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ABSTRACT
The increasing prevalence of sensors and mobile devices has led
to an explosive increase of the scale of spatio-temporal data in
the form of trajectories. A trajectory aggregate query, as a fun-
damental functionality for measuring trajectory data, aims to re-
trieve the statistics of trajectories passing a user-specified spatio-
temporal region. A large-scale spatio-temporal database with big
disk-resident data takes very long time to produce exact answers to
such queries. Hence, approximate query processing with a guar-
anteed error bound is a promising solution in many scenarios with
stringent response-time requirements. In this paper, we study the
problem of approximate query processing for trajectory aggregate
queries. We show that it boils down to the distinct value estima-
tion problem, which has been proven to be very hard with pow-
erful negative results given that no index is built. By utilizing
the well-established spatio-temporal index and introducing an in-
verted index to trajectory data, we are able to design random index
sampling (RIS) algorithm to estimate the answers with a guaran-
teed error bound. To further improve system scalability, we extend
RIS algorithm to concurrent random index sampling (CRIS) algo-
rithm to process a number of trajectory aggregate queries arriving
concurrently with overlapping spatio-temporal query regions. To
demonstrate the efficacy and efficiency of our sampling and esti-
mation methods, we applied them in a real large-scale user trajec-
tory database collected from a cellular service provider in China.
Our extensive evaluation results indicate that both RIS and CRIS
outperform exhaustive search for single and concurrent trajectory
aggregate queries by two orders of magnitude in terms of the query
processing time, while preserving a relative error ratio lower than
10%, with only 1% search cost of the exhaustive search method.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing;
H.4.0 [Information Systems and Applications]: General

General Terms
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1. INTRODUCTION
A trajectory stands for a sequential time-stamped geo-locations

in a three dimensional spatio-temporal space. In reality, a trajectory
may contain a variety of attributes, for example, a taxi GPS trajec-
tory has the instant or average velocity, trajectory length, occupa-
tion indicator, etc. [36]; A Flickr user’s trajectory may infer users’
sequential activities, (e.g., what he/she has done) from the mul-
timedia contents attached to the locations (e.g., text, images and
videos). These trajectory data facilitate many emerging applica-
tions including urban planning [36, 19], spatio-temporal data min-
ing [21, 15], and various location-based services [33, 20]. A tra-
jectory aggregate query, as a fundamental functionality of spatial-
temporal databases, aims to retrieve the statistics of distinct tra-
jectories passing a user-specified spatio-temporal region [4, 8]. A
typical trajectory aggregate query is “the total number of taxi tra-
jectories with speed greater than 5 miles per hour in New York City
during 2013”.

The increasing prevalence of sensors and mobile devices, such
as GPS set on cars or smart phones carried by people, and the
fast development of location-acquisition technologies have led to
an explosive increase of the scale of spatio-temporal databases in
the form of trajectories, which generates new challenges, namely,
how to efficiently process numerous trajectory aggregate queries in
large-scale trajectory databases.

Various spatio-temporal indexing techniques, such as augmented
R-tree [24], multi-version R-tree [30, 31], and grid-based index [5],
have been proposed to divide the spatio-temporal space into in-
dices and facilitate the access to spatio-temporal data. These
spatio-temporal indices are of hierarchical structure, namely, mul-
tiple adjacent index nodes in a lower level are aggregated to an
index node in a higher level. When processing spatio-temporal
queries, the index nodes are typically browsed in a top-down man-
ner. Many spatio-temporal aggregate queries, such as counting the
total spatio-temporal records, can be answered by aggregating the
information maintained in index nodes at the higher levels to avoid
accessing the raw spatio-temporal data. However, for a trajectory
aggregate query, maintaining the statistical trajectory information
on index nodes does not work. The reason is that a trajectory ag-
gregate query aims to find the number of distinct trajectories in
a spatio-temporal query region. To determine whether two index
nodes contain some trajectories in common, the trajectory IDs must
be recorded in every index node. Using such an index structure
makes no difference from the brute-forcing. Thus, to produce the



exact answer to a trajectory aggregate query, a non-avoidable brute-
force search has to be performed, which takes very long time when
the spatio-temporal query region covers a large amount of disk-
resident data. As a result, approximate query processing becomes a
promising solution in many scenarios with stringent response-time
requirements, which provides (reasonably accurate) approximate
answers.

In this paper, we make the first attempt to investigate the problem
of approximate query processing for trajectory aggregate queries.
By introducing an inverted index to trajectory data, we design
Random Index Sampling (RIS) algorithm to estimate the answers
with guaranteed error bounds. To further improve system scalabil-
ity, we design Concurrent Random Index Sampling (CRIS) algo-
rithm to process a number of trajectory aggregate queries arriving
concurrently with overlapping spatio-temporal query regions. We
highlight our contributions as follows.

• We show that the approximate query processing for trajec-
tory aggregate queries boils down to the distinct value esti-
mation problem [6], which has been proven to be very hard
with powerful negative results given that no index is built.
By utilizing the well-established spatio-temporal index and
introducing an inverted index to the trajectory data, we de-
velop random index sampling (RIS) algorithm and unbiased
estimator to quickly answer the query with bounded estima-
tion error.

• For a large-scale trajectory database management system,
a large number of trajectory aggregate queries usually ar-
rive concurrently with overlapping spatio-temporal query re-
gions. Instead of performing RIS algorithm on each individ-
ual query, we further extend it to concurrent random index
sampling (CRIS) algorithm to significantly improve the effi-
ciency of answering concurrent queries, by employing strat-
ified sampling technique and reusing samples collected from
the overlapping regions.

• We conduct extensive experiments on a real-world large-
scale user trajectory dataset (with 3TB data) collected from
a cellular service provider in China to evaluate the efficiency
and effectiveness of our sampling and estimation methods.
Our experimental results show that both RIS and CRIS out-
perform an exhaustive search method for single and concur-
rent trajectory queries by two orders of magnitude in terms
of the query processing time, while preserving a relative er-
ror ratio lower than 10%, with only 1% search cost of the
exhaustive search method.

The remainder of this paper is organized as follows. Section 2
discusses related work. We define our problem in Section 3. In
Sections 4 and 5, we present our proposed RIS and CRIS algo-
rithms, respectively. Section 6 analyzes the performance of RIS
and CRIS algorithms. Section 7 describes some generalizations of
our algorithms. Finally, we conclude this paper in Section 8.

2. RELATED WORK
We make the first attempt to employ sampling techniques to im-

prove the effectiveness in processing trajectory aggregate queries
in large-scale spatio-temporal databases, with the aim to signifi-
cantly reduce the query processing time while preserving certain
estimation accuracy. In this section, we discuss three topics that
are closely related to our work and highlight the differences from
them, including (1) trajectory data management, (2) distinct value
estimation, and (3) concurrent query processing.

2.1 Trajectory Data Management
Trajectory queries. As moving object trajectories have been

collected in a massive scale due to the advancement of sensor
technologies like satellite, RFID, GPS, and mobile cellular net-
works, the query processing of trajectory databases has been paid
much attention. Trajectory queries aim to evaluate various spatio-
temporal relationships among spatial data objects, such as regions,
points, and trajectories [8]. The trajectory queries can be gener-
ally classified into two main categories: range (or window) queries
and nearest-neighbor queries. Range queries retrieve trajectories
passing a given spatio-temporal region [4, 8] or search spatio-
temporal regions which are frequently passed by trajectories [16,
18]. Nearest-neighbor queries ask for the top-k nearest-neighbor
trajectories to a specified point or trajectory [13, 32]. In this pa-
per, we particularly focus on a sub-category of the trajectory range
queries, namely, a trajectory aggregate query, which returns the
statistics (e.g., counts, sum, or average) of all distinct trajectories
in the spatio-temporal query region. Traditional methods to handle
trajectory queries are through spatio-temporal indices, as discussed
below.

Executing trajectory queries using database indices. It is im-
portant to utilize the appropriate indexing techniques for trajec-
tory data to improve the efficiency and effectiveness of process-
ing trajectory queries. The trajectory database has unique require-
ments to the index techniques because of its spatio-temporal data
characteristics [8]. The state-of-the-art trajectory indexing tech-
niques can be grouped into three categories, including augmented
R-tree, multi-version R-tree, and grid-based index. (1) An aug-
mented R-tree employs R-trees over the 3D spatio-temporal space,
e.g., Spatio-Temporal R-tree (STR-tree) and TB-tree (Trajectory
Bundle tree) [24]. (2) A multi-version R-tree builds multiple struc-
tures of R-trees. For each time stamp, an R-tree is created, and
R-trees for different time stamps are indexed, e.g., historical R-tree
(HR-tree) [30] and multi-version B-trees and 3D R-trees (MV3R-
trees) [31]. (3) A grid-based index divides the spatial dimension
into grids using Quad-trees [9] or KD-trees [1], and then builds a
separate temporal index for each grid, e.g., multiple time-split B-
tree (MTSB-trees) [37] and Scalable and Efficient Trajectory Index
(SETI) [5] to divide the spatio-temporal space into indices and fa-
cilitate the spatio-temporal data access.

However, as elaborated in Section 1, to produce the exact an-
swers to a trajectory aggregate query, a non-avoidable brute-force
search has to be performed, which takes very long time when the
spatio-temporal query region covers a large amount of disk-resident
data. As a result, approximate query processing becomes a promis-
ing solution for trajectory aggregate queries in many scenarios
with stringent response-time requirements. In a spatio-temporal
database indexed by one of the index structures, we propose to es-
timate the answers to the trajectory aggregate queries by sampling
a limited number of index leaf nodes. Our proposed random index
sampling (RIS) algorithm can significantly reduce the query pro-
cessing time while preserving certain estimation accuracy. More-
over, RIS algorithm can be applied (and is orthogonal) upon various
trajectory indexing methods.

2.2 Distinct Value Estimation
In a column of a large table with each entry filled with a value

with no index built, distinct value estimation problem aims to de-
sign a scalable approach to generate accurate estimation to the
number of distinct values, with limited space or time resources.
When time is a major constraint, random sampling is the only ap-
proach, which collects samples from the table, and estimates the
total number of distinct values. Unfortunately, the existing works



Figure 1: A trajectory aggregate query q returning the num-
ber of distinct trajectories in the spatio-temporal query region
depicted in the cuboid. r1, r2, and r3 are three trajectories.

show powerful negative results [6, 7, 14, 23] that no estimator can
guarantee small error across all input distributions, unless it exam-
ines a large fraction of the input data. On the other hand, when
space is a primary concern, scanning the entire table is allowed,
synopses based approaches [2, 12, 17] yield reasonably accurate es-
timation to the number of distinct values. Our trajectory aggregate
query problem boils down to the distinct value estimation prob-
lem with stringent time constraint, when sampling is performed
upon spatio-temporal points of trajectories, with the trajectory IDs
viewed as the “distinct values”. To tackle this seemingly unsolv-
able problem, we in this paper employ spatio-temporal index and
inverted index to allow obtaining the probability of each trajectory
being collected while sampling, thus enabling the design of unbi-
ased estimator for the number of trajectories with bounded variance
and confidence interval.

2.3 Concurrent Query Processing
A database, especially a large-scale spatio-temporal database,

usually has to deal with numerous concurrent queries from a large
number of users. Thus, it is important and desirable to process these
concurrent queries through exploiting a shared execution paradigm
to avoid redundant computations and save the computational cost.
In general, there are mainly three shared execution paradigms.
(1) Multi-query optimization. This technique detects and re-uses
common sub-expressions among queries by operating on batches
of queries only during the optimization phase and materializing
shared intermediate results at the cost of memory [27]. (2) Simulta-
neous pipelining. This paradigm extracts identical sub-plans from
concurrent queries, executes only one of them and sends the results
to the rest simultaneously [25]; however, it is limited to common
sub-plans, that is, it is not applicable to the case that two queries
have similar sub-plans but with different selection predicates. (3)
Global query plans. This paradigm utilizes shared operators (with
fine granularity) rather than sub-plans (with coarser granularity) to
increase sharing opportunities, in which a single shared operator
can evaluate two queries sharing a similar plan simultaneously [25].
In this paper, we apply the global query plans paradigm to utilize
the sharing opportunities, the key challenge of which is to decom-
pose the operators (i.e., sampling) into shared sub-operators and
reconstruct the results for all concurrent trajectory range queries.
We employ stratified sampling and sample reuse to solve the prob-
lem. (See Section 5 for more details.)

3. PROBLEM STATEMENT
In this section, we clarify key terms used in the paper and for-

mally define the objective of approximate query processing for tra-

Table 1: Notations and terminologies
Notation Description

Q = {q1, · · · , qM},
Qj ⊆ Q, 1 ≤ j ≤
M ′

Q is a set of M concurrent trajectory
aggregate queries. Qj is a subset of
concurrent queries in Q.

Q′ = {q′1, · · · , q′M′},
Q′i ⊆ Q′, 1 ≤ i ≤M

Q′ is a set of non-overlapping spatio-
temporal regions. Q′i is a subset of
spatio-temporal regions in Q′.

q, q0 q is a trajectory aggregate query.
q0 = ∨qi∈Qqi is the union of the
spatio-temporal regions of all concur-
rent queries in Q.

Rq = {Rq1, · · · , Rqn} Rq is the set of n index leaf nodes
that q’s spatio-temporal query region
covers.

B B is the sampling budget (i.e., the
maximum number of sampled index
leaf nodes) for answering q.

R̂qt , 1 ≤ t ≤ B R̂qt is the t-th sampled index leaf
node.

kqr The number of index leaf nodes in
Rq that trajectory r traverses.

Nq , N̂q Nq is the number of trajectories that
match the query constraints of q. N̂q
is the estimator of Nq .

jectory aggregate queries. Table 1 provides the notations and ter-
minologies used in this paper.

• A trajectory is the sequence of spatial points that a mov-
ing object follows through space as a function of time. Each
point thus consists of an trajectory ID, latitude, longitude,
and a time stamp. For example, the GPS points of a vehi-
cle and the spatio-temporal points of a cellphone user are all
trajectories.

• Trajectory attributes: A trajectory may be associated with
a few features describing the properties of the trajectory, e.g.,
the number of spatio-temporal points, length, average speed,
etc.

• Trajectory data structure: Trajectory data are usually
stored in a database using a spatio-temporal index, such as
Quad-tree/R-tree (for spatial indexing) and B/B+-tree (for
temporal indexing)1. Then, as shown in Figure 1, each index
leaf node represents a three dimensional subspace, contain-
ing spatio-temporal points of trajectories.

• A trajectory aggregate query q returns a statistical result of
distinct trajectories in a spatio-temporal query region, with or
without constraints on trajectories attributes, e.g., ranges on
average speed, trajectory length, and etc. Figure 1 illustrates
an example of a trajectory aggregate query.

As discussed in Section 1, to produce exact answers to a trajec-
tory aggregate query q, a non-avoidable brute-force search has to
be performed, which takes very long time when the spatio-temporal
1Note that there are many spatio-temporal index structures in the
literature [3, 11], and our random index sampling algorithms can
be applied (and is orthogonal) to different indexing methods.



query region covers big disk-resident data. In this paper, we em-
ploy sampling methods to perform approximate query processing
for trajectory aggregate queries with guaranteed error bounds.
Problem definition. Given a trajectory aggregate query q in a
large-scale trajectory database, the database returns the total num-
ber of distinct trajectories Nq in q’s spatio-temporal query region,
with certain attribute constraints. Suppose q’s query region cov-
ers n spatio-temporal index leaf nodes Rq = {Rq1, · · · , Rqn}. We
aim to sample and search B index leaf nodes (where B � n),
{R̂q1, · · · , R̂

q
B} from Rq , based on which we provide an accu-

rate estimator N̂q that converges to Nq , and for any ε > 0
and 0 < α ≤ 1, a certain confidence interval is guaranteed as
Pr(|N̂q −Nq| > ε) ≤ α.

4. RANDOM INDEX SAMPLING
In this section, we introduce our proposed random index sam-

pling (RIS) algorithm to sample index leaf nodes in the spatio-
temporal query region of a trajectory aggregate query q, and design
an unbiased estimator to estimate the answer to q, with provable
bounds on the confidence interval.

4.1 Model of Random Index Sampling
RIS algorithm works in three stages as follows, inverted indexing

stage, sampling stage, and estimating stage.
Inverted indexing stage. An inverted index [38] is an index
data structure storing a mapping from content, such as numbers
or words, to its locations. We build an inverted index for the trajec-
tory data, where each record represents a trajectory and all index
leaf nodes the trajectory traverses (as shown in Figure 2). Given a
trajectory aggregate query q, we denote kqr as the number of index
leaf nodes that a trajectory r goes through in q’s spatio-temporal
query region. kqr can be quickly obtained by checking the record of
r in the inverted index. It will be clear shortly that kqr governs the
probability of a trajectory r being sampled in sampling stage and
kqr is an important variable to design estimator to the answer of q.
Sampling stage. Let B denote the sampling budget, i.e., the max-
imum number of index leaf nodes allowed to collect. In our analy-
sis, we assume that B is always sufficiently large. We uniformly at
random pick up B index leaf nodes from the leaf node set covered
by q’s spatio-temporal query region, i.e., Rq , with replacement2.
Thus, each index leaf node in Rq has an equal probability of 1/n
being sampled. Then, we scan the sampled index leaf nodes and
find the trajectories of our interest, namely, those matching the tra-
jectory attribute constraints of q. If a sampled index leaf node is
chosen more than once, we only perform one exhaustive search on
it. Hence, as shown in Figure 2, we obtain a list of sampled index
leaf nodes, {R̂q1, · · · , R̂

q
B}, from the population space Rq . Note

that a sample R̂qt ∈ Rq represents both the index leaf node and
the trajectory set in it, where we will interchangeably use these two
meanings of R̂qt in the rest of the paper (1 ≤ t ≤ B).

Various statistics of a sampled index leaf node R̂qt can be repre-
sented as functions of R̂qt (1 ≤ t ≤ B). For instance, the number
of distinct trajectories that match the query contraints of q can be
viewed as a mapping gq : Rq → N from a trajectory set R̂qt ∈ Rq

to a natural number, i.e., gq(R̂qt ). Moreover, given a trajectory
r ∈ R̂qt , the number of index leaf nodes that r traverses inRq , i.e.,
2Note that in general q’s query region is much larger than the in-
dex leaf node. Hence, for simplicity, we consider all trajectories
in an index leaf node Rqi traverse q’s query region, if q partially or
completely covers Rqi in the spatio-temporal space. On the other
hand, when the query region of q is small, exhaustive search can be
directly applied to obtain q’s exact answer.
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Figure 2: Random index sampling framework

kqr , is proportional to the probability that the trajectory r being sam-
pled by randomly picking up an index leaf node from Rq . Define
a mapping fq : Rq → R+ as Nq

t = fq(R̂
q
t ) =

∑
r∈R̂qt∧q

{1/kqr},
where R̂qt ∧ q represents the trajectory set in R̂qt that matches the
attribute constraints of q. It is clear that the ground-truth answer
for the trajectory aggregate query q, namely, the total number of
distinct trajectories in Rq , is Nq =

∑n
i=1 fq(R

q
i ). Note that (as

shown in Figure 2) after a trajectory r is obtained from R̂qt ∈ Rq ,
the number of index leaf nodes r traverses in Rq , i.e., kqr , can be
found by checking the inverted index.
Estimating stage. Using RIS, Theorem 1 presents that the proba-
bility of each trajectory being sampled is proportional to the num-
ber of index leaf nodes it traverses inRq .

THEOREM 1 (IMPORTANCE SAMPLING). The probability
Pr(r) of each trajectory r ∈ Rq ∧ q being sampled using RIS
algorithm is Pr(r) = kqr/n, whereRq = {Rq1, · · · , Rqn}.

PROOF. Each index leaf node Rqi (1 ≤ i ≤ n) has an equal
probability Pr(Rqi ) = 1/n to be chosen. The conditional proba-
bility of each trajectory r being sampled given that Rqi is sampled
is Pr(r|Rqi ) = 1, if r ∈ Rqi ; and Pr(r|Rqi ) = 0, otherwise. Ap-
plying the law of total probability yields the probability of r being
sampled as Pr(r) =

∑n
i=1 Pr(R

q
i )Pr(r|R

q
i ) = kqr/n.

In the next subsection, we develop an unbiased estimator to es-
timate the total number of distinct trajectories that match the query
constraints of q, using the samples {R̂1

q , · · · , R̂qB} collected by RIS
algorithm.

4.2 Estimator Design
An estimator is a function of a sequence of observations that

outputs an estimate of an unknown population parameter. Below,
we present an asymptotically unbiased estimator of Nq .

Unbiased estimator. We aim to estimate the total numberNq of
distinct trajectories that match the query constraints of q. We define
an estimator N̂q in Theorem 2.

THEOREM 2 (ESTIMATOR TO Nq ). With a sampling bud-
get B, RIS algorithm collects B sampled index leaf nodes
{R̂q1, · · · , R̂

q
B}, with each R̂qt ∈ Rq for 1 ≤ t ≤ B. Then, N̂q in

Equation (1) is the asymptotically unbiased estimator of Nq:

N̂q =
n

B

B∑
t=1

fq(R̂
q
t ). (1)



PROOF. Since each R̂qt is chosen uniformly at random from the
same population space Rq , fq(R̂qt )’s are all independent and fol-
low the same distribution, and thus have the same expectation as
E[fq(R̂

q
t )] = µ =

∑n
i=1 fq(R

q
i )/n = Nq/n. Using the linearity

of the expectation, E[N̂q] = Nq .

Sampling Budget Analysis. Under a certain trajectory index
structure, such as Quad-tree and B-tree, all the trajectory records
and indices are stored as regular files. Thus, the size of an index
leaf node is bounded by the file size in the underlying file sys-
tem. For example, on Hadoop Distributed File System (HDFS), the
block file size is 64MB, and when in-block index is built, a smaller
memory page size (e.g., 4KB) is used [34]. As a result, given that
each trajecotory record takes roughly a constant amount of space,
e.g., 100B, the number of distinct trajectories in an index leaf node
is bounded, e.g., by 4KB/100B = 40, and we denote this upper
bound as δ. Hence, for a trajectory aggregate query q, fq(R̂q) ≤ δ
holds. Theorem 3 below determines the sampling budgetB needed
to achieve a certan estimation accuracy.

THEOREM 3. The estimator N̂q (Equation (1)) guarantees that
for any ε > 0 and 0 < α ≤ 1,

Pr(|N̂q −Nq| > ε) ≤ α, (2)

when B ≥ ln (2/α)δ2n2

2ε2
, with δ as the maximium number of trajec-

tories in an index leaf node.

PROOF. Recall that each sample R̂qt ∈ Rq is drawn uniformly
at random fromRq . Hence, random variables fq(R̂qt ) are indepen-
dent and identically distributed, and they follow the same distribu-
tion. Given that each fq(R̂q) ≤ δ holds, the following bound holds
by applying Hoeffding’s inequality [28],

Pr(|N̂q −Nq| > ε) ≤ 2e
−2Bε2

n2δ2 . (3)

Then, by letting the right hand side (in Equation (3)) be smaller than
or equal to α, we obtain B ≥ ln (2/α)δ2n2

2ε2
as the minimum budget

needed to guarantee the confidence interval in Equation (2).

It is clear that to achieve a certain confidence interval, governed
by ε and α, the minimum sampling budget needed satisfiesB ∝ δ2

and B ∝ n2.

5. CONCURRENT RANDOM INDEX SAM-
PLING

The proposed RIS algorithm properly deals with a single tra-
jectory aggregate query with a guaranteed estimation error bound.
However, when it comes to queries in a large-scale trajectory
database management system, e.g., user mobility data from car-
riers in a country with millions of users, a large number of tra-
jectory range queries come concurrently. These queries may over-
lap in spatio-temporal query regions, as well as ranges of attribute
constraints. As illustrated in Figure 3(a), two concurrent queries
q1 and q2 arrive concurrently and overlap with each other in the
spatio-temporal space.

A naive method for handling concurrent queries is to perform
RIS algorithm individually for each query. However, by reusing
the samples obtained in the overlapping space among queries, the
estimation accuracy can be significantly improved. In this sec-
tion, we extend RIS algorithm to concurrent random index sam-
pling (CRIS) algorithm, that performs stratified sampling and sam-
ple reuse on concurrent trajectory aggregate queries. Our theoreti-
cal results show that CRIS algorithm can achieve higher estimation

accuracy for each concurrent trajectory aggregate query, with less
sampling budget than simply running RIS algorithm for each query.
Below, we first formally define the problem of concurrent overlap-
ping queries, and then present our CRIS algorithm.

5.1 Model of Concurrent Random Index
Sampling

Two queries q1 and q2 are concurrent, if the database system pro-
cesses them at the same time (i.e., they arrive at the database system
or are dispatched from a query buffer at the same moment). Their
spatio-temporal query regions may overlap, as well as ranges of tra-
jectory attributes, such as average speed, trajectory length, etc. In
the rest of the paper, we will use concurrent overlapping queries to
represent concurrent queries with overlapping spatio-temporal con-
straints. Figure 3(a) shows an example of two concurrent overlap-
ping queries. Now, we formally define the problem of concurrent
overlapping queries as follows.

Concurrent overlapping queries. Given M > 1 concur-
rent overlapping queries, Q = {q1, · · · , qM}, with required es-
timation accuracy guarantees εi > 0 and 0 < αi ≤ 1 for
i ∈ {1, · · · ,M}. The goal is to provide estimations to the numbers
of trajectories, Nq1 , · · · , NqM , with guaranteed confidence inter-
val as Pr(|N̂qi − Nqi | > εi) ≤ αi. The major challenge is how
to reuse the index leaf nodes sampled from overlapping regions of
concurrent queries and improve the estimation accuracy over that
of running RIS algorithm on each individual query.

Concurrent random index sampling. We propose CRIS al-
gorithm to deal with concurrent overlapping queries. Given M
concurrent trajectory aggregate queries, Q = {q1, · · · , qM}, let
q0 = q1 ∨ · · · ∨ qM be the entire spatio-temporal region Q cov-
ers. Different from RIS algorithm, the basic idea behind CRIS al-
gorithm is that we first divide q0 into M ′ ≥ M non-overlapping
spatio-temporal regionsQ′ = {q′1, · · · , q′M′}, by the boundaries of
all queries qi’s (1 ≤ i ≤ M ). Each q′j corresponds to an intersec-
tion of a subset of queriesQj ⊆ Q. Then, CRIS samples index leaf
nodes from the leaf node set R′j of each q′j with sampling budget
B′j (1 ≤ j ≤ M ′), where B′j is porportionally allocated with re-
spect to the number of index leaf nodes in q′j . Eventually, for each
region q′j , CRIS algorithm collects B′j index leaf nodes, denoted as

R̂′j = {R̂q
′
j

1 , · · · , R̂
q′j
B′j
} for 1 ≤ j ≤ M ′. These sampled index

leaf nodes are exhaustively searched for trajectories matching the
attribute constraints of queries in Q. We prove that such design
of CRIS reduces the estimation variance and the needed sampling
budget over that of running RIS algorithm independently on each
query qi.

5.2 Two Concurrent Overlapping Queries
Now, we use two concurrent overlapping queries to show how

CRIS algorithm works. Given two concurrent overlapping queries,
q1 and q2 as shown in Figure 3(a). The goal is to provide estima-
tions to the numbers of distinct trajectories, Nq1 and Nq2 , with
guaranteed estimation confidence interval, Pr(|N̂q1 − Nq1 | >
ε1) ≤ α1 and Pr(|N̂q2 − Nq2 | > ε2) ≤ α2. CRIS algorithm
consists of three stages as follows.
Stratification Stage. The entire spatio-temporal space, defined as
q0 = q1 ∨ q2 is divided into three non-overlapping queries, i.e.,
Q′ = {q′1, q′2, q′3}, such that q′3 := q1∧q2, q′1 = q1−q3, and q′2 =
q2−q3. Moreover, we denoteR′1,R′2, andR′3 as the corresponding
non-overlapping leaf node sets, as illustrated in Figure 3(b). Hence,
q1 (resp. q2) is divided into two strata, i.e., q1 = q′1 ∨ q′3 (resp.
q2 = q′2 ∨ q′3).



Figure 3: Illustration of CRIS algorithm. (a) Two concurrent overlapping queries q1 and q2 are mapped to a three dimensional space. They are
divided into non-overlapping regions, q′1, q′2, and q′3. (b) The leaf node sets R′1, R′2, and R′3; (c) Given sampling budgets needed for q1 and q2 as
B1 = B2 = 28, q′1, q′2, and q′3 are assigned with budgets B′1 = 21, B′2 = 21, and B′3 = 7 (based on Equation (4)), respectively. Orange boxes
represent the sampled index leaf nodes, based on which the numbers of distinct trajectories Nq1 and Nq2 are estimated by Equations (5) and (6),
respectively.

Sampling Stage. Based on Theorem 3, there exist lower bounds
B1 andB2 on sampling budgets for q1 and q2 to guarantee the esti-
mation accuracy, defined by ε1, ε2, α1, and α2. Then, each stratum
q′j is sampled individually with a sampling budget B′j proportional
to n′j as

B′1 = [B1n
′
1/n1], B′2 = [B2n

′
2/n2],

B′3 = max{[n′3B1/n1], [n′3B2/n2]}. (4)

Then, three sample sets, i.e., {R̂q
′
j

1 , · · · , R̂
q′j
B′j
} for 1 ≤ j ≤ 3, are

drawn uniformly at random from leaf node sets R′1, R′2, and R′3,
respectively (See Figure 3(c)).
Estimating Stage. The three sample sets are observations used to
estimate Nq1 and Nq2 . By similar proof for Theorem 2, N̂q1 and
N̂q2 in Equation (5) and Equation (6) are proven to be the asymp-
totically unbiased estimators of Nq1 and Nq2 .

N̂CRIS
q1 =

n1

B1

[B1n
′
1/n1]∑

t=1

fq1(R̂
q′1
t ) +

[B1n
′
3/n1]∑

t′=1

fq1(R̂
q′3
t′ )

 ,

(5)

N̂CRIS
q2 =

n2

B2

[B2n
′
2/n2]∑

t=1

fq2(R̂
q′2
t ) +

[B2n
′
3/n2]∑

t′=1

fq2(R̂
q′3
t′ )

 ,

(6)

where fq(R) =
∑
r∈R∨q

1
k
q
r

.
In next subsection, we prove that for two concurrent overlapping

queries, CRIS algorithm outperforms RIS algorithm with smaller
estimation variance and less sampling budget.

5.3 Multiple Concurrent Overlapping
Queries

Given concurrent queries Q = {q1, · · · , qM}, the entire spatio-
temporal region of those queries is denoted as q0 = ∨q∈Qq. CRIS
partitions q0 into non-overlapping spatio-temporal regions, so each
region represents an intersection of a unique subset of queries in
Q. Taking the partition as stratification for concurrent queries, we
randomly sample index leaf nodes from each region, and reuse the
samples to estimate the answers of queries that cover that region.
Below we elaborate the details of stratifying q0 and performing
sampling and estimations. The detailed CRIS algorithm is sum-
marized in Algorithm 1.

Stratification. We divide q0 into M ′ ≥ M non-overlapping
queries by the boundaries of qi’s, i.e., Q′ = {q′1, · · · , q′M′}, such
that q0 = ∨q′∈Q′q′ holds. Let Qj ⊆ Q be a subset of Q with the
size as 1 ≤ |Qj | ≤ M , and Q̄j = Q −Qj be the complementary
set of Qj with the size as |Q̄j | = M −|Qj |. Each q′j = ∧q∈Qj q−
∨q′∈Q̄j q

′ with 1 ≤ j ≤ M ′ corresponds to a region that only
covers the intersection of all regions in Qj , but not any region in
Q̄j , as shown in Figure 3(a). Denote the index leaf node set of q′j
as R′j with n′j index leaf nodes. R′j’s are non-overlapping with
each other. Let Q′i ⊆ Q′ with 1 ≤ i ≤ M be a subset of Q′ such
that qi = ∨q′∈Q′iq

′ holds, namely, each qi is divided (or stratified)
into strata, i.e., Q′i, which enables us to perform sampling on each
q′j . Note that every index leaf node in the population is assigned to
only one stratum and no index leaf node can be excluded.

Algorithm 1 Concurrent random index sampling (CRIS) algorithm
1: INPUT: Queries Q = {q1, · · · , qM}, with εi > 0, 0 < αi ≤ 1.

2: OUTPUT: Sample Sets R̂′j = {R̂
q′j
1 , · · · , R̂

q′j
B′j
}, 1 ≤ j ≤M ′.

3: Computer budgets {B1, · · · , BM} by Theorem 3.
4: Generate {Q1, · · · , QM′}; Each Qj ⊆ Q and q′j = ∧q∈Qj q −
∨q′∈Q̄j q

′ 6= φ.
5: Keep the non-overlapping region set Q′ = {q′1, · · · , q′M′};
6: Generate non-overlapping leaf node sets {R′1, · · · ,R′M′};
7: Generate {Q′1, · · · , Q′M}; Each Q′i ⊆ Q′ and qi = ∨q′∈Q′iq

′.
8: for 1 ≤ j ≤M ′ do
9: Each sampling budget B′j = maxqi∈Qj [Bin

′
j/ni];

10: Sample leaf nodes from eachR′j with budget B′j to obtain R̂′j ;

Sampling on strata. From Theorem 3, the estimation accuracy
requirement εi and αi, with 1 ≤ i ≤ M , determines the sam-
pling budget Bi needed for each qi. Then, the leaf node set R′j
of the stratum q′j is sampled independently with a sampling budget
B′j ∝ n′j , namely, proportionate allocation is employed to ensure
that the sampling budget fraction in each stratum q′i is proportional
to n′j . To be precise, for each query qi, stratum q′j ∈ Q′i is assigned
with B′j(qi) = [Bin

′
j/ni] sampling budget. Instead of collecting

samples from q′j repeatedly for each qi ∈ Qj , with a total budget of
B̃′j =

∑
qi∈Qj B

′
j(qi), we collect only B′j = maxqi∈Qj B

′
j(qi)

samples from q′j and allow sample reuse when performing estima-
tions for different qi ∈ Qj . Obviously, B′j < B̃′j .

Estimator Design. After the sampling process, a total of M ′

sample sets are drawn randomly from leaf node setsR′1, · · · ,R′M′ .



They are expressed as

R̂′1 = {R̂q
′
1

1 , · · · , R̂
q′1
B′1
}, · · · , R̂′M′ = {R̂q

′
M′

1 , · · · , R̂q
′
M′
B′
M′
}.

These sample sets are observations for estimating Nq1 , · · · , NqM .
Below we first present the asymptotically unbiased estimator of
Nqi in Theorem 4. Then, we discuss the corresponding estimation
accuracy.

THEOREM 4. Using CRIS algorithm, N̂qi in Equation (7) is the
asymptotically unbiased estimator of Nqi .

N̂CRIS
qi =

ni
Bi

∑
q′j∈Q

′
i

[Bin
′
j/ni]∑

t=1

fqi(R̂
q′j
t ), (7)

where fq(R) =
∑
r∈R∨q

1
k
q
r

.

PROOF. Since each R̂
q′j
t is chosen uniformly at random from

the same population spaceR′j , fqi(R̂
q′j
t )’s with 1 ≤ t ≤ B′j are all

independent and follow the same distribution. Thus, they have the

same expectation as E[fqi(R̂
q′j
t )] =

∑
R∈R′j

fqi(R)/n′j . Using

the linearity of the expectation, we prove E[N̂qi ] = Nqi for each
1 ≤ i ≤M .

Performance comparison to RIS algorithm.

THEOREM 5. For M > 1 concurrent overlapping queries,
CRIS algorithm achieves lower estimation variance with less sam-
pling budget than RIS algorithm.

PROOF. Consider M concurrent overlapping queries Q =
{q1, · · · , qM}, with accuracy requirements εi > 0 and 0 < αi ≤
1, i ∈ {1, · · · ,M}. Below, we prove (1) CRIS requires less num-
ber of samples than individually applying RIS; (2) for the estima-
tion accuracy of each query q ∈ Q, CRIS always outperforms RIS.
(1)Sampling budget. By Theorem 3, the sampling budgets
B1, · · · , BM of M queries in Q can be obtained. With
sample reuse, the total budget spent using CRIS algorithm
is BCRIS =

∑M′

j=1 B
′
j =

∑M′

j=1 maxqi∈Qj [Bin
′
j/ni] ≤∑M′

j=1

∑
qi∈Qj [Bin

′
j/ni] =

∑M
i=1 Bi = BRIS .

(2)Estimation accuracy. Given a query q ∈ Q, CRIS divides q into
Mq ≥ 1 non-overlapping spatio-temporal regions (strata), q′j’s,
with 1 ≤ j ≤ Mq , with each q′j covering n′j index leaf nodes.
Denote Rq and R′j as the index leaf node sets of q and q′j , respec-
tively. We now prove that given the same sampling budget B, the
estimation variances (when using RIS and CRIS algorithms) follow
V ar[N̂CRIS

q ] ≤ V ar[N̂RIS
q ].

Recall that each sample R̂qt ∈ Rq is drawn uniformly at random
from Rq . Hence, for RIS, each random variable fq(R̂qt ) follows
the same distribution with the expectation µ = E[fq(R̂

q
t )] and the

variance as V ar[fq(R̂qt )] = 1
n

∑n
i=1 (fq(R

q
i )− µ)2. Then, the

variance of the estimator N̂RIS
q (Equation (1)) is computed as

V ar[N̂RIS
q ] = V ar

[
n

B

B∑
t=1

fq(R̂
q
t )

]
=
n2

B

(S
n
− (

Mq∑
j=1

n′j
n
µq′j )

2),
where S =

∑n
i=1 f

2
q (Rqi ) and µq′j = E[fq(R̂

q′j
t )]. On the other

hand, the variance of N̂CRIS
q (Equation (7)) can be written as

V ar[N̂CRIS
q ] =

n2

B2

Mq∑
j=1

B′jV ar[fq(R̂
q′j
t )] =

n2

B

(S
n
−

Mq∑
j=1

n′j
n
µ2
q′j

)
.

From the above two variances, we obtain

V ar[N̂RIS
q ]− V ar[N̂CRIS

q ] =
n2

B

(
(

Mq∑
j=1

n′j
n
µq′j )

2 − (

Mq∑
j=1

n′j
n
µ2
q′j

)
)

=
n2

B
V ar[µq′j ] ≥ 0.

Hence, we proved that CRIS always acheives a lower estimation
variance than RIS.

6. EXPERIMENTAL RESULTS
In this section, we conduct extensive experiments to evaluate our

RIS and CRIS algorithms in a large-scale user trajectory dataset
from a leading cellular network service provider in China. We
first introduce our dataset and configurations of the spatio-temporal
database system. Then, we provide comprehensive comparison re-
sults between our RIS and CRIS algorithms and Exhaustive Search
(ES) method. The evaluation results demonstrate that RIS and
CRIS algorithms can reduce the query processing time by two or-
ders of magnitude, while preserving a relative error ratio lower than
10%, with only 1% search cost of ES method.

6.1 Data and System Descriptions
The trajectory dataset is a collection of mobile broadband (MBB)

data in a large city in eastern China, with an urban area of about
400 square miles and three million people. The dataset was col-
lected for eight days at the end of 2010, and it represents trajecto-
ries of 109,914 3G users. When a user’s 3G service is enabled, the
3G device periodically reports its location by probing the nearby
base stations. Moreover, once a user is using 3G data service, e.g.,
browsing websites or playing online games, the data exchanged
with 3G network are also recorded 3. We consider each user as
a single trajectory. Each record in our database is represented as a
spatio-temporal point of a user, where in total more than 400 mil-
lion (407, 040, 083) records were obtained. Each record has four
core attributes including trajectory ID, longitude, latitude and time.
For each user (trajectory), there are eighty-two attributes associ-
ated, including the number of spatio-temporal points, time duration
(seconds), spatial range (in square miles), activity frequency (num-
ber of points per hour), trajectory length (in miles), average speed,
total data usage (in Bytes), etc. Figure 4 shows the trajectory distri-
butions over four attributes. In the experiments, we consider a tra-
jectory aggregate query returning the number of distinct trajectories
in a spatio-temporal query range, with certain attribute constraints.
The dataset takes 3 TB storage space in the database system.

The underlying spatio-temporal data storage system is based on
Clost [29] and the query system is built on top of Spark [35], a
MapReduce-like in-memory cluster computing system. The system
runs on a cluster with three machines. Each machine has 24 Intel
X5670 2.93GHz processors and 94GB memory. All machines run
on Suse Linux Enterprise Server 11. Hadoop 0.20.2-cdh3u6 and
Spark-0.7.3 are selected as the running platform.

6.2 Evaluation Results
We perform two sets of experiments for single and concurrent

trajectory aggregate queries to evaluate the efficiency of RIS and
CRIS algorithms, respectively.

6.2.1 Single Trajectory Aggregate Query
3Note that in a 3G network, a user can be located without users’
GPS service enabled, since 3G network can locate a user by the
signal strength between the device and the nearby base stations.
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Figure 4: Trajectory distributions over different attributes

In the experiments, we set the side length of the trajectory aggre-
gate queries as 18 miles, and temporal range as all eight days, and
uniformly at random generate 500 trajectory aggregate queries with
the same query range size. We use Quad-tree and B-tree to index
the trajectory data with different granularities, i.e., dividing the data
into n = 6, 889 (7k), n = 13, 410 (13k), n = 23, 481 (23k) index
leaf nodes, respectively. For each granularity, we perform ES and
RIS to estimate the total number of distinct trajectories, where we
change the sampling budget ratio a = B/n from 0.1% to 25.6%,
i.e., the ratio between the number of sampled index leaf nodes and
the total number of leaf nodes. Given a randomly generated query,
we perform RIS sampling and estimation 200 times for each sam-
pling budget ratio.

To evaluate the estimation accuracy of random index sampling,
Figure 5(a) shows the normalized mean square error (NMSE)
between our estimation results using RIS and the ground truth.
NMSE [26] is a normalized measure of the dispersion of the es-
timates, defined as

NMSE(N̂) =

√
E[(N̂ −N)2]

N
. (8)

From Equation (8), an estimation with NMSE larger than 1 is not
acceptable. From Figure 5(a), we observe that as the sampling bud-
get increases, the average NMSE decreases quickly. For the same
sampling budget ratio, smaller index leaf nodes (i.e., with larger
n) lead to smaller NMSE, because smaller index leaf nodes lead to
smaller variances of the number of distinct trajectories among in-
dex leaf nodes. Define the relative error ratio of an estimation as the
normalized difference from the ground-truth, i.e., b = (N̂−N)/N .
Figure 5(b) shows the box plot of the relative error ratios. For each
sampling budget ratio, three boxes are drawn for different granu-
larities. Box plots display differences between populations, where
the spacing between the different parts of the box helps indicate the
degree of dispersion (spread) and skewness in the data, and identify
outliers. The bottom and top of the box are always the first and third
quartiles, and the band inside the box is always the second quar-
tile (the median). The lowest datum is still within 1.5 interquartile
range (IQR) of the lower quartile, and the highest datum is still
within 1.5 IQR of the upper quartile [10]. Any data not included
between the whiskers should be plotted as an outlier with a marker
“+”. We observe that the estimation converges to the ground truth
as the sampling budget increases. Note that when the sampling bud-
get ratio reaches 1%, the estimation error ratios become lower than
10%. Moreover, the dispersion of the estimated numbers validates
the unbiasedness of the designed estimator (Equation (1)).

To evaluate the time efficiency of our RIS algorithm, Figure 5(c)
shows the processing time of using ES and RIS. When ES is used,

the processing time is more than 110 seconds (with a slight differ-
ence for different granularities), where RIS only needs on average
2 to 17 seconds, with two orders of magnitude time reduction. The
total time reduction ratio is defined as a ratio of the reduced pro-
cessing time to ES’s processing time. Figure 5(d) shows the to-
tal time reduction ratio of RIS, which indicates the power of RIS,
namely, a reduction ratio from 85% to 98%.

6.3 Concurrent Trajectory Aggregate
Queries

To evaluate the performance of CRIS, we randomly generate
concurrent queries and compare the time-efficiency and estimation
accuracy with RIS and ES algorithms. Our results demonstrate that
CRIS improves the performance significantly over that of ES and
running RIS independently.

We generate three concurrent queries {q1, q2, q3} for 500 times
with the following configuration. The spatial side lengths of q1, q2,
and q3 are 18 miles, 15 miles, and 12 miles, respectively. In time
dimension, they all span for four days, i.e., from day 1 to day 4
for q1, from day 3 to day 6 for q2, and from day 5 to day 8 for q3.
We only consider a single index granularity as n = 23, 481 (23k)
index leaf nodes using Quad-tree and B-tree. To answer q1, q2,
and q3, we perform ES, RIS, and CRIS, with the sampling budget
ratio a = B/N varying from 0.1% to 25.6%, and compare their
performance, in terms of the estimation accuracy, processing time,
and time reduction ratio. Again, given three randomly generated
concurrent queries, we run 200 times for RIS and CRIS for each
sampling budget ratio.

Figure 6(a) presents the average normalized mean square error
(NMSE) of our estimations using RIS and CRIS. CRIS indicates
lower NMSE values for all concurrent queries q1, q2, and q3. More-
over, as the sampling budget ratio increases, NMSE decreases for
both RIS and CRIS. The box plots in Figure 6(b) show the dis-
tributions of the relative error ratios for q1, q2, and q3. Clearly,
the estimations by both RIS and CRIS algorithms converge to the
ground-truth when the sampling budget ratio increases. In addition,
given the same sampling budget ratio, CRIS has higher estimation
accuracy than that of RIS. When the sampling budget ratio reaches
1%, the estimation error ratios are within 10%.

Moreover, Table 2 provides the numbers of sampled index leaf
nodes collected by RIS and CRIS for different sampling budget ra-
tios. We observe that CRIS requires much smaller number of sam-
ples than RIS by applying the overlapping sample reuse. Thus, the
query processing time of CRIS is much smaller than that of RIS.
As shown in Figure 6(c), comparing to ES (taking 226 seconds),
RIS needs 5 to 26 seconds and CRIS only needs 4 to 17 seconds
on average. Hence, CRIS reduces the processing time over RIS



0.1 0.2 0.4 0.8 1.6 

10
−2

10
−1

B/n(%)

N
M
S
E

 

 
n=7k

n=13k

n=23k

(a) NMSE

0.1 0.2 0.4 0.8 1.6 
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

B/n(%)
R
e
la
ti
v
e
e
rr
o
r
ra
ti
o

 

 
n=7k

n=13k

n=23k

Ground Truth

(b) Relative error

0.1 0.2 0.4 0.8 1.6 
0

5

10

15

20

B/n(%)

Q
u
e
ry

p
ro

c
e
ss
in
g
ti
m
e
(s
)

 

 
n=7k   (ES: 112s)

n=13k (ES: 115s)

n=23k (ES: 117s)

(c) Processing time

0.1 0.2 0.4 0.8 1.6 
0.85

0.9

0.95

1

B/n (%)

T
im

e
re
d
u
c
ti
o
n
ra
te

 

 

n=7k

n=13k

n=23k

(d) Time reduction rate

Figure 5: Performance comparison between RIS and exhaustive search (ES) algorithm

Table 2: Numbers of sampled indices required by RIS vs CRIS.
Sample Rate (%) 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

Samples (RIS) 35 69 139 278 555 1,111 2,221 4,443 8,885
Samples (CRIS) 21 42 84 167 334 669 1,337 2,675 5,350

by 20% to 34.6%. When considering the time reduction rate, Fig-
ure 6(d) shows that RIS and CRIS reduce the processing time over
exhaustive search by 88% to 97% and 92% to 98%, respectively.

7. DISCUSSIONS AND EXTENSIONS
Throughout this paper, we take counting distinct trajectories in

a spatio-temporal region as an example of trajectory aggregate
queries. Our RIS and CRIS algorithms are in fact generic to other
trajectory aggregate queries, such as sum and average. We briefly
discuss how our sampling and estimation algorithms can be applied
to these queries by adjusting the mapping function on an index leaf
node. Due to the limited space, we introduce the unbiased estima-
tors and omit the detailed proof and convergence analysis.

Sum. A typical sum aggregation query is “the total length of
all trajectories with speed greater than 5 miles per hour in New
York City during 2013”. Let `r denote the length (in miles) of
a trajectory r. Given an index leaf node Rqi with 1 ≤ i ≤ n,
define hq(Rqi ) =

∑
r∈Rqi

`r/k
q
r . Then, the exact total length of

trajectories is `q =
∑n
i=1 hq(R

q
i ). By following similar proof in

Theorem 2, it is easy to prove that ˆ̀
q in Equation (9) is the asymp-

totically unbiased estimator of `q .

ˆ̀
q =

n

B

B∑
t=1

hq(R̂
q
t ). (9)

Average. An average query is “the average trajectory length of
all trajectories with speed greater than 5 miles per hour in New York
City during 2013”. Lq = `q/Nq is thus the exact answer, where
Nq is the number of distinct trajectories with speed greater than 5
miles per hour in New York City during 2013. The asymptotically
unbiased estimator L̂q is presented in Equation (10), which can be
proven by the ratio form of the law of large numbers (Theorem
17.2.1 on p.426 in [22]).

L̂q =

∑B
t=1 hq(R̂

q
t )∑B

t′=1 fq(R̂
q
t′)
. (10)

8. CONCLUSION
Large-scale trajectory data create challenges in processing tra-

jectory aggregate queries with stringent response-time constraints.

Exhaustively brute-forcing the query space to get an exact an-
swer is usually too time-consuming. Given a well-indexed trajec-
tory database, in this paper, we develop random index sampling
(RIS) algorithm that randomly samples a small number of index
leaf nodes and the associated trajectories to estimate the answer
to the trajectory aggregate query, with guaranteed estimation er-
ror bounds. Moreover, for concurrent trajectory aggregate queries
with overlapping spatio-temporal query regions, we design concur-
rent random index sampling (CRIS) algorithm using stratified sam-
pling and overlapping sample reuse that achieves higher estimation
accuracy with less sampling budgets than that of using RIS algo-
rithm independently. We evaluated our RIS and CRIS algorithms
using a large-scale user trajectory dataset (with 3TB data) collected
from a cellular service provider in China. Our extensive evaluation
results show that RIS and CRIS algorithms outperform the exhaus-
tive search algorithm for single and concurrent trajectory aggregate
queries by two orders of magnitude in terms of processing time,
while preserving a relative error ratio lower than 10%, with only
1% search cost of the exhaustive search algorithm.
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