful in designing, deploying and provisioning storage 523

capability optimally in a network. 524

Note that in real networks, the average latencies (e.g., d0, d1, 525

and d2) are all bounded in a few to a hundred milliseconds; 526

thus, γ is bounded between 1 and 100 in general, while the 527

number of routers n can scale up dramatically as the network 528

size increases. Hence, we consider how increasing n impacts the 529

optimal strategy �∗ while taking γ as a bounded constant. More 530

specifically, when s ∈ (0, 1), the optimal strategy �∗ quickly 531

approaches 1 as n increases; in other words, all routers should 532

dedicate all their storage capacity to coordinated caching when 533

the number of routers is large. However, when s ∈ (1, 2), the 534

optimal strategy �∗ converges to 0 as n increases, meaning 535

that all routers’ storage capacity should be dedicated to non- 536

coordinated caching instead. 537

This observation reveals that s = 1 is a singular point; s ∈ 538

(0, 1) and s ∈ (1, 2) lead to opposite optimal strategies. We will 539

evaluate and discuss in more details how various factors affect 540

the optimal strategy �∗ in the next section. 541

E. Performance Gain 542

We now quantify the performance gain as a result of the 543

optimal strategy �∗. We consider two types of performance 544

gain, the origin load reduction GO from the origin server’s 545

perspective, and the routing performance improvement GR from 546

the network carrier’s perspective. 547

1) Origin Load Reduction GO: GO is the total load reduction 548

on the origin server, namely, the improvement on the total traffic 549

load incurred on the origin server under the optimal strategy 550

compared to the non-coordinated caching strategy. Based on the 551

assumption of unit-size contents, the traffic load that the origin 552

server sees can be directly expressed as the ratio between the 553
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number of contents served by the origin server when using the554

optimal strategy and when using the non-coordinated strategy.555

More specifically, the traffic demand at the origin using the556

optimal caching strategy is 1 − F(c + (n − 1) · x∗; s, N), while557

the demand at the origin using the non-coordinated caching558

strategy is 1 − F(c; s, N). Therefore, the ratio of expected load559

at the origin with the optimal strategy over the non-coordinated560

strategy is561

GO = 1 − 1 − F (c + (n − 1)x∗) ; s, N)

1 − F(c; s, N)

= (c + (n − 1)x∗)1−s − c1−s

N1−s − c1−s

2) Routing Performance Improvement GR: GR is the total562

improvement on the routing performance, namely, the improve-563

ment on the overall routing performance under the optimal564

strategy versus the non-coordinated strategy.565

Note that when routers are non-coordinated (i.e., x = 0), the566

routing performance in (2) is567

T(0; d0, d1, d2) = (N1−s − c1−s) · d2 + (c1−s − 1) · d0

N1−s − 1
.

Therefore, the overall routing performance improvement is568

GR = 1 − T(x∗, d0, d1, d2)

T(0, d0, d1, d2)
.

V. CONTENT PLACEMENT ALGORITHM: CHALLENGES569

AND IMPLEMENTATION570

Given the holistic model we developed, an optimal coordi-571

nation level, x∗, can be obtained to leverage the router stor-572

age capacity between coordinated vs non-coordinated caching573

strategies. As a holistic model, we look at the problem at a574

coarse-grained granularity, without bringing the infomation of575

each individual content and router. In this section, we further576

investigate the problem how to realize the coordinated caching,577

namely, how to place contents to individual routers. To solve578

this problem, a fine-grained granularity is considered with the579

content local popularity distribution being taken into account,580

which enables us to figure out the delay of fetching a particular581

content from a particular router. We design a routing aware582

content placement (RACP) algorithm that runs on a centralized583

server. The algorithm computes and assigns contents to each584

CCN router to store, which can minimize the overall routing585

cost, e.g., transmission delay or hop counts, to deliver contents586

to clients.587

A. Content Request Model588

In many large scale networks, such as YouTube and Twitter,589

the popularity distributions of contents, e.g., videos and Twitter590

topics (hashtags), change slowly over time, thus can be consid-591

ered relatively stable.592

Recall the network model illustrated in Fig. 2. There are in593

total n CCN routers in an administrative domain, serving N594

equal-size contents to their clients. There exists a conceptually595

centralized coordinator C in the administrative domain, which596

keeps track of the requests received by routers in the past, 597

namely, the routers report the content requests received.3 Let T 598

denote a time interval, e.g., half a hour, where within each T the 599

“local” content requests are aggregated to generate a “global” 600

content populairty ranking, thus within each T , we consider the 601

“local” and “global” content popularities are invariant.4 At a 602

router i (1 ≤ i ≤ n), we denote ri
1, · · · , ri

N as the numbers of 603

requests for each content received by i (within a time interval 604

T), which represents the router i’s “local” popularity ranking for 605

all N contents. By aggregating the information, the centralized 606

coordinator C has both the local popularity ranking of contents 607

and a global popularity ranking of contents, i.e., R1 ≥ · · · ≥ 608

RN , where for a content 1 ≤ k ≤ N, Rk = ∑n
i=1 ri

k. 609

B. Routing Aware Content Placement 610

Since the global popularity ranking follows Zipf distribution 611

and is likely stable over time [17], [18], we assume a fixed 612

Zipf distribution parameter s. Hence, to minimize the overal 613

network cost eq. (4), a unique optimal coordination level x∗ can 614

be obtained as the intersection point of the left vs right hand 615

side in eq. (7), which infers that the top ranking c − x∗ contents 616

(denoted as content set C0 = [1, c − x∗]) should be stored in 617

all CCN routers (i.e., in a non-coordinated manner), and the 618

next nx∗ (globally) top ranking contents (denoted as content set 619

C1 = [c − x∗ + 1, c + (n − 1)x∗]) are stored in a coordinated 620

fashion, namely, each router stores x∗ contents of them. The 621

rest contents (i.e., C2 = [c + (n − 1)x∗ + 1, N]) are not stored 622

at any CCN router. 623

While the holistic model focuses on how to provision the 624

router storage capacity into coordinated vs non-coordinated 625

cashing strategies, i.e., outputing coordination level x∗, the 626

freedom of coordinated caching in placing those nx∗ contents 627

among CCN routers is still unaddressed. Now, we study how 628

to place them in routers, so as to reduce the overall routing 629

cost to deliver contents to clients.5 Recall d0, d1, and d2 (d0 < 630

d1 < d2) as the routing costs, e.g., transmission latency or hop 631

counts, for a client to fetch a content from its directly connected 632

router, a peer router, and the origin, respectively. 633

Let an n by N binary matrix X = [Xij] denote the content 634

placement matrix, with each entry Xij = 1 indicating that router 635

1 ≤ i ≤ n stores content 1 ≤ j ≤ N, and Xij = 0, otherwise. 636

Clearly, for j ∈ C0, Xij = 1 holds, which represents the non- 637

coordinated caching of the most popular contents. Each re- 638

quest for these contents can be process with latency d0, thus 639

the overall latency incurred for contents j ∈ C0 is a constant, 640

D0 = d0
∑

j∈C0
Rj. Similarly, for j ∈ C2, Xij = 0 holds, which 641

3Note that since routers have limited storage resouces, the routers should
report the local requests to the coordinator in a timely manner, such that no
local request information is discarded before reporting to the coordinator.

4Note that the popularity ranking indeed change over time in CCN [31].
Studies such as [31] proposes a dynamic in-network caching algorithm by
considering real-time content placement. However, frequent content migration
would lead to oscillation of the content placement configuration, thus incurs
high migration cost. Instead, we divide the time dimension into managable
intervals, i.e., T , during which we keep the content popularity unchanged, to
both account the popularity dynamics and avoid the unneccessary ocillation.

5Since x∗ is fixed, the coordination cost W(x∗, w, ŵ) in eq. (3) is a constant,
and we only consider the routing cost in the content placement problem.
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corresponds to those non-popular contents that are not stored642

in any router. They incur a total latency as a constant too,643

D2 = d2
∑

j∈C2
Rj. For contents j ∈ C1 stored with coordinated644

caching, Xij indicates the content placement configuration, and645

the total latency for these contents are646

D1 =
n∑

i=1

∑
j∈C1

(
d0ri

jXij + d1ri
j(1 − Xij)

)

=
n∑

i=1

∑
j∈C1

(
d1ri

j − (d1 − d0)r
i
jXij

)

=
∑
j∈C1

d1Rj − (d1 − d0)

n∑
i=1

∑
j∈C1

ri
jXij.

Hence, the total latency for processing all content requests647

can be written as D in eq. (9) below.648

D = D0 + D1 + D2

=
∑

k∈{0,1,2}
dk

∑
j∈Ck

Rj − (d1 − d0)

n∑
i=1

∑
j∈C1

ri
jXij. (9)

Hence, the goal of the content placement is to assign contents649

in C1 to n routers so as to minimize the total routing cost (i.e.,650

latency) in eq. (9) to fetch contents for all requests. By skipping651

the constant part in the objective eq. (9), the problem is formally652

formulated as the following integer linear programming (ILP)653

problem.654

Routing Aware Content Placement Problem (Primal):655

max
X

n∑
i=1

∑
j∈C1

ri
jXij (10)

s.t. :
n∑

i=1

Xij ≤ 1 j ∈ C1 (11)

∑
j∈C1

Xij ≤ x∗ 1 ≤ i ≤ n (12)

Xij ∈ {0, 1} 1 ≤ i ≤ n, j ∈ C1 (13)

The constraint (11) examines that each content is stored for656

no more than one copy at routers in the administrative domain.657

The constraint (12) states that each router collaboratively store658

x∗ contents. The primal problem (10)–(13) is an ILP problem659

due to the binary constraint (13), where ILP is in general660

NP-hard. Especially, 0-1 integer linear programming is one of661

Karp’s 21 NP-complete problems [32], which means that in662

general there is no known polynomial time algorithm to locate663

a solution for the problem. The primal problem can be rewritten664

in matrix form as follows.665

max
x

rTx (14)

s.t. : Ax ≤ b (15)

xk ∈ {0, 1} 1 ≤ k ≤ n|C1|, (16)

where x and r are the vector form of Xij’s and ri
j’s, with length666

of n|C1|, and A is the coefficient matrix of the constraints667

eqs. (11) and (12). b is the vector with the right hand sides of668

the constraints eqs. (11) and (12).669

Optimal Solution: When the integer constraint eq. (16) is 670

ignored, the relaxed problem becomes a linear programming 671

problem, which can be solved in polynomial time. 672

max
x

rTx s.t. : Ax ≤ b. (17)

A total unimodular matrix (TU matrix) is a matrix for which 673

the determinant of every square submatrix has value −1, 0, 674

or +1. A totally unimodular matrix needs not to be square 675

itself. From the definition, it follows that any totally unimodular 676

matrix has only 0, +1 or −1 entries. Let A be partitioned into 677

two disjoint sets B1 and B2. Then, the following four conditions 678

together are sufficient for A to be totally unimodular (See [33]): 679

• Every column of A contains at most two non-zero entries; 680

• Every entry in A is 0, +1, or −1; 681

• If two non-zero entries in a column of A have the same 682

sign, then the row of one is in B1, and the other in B2; 683

• If two non-zero entries in a column of A have opposite 684

signs, then the rows of both are in B1, or both in B2. 685

In LP problem eq. (17), A can be partitioned into two 686

components, B1 and B2, corresponding to the constraints in eqs. 687

(11) and (12), and it is easy to check that all four conditions 688

above hold. Thus, A in the LP problem eq. (17) is total uni- 689

modular. From [33], if a linear programming problem in form 690

of eq. (17) has a total unimodular coefficient matrix A and an 691

integer vector b, then all vertex solutions of the LP problem 692

are integer. Therefore, the linear relaxation of the ILP problem 693

(eqs. (10)–(13)) has all integer solutions, which in turn yields 694

the optimal solution of our routing aware content placement 695

problem. 696

VI. EVALUATIONS 697

In this section, we first perform numerical analysis on the 698

optimal strategy and the performance gain using four real 699

network topologies. Then, we conduct trace-driven evaluations 700

on the performance of our optimal caching strategy with routing 701

aware content placement (RACP) algorithm using a large-scale 702

trace dataset collected from a commercial 3G network in China. 703

A. Numerical Analysis 704

Below, we first introduce the four real network datasets and 705

parameter settings in the numerical analysis. Then, we analyze 706

how various factors affect the optimal strategy �∗ and the 707

performance gain obtained when applying �∗. 708

1) Topologies and Parameter Setup: We use four real net- 709

work topologies in our evaluations, namely, Internet2 (the 710

Abilene Network) [34], CERNET [35], GEANT [36], and an 711

anonymized tier-1 network carrier US-A in North America. 712

In particular, Abilene is a high-performance backbone net- 713

work established by the Internet2 community in the late 1990s. 714

The old Abilene network was retired and became the Inter- 715

net2 network in 2007. It has 11 regional network aggregation 716

points and the backbone connections among them are primarily 717

OC192 or OC48. CERNET is the first nation-wide education 718

and research network in China. It is funded by the govern- 719

ment and managed by the Ministry of Education in China. 720
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TABLE II
TOPOLOGIES USED IN EVALUATIONS

Fig. 3. The Abilene network topology.

It is constructed and operated by Tsinghua University and721

other leading universities in China, with 36 aggregation points722

and OC192 links. GEANT is a pan-European data network723

dedicated to the research and education community. Together724

with Europe’s national research networks, GEANT connects725

40 million users in over 8,000 institutions across 40 countries.726

GEANT has 23 aggregation points with links ranging from727

OC3 to OC192.728

Each network topology, denoted by G = (V, E), has the729

location information for each router i ∈ V (the total number of730

routers n = |V|). We also obtain the pair-wise latency dij for731

every pair of routers i, j ∈ V in each topology.732

Let dij denote the average latency between two routers i733

and j. We estimate the unit coordination cost w by taking734

the maximum expected latency among routers, namely, w =735

maxi,j∈V dij, since the communications among routers (or be-736

tween the conceptual centralized coordinator and all routers)737

can be implemented in parallel, and the maximum latency plays738

a key role in determining the speed of converging to the optimal739

strategy.740

Additionally, let hij denote the hop count of the shortest741

path between i and j. The average routing performance, mea-742

sured by the average hop counts of the shortest paths among743

router pairs, is (d1 − d0) = 1
|V|2

∑
i,j∈V hij. Note that the routing744

performance can also be measured by the other metrics, e.g.,745

the average pair-wise latency (d1 − d0) = 1
|V|2

∑
i,j∈V dij. In746

our evaluations, we applied both metrics and observed similar747

results; thus we only present the results for the routing perfor-748

mance measured by the hop count.749

We summarize the statistics of the four networks in Table II.750

We show the topological structure of the Abilene network in751

Fig. 3, and omit the other three networks for brevity. Table III752

lists the topological parameters obtained from four real753

networks.754

TABLE III
TOPOLOGICAL PARAMETERS

We list in Table IV the general empirical ranges of network 755

parameters, as well as detailed parameter settings in our eval- 756

uations. Note that we choose n, w, and d1 − d0 from the real 757

network topologies, as listed in Table III. We obtain similar 758

results for all four network topologies, so we only present 759

the results for the topology of US-A for brevity. Moreover, in 760

order to investigate how the topological parameters affect the 761

optimal strategy, we also vary the number of routers (n) and the 762

communication cost (w) in our evaluations. 763

We comment that the exact values that each parameter takes 764

can vary over time across different networks; however, the 765

overall trends are less likely to change. 766

2) Optimal Strategy �∗: We first evaluate how various param- 767

eters affect the optimal strategy �∗. 768

Trade-Off Parameter α: We first investigate the impacts of 769

the trade-off weight parameter α to the optimal strategy �∗ in 770

Fig. 4. 771

We observe that when α increases, namely, the routing 772

performance is weighted more than the coordination cost, the 773

optimal strategy �∗ increases monotonically from 0 to 1. This 774

happens because as the routing performance becomes more 775

dominant in the objective function (4), an increasingly larger 776

portion of the storage should be dedicated to the coordinated 777

caching in order to optimize the overall network performance 778

and cost. 779

We also observe that for the same α, a higher γ leads to a 780

higher level of coordination. Moreover, given a certain γ , when 781

α is relatively small, �∗ increases slowly over α. However, when 782

α is sufficiently large, �∗ grows rapidly and becomes more 783

sensitive to changes of α. 784

These interesting phenomena suggest that α should be ad- 785

justed carefully when it is in the sensitive range, which is 786

governed by other parameters, e.g., γ . For example, as shown in 787

Fig. 4, when γ = 2, the sensitive range is around α ∈ [0.2, 0.4], 788

and the range shifts to [0.6, 0.8] when γ = 10. 789

Zipf Exponent s: We observe in Fig. 5 that as s increases, 790

�∗ exhibits various trends over s. Note that s = 1 is a singular 791

point, and is taken away from the range of s, because s = 1 792

leads to a constant routing performance T(x; d0, d1, d2) = d2, 793

which is invariant to the coordination level �. Zipf exponent s 794

can usually be obtained from the trace data, and it can provide 795

stable network performance, given the content popularity is 796

stable over time. We make the following observations. Firstly, 797

for α = 1, i.e., only the routing performance is considered, the 798

optimal strategy �∗ decreases from 1 to 0.35, as s changes from 799

0 to 2. This observation confirms our theoretical results pre- 800

sented in Theorem 2, namely, for s ∈ (0, 1) (resp. s ∈ (1, 2)), 801

�∗ converge to 1 (resp. 0), with an increasing n. 802

Secondly, when α < 1, the optimal strategy �∗ converges 803

to 0, namely, non-coordinated caching mechanisms are more 804
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TABLE IV
SYSTEM PARAMETERS USED IN ANALYSIS

Fig. 4. Trade-off parameter.

Fig. 5. Zipf exponent.

preferred, when s approaches 0. This happens because caching805

is becoming less effective (due to less contents are popular806

enough to stay in routers’ storage) and the coordination cost807

is gradually dominating the routing performance when using808

coordinated caching mechanisms. Moreover, for 0 ≤ α < 1,809

there exists a maximum �∗ around 0.5 ∼ 0.9; while in reality,810

s turns out to be approximately around 0.5 ∼ 0.9 (see, e.g.,811

[17], [18]). This illustrates that in practice, the optimal strategy812

�∗ usually indicates a higher coordination level.813

Lastly, the optimal strategy �∗ decreases when α is decreas-814

ing; namely, the higher the weight on the coordination cost815

is, the lower the optimal coordination level is. This means816

that when the coordination cost is the major concern, non-817

coordinated caching mechanisms are more preferred.818

Network Size n: Fig. 6 shows how �∗ changes with a varying819

size of an intradomain network (i.e., the number of routers n).820

We observe that the optimal strategy �∗ decreases as n821

increases, because the more routers a network has, the higher822

the coordination cost is. Moreover, for a given network size,823

�∗ increases drastically as we put a higher weight on the824

routing performance (i.e., α increases), suggesting that a higher825

coordination level can help to reduce more traffic and thus to826

further improve the routing performance.827

Fig. 6. Network size.

Fig. 7. Coordination cost.

Unit Coordination Cost w: We observe in Fig. 7 that when 828

the routing performance dominates in (4), i.e., α = 1, �∗ is 829

a constant close to 1, whereas for small α, e.g., α < 0.4, �∗ 830

decreases drastically as the unit coordination cost w increases. 831

This suggests that a low coordination level can help improve 832

the overall network performance and cost when w is large. 833

Moreover, a larger α leads to a larger �∗ for the same w, which 834

confirms the results presented in Fig. 4. This trend is also 835

similar to the observation we made in Fig. 6. 836

We also numerically evaluate how the router caching capac- 837

ity c (ranging from 103 to 106) and the total number of contents 838

N (ranging from 106 to 109) affect the optimal coordination 839

level �∗. The results are similar to that of w in Fig. 7, namely, 840

larger c and N lead to smaller �∗, when α > 0; and �∗ keeps 841

unchanged over c or N, when α = 0. For brevity, we omit these 842

two plots. 843

3) Performance Gain: We next evaluate the performance 844

gain of the optimal strategy from both the origin’s and the 845

carrier’s perspectives. 846

Origin Load Reduction GO: We observe in Fig. 8 that as 847

the trade-off parameter α increases, the gain on origin load 848

reduction increases, due to the fact that a higher �∗ allows 849

routers to store more contents. Note that a higher γ leads 850
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Fig. 8. α vs. GO.

Fig. 9. s vs. GO.

Fig. 10. n vs. GO.

to a higher overall origin load reduction. We also observe in851

Fig. 9 that for a relatively smaller α, the overall origin load852

reduction is higher and reaches the maximum at around s = 1.3.853

Note that s = 1 is a singular point.854

Fig. 10 illustrates how the total number of routers affects the855

load reduction at the origin server. When α is relatively small,856

the origin load reduction stays roughly constant over n, and857

a higher α leads to a higher origin load reduction. However,858

when α is approaching 1, the effect of the network size emerges;859

namely, the origin load reduction increases with an increasing860

n. This observation indicates that when the coordination cost is861

not dominated by the routing performance (i.e., α is small), the862

network size n has nearly no effect on the origin load reduction.863

Moreover, Fig. 11 indicates that when α is small (e.g.,864

0 ≤ α < 0.4), the origin load reduction decreases rapidly as the865

unit coordination cost increases. The reason is that when the866

unit coordination cost increases, the optimal coordination level867

�∗ decreases drastically, meaning that routers can store a much868

smaller number of distinct contents, and eventually the origin869

server has to serve more requests due to cache misses at routers.870

This phenomenon implies that for a large w, the gain on origin871

load reduction is low. In addition, when α is relatively large, or872

Fig. 11. w vs. GO.

Fig. 12. α vs. GR.

Fig. 13. s vs. GR.

in other words the routing performance is weighted more, the 873

origin load reduction becomes almost invariant with respect to 874

a varying unit coordination cost. 875

Routing Performance Improvement GR: We observe in 876

Fig. 12 that as we increase the weight of the routing per- 877

formance (i.e., α increases), the overall routing performance 878

improvement GR increases, and a higher γ will further raise 879

the overall level of improvement. In particular, the routing 880

performance improvement can be as significant as 60–90% 881

when the trade-off parameter and the tiered latency ratio are 882

reasonably large (e.g., α ≥ 0.5 and γ ≥ 8). 883

Additionally, Fig. 13 shows that when s is further away 884

from 1, i.e., closer to 0 or 2, the routing performance im- 885

provement is smaller; whereas for s close to 1 (s = 1 is a 886

singular point), the routing performance improvement is large 887

(reaching the maximum at around s = 1), which suggests that 888

for those scenarios with the Zipf exponent s closer to 1, the 889

optimal strategy is more efficient since more significant im- 890

provement on the routing performance can be achieved. When 891

varying the parameters w and n, we observe results similar to 892

Figs. 10 and 11, therefore we omit them here for brevity. 893
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TABLE V
STATISTICS OF THE DATASET

B. Trace-Driven Performance Evaluation894

We analyze the performance of our optimal caching strat-895

egy with routing aware content placement (RACP) algorithm896

in this subsection using a large-scale trace dataset collected897

from a commercial 3G network in China, with records of 3G898

users requesting and downloading various Internet contents. By899

applying both our content caching strategy (using RACP) and900

the non-coordinated caching strategy, our extensive evaluation901

results demonstrate that our strategy with RACP can achieve902

4% to 22% latency reduction on average. Below, we first903

provide details about the trace data we used in the evaluations.904

Then, we present the evaluation settings and comparison results905

obtained.906

1) Trace Dataset From a 3G Network: The dataset we used907

was collected from a Gateway GPRS Support Node (GGSN)908

in a 3G network in 2010 for a week (7 days) at a small town909

in China. The mobile phone users’ private information was910

all anonymized by the carrier. A GGSN serves as a gateway911

between the cellular network and the Internet, which covers a912

set of base stations. All 3G requests from mobile users who913

were connected to those base stations were aggregated to the914

GGSN, through which the requests were sent to the hosts in the915

Internet and the contents were returned to the mobile users. A916

GGSN usually covers a large region with a few geo-distributed917

servers (i.e., Serving GPRS Support Nodes, SGSN), each of918

which governs all aggregated requests from users in a sub-919

region. Our dataset indicates that there were in total 14 servers920

(distinguished by IP addresses) processing the 3G content921

queries from mobile users. Each 3G request from a mobile user922

looks for a content from the Internet, where the content could923

be a URL (for HTTP web contents) or an IP address with the924

directory and the content name. After finding the corresponding925

contents in the Internet, the content is returned through GGSN926

back to the mobile user.927

In our simulation, we consider those servers (i.e., SGSNs)928

as CCN routers with caching capacity, and the Internet as the929

content origin, which stores all contents mobile users may930

request. Assuming that each server has a caching capacity rang-931

ing from c = 100 to c = 1000. We store the contents among932

the servers, using our caching scheme with RACP algorithm,933

and non-coordinated caching with least recently used (LRU)934

and least frequently used (LFU) [17] as the eviction policies,935

respectively.936

This trace contains 1,748,276 content requests at all servers937

for in total 729,527 contents. The basic statistics of the dataset is938

summarized in Table V. Note that d0 is evaluated as the average939

latency between the client and the first server (i.e., SGSN) it940

connected to. d2 − d1 value was evaluated by averaging the941

latency between the servers on the boundary of the network,942

from which the request was forwarded out to the source of the943

content in the Internet.944

TABLE VI
GLOBAL CONTENT POPULARITY DISTRIBUTION

Fig. 14. Content popularity distribution.

We index the contents based on their popularity, namely, 945

the numbers of total requests received (see Table VI). AQ1946

Fig. 14 presents the overall popularity distribution of the con- 947

tents. It exhibits power law distribution, with s = 0.696626. 948

The local popularity distribution of requests at each server 949

exhibit power law phenomenon as well, where the local content 950

ranking lists at servers differ significantly from each other. We 951

observe that some contents recevied high volume of requests 952

at almost all servers, whereas some other contents received 953

requests from only one server. 954

2) Performance Evaluation Results: In the simulation, we 955

evaluate our content caching strategy with RACP algorithm on 956

the trace data with such diverse request patterns of the contents, 957

and compare the total routing performance, i.e., the average 958

latency (eq. (9)) with the non-coordinated caching using least 959

recently used (LRU) and least frequently used (LFU) as eviction 960

policies. In the evaluations, we set the updating time interval to 961

be half an hour for all caching schemes, namely, every half a 962

hour, our caching scheme recomputes the optimal coordination 963

level and corresponding content placement configuration, while 964

non-coordinated caching schemes update routers caches using 965

LRU and LFU eviction policies, respectively. 966

We change three parameters as follows, including server 967

capacity c, tiered latency ratio γ = d2−d1
d1−d0

, and the total number 968

of servers n in the simulations to examine their impacts on the 969

average latency of processing requests. 970

• Server (router) capacity c: Ranging from 100– 971

1000 contents; 972

• Tiered latency ratio γ : Ranging from 1–10; 973

• Number of servers (routers) n: 2–14. To preserve the 974

power law distribution of requests, we gradually reduced 975

the number of servers by merging them in pair, i.e., 976

treating two servers as a single super server. 977
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Fig. 15. Average latency over c.

Fig. 16. Average latency over γ .

Fig. 17. Average latency over n.

The evaluation results are presented in Figs. 15–17. We978

compare our mixed caching scheme with RACP algorithm979

to non-coordinated caching schemes with LRU and LFU980

eviction policies, and measure the performance in terms of981

the average latency. Denote dmix (resp. dLRU and dLFU) as982

the average latency when using our caching scheme with983

RACP algorithm (resp. non-coordinated caching schemes with984

LRU and LFU). The average latency reduction is computed985

as Rlatency = 100% × (dLRU − dmix)/dLRU for LRU (Rlatency =986

100% × (dLFU − dmix)/dLFU for LFU), which indicates the987

reduced average latency in percentage when using our caching988

scheme.989

Fig. 15 shows the effect of the router capacity c, with fixed990

total number of routers as 14 and the tiered latency ratio as991

γ = 5. As c increases from 100–1000, the latency decreases992

drastically for all caching schemes. The latency reduction ratio993

of our scheme (denoted as “Mixed w/ RACP” in the figure)994

over non-coordinated caching is from between 12% and 22%,995

which decreases as c increases, which happens because for996

a smaller router capacity c, i.e., very limited space to cache 997

contents, there is more room for our caching scheme to improve 998

the average latency. Moreover, the two non-coordinated caching 999

schemes with LRU and LFU have similar latency, where LFU 1000

performs a bit better with lower latency. 1001

In Fig. 16, we evaluate how the tiered latency ratio γ affects 1002

the average latency of our caching scheme and non-coordinated 1003

caching with LRU and LFU. Since d2 − d1 = 141.3 ms and 1004

d0 = 830.2 ms are fixed (from Table V), changing γ = d2−d1
d1−d0

1005

leads to the change on d1 − d0. The results in Fig. 16 show that 1006

as the tiered latency ratio γ increases, the average latency for 1007

all caching schemes decreases. This happens because larger γ 1008

corresponds to smaller d1 − d0, thus smaller d1 and d2. More- 1009

over, the latency reduction ratio of our caching scheme over 1010

non-coordinated caching decreases (ranging from 11%–19%) 1011

as γ increases, because when γ is larger, d1 and d2 are closer 1012

to d0, thus leaves smaller room for our scheme to reduce the 1013

average latency. 1014

In Fig. 17, we evaluate how the network size n, i.e., number 1015

of routers, affects the average latency reduction. In the 3G 1016

network trace file, there are in total n = 14 routers. We reduce 1017

the number of routers by merging and aggregating the content 1018

query logs from two routers to one router. This way, we can still 1019

preserve the power law distribution of local content popularity. 1020

Fig. 17 shows the average latency decreases as the number of 1021

routers increases, which is because more routers lead to more 1022

caching capacity. Moreover, when the network size is small, 1023

the average latency reduction is small, e.g., Rlatency = 8% for 1024

n = 2. On the other hand, when the network size is large, 1025

the average latency reduction gain is higher, e.g., around 18% 1026

when n = 14. These happen because when the network size is 1027

smaller, the local popularity distributions are less diverse, thus 1028

the routing performances are more similar between our caching 1029

scheme and non-coordinated caching schemes. 1030

Numerical Analysis vs Trace-Driven Evaluations: Compar- 1031

ing the results in Sections VI-A.1 and B, our trace-driven 1032

evaluations demonstrate consistent results to that of numerical 1033

analysis, namely, a maximum of 25% routing performance 1034

improvement. 1035

VII. RELATED WORK 1036

In this section, we discuss two topics that are closely related 1037

to our work and highlight the differences from them, including 1038

(1) content caching and placement, and (2) content-centric 1039

networking. 1040

Content Caching and Placement: Content caching has been 1041

a key component of Internet-based services for many years (see, 1042

e.g., Akamai [6]), and there have been many studies in the 1043

literature on content caching techniques (see, e.g., [15]). The 1044

content placement problems with applications in CDNs, CCNs, 1045

P2P networks, wireless networks, and web server replicas aim 1046

to identify the right number of replicas and locations for the 1047

contents to achieve design objective, such as minimizing the 1048

delay, bandwidth, energy consumed, etc. 1049

In particular, coordinated (or collaborative) content caching 1050

has been studied extensively. Researchers have investigated 1051

the effectiveness of collaborative caching (see, e.g., [15]) and 1052
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proposed numerous collaborative caching schemes for both1053

general networks and networks with specific structures, in-1054

cluding general Internet-based content distribution (see, e.g.,1055

[37]), delivering special types of contents (e.g., [16]), and etc.1056

Moreover, a common formulation employed in these studies is1057

integer linear programming (ILP), which is in general NP-hard.1058

LP relaxation techniques are widely used as a practical method1059

to approximate the optimal solution [11], [31], [38], [39].1060

Our work differs from these studies in two ways. First, our1061

network model for content-centric networks is novel, where1062

we formulate the problem by focusing on the overall network1063

performance and cost from the network carriers’ perspectives.1064

Thus, our model considers the routing performance and the1065

coordination cost, and investigates the trade-offs between them.1066

Secondly, by decoupling the coordinated vs non-coordinated1067

caching strategies, the content placement is simplified and only1068

performed for coordinated caching part. Thus, a nice property,1069

total unimodularity holds, which allows polynomial time algo-1070

rithm to find the provably optimal solution.1071

Content-Centric Networking: There exists a line of recent1072

work on emerging Content-Centric Networking [9] and Named1073

Data Networking (NDN) [10], where content storage becomes1074

an inherent capability of network routers. CCN and NDN are1075

closely related, with the latter focusing more on fundamental1076

research. CCN/NDN has become one of the representative1077

alternatives for the future Internet architecture. Both CCN1078

and NDN have attracted much attention. There has been an1079

increasingly large body of literature on CCN and NDN, to1080

name a few, naming and name resolution (e.g., [40]), flow and1081

traffic control (e.g., [41]), caching (e.g., [42], [43]), and etc.1082

In particular, in [42], Xie et al. proposed a traffic-engineering-1083

guided content placement and caching algorithm for CCN;1084

and in [44], Sourlas et al. proposed content placement and1085

caching algorithms to minimize overall traffic cost of content1086

delivery, specifically designed for CCN. However, none of the1087

existing work addresses the optimal strategy of coordinated1088

content caching and investigates the trade-offs between the1089

routing performance and the coordination cost in the context1090

of CCN/NDN. To the best of our knowledge, our work is the1091

first attempt to formally investigate and providing insights in1092

addressing these issues.1093

VIII. CONCLUSION1094

In content-centric networks, routers possess both the rout-1095

ing and the in-network storage capability, which raises new1096

challenges in network provisioning, namely, how to optimally1097

provision individual routers’ storage capability for content1098

caching, so as to optimize the overall network performance and1099

provisioning cost.1100

In this paper, we developed a holistic model to quantify the1101

overall network performance of routing contents to clients and1102

the overall provisioning cost incurred by coordinating the in-1103

network storage capability. Based on this model, we derived1104

the optimal strategy for optimizing the overall network perfor-1105

mance and cost, and evaluated the optimal strategy using real1106

network topologies. Evaluation results demonstrated significant1107

gains on both the load reduction at origin and the improvement1108

on routing performance. To further investigate how to realize 1109

the coordinated caching, namely, placing contents to individual 1110

routers, we design Routing-Aware Content Placement (RACP) 1111

algorithm that computes and assigns contents to CCN routers 1112

to store, with minimized overall routing cost. By evaluating 1113

the performances of our caching scheme with RACP algorithm 1114

using a large scale trace dataset collected from a commercial 1115

3G network in China, our results demonstrate that our caching 1116

scheme can achieve 4% to 22% latency reduction on average 1117

over non-coordinated caching. 1118
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