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Abstract

This dissertation is an attempt at understanding the structural properties of static and

dynamic networks from the perspective of robustness towards multiple random failures

and targeted attacks.

In order to characterize the robustness of a static network, abstracted as a graph,

towards random failures and targeted attacks, we transform it into a geometric object by

embedding it into a Euclidean space spanned by the eigen vectors of the Moore-Penrose

pseudo-inverse of the combinatorial Laplacian. This Euclidean space, endowed with a

metric distance function, has several interesting properties. The nodes of the network

are now transformed into discrete points in this space, each represented in terms of an

n-dimensional co-ordinate (n being the number of entities), centered at the origin. We

demonstrate that the position and the connectedness of an entity (node) in the network

is well determined by its distance from the origin in this space. Closer a node is to

the origin, more topological central it is, greater its tendency to lie in the larger sub-

network when multiple edge failures lead to a breaking up of the network into disjoint

components, thus greater its robustness in disruptive failure scenarios. We extend the

same notion of centrality to the set of links (relationships) in the network as well. Last

but not the least, the volume of the embedding, determined by the sum of squared

lengths of the position vectors of all the nodes, yields a measure of robustness for the

network as a whole. We call this the Kirchhoff index of the network. Once again, lower

the Kirchhoff index of a network, more geometrically compact its embedding, and more

difficult it is to break the network into two equal sized sub-networks; which, if possible,

disrupts the greatest number of pairwise communications. The Kirchhoff index can,

therefore, be used to compare the relative robustness properties of two networks with

the same number of entities and relationships.

Next, we broaden our perspective by studying the sub-structures of a network within

the geometric framework described above. First, on the computational front, we discuss

an incremental methodology for computing the pseudo-inverse in a divide-and-conquer

fashion, thus offsetting the otherwise high computational costs to within manageable
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limits. Secondly, it takes our geometric framework to the realm of dynamic, time-

evolving, networks.

We then apply the geometrical and topological understanding to the case of in-

terdependent networks where the structural interplay between two or more networks

determine the robustness of the overall system. Here again our geometric and topologi-

cal indices provide interesting and somewhat counter-intuitive insights. We demonstrate

that the manner in which interdependencies are introduced between two inter-dependent

networks plays a significant role in determining the robustness of the overall system. In

particular, diffusing and distributing inter-dependencies among a large number of (geo-

graphically dispersed) node pairs (sites of attachment) in the two constituent networks

produces more robust systems.

Finally, we study the case of a cellular data service network (CDSN), where a dif-

ferent form of interdependence exists between the radio infrastructure (cellular towers)

and the underlying IP (data) - network. One of the challenges in studying this class

of networks is the absence of publicly available topology information, owing to security

and privacy concerns. We thus motivate a means of inferring the topology through user

geo-intent queries (e.g. location based services), thereby gaining some visibility in the

inner workings of a CDSN. We observe that vast geo-physical territories in the radio

layer map to relatively fewer and centralized IP network elements (such as NAS-gateway

servers), thereby indicating potential of wide scale disruptions in the case of geo-physical

attack scenarios. Last but not the least, we study the limitations of using cellular net-

work traces to inferring human mobility patterns with an eye on urban infrastructure

planning. We demonstrate that naive use of cellular traces can potentially lead to a

biased view of user mobility that, in turn, may affect inferences of dynamic populations

in urban areas. We demonstrate, however, that such biases can both be quantified and

corrected for using an imposed sampling process, thereby obtaining better estimates.
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Chapter 1

Introduction: All the World’s a ...

All the world’s a network,

And all the men and women actors;

They have their exits and entrances,

Their relationships and communities,

And one woman, in her network, plays many parts,

Her acts being the eight chapters of this work.

Notwithstanding the poetic absurdity, the lack of a lyrical meter or form, or even a

general grace expected in works of penmanship — or indeed the fact that neither the

author of this thesis nor his collaborators have any delusions of being 21st century

incarnations of Shakespeare — the principal claim made in the lines above stays! All

the world’s indeed a network. And here’s why.

Simply put, a network is a collection of discrete entities and the relationships between

them. It is easy to see that entities and relationships are no more than placeholders

that can, depending upon the context, take the form of human beings and social ties,

proteins and their interactions, atoms and chemical bonds, airports and connecting

flights, routers and optical cables etc. Moreover, entities can be modeled as nodes (or

vertices), and the relationships as links (or edges) thereby creating a network that can,

in turn, be modeled as a graph — a combinatoric object with a rich mathematical

legacy. All the world is, thus, a network.

1
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This generality of form is in no way lost upon the scientific community. In recent

years an entirely new field called Complex Network Theory has emerged, that cuts

across several scientific disciplines including statistical physics, mathematical chemistry,

neurology, epidemiology, genetics, and computer science; as indeed social sciences such

as sociology and its ilk. The underlying theme in all these, despite the diversity of

objectives and methodologies, is that structure determines functionality — a theme

explored and furthered in this thesis.

To establish the truth behind this assertion, one needs to examine but a few cases.

The roles played by human beings in a social context depends on their position and

connectedness in the network. The physical and chemical properties of a molecule are

dependent not only on its constituent atoms but also on the manner in which the

atoms bond, the sites of attachment of different functional groups and the resulting

stereo chemistry. Similarly, the significance of a router in the Internet is determined, in

no small part, by its location (core vs. periphery). Or, the functioning of an electrical

smart-grid that relies not only upon the power generation and distribution units but also

on an underlying communication network coupled with it to relay control commands.

All these, and numerous other analogues in literature, testify to the validity of the

aforementioned claim. Needless to say, several attempts have been made, with varying

degrees of success, to characterize the structural properties of networks. In this thesis, we

concentrate primarily on one such aspect, that of the structural robustness of a network

— as indeed of its constituents — towards multiple random failures and targeted attacks.

And we do so with a little bit of algebra, some topology (graph theory), and a touch of

geometry!

In order to characterize the robustness of a static network, abstracted as a graph,

towards random failures and targeted attacks, we transform it into a geometric object by

embedding it into a Euclidean space spanned by the eigen vectors of the Moore-Penrose

pseudo-inverse of the combinatorial Laplacian. This Euclidean space, endowed with a

metric distance function, has several interesting properties. The nodes of the network

are now transformed into discrete points in this space, each represented in terms of an

n-dimensional co-ordinate (n being the number of entities), centered at the origin. We

claim that the position and the connectedness of an entity in the network is well deter-

mined by its distance from the origin in this space. To be precise, closer a node is to
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the origin, more central it is in the network. We call this geometric notion of centrality

the topological centrality of a node; and for a good reason. More topologically central a

node is, greater its tendency to lie in the larger sub-network when multiple edge failures

lead to a breaking up of the network into disjoint components. Topological centrality,

thus, yields a rank-order for the entities in a network in terms of their relative immu-

nity/vulnerability in disruptive failure scenarios. Analogously, the notion of topological

centrality can be extended to the set of links (relationships) in the network as well.

Here, the topological centrality of a link is determined in terms of the reciprocal of the

inner product of the position vectors of its end points. Just as it is with nodes, higher

the topological centrality of a link, greater its tendency to lie in the larger component

when disruptive failures occur. Last but not the least, the volume of the embedding,

determined by the sum of squared lengths of the position vectors of all the nodes, yields

a measure of robustness for the network as a whole. We call this the Kirchhoff index of

the network, inspired by an analogue used in mathematical chemistry that characterizes

structural strengths of molecules. Once again, lower the Kirchhoff index of a network,

more geometrically compact its embedding, and more difficult it is to break the network

into two equal sized sub-networks; which, if possible, disrupts the greatest number of

pairwise communications. The Kirchhoff index can, therefore, be used to compare the

relative robustness properties of two networks with the same number of entities and

relationships. In summary, the geometric transformation characterizes the robustness

of a network at all granularities — from atomic entities to binary relationships all the

way to the network as a whole.

Next, we broaden our perspective by studying the sub-structures of a network within

the geometric framework described above. In particular, we show how the Moore-

Penrose pseudo-inverse of the Laplacian for the overall network, is in fact related to that

of its sub-networks (as determined by its connected bi-partitions). This observation has

two interesting implications. First, from the computational point of view, it provides

an incremental methodology for computing the pseudo-inverse in a divide-and-conquer

fashion, thus offsetting the otherwise high computational costs to within manageable

limits when the computations are done in parallel. Secondly, it takes our geometric

framework to the realm of dynamic, time-evolving, networks. A dynamic network can

in fact be thought of simply as a sequence of static networks across time, each of which
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differs from its predecessor incrementally. Thus, analyzing the robustness of dynamic

network — and its constituent nodes and links — is, in some sense, analyzing the

incremental changes in the geometric properties between the different instances (snap-

shots). Our methods, detailed in chapter 4, provide not only for quick incremental

computations, but also an insight into the effect of these incremental changes on the

robustness properties of a dynamic network.

But what about the case when two (or more) networks are interdependent? For ex-

ample, in modern infrastructure networks such as a smart-grid where there is a structural

interplay between two different kinds of networks: a power generation and distribution

network and a communication network. Here again our indices provide interesting and

somewhat counter-intuitive insights from the point of view of structural robustness. We

demonstrate that the manner in which inter-dependencies are introduced between two

inter-dependent networks plays a significant role in determining the robustness of the

overall system. In particular, we claim that diffusing and distributing inter-dependencies

among a large number of (geographically dispersed) node pairs (sites of attachment) in

the two constituent networks produces more robust systems.

But, there are as many networks, as there are researchers!1 And, some other

classes of networks, though amenable to a geometric treatment, require a different ap-

proach. One such class of networks is that of the cellular data service networks (CDSN).

A CDSN is composed of two components — a radio communication infrastructure con-

stituted by basestations (cellular towers that a user’s mobile device directly interacts

with) and an underlying IP network constituted by hierarchical proxies that receive,

process and service data requests. Of great interest, therefore, is the functional depen-

dence between the radio and the data infrastructure of a CDSN from the point of view

of robustness. However, CDSNs are very secretive about their infrastructure. Thus,

neither the locations of the basestations nor those of the underlying data plane, is avail-

able in the public domain. Neither are standard active probing based methods such as

traceroute and ping of any avail. In chapter 6, we describe a novel approach that can

1 Shamelessly stolen from Roger Bacon (c. 1214-1294), “There are as many bows as there are
observers.” Bacon, of course, was referring to rainbows. As one of the early European empiricists and
a proponent of the modern scientific method, Bacon had, in a rather naughty attempt, tried to reclaim
the right of creating rainbows for our own species, Homo Sapiens. For this, he was promptly imprisoned
on charges of heresy, pending trial, for in the eyes of the Holy See of the time, the Lord had a monopoly
on such acts of creativity.
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be used for inferring the basestation infrastructure of a CDSN by an external agency —

for example, location based services such as weather information providers and — that

has access to the mobile devices of a sub-set of users.

Finally, we study in detail the patterns of human mobility within cellular networks.

Here, an entirely different, yet intriguing, inter-dependence exists between user activity

and its effects on the observed user mobility in the real world. A network theory

interpretation in this case is to consider locations as nodes and the human populations

moving between them as the links. The inferences made based on such studies have

wide ranging applications in the fields of urban planning and disaster management as

also in those of social media, location based services and advertising. But are the

inferences representative or accurate within reasonable margins of error? Using a real-

world cellular data record trace of over a million users in the San Francisco bay area,

we examine the ways to answer these questions in a systematic fashion. We first assess

the quality of spatio-temporal footprint of individuals as reflected in such records. We

then quantify and correct for the possible biases in inferring mobility patterns that can

accrue due to observational limitations.



Chapter 2

Geometry of Networks

In studying the geometry of networks, we first need to embed a network, represented

abstractly as a graph, into an appropriate space endowed with a metric function —

mathematically, a metric space. Such an embedding transforms the graph, a combi-

natoric object, into a geometric one. The nodes in the network are now represented

as points in the embedding space while the relationships between node pairs (single or

multi-hop) is reflected in the inter-point distances. Not only does such transformation

make for intuitive amenability — graphs being notoriously complex to think about —

it helps us exploit sophisticated tools from related literature that provide novel and

valuable insights into the structural properties of the underlying network (or its graph).

In this chapter, we describe just such a metric space in terms of the eigen space of

the Moore-Penrose pseudo-inverse of the combinatorial Laplacian (cf. §2.1). Next, in

§2.2 we describe an interplay between the Euclidean distance metric, defined over this

space, and the properties of an electrical analogue of a general network — an equivalence

that is used to great advantage in the rest of this work.

2.1 Network as a Graph, the Combinatorial Laplacian and

a Euclidean Embedding

Given a complex network, we represent its topology as a weighted undirected graph,

G(V,E,W ), where V (G) is the set of nodes/vertices; E(G) the set of links/edges; and

W = {wij ∈ ℜ+ : eij ∈ E(G)} is a set of weights assigned to each edge of the graph

6
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(ℜ+: the set of non-negative real numbers). The edge weights are a measure of pair-

wise affinities between adjacent nodes that, depending upon the context, may represent

physical quantities such as link capacity in traditional communication networks; or ac-

quaintance, amity or reciprocity in the social counterparts. We denote by n = |V (G)|
the number of nodes in G, also called the order of the graph G. Similarly, m = |E(G)|
denotes the number of links. For 1 ≤ i ≤ n, we define:

d(i) =
∑

eij∈E(G)

wij (2.1)

as the generalized degree of node i. Clearly, d(i) is the aggregate affinity of node i with

its one hop neighbors. The sum of node degrees in G, given as V ol(G) =
∑

i∈V (G) d(i),

is often referred to as the volume of the graph. V ol(G) is, therefore, the aggregate one

hop affinity in G. Without loss of generality, in the rest of this work, we deem the

network represented by G to be connected. Or, in graph theoretic terms, G has exactly

one connected component and, thus, at least one simple path between any pair of nodes.

The adjacency matrix of G(V,E,W ) is defined as A ∈ ℜn×n, with elements [A]ij =

aij = aji = [A]ji = wij , if i 6= j and eij ∈ E(G) is an edge; 0 otherwise. As stated earlier,

the value wij is a measure of one hop affinity between nodes i and j. By definition,

∀1 ≤ i ≤ n : Aii = 0. Clearly, A is a real and symmetric matrix.

The degree matrix of G(V,E,W ), is a diagonal matrix D ∈ ℜn×n such that [D]ii =

dii = d(i) =
∑

j∈V (G) aij , is the weighted degree of node i ∈ V (G). The combinatorial

Laplacian of the graph is then given by:

L = D−A (2.2)

Despite its simple form, the structure and eigen spectrum of L account for significant

topological characteristics of the graph, such as minimal cuts, clustering and determining

the number of spanning trees [1, 2, 3, 4]. The Laplacian thus finds use in various aspects

of structural analysis [5, 6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14, 4]. It is easy to see, from the

definition in (2.2) above, that the Laplacian L is a real, symmetric and doubly-centered

matrix:
n∑

i=1

[L]ij =
n∑

j=1

[L]ij = 0 (2.3)
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More importantly, L admits an eigen decomposition of the form:

L = ΦΛΦ′ (2.4)

where the columns of Φ = [φ1, φ2, ..., φn−1, φn] constitute the set of eigen vectors of L.

For the combinatorial Laplacian L, this set is orthogonal [15]:

φ1 ⊥ φ2 ⊥ ... ⊥ φn−1 ⊥ φn : φi · φj = 0, ∀1 ≤ i 6= j ≤ n (2.5)

where (·) is the inner/dot product operator for vectors. Therefore, Φ, with appropriate

normalization, constitutes the orthonormal basis of ℜn. Also, Λ is a diagonal matrix

with [Λ]ii = λi : 1 ≤ i ≤ n; being the n eigen values of L. It is well established that for

an undirected graph G(V,E,W ), L is positive semi-definite i.e. all its eigen values are

non-negative [15]. Further, if G is connected, as we have assumed, the smallest eigen

value of 0 is unique. By convention, we shall assume a descending order for the eigen

values of L:

Λ = [λ1 ≥ λ2 ≥ ... ≥ λn−1 > λn = 0] (2.6)

Note λn = 0, implies that L is rank deficient (rank(L) = n−1 < n) and consequently

singular. Its inverse, in the usual sense, does not exist.

However, a generalized inverse, called the Moore-Penrose pseudo-inverse of L, de-

noted henceforth by L+, does exist and is unique [15]. Following four constitute the

defining properties of L+:

a. LL+L = L b. L+LL+ = L+c. (LL+)′ = LL+ d. (L+L)′ = L+L (2.7)

Like L, L+ is also real, symmetric, doubly centered and positive semi-definite. Moreover,

the eigen decomposition of L+ is given by

L+ = ΦΛ+Φ′ (2.8)

with the same set of orthogonal eigen-vectors as that of L. The set of eigen values of

L+, given by the diagonal matrix Λ+, is composed of λ+
n = 0 and the reciprocals of the

positive eigen-values of L, i.e. [λ−1
1 ≤ λ−1

2 ≤ ... ≤ λ−1
n−1]. It is the eigen space of L+,

derived from the eigen space of L, that is of interest to us.

Defining X = Λ+1/2Φ′, we obtain:

L+ = ΦΛ+Φ′ = X′X (2.9)
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The form in (2.9) above, together with the fact that Φ is an orthonormal basis for ℜn,

implies that the matrix X represents an embedding of the network in an n− dimensional

Euclidean space (cf. [8, 16] and the references therein). Next, we describe the specifics

of this embedding space, with respect to the nodes and edges in the graph.

Let xi denote the ith column of X. For a node i ∈ V (G), xi represents an n-

dimensional co-ordinate in the embedding. In other words, xi is the position vector

for the node i in this n-dimensional space. Also, as L+ is doubly-centered (rows and

columns individually sum up to 0), the centroid of set of all node position vectors, lies

at the origin of the n-dimensional space. Thus, the squared distance of node i from

the origin (or the squared length of the position vector) corresponds to the ith diagonal

entry in L+:

||xi||22 = [L+]ii = l+ii (2.10)

On the other hand, for any pair of nodes (i, j) ∈ V (G) × V (G), the embedding yields

two geometric quantities. First, the inner product of the position vectors:

xi · xj = [L+]ij = l+ij = l+ji = [L+]ji = xj · xi (2.11)

And secondly, the pairwise distance between nodes:

||xi − xj ||22 = l+ii + l+jj − l+ji + l+ij = ||xj − xi||22 (2.12)

Finally, we conclude by defining the volume of the overall embedding as follows:

Ξ(L+) =
n∑

i=1

l+ii = Tr(L+) (2.13)

where Tr(L+) is the trace of the matrix L+. The volume of the embedding gives us a

measure of compactness and is an aggregate quantity defined for the network as a whole.

We therefore obtain a Euclidean embedding of the network in terms of the eigen space

of L+ with each node in the network represented as a point and a distance defined over

any arbitrary node pair. This is indeed the central construct upon which this thesis

relies. In particular, note that each of the geometric attributes described above (except

xi · xj), is determined by the metric distance defined for the Euclidean space. It is this

function that holds the key to our analyses in the subsequent chapters; and it has an

intriguing analogue in the physical world too as we explain next.
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Figure 2.1: A simple graph G and its EEN.

2.2 Equivalent Electrical Network, Effective Resistance

Distance and L+

An interesting analogy exists between simple undirected graphs and resistive electrical

circuits [17, 18]. Given a simple, connected and undirected graph G(V,E,W ), the

equivalent electrical network (EEN) of the graph can be formed by replacing each edge

eij ∈ E(G), of affinity wij , with an electrical resistance ωij = w−1
ij ohm (cf. Fig. 2.1).

Needless to say, each node i ∈ V (G) has an analogous junction point in the EEN . A

distance function can then be defined between any pair of nodes (x, y) ∈ V (G)× V (G)

in the resulting EEN as follows:

Definition 1 Effective Resistance (Ωij): The voltage developed between nodes i and j,

when a unit current (1 amp) is injected at node i and is withdrawn at node j.

It is well established that the square root of the effective resistance distance (
√

Ωij) is

a Euclidean metric [8, 18], i.e. it satisfies the following properties:

a. Identity:
√
Ωij > 0 if i 6= j, 0 otherwise.

b. Symmetry:
√
Ωij =

√
Ωji

c. Triangle-inequality:
√
Ωij ≤

√
Ωik +

√
Ωjk

Most importantly, Ωij can be expressed in terms of the elements of L+ as follows [8]:

Ωij = l+ii + l+jj − l+ij − l+ji (2.14)
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Therefore, the distance metric that our Euclidean space is endowed with is simply the

effective resistance distance — an equivalence that we exploit time and again with

significant rewards.

2.3 Summary

In this chapter, we introduced the preliminary notations and algebraic paraphernalia

that are used throughout this thesis. We described an n-dimensional Euclidean embed-

ding of the network in terms of the eigen space of the Moore-Penrose pseudo-inverse

of the combinatorial Laplacian and established how the metric distance function char-

acterizing this space is indeed the same as the pairwise effective resistance distance, a

physical analogue in the real world. In subsequent chapters, we use these geometric no-

tions to characterize the robustness of a network at all granularities — from individual

nodes and edges to the network as a whole.



Chapter 3

Topological Centrality of Entities

and Relationships in a Network

Based on the geometric embedding of the graph described in chapter 2, we now put forth

three indices respectively characterizing robustness of nodes and edges in the network,

as well as the network itself. However, to set the context, we begin by first reviewing

some of the relevant indices of node and edge centralities popular in literature (cf. §3.1).
In §3.2 , we define the topological centralities — C∗(i) for node i ∈ V (G) and C∗(i−j) for

edge eij ∈ E(G). Similarly, for the network as a whole, we define a structural descriptor

called the Kirchhoff index — K(G). We then establish how the topological centralities

capture both the overall position and the overall connectedness of nodes and edges in

the network. The position is characterized in terms of the overhead incurred in forced

random detours (cf. §3.3), whereas the connectedness is determined in terms of the

connected bi-partitions of the network (cf. §3.4). Analogous interpretations are also

provided in the respective sections for the Kirchhoff index.

3.1 Related Work

Robustness of nodes to failures in complex networks is dependent on their overall posi-

tion and connectedness in the network. Several centralities, that characterize position

and/or connectedness of nodes in complex networks in different ways, have therefore

been proposed in literature. Perhaps the simplest of all is degree — the number of

12
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edges incident on a node. Degree is essentially a local measure i.e. a first oder/one-hop

connectedness index. A second-order variant called joint-degree, given by the product

of degrees of a pair of nodes that are connected by an edge in the network, is also in

vogue. However, except in scale free networks that display the so called rich club con-

nectivity [19, 20, 21], neither degree nor joint-degree determine the overall position or

the connectedness of nodes.

A class of structural indices called betweennesses, namely shortest path/geodesic

(GB) [22, 23], flow (FB) [24] and random-walk (RB) [25] betweenness respectively

quantify the positions of nodes, with respect to source destination pairs in the network.

It is easy to extend analogous concept of betweennesses to the edges in the network too.

The set of betweennesses, however, reflect the role played by a node in the communica-

tion between other node-pairs in the network and are not the measures of a node’s own

connectedness.

Another popular centrality measure is geodesic closeness (GC)[22, 23]. It is defined

as the (reciprocal of) average shortest-path distance of a node from all other nodes in

the network. Clearly, geodesic closeness is a pth-order measure of connectedness where

p = {1, 2, ..., δ}, δ being the geodesic diameter of the graph, and is better suited for

characterizing global connectedness properties than the aforementioned indices. How-

ever, communication in networks is not always confined to shortest paths alone and GC

being geodesic based, ignores other alternative paths between nodes, however competi-

tive they might be, and thus only partially captures connectedness of nodes. Some all

paths based counterparts of geodesic closeness include information centrality [26] and

random-walk centrality [27], that use random-walk based approach to measure central-

ity. In [28], several centrality measures based on network flow, and collectively referred

to as structural centrality, have also been discussed in great detail.

Recently, subgraph centrality (SC) — the number of subgraphs of a graph that a

node participates in — has also been proposed [29]. In principle, a node with high

subgraph centrality, should be better connected to other nodes in the network through

redundant paths. Alas, subgraph centrality is computationally intractable and the pro-

posed index in [29] approximates subgraph centrality by the sum of lengths of all closed
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walks, weighed in inverse proportions by the factorial of their lengths. This inevitably re-

sults in greater correlation with node degrees as each edge contributes to closed random-

walks of lengths 2, 4, 6, ... and thus introduces local connectivity bias. In a subsequent

paper, Estrada et al introduce the concept of vibrations to measure node vulnerability

in complex networks [30]. Their index called node displacement bears significant re-

semblance to information centrality and has interesting analogies to physical systems.

However, once again the true topological significance of the centrality measure, in terms

of connectedness is wanting.

Our aim in this work, therefore, is to provide an index for robustness of nodes in com-

plex networks, that effectively reflects both the position and connectedness properties

of nodes and edges; and consequently, by extension, of the overall network.

3.2 Topological Centrality and the Kirchhoff Index

Definition 2 Topological centrality of node i ∈ V (G):

C∗(i) =
1

l+ii
(3.1)

Recall, that l+ii represents the squared length of the position vector for the node i. Thus,

closer a node i is to the origin in the n-dimensional space, more topologically central it

is. Or in other words, lower l+ii implies higher C∗(i). Similarly,

Definition 3 Topological centrality of an edge eij ∈ E(G):

C∗(i− j) =
1

l+ij
(3.2)

Again, l+ij represents the dot/inner product of the position vectors for the end-points

of the edge eij . Lower the value of l+ij , by our definition, more topologically central

the edge eij is. Just what these definitions translate to in the underlying topology is

something we defer to subsequent sections. For now, a brief discussion from the point

of view of the Laplacian eigen spectrum is warranted to put into context the definitions

of these centralities.
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Note, the general element l+ij in L+ can be re-written in terms of the eigen spectrum,

as follows:

l+ij =

n−1∑

k=1

φki · φkj

λk
(3.3)

Putting i = j, we similarly obtain:

l+ii =
n−1∑

k=1

φ2
ki

λk
(3.4)

Thus, the topological centralities are a function of the entire eigen spectrum of the

graph Laplacian (L). This observation, though a straightforward artifact of algebra, is

an important defining characteristic for our indices. In [31] a subset of leading eigen

vectors of the combinatorial Laplacian and its normalized counterparts have been used

for localizing a subset of closely connected nodes (or communities). Similar measures

have also been defined using the spectra of the adjacency matrix and its related ensemble

matrices (cf. [32]). Our topological centralities (C∗(i) & C∗(i − j)), seen in this light,

are a more generalized version of those discussed in [31], and extend previously known

localization approaches (similar to that in [31]) to the granularity of individual nodes

and edges.

Next, we define a structural descriptor for the overall network called Kirchhoff index,

as:

Definition 4 Kirchhoff index for G(V,E,W ):

K(G) = Tr(L+) =
n∑

i=1

l+ii =
n∑

i=1

1/C∗(i) (3.5)

Recall, that this is simply the volume of the embedding (Ξ(L+)) defined in the previous

chapter. Geometrically, more compact the embedding is, lower the value of K(G), and

we claim that more robust the network G is (details in latter sections)1 .

Kirchhoff index has been widely used to model molecular strengths in the math-

ematical chemistry literature [34, 35, 36, 37, 33, 38]. It also finds mention in linear

1 In literature, and in particular in [33] (cf. corollary 2.3), the Kirchhoff index for a network
sometimes appears as K(G) = n Tr(L+), i.e. with a scaling factor of n over what we have defined above
in 3.5. However, in this work, our aim is to use K(G) as a comparative measure of robustness for two
networks of the same order (i.e. same values of n) and volume (as described in subsequent sections).
Therefore, we do away with the constant n from the definition of K(G) for the rest of this work.
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algebra (cf. [39] and the references therein for details). However, its true topological

(graph theoretic) significance has scarcely been explored and/or demonstrated. But a

word on the Laplacian spectrum first. Note,

K(G) = Tr(L+) =
n−1∑

i=1

1

λi
(3.6)

which implies that K(G) is a function of the entire Laplacian spectrum (albeit only the

eigen values). Therefore, Kirchhoff index can be thought of as a generalized analogue

of the much celebrated algebraic connectivity of the graph [2, 3], which is defined to be

the second smallest eigen-value of the Laplacian i.e. λn−1, or, equivalently, the largest

eigen value of L+.

In what follows, we demonstrate how these metrics indeed reflect robustness of

nodes, edges and the overall network respectively, first through rigorous mathematical

analysis resulting in closed form representations and then with empirical evaluations

over simulated as well as real world network topologies.

3.3 Topological Centrality, Random Walks and Electrical

Voltages

To show that topological centrality (C∗(i), C∗(i−j)) indeed captures the overall position

of a node, we relate it to the lengths of random-walks on the graph. In §3.3.1, we

demonstrate how C∗(i) and C∗(i − j) are related to the average overhead incurred in

random detours. We then extend the same detour overheads to the Kirchhoff index as

well. Next in §3.3.2, we provide an electrical interpretation for it in terms of voltages

and the probability with which a random detour through node i returns to the source

node.

3.3.1 Detours in Random Walks

A simple random walk (i → j), is a discrete stochastic process that starts at a node i,

the source, visits other nodes in the graph G and stops on reaching the destination j

[9]. In contrast, we define a random detour as:
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Definition 5 Random Detour (i → k → j): A random walk starting from a source

node i, that must visit a transit node k, before it reaches the destination j and stops.

Effectively, such a random detour is a combination of two simple random walks: (i → k)

followed by (k → j). We quantify the difference between the random detour (i → k → j)

and the simple random walk (i → j) in terms of the number of steps required to complete

each of the two processes given by hitting time.

Definition 6 Hitting Time (Hij): The expected number of steps in a random walk

starting at node i before it reaches node j for the first time.

Clearly, Hik +Hkj is the expected number of steps in the random detour (i → k → j).

Therefore, the overhead incurred is:

∆H i→k→j = Hik +Hkj −Hij (3.7)

Intuitively, more peripheral transit k is, greater the overhead in (3.7). The overall

peripherality of k is captured by the following average:

∆H(k) =
1

n2 V ol(G)

n∑

i=1

n∑

j=1

∆H i→k→j (3.8)

Similarly, summing over all transits, we obtain the following analogue for a source-

destination pair:

∆H(i−j) =
1

n

n∑

k=1

∆H i→k→j − Tr(L+)

n
(3.9)

Alas, hitting time is not a Euclidean distance as Hij 6= Hji in general. An alternative

is to use commute time Cij = Hij +Hji = Cji, a metric, instead. We note from [18],

Cij = V ol(G)(l+ii + l+jj − l+ij − l+ji) (3.10)

and in the overhead form (3.7), (non-metric) hitting and (metric) commute times are

in fact equivalent (see propositions 9− 58 in [40]):

∆H i→k→j = (Cik + Ckj − Cij)/2 = ∆Hj→k→i (3.11)

We now exploit this equivalence to equate the cumulative detour overhead through

transit k from (3.8) to l+kk in the following theorem.
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Theorem 1

∆H(k) = l+kk (3.12)

Therefore, a lower value of ∆H(k) implies higher C∗(k) and more central the position

of node k is in the network. Theorem 1 is interesting for several reasons. First and

foremost, note that:
n∑

j=1

Ckj = V ol(G) (n l+kk + Tr(L+)) (3.13)

As Tr(L+) is a constant for a given graph and an invariant with respect to the set

V (G), we obtain:

l+kk ∝
n∑

j=1

Ckj (3.14)

Thus, lower l+kk or equivalently higher C∗(k), implies shorter average commute times

between k and the rest of the nodes in the graph on an average. Moreover,

K(G) = Tr(L+) =
n∑

k=1

l+kk =
1

2nV ol(G)

n∑

k=1

n∑

j=1

Ckj (3.15)

As K(G) reflects the average commute time between any pair of nodes in the network,

it is a measure of overall connectedness in G. For two networks of the same order (n)

and volume (V ol(G)), the one with lower K(G) is better connected on an average.

Theorem 2

∆H(i−j) = l+ij (3.16)

Once again, lower the value of l+ij , lower the detour overhead between the source-

destination pair (i, j) when the random walk is forced through all possible transits,

and more centrally located eij is.

3.3.2 Recurrence, Voltage and Electrical Networks

Interestingly, the detour overhead in (3.7) is related to recurrence in random walks —

the expected number of times a random walk (i → j) returns to the source i [17]. We

now explore how recurrence in detours related to topological centrality of nodes. But

first we need to introduce some terminology.
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Recall from the discussion in chapter 2, that the equivalent electrical network (EEN)

[17] for G(V,E,W ) is formed by replacing an edge eij ∈ E(G) with a resistor. The

resistance of this resistor is given by ωij = w−1
ij amp (see Fig. 2.1), where wij is the

affinity between nodes i and j. In the EEN, let V ij
k be the voltage of node k when a

unit current is injected at i and a unit current is extracted from j. From [41], we have

U ij
k = d(k)V ij

k ; where U ij
k is the expected number of times a random walk (i → j) visits

node k. Substituting k = i we get,

U ij
i = d(i)V ij

i (3.17)

the expected number of times a random walk (i → j) returns to the source i. For a

finite connected graph G, U ij
i > 0. The following theorem connects recurrence to the

detour overhead.

Theorem 3

∆H i→k→j =
V ol(G) (U ik

i + Ukj
i − U ij

i )

d(i)

= V ol(G) (V ik
i + V kj

i − V ij
i )

The term (U ik
i +Ukj

i )−U ij
i can be interpreted as the expected extra number of times

a random walk returns to the source i in the random detour (i → k → j) as compared

to the simple random walk (i → j). Each instance of the random process that returns to

the source, must effectively start all over again. Therefore, more often the walk returns

to the source greater the expected number of steps required to complete the process and

less central the transit k is, with respect to the source-destination pair (i, j).

Therefore, ∆H(k), that is the average of ∆H i→k→j over all source destination pairs,

tells us the average increase in recurrence caused by node k in random detours between

any source destination pair in the network. Higher the increase in recurrence, i.e. ∆H(k),

lower the magnitude of C∗(k) and less structurally central the node k is in the network.

3.4 Topological Centrality and the Connected Bi-Partitions

of a Network

Having thus far established that nodes with higher C∗(i) and edges with higher C∗(i−j),

are more centrally located in the network, we now turn to establishing their average
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(a) Partition P = (S, S′) (b) Dense spn. forest in P = (S, S′)

Figure 3.1: Partitions and spanning forests of a graph.

connectedness characteristics too. To show how the topological centralities of nodes

and edges capture their immunity/vulnerability to random failures in the network, we

study their properties in all the connected bi-partitions of the graph representing the

network. For simplicity of exposition, we assume the graph G(V,E) to be unweighted in

this section. However, we must state that all the results presented herein are extendible

with minor scalings to the case of weighted undirected graphs as well.

3.4.1 Connected Bi-partitions

Definition 7 Connected bi-partition (P (S, S′)): A cut of the graph G which contains

exactly two mutually exclusive and exhaustive connected subgraphs S and S′.

Let, V (S) and V (S′) be the mutually exclusive and exhaustive subsets of V (G), E(S)

and E(S′), the sets of edges in the respective components S and S′ of P and E(S, S′),

the set of edges that violate P i.e. have one end in S and the other in S′. The qualifiers

mutually exclusive and exhaustive simply imply the following properties for the set of

vertices determined by P (S, S′):

a. V (S) ∩ V (S′) = φ b. V (S) ∪ V (S′) = V (G) (3.18)

Similarly, for the set of edges: E(S) ∩E(S′) = E(S) ∩E(S, S′) = E(S′) ∩E(S, S′) = φ

and E(S) ∪ E(S, S′) ∪ E(S′) = E(G). Also, let T (S) and T (S′) be the set of spanning

trees in the respective component sets S and S′. We denote by P(G), the set of all

bi-partitions of G(V,E). Clearly, a given P (S, S′) represents a state of the network in
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which E(S, S′) have failed. A node i ∈ V (S) stays connected to |V (S)| nodes (including
itself) and gets disconnected from |V (S′)| nodes. In the following relationship we show

how topological centrality of node i is related to a weighted sum of |V (S)′| over all the
bi-partitions P ∈ P(G) of the network.

Theorem 4 For a node i ∈ V (G):

l+ii ∝
i∈V (S)∑

P∈P(G)

|T (S)||T (S′)||V (S′)| (3.19)

To paraphrase, given a bi-partition P (S, S′) ∈ P(G), such that i ∈ V (S) and j ∈
V (S′), Lemma 2 yields: ε(F ii

n−2|P )/ε(F
jj
n−2|P ) = |V (S′)|/|V (S)|. Clearly, for a given

bi-partition, nodes in the larger of the two components of P have a lower number of

spanning forests rooted at them than those in the smaller component and vice versa.

Hence,

l+ii − l+jj ∝
i∈V (S),j∈V (S′)∑

P∈P(G)

|T (S)||T (S′)|(|V (S′)| − |V (S)|) (3.20)

can be interpreted as a comparative measure of connectedness of nodes i and j. Note

that for P ∈ P(G), the RHS of (3.20) is zero when nodes i and j belong to the same

component of P or if |V (S)| = |V (S′)| and positive when i ∈ V (S), j ∈ V (S′) and

|V (S′)| > |V (S)| or vice versa. Therefore, a node i with higher topological centrality

stays connected to a greater number of nodes on an average in a disconnected network,

than one with lower topological centrality and is consequently more immune to random

edge failures in the network. Also, by simple extension,

Theorem 5 For an edge eij ∈ E(G):

l+ij ∝
i,j∈V (S),eij /∈E(S,S′)∑

P∈P(G)

|T (S)||T (S′)||V (S′)| (3.21)

Therefore, when an edge eij is not part of the set of edges that violate the cut, and

i, j ∈ V (S), this edge is only usable by the nodes in V (S). In other words, V (S′)×V (S′)

node pairs do not use eij for communications. Clearly, higher the value of l+ij , more

the number of node pairs on an average that do not require eij in disruptive failure

scenarios, and consequently lower its connectedness. Finally, we extend these results to

the Kirchhoff index:
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Theorem 6 For a graph G(V,E):

K(G) =

∑

P∈P(G)

|T (S)||T (S′)||V (S)||V (S′)|

n|T (G)| (3.22)

Note, the denominator |T (G)| is the number of spanning trees of the graph G. Higher

the number of spanning trees in a graph G, more the path diversity in the graph and

thus more difficult it is to break G. Also, the product |V (S)| · |V (S′)| is instrumental

in determining the value of K(G). Higher the value of this product, greater the number

of node pairs that cannot communicate in disruptive failure conditions. Also, the sum

|V (S)|+ |V (S′)| = n, is a constant, the product is maximized when |V (S)| = |V (S′)| ≈
|V (G)|

2 , or in other words when the bi-partitions are equitable in size. Therefore, for two

networks G1 and G2, K(G1) > K(G2), shows that the bi-partitions of G1 on an average

are more equitably balanced than those of G2. And, as we have argued, equitable bi-

partitions imply greatest number of inter-node pair disruptions. Moreover, another way

to interpret the Kirchhoff index is the following:

K(G) =
n− 1

n

∑

P∈P(G)

|T (S)||T (S′)||V (S)||V (S′)|

∑

P∈P(G)

|T (S)||T (S′)||E(S, S′)|
(3.23)

The result above follows by expressing the set T (G) in terms of the cut edge set E(S, S′)

and the counts of the spanning trees defined over S and S′:

T (G) =
1

n− 1

∑

P∈P(G)

|T (S)||T (S′)||E(S, S′)| (3.24)

Note that for a given partition P (S, S′), the contributing factor to the Kirchhoff index

is simply the following term:

K(G)|P (S,S′) =
|V (S)||V (S′)|
|E(S, S′)| (3.25)

This is largely owing to the canceling out of the term |T (S)||T (S′)| which is present in

both the numerator and the denominator. Seen in this light, higher the value of K(G),

a fewer number of edges upon removal, results in an equitable partition and thus easier

it is to disrupt pairwise communications in the graph (representing the network).
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Thus K(G) represents the average connectedness of all the nodes when a failure of

a subset of edges partitions the network into two components, thereby truly reflecting

overall network robustness.

3.4.2 A Case Study: When the Graph is a Tree

We now study the special case of trees to illustrate the topological (graph theoretic)

interpretations presented thus far in a simpler setting. Recall, a tree T (V,E) of order

n = |V (T )| is a connected acyclic graph with exactly n− 1 = |E(T )| edges. As each of

the n− 1 edges eij ∈ E(T ), upon deletion produces a unique partition P (S, S′) ∈ P(T ),

we conclude that there are exactly n − 1 connected bi-partitions of a tree. Moreover,

the two sub-graphs S and S′ are also trees themselves, such that |T (S)| = |T (S′)| = 1

for any partition P (S, S′). For the nodes of the tree, we then obtain an elegant closed

form for topological centrality in the following corollary.

Corollary 1

l+ii =
1

n2

i∈V (S)∑

P∈P(T )

|V (S′)|2 (3.26)

More importantly, in a tree, the shortest path distance SPD(i, j) and the effective

resistance distance Ωij between the node pair (i, j) is exactly the same i.e.

SPD(i, j) = Ωij = l+ii + l+jj − l+ij − l+ji (3.27)

The result above is simply due to the fact that a tree is an acyclic graph. It is easy to

see that

l+ii =
n∑

j=1

SPD(i, j)− Tr(L+) ⇒ l+ii ∝
n∑

j=1

SPD(i, j) (3.28)

But the node i∗ ∈ V (T ) for which
∑n

j=1 SPD(i∗, j) is the least, is the so called tree

center of T . Thus the node with the highest topological centrality, is also the tree center

if the graph is a tree.

But what about the edges in the tree? It is easy to see that the form for l+ij is the

same as that in (3.27), except for an added condition that the edge eij /∈ E(S, S′). But

there is something of greater interest here. Note that Ωij = 1, ∀eij ∈ E(T ). Thus,
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rearranging the terms of equation (3.27), we obtain:

l+ij =
l+ii + l+jj − 1

2
= l+ji (3.29)

Therefore, l+ij of the edge eij ∈ E(T ) is simply a linear average of the reciprocal of

topological centralities of its end-points. Thus, greater the value of C∗(i− j), closer to

the tree center the edge is. Another way to interpret this result is that the centrality

of an edge is determined by the centralities of its end-points. Intuitively, an edge with

both its end-points closer to the core, is more central than those that have either one

or neither end-points closer to the core.

And finally, the Kirchhoff index for a tree:

Corollary 2

K(T ) =
1

n

∑

P∈P(T )

|V (S)||V (S′)| (3.30)

These results further knit our centrality indices into the broader body of knowledge

(cf. [42]).

3.5 Empirical Evaluations

In this section, we empirically study the properties of the topological centrality index

(C∗(i), C∗(i − j)) and the Kirchhoff index. We use K∗(G) = K(G)−1, henceforth, to

maintain higher is better. Also, as topological centrality of an edge/link is well ap-

proximated in terms of the node centralities of its end-points, for brevity we confine

the presentation to the case of node centralities alone. We first show in §3.5.1, how a

rank-order of nodes in terms of their topological centralities captures their structural

roles in the network and then in §3.5.2 demonstrate how it, along with Kirchhoff index,

is appropriately sensitivity to rewirings and local perturbations in the network.

3.5.1 Identifying Structural Roles of Nodes

Consider the router level topology of the Abilene network (cf. Fig. 3.2(a)) [43]. At the

core of this topology, is a ring of 11 POP’s, spread across mainland US, through which

several networks interconnect. Clearly, the connectedness of such a network is dependent
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(a) Abilene Topology (b) Simulated topology

Figure 3.2: Abilene Network and a simulated topology.

heavily on the low degree nodes on the ring. For illustration, we mimic the Abilene

topology, with a simulated network (cf. Fig. 3.2(b)) which has a 4-node core {v1, ..., v4}
that connects 10 networks through gateway nodes {v5, ..., v14} (cf. Fig.3.2(b)).

Fig. 3.3 shows the (max-normalized) values of geodesic closeness (GC), subgraph

centrality (SC) and topological centrality C∗ for the core {v1, ..., v4}, gateway {v5, ..., v14}
and other nodes {v15, ..., v65} in topology (cf. Fig.3.2(b)). Notice that v5 and v6, two of

the gateway nodes in the topology, have the highest values of degree in the network i.e.

(d(v5) = d(v6) = 10) while v14 has the highest subgraph centrality (SC). In contrast,

C∗(i) ranks the four core nodes higher than all the gateway nodes with v1 at the top.

The relative peripherality of v5, v6 and v14 as compared to the core nodes requires no

elaboration. As far as geodesic centrality (GC) is concerned, it ranks all the nodes in

the subnetwork abstracted by v5, namely v15 − v23, as equals even though v22 and v23

have redundant connectivity to the network through each other and are, ever so slightly,

better connected than the others - a property reflected in their C∗(i) rankings.

We see similar characterization of structural roles of nodes in two real world networks

in terms of topological centrality: the western states power-grid network [44] and a social

network of co-authorships [45], as shown through a color scheme based on C∗(i) values

in Fig. 3.4. Core-nodes connecting different sub-communities of nodes in both these
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Figure 3.3: Max-normalized centralities for simulated topology.

real world networks are recognized effectively by topological centrality as being more

central (Red end of the spectrum) than several higher degree peripheral nodes.

3.5.2 Sensitivity to Local Perturbations

An important property of centrality measures is their sensitivity to perturbations in

network structure. Traditionally, structural properties in real world networks have been

equated to average statistical properties like power-law/scale-free degree distributions

and rich club connectivity [19, 20, 21]. However, the same degree sequence D = {d(1) ≥
d(2) ≥ ... ≥ d(n)}, can result in graphs of significantly varying topologies. Let G(D) be

the set of all connected graphs with scaling sequence D. The generalized Randić index

R1(G) [46, 47]:

R1(G) =
∑

eij∈E(G)

d(i)d(j) (3.31)

where G ∈ G(D), is considered to be a measure of overall connectedness of G. Higher

R1(G) suggests that nodes of higher degrees connect with each other with high proba-

bility thereby displaying the so-called rich club connectivity (RCC) in G [48]. Similarly,

the average of each centrality/betweenness index (GC,SC,GB,RB averaged over the



27

(a) The western-states power grid [44] (b) Co-authorships in net. sciences [45]

Figure 3.4: Real world networks: Red → Turqoise in order of decreasing C∗(i).

set of nodes), is in itself a global structural descriptor for the graph G [29]. We now ex-

amine the sensitivity of each index with respect to local perturbations in the subnetwork

abstracted by the core node v1 and its two gateway neighbors v5 and v6.

First, we rewire edges e15,5 and e6,1 to e15,1 and e6,5 respectively (cf. PERT-I Fig.

3.5(b)). PERT-I is a degree preserving rewiring which only alters local connectivities

i.e. neither individual node degrees nor average node degree changes. Fig. 3.6(a) and

(b) respectively show the altered values of centralities (C∗, GC, SC) and betweennesses,

geodesic and random-walk i.e. (GB,RB), after PERT-I. Note, after PERT-I, v15 is

directly connected to v1 which makes C∗(v15) comparable to other gateway nodes while

SC(v15), GB(v15), RB(v15) seem to be entirely unaffected. Moreover, PERT-I also re-

sults in v6 losing its direct link to the core, reflected in the decrease in C∗(v6) and a

corresponding increase in C∗(v5). C∗(i), however, still ranks the core nodes higher than

v5 (whereas SC,GB,RB do not) because PERT-I being a local perturbation should not

affect nodes outside the sub-network — v1 continues to abstract the same sub-networks

from the rest of the topology. We, therefore, observe that C∗(i) is appropriately sensitive

to the changes in connectedness of nodes in the event of local perturbations. But what

about the network on a whole?

Let G and G1 be the topologies before and after PERT-I. G1 is less well connected
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Figure 3.5: Structural perturbations in the simulated topology.

# Structural Descriptor PERT-I PERT-II

1 K∗(G) (or C∗) ↓ ↑
2 R1(G) ↑ ↔
3 GC ↓ ↑
4 SC, GB ↑ ↓
5 RB ↑ ↑

Table 3.1: Sensitivity to local perturbations, X = 1/n
∑n

i X(i): Avg. node centrality
for a network.

overall than G as the failure of e5,1 in G1 disconnects 19 nodes from the rest of the

network as compared to 10 nodes in G. However,

∆R1(G → G1) =
R1(G1)−R1(G)

R1(G)
= 0.029 (3.32)

as the two highest degree nodes (v5 and v6) are directly connected in G1 (cf. Table 3.5.2

for the sensitivity of other centrality based global structural descriptors). In contrast,

∆K∗(G → G1) = −0.045, which rightly reflects the depreciation in overall connectedness

after PERT-I (recall K∗(G) = K−1(G). Table 3.5.2 shows the changes in the average of

all centrality and betweenness indices post PERT-I.
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Figure 3.6: PERT-I: Max-normalized values of centralities and betweennesses for core,
gateway and some other nodes.

A subsequent degree preserving perturbation PERT-II of G1, rewiring e22,23 and

e24,25 to e22,25 and e23,24, to obtain G2, creates two cycles in G2 that safeguard against

the failure of edge e5,6. This significantly improves local connectivities in the sub-

network. However, ∆R1(G1 → G2) = 0 (and average SC decreases) while ∆K∗(G1 →
G2) = 0.036 which once again shows the efficacy of Kirchhoff index as a measure of

global connectedness of networks.
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# Measure Paths covered Complexity

1. Degree - O(m)

2. GC, GB Geodesic paths O(n3)

3. C∗ All paths O(n3)

4. SC All paths O(n3)

5. RB All paths O(m+ n)n2

6. FB All paths O(m2n)

Table 3.2: Taxonomy and computational complexities of centrality measures (all nodes).

3.6 A Word on Computational Complexity

We now briefly discuss the practical aspects of computing the topological centrality

measure for the set of nodes in the graph representing the complex network. Clearly,

it suffices to compute the pseudo-inverse of the matrix L, the Laplacian, to obtain the

matrix L+. The most common method for computing the pseudo-inverse of a matrix

mathematically, is to use the singular value decomposition (SVD). Indeed, mathematical

software such as MATLAB, come equipped with subroutines, such as pinv (for pseudo-

inverse), which make use of the SVD factorization. It is common knowledge that the

computational complexity for the SVD method is, in terms of worst case complexities,

O(n3) where n is the number of rows/columns of the matrix. Thus the base worst case

complexity for computing the topological centrality measure is indeed O(n3), where n

is the order of the graph. This worst case complexity is at par with the competitive

centrality measures, like geodesic centrality (GC) and geodesic betweenness (GB) as

well as subgraph centrality (SC). On the other hand, it is certainly better than the

random-walk betweenness (RB) (cf. Table 3.2).

However, given that real world networks abstracted as graphs are sparse topological

objects, the eigen spaces of the matrices L and L+ (as discussed in chapter 2), provide

useful insights from a computational point of view. Exploiting the fact that λn = 0,

the smallest eigen value of L, is unique if the network is connected, it has been shown

in [33] that L+ can be computed by performing a rank(1) perturbation of L which

yields an invertible full rank matrix. This method, though relatively faster in practice

on MATLAB, still leaves the worst case complexity at O(n3). We defer a full discussion

of the nuances to the next chapter where we present sub-structure analysis of networks
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and provide closed form solutions which can be used in a divide-and-conquer fashion

over a parallelized infrastructure [49]. For now we make do with providing some useful

pointers to some interesting approximation results in the following paragraphs.

In [8], we find a way of approximating L+ by using fast converging Monte-Carlo

algorithms. Such parallel algorithms exploit the sparsity of real world networks which

in turn makes the Laplacian L a sparse matrix (even though L+ is always full). How-

ever, we observe that from the point of view of computing topological centrality alone

(C∗(i), C∗(i−j)), all we need are the elements on the diagonal of L+ and the off-diagonal

elements l+ij for (i, j) such that [A]ij = A]ji > 0. It is known that subsets of inverse for

a sparse matrix can be computed to a given pattern (selective elements), using parallel

and multi-frontal approaches (cf. [50] and the references therein).

Finally, another interesting approximation result has recently been proposed in [51].

When the density of edges in the network increases, the hitting time from node i to

j can be well approximated as Hij ≈ V ol(G)d(i)−1. By extension, the commute time

becomes:

Cij ≈ V ol(G)(d(i)−1 + d(j)−1) (3.33)

So for dense graphs, we can approximate topological centrality for nodes and edges

using the node degree distribution alone. Most importantly, this result implies that

topological centrality, which is a measure of the overall position and connectedness of

a node, is determined entirely by its local connectedness determined by its degree, a

remarkable result indeed.

3.7 Summary

In this chapter, we presented a geometric perspective on robustness in complex networks

in terms of the Moore-Penrose pseudo-inverse of the graph Laplacian. We proposed

topological centrality as a measure of robustness for the nodes and edges of a network

(C∗(i), C∗(i− j)) and Kirchhoff index (K(G)) that respectively reflect the length of the

position vector for a node and the overall volume of the graph embedding and there-

fore are suitable geometric measures of robustness of individual nodes and the overall

network. Additionally, we provided interpretations for these indices in terms of the



32

overhead incurred in random detours as well as in terms of the recurrence probabil-

ities and voltage distribution in the EEN corresponding to the network. All indices

reflect the global connectedness properties of individual nodes and edges as well as the

network on a whole, particularly in the event of multiple edge failures that leave the

network disconnected. Through numerical analysis on simulated and real world net-

works, we demonstrated that topological centrality captures the structural roles played

by nodes and edges in networks and, along with Kirchhoff index, is suitably sensitive to

perturbations/re-wirings. In terms of computational complexity, topological centrality

compares well with other geodesic and all-paths based indices in literature (cf. Table

3.2) and performs better than random-walk betweenness in the asymptotic case. In

the next chapter, we investigate sub-structures of a network using a novel divide-and-

conquer based approach that yields, amongst other things, a parallelizable methodology

for computing L+ for networks of large orders.



Chapter 4

Sub-Structure Analysis and an

Incremental Approach to

Computing L+

The Moore-Penrose pseudo-inverse and the sub-matrix inverses of the Laplacian have

evoked great interest in recent times. Their applications span fields as diverse as prob-

ability and mathematical chemistry, collaborative recommendation systems and social

networks, epidemiology and infrastructure planning [8, 52, 42, 18, 25, 53, 33]. Alas,

despite such versatility, the pseudo-inverse and the sub-matrix inverses of the Lapla-

cian suffer a practical handicap, as alluded to towards the end of the previous chapter.

These matrices are notoriously expensive to compute. The standard matrix factoriza-

tion and inversion based methods employed to compute them [15, 33], incur an O(n3)

computational time, n being the order of the graph (number of vertices in the graph).

This clearly impedes their utility particularly when the graphs are either dynamic, i.e.

changing with time, or simply of large orders, i.e. have millions of nodes. Online social

networks (OSN), typically represented as graphs, qualify on both counts. With time,

the number of users as well as the relationships between them changes, thus requiring

regular re-computations. As for size, a popular OSN, such as Facebook and Youtube,

may easily have hundreds of millions of users. An O(n3) cost, therefore, is clearly unde-

sirable and an approach for incremental updates is imperative, particularly given that

33
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such changes, in most cases, may be local in nature.

In this chapter, we provide a novel divide-and-conquer based approach for computing

the Moore-Penrose pseudo-inverse of the Laplacian for an undirected graph which, in

turn, determines all of its sub-matrix inverses as well. We must, however, point out that

although our focus for the time being is on computational complexity, the closed form

solutions obtained during this exercise have implications in the study of inter-dependent

network topologies — the subject of the next chapter. Hence, the results presented here

are of great importance.

4.1 Computing L+

A straightforward approach for computing L+ is through the eigen-decomposition of

L, followed by an inversion of its non-zero eigen values, and finally reassembling the

matrix as discussed in chapter 2. A full eigen value decomposition is known to have

a computational cost of O(n3). In practice, however, mathematical software, such as

MATLAB, use singular value decomposition (SVD) to compute the pseudo-inverse of

matrices (cf. pinv in the standard library). This general SVD based method does not

exploit the special structural properties of L, such as its sparsity for real world networks,

and incurs O(n3) computational time, n being the number of nodes in the graph. An

alternative has recently been proposed in [33] specifically for computing L+ for a simple,

connected, undirected graph. A rank(1) perturbation of the matrix L can be performed

by adding a constant value (a multiple of 1/n). This perturbation makes L invertible.

L+ can then be computed from this perturbed matrix as follows:

L+ =

(
L+

1

n
J

)−1

− 1

n
J (4.1)

where J ∈ ℜn×n is a matrix of all 1′s. Although the theoretical cost for this method is

still O(n3), in practice it works faster for graphs of arbitrary orders and edge densities

than the standard pinv method. But the proof of this pudding is in computing! So, to

put into context the notion, we present a numerical analysis over Erdös-Rényi graphs

(ER-graphs) of varying orders and edge densities. An ER-graph is a random graph

determined by parameters (n, ρ), where n is the order of the graph and ρ is the uniform

probability for the occurrence of any arbitrary (undirected) edge in the graph [54]. On



35

0 2000 4000 6000 8000 10000
0

500

1000

1500

# nodes

C
P

U
 ti

m
e 

(s
)

 

 

PertInv
PInv

0 2000 4000 6000 8000 10000
0

500

1000

1500

# nodes

C
P

U
 ti

m
e 

(s
)

 

 

PertInv
PInv

(a) ρ = 0.3 (b) ρ = 0.5

Figure 4.1: Computational times: Erdös-Rényi graphs of varying orders and densities.
PertInv: pseudo-inverse computed through rank(1) perturbation [33], PInv: pseudo-
inverse computed through standard pinv in MATLAB.

a dedicated machine with a quad-core AMD Opteron processor (800 Mhz/core) and

48 GB of primary memory, we compute the L+ of multiple instances of ER-graphs using

the standard pinv library function in MATLAB as well as the perturbed inversion based

method from [33] (called PertInv in the figures).

Fig. 4.1 shows a comparison of the two methods for ρ = {0.3, 0.5} and n =

{1K, 2K, ..., 10K}. The experiment is repeated 100 times for each parametric combi-

nation (n, ρ). The fact that the method from [33] outperforms pinv is self evident, as

is the fact that the computational times for both methods rise with increasing values

of n. We also observe great consistency (or very little variance) across the different

instances for a given (n, ρ), which is not too surprising. What is of interest, however,

is that the computational times for a given value of n, do not vary significantly across

ρ = {0.3, 0.5}, for either of the two methods. We observe the same for higher values

of ρ (not shown here). This implies that the methods are insensitive to the sparsity

of the graphs. Moreover, for graphs of (n, ρ) = (10000, 0.5), the primary memory

imprint for both methods is over 2.0 GB when run in MATLAB (a little higher, in

fact, for the perturbed inversion method). Although the exact valuess may vary from

machine to machine, the figures provide a good rough estimate that suffices for the

problem at hand. Consequently, for dynamically changing graphs, in which small lo-

cal modifications occur every now and then, such methods would incur undue heavy

computational costs due to repeated re-computation of L+ from scratch. On the other

hand, for graphs of higher orders (n > O(105)), such decomposition/inversion based

methods are rendered impractical from the point of view of computational time as well
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as memory requirements, if performed on a single machine.

In what follows, we show that the computation of the Moore-Penrose pseudo-inverse

of the Laplacian can be done in a divide-and-conquer fashion by identifying sub-structures

that constitute independent sub-problems computable in parallel. Our method allows

efficient incremental updates of L+ for dynamically changing graphs, without having to

compute L+ all over again. Moreover, computing L+ for large graphs becomes feasible,

in principle, through parallelization of (smaller) independent sub-problems over multi-

ple machines, which can then be re-combined at O(n2) cost per edge across a division

(details in a subsequent section). But first we need to establish a few more preliminary

results to further motivate our study.

4.2 L+, Sub-Matrix Inverses and Effective Resistances

In this section, we discuss the sub-matrix inverses of the Laplacian (L) and their rela-

tionship to L+. We then show an interesting inversion of the relationship between the

effective resistance distances and the elements of L+ that is instrumental to the task at

hand.

4.2.1 Sub-Matrix Inverses of L

As stated previously, the combinatorial Laplacian L of a connected graph G(V,E),

is singular and thus non-invertible. However, given that its rank is n − 1, any n − 1

combination of columns (or rows) of L constitutes a linearly independent set. Hence, any

(n−1×n−1) sub-matrix of L is invertible. Indeed, the inverses of such (n−1×n−1) sub-

matrices are made use of in several graph analysis problems: enumerating the spanning

trees and spanning forests of the graph [42], determining the random-walk betweenness

of the nodes of the graph [25], to name a few. However, the cost of computing an

(n − 1 × n − 1) sub-matrix inverse is still O(n3). To compute all such sub-matrix

inverses amounts to a time complexity of O(n4). In the following, we show how they

can be computed efficiently through L+.

Theorem 7 Let L({n}, {n}) be an (n− 1×n− 1) sub-matrix of L formed by removing
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Figure 4.2: Scalar mapping: Sub-matrix inverse of L to L+.

the nth row and nth column of L. Then ∀(x, y) ∈ V (G)× V (G):

[L({n}, {n})−1]xy = l+xy − l+xn − l+ny + l+nn (4.2)

The result in Theorem 7 above expresses, in scalar form, the general element (xth row,

yth column) of the inverse of the sub-matrix L({n}, {n}) in terms of the elements of

L+, as claimed. As the choice of the nth row and column is arbitrary, we can see that

the result holds in general for any (n− 1× n− 1) sub-matrix (permuting the rows and

columns of L as per need). The cost of computing L({n}, {n})−1 for a given vertex n

is O(n2). Therefore, all sub-matrix inverses can be computed in O(n3) time from L+,

which itself can be computed in O(n3) time, even if the standard methods are used.

This is clearly an order of magnitude improvement. Henceforth, we focus entirely on

L+.

4.2.2 The Effective Resistance Distance and L+

Recall, that the pairwise effective resistance distance between nodes x and y (Ωxy) can

be expressed in terms of the elements of L+ as follows:

Ωxy = l+xx + l+yy − l+xy − l+yx (4.3)

We now invert the elegant form in (4.3) to derive an important result in the following

lemma which gives us the general term of L+ in terms of the distance function Ω.

Lemma 1 ∀(x, y, z) ∈ V (G)× V (G)× V (G) :

l+xy =
1

2n

(
n∑

z=1

Ωxz +Ωzy − Ωxy

)
− 1

2n2

n∑

x=1

n∑

y=1

Ωxy (4.4)
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The RHS in Lemma 1 above is composed of two terms: a triangle inequality of effective

resistances [41] and a double summand over all pairwise effective resistances in the

EEN. It is easy to see that the double-summand simply reduces to a scalar multiple

of the trace of L+ (Tr(L+) =
∑n

z=1 l
+
zz). Thus the functional half that determines the

elements of L+, is the triangle inequality of the effective resistances, while the double

summand contributes an additive constant to all the entries of L+. We illustrate the

utility of this result, with the help of two kinds of graphs on the extremal ends of the

connectedness spectrum: the star and the clique.1

The Star

A star of order n is a tree with exactly one vertex of degree n−1, referred to as the root,

and n− 1 pendant vertices each of degree 1, called leaves, (cf. Fig. 4.3). By definition,

a singleton isolated vertex is also a degenerate star albeit with no leaves. It is easy to

see that Sn, being a tree, is the most sparse connected graph of order n (with exactly

n − 1 edges). Also, Sn is the most compact tree of its order (lowest diameter). In the

following, we show how L+
Sn

can be computed using the result of Lemma 1.

Corollary 3 For a star graph Sn of order n, with node v1 as root and nodes {v2, v3, ..., vn}
as leaves, L+

Sn
is given by:

l+11 =
n− 1

n2
& 2 ≤ x ≤ n, l+1x = l+x1 = − 1

n2
(4.5)

2 ≤ x ≤ n, l+xx =
n2 − n− 1

n2
& 2 ≤ x 6= y ≤ n, l+xy = l+yx = −n+ 1

n2
(4.6)

The Clique

On the other end of the connectedness spectrum lies the clique. A clique Kn of order n

is a complete graph with n(n−1)
2 edges. Clearly, the clique is the densest possible graph

of order n, as there is a direct edge between any pair of vertices in it. It is also the most

compact graph of its order (lowest diameter). Then,

1 The graphs in these examples are assumed to be unweighted, i.e. all edges have a unit
resistance/conductance.



39

1

2

3 n-1

n

L
+

S5
Sn

0.16 -0.04 -0.04 -0.04 -0.04

-0.04

-0.04

-0.04

-0.04

0.76

0.76

0.76

0.76

-0.24 -0.24 -0.24

-0.24 -0.24

-0.24 -0.24

-0.24 -0.24 -0.24

-0.24

-0.24

Figure 4.3: The Star Graph: Pre-computed L+
Sn

for n = 5.

Corollary 4 For a clique Kn of order n, L+
Kn

is given by:

1 ≤ x ≤ n, l+xx =
n− 1

n2
& 1 ≤ x 6= y ≤ n, l+xy = l+yx = − 1

n2
(4.7)

The results in the corollaries presented above are not just illustrative examples. They

are also of interest from a computational point of view, particularly when the graph

under study is an unweighted one. Both stars and cliques can occur as motif sub-graphs

in any given graph. Indeed, for any non-trivial connected simple graph of order n ≥ 3,

there is at least one sub-graph that is a star. Selecting any vertex i with d(i) ≥ 2,

and conducting a one-hop breadth first search, generates a star sub-graph. Cliques,

though not so universal, also occur in real world networks (e.g. citation networks).

Therefore, in any divide-and-conquer methodology, both stars and cliques are likely to

be found at some stage. We have already established that the cost of computing L+
Sn

and L+
Kn

is O(1) (as they are determined entirely by n) and hence the solution to such

a sub-problem, when found, is obtained at the lowest possible cost — a true practical

gain.

To conclude, we have demonstrated that there exists a relationship between the

elements of L+ and the pairwise effective resistances in the graph G(V,E), that yields

interesting closed form solutions for the pseudo-inverse for special graphs such as stars

and cliques. In the subsequent sections, we demonstrate that it can be used to compute

L+ for general graphs as well, incrementally, in a divide-and-conquer fashion.
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Figure 4.4: Divide-and-Conquer: Connected bi-partition of a graph and the two-stage
process: first join followed by three edge firings. The dotted lines represent the edges
that are not part of the intermediate sub-graph at that stage.

4.3 From Two to One: Computing L+ by Partitions

In this section, we present our main result — the computation of the Moore-Penrose

pseudo-inverse of the Laplacian, or L+, by means of graph bi-partitions. In §4.3.1, we
lay out a two-stage process — the first join followed by edge firings — that underpins

our methodology. We then provide specific closed form solutions in §4.3.2.

4.3.1 Connected Bi-Partitions of a Graph and the Two-Stage Process

In order to compute the Moore-Penrose pseudo-inverse of the Laplacian of a simple,

connected, undirected and unweighted graph G(V,E) by parts, we must first establish

that the problem can be decomposed into two, or more, sub-problems that can be solved

independently. The solutions to the independent sub-problems can then be combined to

obtain the overall result. But before we proceed to do so, a few notational clarifications

are in order.

Fig. 4.4(a-b), shows a graph G(V,E) and a connected bi-partition P (G1, G2) of

it, obtained from the graph G(V,E) by removing the set of dotted edges shown. Re-

call, each partition P (G1, G2) has certain defining characteristics in terms of the set of
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vertices as well the set of edges in the graph. Specifically, for the set of vertices:

V1(G1) ∩ V2(G2) = φ & V1(G1) ∪ V2(G2) = V (G) (4.8)

Similarly, for the sets of edges: E1(G1) ∩ E2(G2) = E1(G1) ∩ E(G1, G2) = E1(G2) ∩
E(G1, G2) = φ and E1(G1)∪E(G1, G2)∪E2(G2) = E(G). We denote by P(G), the set

of all such connected bi-partitions of the graph G(V,E).

It is easy to see that for an arbitrary connected bi-partition P (G1, G2) ∈ P(G)

both G1 and G2 are themselves simple, connected, undirected and unweighted graphs.

Hence, the discussion in §4.2 is applicable in its entirety to the sub-graphs G1 and G2

independently. Note then that L+
G1

and L+
G2

, the Moore-Penrose pseudo-inverse of the

Laplacians of the sub-graphs G1 and G2, must, by definition, exist. The pair {L+
G1

,

L+
G2

}, constitutes the solution to two independent sub-problems represented in the set

{G1, G2}. All that remains to be shown now is that {L+
G1

, L+
G2

} can indeed be combined

to obtain L+
G. It is this aspect of the methodology, that we call the two-stage process,

as explained in detail below.

The original graph G(V,E) can be thought of, in some sense, as a bringing together

of the disjoint spanning sub-graphs G1 and G2, by means of introducing the edges of the

set E(G1, G2). Starting from G1 and G2, we iterate over the set of edges in E(G1, G2)

in the following fashion (cf. Fig. 4.4 for a visual reference). Let eij ∈ E(G1, G2) : i ∈
V1(G1), j ∈ V2(G2), of weight wij and resistance ωij = w−1

ij ohm, be an arbitrary edge

chosen during the first iteration as shown in Fig. 4.4(c). We call this step the first join

in our two-stage process, whereafter G1 and G2 come together to give an intermediate

connected spanning sub-graph (say G3(V3, E3)).

The first join represents a point of singularity in the reconstruction process, par-

ticularly from the perspective of the effective resistance distance. Note that before the

first join, the effective resistance distance between an arbitrary pair of nodes (x, y) ∈
V (G) × V (G) is infinity, if x ∈ V1(G1) and y ∈ V2(G2), as there is no path connecting

x and y. However, once the first edge eij has been introduced during the first join,

the intermediate sub-graph is connected, and the discrepancy no longer exists — all

pairwise effective resistances are finite.

Let ΩG1 : V1(G1)×V1(G1) → ℜ+ and ΩG2 : V2(G2)×V2(G2) → ℜ+, be the pairwise
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effective resistances defined over the sub-graphs G1 and G2, the following holds:

ΩG3

xy = ΩG1

xy , if x, y ∈ G1

= ΩG2

xy , if x, y ∈ G2

= ΩG1

xi + ωij +ΩG2

jy , if x ∈ G1 & y ∈ G2

Needless to say, this is a critical step in the process as we need finite values of effective

resistances in order to exploit the result in Lemma 1. Hereafter, we can combine the

solutions to the independent sub-problems, i.e. L+
G1

and L+
G2

, to obtain L+
G3

. Indeed, we

obtain an elegant scalar form with interesting properties (details in subsequent sections).

Following the first join, the remaining edges in E(G1, G2), can now be introduced one

at a time to obtain a sequence of intermediate connected sub-graphs (G4 → G5 → G6)

which finally ends in G(V,E) (cf. Fig. 4.4(d-f)). We call this second stage of edge

introductions, following the first join, edge firing. In terms of effective resistances,

each edge firing simply creates parallel resistive connections, or alternative paths, in

the graph. Algebraically, each edge firing is a rank(1) perturbation of the Laplacian

for the intermediate graph from the previous step. Thus, the Moore-Penrose pseudo-

inverse of the Laplacians for the intermediate sub-graph sequence (G4 → G5 → G6) can

be obtained starting from L+
G3

using standard perturbation methods [55] (details in

subsequent sections).

To summarize, therefore, during the two-stage process we obtain a sequence of con-

nected spanning sub-graphs of G(V,E) starting from a partition P (G1, G2) ∈ P(G),

performing the first join by arbitrarily selecting an edge eij ∈ E(G1, G2), and then

firing the remaining edges, one after the other, in any arbitrary order. The number of

connected spanning sub-graphs of G(V,E) constructed during the two-stage process is

exactly |E(G1, G2)| (= 4 for the example in Fig. 4.4). Note that, the order in which

these sub-graphs are generated, is of no consequence whatsoever. Next, we show how

to obtain L+ for all the intermediate sub-graphs in the sequence.

4.3.2 The Two-Stage Process and L+

We now present the closed form solutions for the Moore-Penrose pseudo-inverse of the

Laplacians of the set of intermediate sub-graphs obtained during the two-stage process.
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(i, j)

(j, i)

Figure 4.5: The First Join: Scalar mapping
(
L+
G1

, L+
G2

)
to L+

G3
. The grey blocs rep-

resent relevant elements in L+
G1

, L+
G2

and L+
G3

. Arrows span the elements of the upper

triangular of L+
G3

that contribute to the respective diagonal element pointed to by the

arrow head: l
+(3)
kk = −




k−1∑

i=1

l
+(3)
ik +

n∑

j=k+1

l
+(3)
kj


.

The First Join

Given, two simple, connected, undirected graphs G1(V1, E1) and G2(V2, E2) let L+
G1

and L+
G2

, be the respective Moore-Penrose pseudo-inverses of their Laplacians. Also, let

n1 = |V1(G1)| and n2 = |V2(G2)| be the orders of the two graphs. We denote by l
+(1)
xy

and l
+(2)
xy respectively the general terms of the matrices L+

G1
and L+

G2
. Next, let the first

join between G1 and G2 be performed by introducing an edge eij between the graphs

G1 and G2 to obtain G3(V3, E3); where i ∈ V1(G1) and j ∈ V2(G2). Clearly, V3(G3) =

V1(G1)∪V2(G2) and E3(G3) = E1(G1)∪{eij}∪E2(G2). Thus, |V3(G3)| = n3 = n1+n2

and E3(G3) = m3 = m1 + 1 + m2. By convention, the vertices in V3(G3) are labeled

in the following order: the first n1 vertices {1, 2, ..., n1} are retained, as is, from V1(G1)

and the remaining n2 vertices are labelled {n1 + 1, n1 + 2, ..., n1 + n2} in order from

V2(G2). We denote by L+
G3

the pseudo-inverse and l
+(3)
xy its general term. Then,

Theorem 8 ∀(x, y) ∈ V3(G3)× V3(G3),

l+(3)
xy = l+(1)

xy −
n2n3

(
l
+(1)
xi + l

+(1)
iy

)
− n2

2

(
l
+(1)
ii + l

+(2)
jj + ωij

)

n2
3

, if x, y ∈ G1

= l+(2)
xy −

n1n3

(
l
+(2)
xj + l

+(2)
jy

)
− n2

1

(
l
+(1)
ii + l

+(2)
jj + ωij

)

n2
3

, if x, y ∈ G2
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=
n3

(
n1l

+(1)
xi + n2l

+(2)
jy

)
− n1n2

(
l
+(1)
ii + l

+(2)
jj + ωij

)

n2
3

, if x ∈ G1 & y ∈ G2

The result in Theorem 8 is interesting for several reasons. First and foremost, it clearly

shows that the general term of L+
G3

, is a linear combination of the elements of L+
G1

and L+
G2

. This was indeed our principal claim. Secondly, ∀(x, y) ∈ V3(G3) × V3(G3),

each individual l
+(3)
xy can be computed independent of the others (barring symmetry,

i.e. l
+(3)
xy = l

+(3)
yx , which we shall discuss shortly). They are determined entirely by the

specific elements from the ith and jth columns of the matrices L+
G1

and L+
G2

, depending

upon the membership of x and y in the disjoint graphs. This implies that all l
+(3)
xy can

be computed in parallel, as long as we have the relevant elements of L+
G1

and L+
G2

.

From a cost point of view, the first join requires O(1) computations per element

in L+
G3

— constant number of {+, −, ×, /} operations — if {L+
G1

, L+
G2

} is given a

priori. The common term in the numerator, i.e. (l
+(1)
ii + l

+(2)
jj +1), is an invariant for the

elements of L+
G3

and need only be computed once. This term is simply a linear multiple

of the change in trace:

∆(Tr) = Tr(L+
G3

)−
[
Tr(L+

G1
) + Tr(L+

G2
)
]

(4.9)

For details see the proof of Lemma 4 in Appendix. Therefore, we achieve an overall

cost of O(n2
3) for the first join. Last but not the least, we need to compute and store

only the upper triangular of L+
G3

. Owing to the symmetry of L+
G3

, the lower triangular

is determined automatically. As for the diagonal elements, they come without any

additional cost as a result of L+
G3

being doubly-centered (cf. Fig. 4.5).

Firing an Edge

We now look at the second stage that of firing an edge in a connected graph. Given

a simple, connected, undirected graph G1(V1, E1), let eij /∈ E1(G1) be fired to obtain

G2(V2, E2). Clearly, V2(G2) = V1(G1) and E2(G2) = E1(G1) ∪ {eij}. Continuing with

our convention, we denote by L+
G1

and L+
G2

the Moore-Penrose pseudo-inverses of the

respective Laplacians. Then,

Theorem 9 ∀(x, y) ∈ V2(G2)× V2(G2),

l+(2)
xy = l+(1)

xy −

(
l
+(1)
xi − l

+(1)
xj

)(
l
+(1)
iy − l

+(1)
jy

)

ωij +ΩG1

ij

(4.10)
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where ΩG1

ij is the effective resistance distance between nodes i and j in the graph

G1(V1, E1) — an invariant ∀(x, y) ∈ V3(G3) × V3(G3) that is determined entirely by

the end-points of the edge eij being fired. Once again, we observe that the general term

of L+
G2

is a linear combination of the elements of L+
G1

and requires O(1) computations

per element in L+
G2

— constant number of {+, −, ×, /} operations — if L+
G1

is given

a priori. The rest of the discussion from the preceding sub-section on first join —

element-wise independence and upper triangular sufficiency — holds as is for this stage

too. However, before concluding this section, we extend the result of Theorem 9 to the

pairwise effective resistances themselves in the following corollary.

Corollary 5 ∀(x, y) ∈ V2(G2)× V2(G2),

ΩG2

xy = ΩG1

xy −

[(
ΩG1

xj − ΩG1

xi

)
−
(
ΩG1

jy − ΩG1

iy

)]2

4(ωij +ΩG1

ij )
(4.11)

The result above is interesting in its own right. Note that computing ΩG2 when the

edge density of a graph increases (or the expected commute times in random walks

between nodes), is pertinent to many application scenarios [56, 57, 58, 59, 8, 51, 16, 60].

Corollary 5 gives us a way of computing these distances directly without having to

compute L+
G2

first.

To conclude, therefore, we have established that the Moore-Penrose pseudo-inverses

of the Laplacians of all the intermediate sub-graphs, generated during the two-stage

process, are incrementally computable from the solutions at the preceding stage, on an

element-to-element basis. We shall return to specific applications of these results to

dynamic (time-evolving) graphs and large graphs in general, in a subsequent section.

But first, for the sake of completeness, we present the case of structural regress.

4.4 From One to Two: A Case of Regress

We now present analogous results in the opposite direction, that of structural regress

of a graph through successive deletion of edges until the graph breaks into two. These

results, similar in essence to those presented in the preceding section, are particularly

significant with respect to dynamically evolving graphs that change with time (e.g.

social networks). Once again, we have two cases to address with respect to edge deletions
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viz. (a) Non-bridge edge: an edge that upon deletion does not affect the connectedness

of the graph (cf. §4.4.1); and (b) Bridge-edge: an edge that, when deleted, yields a

connected bi-partition of the graph (cf. §4.4.2).

4.4.1 Deleting a Non-Bridge Edge

Given a simple, connected, undirected graph G1(V1, E1), let eij ∈ E1(G1) be a non-

bridge edge that is deleted to obtainG2(V2, E2). Clearly, V2(G2) = V1(G1) and E2(G2) =

E1(G1) − {eij}. Once again, we denote by L+
G1

and L+
G2

the Moore-Penrose pseudo-

inverses of the respective Laplacians. Then,

Theorem 10 ∀(x, y) ∈ V2(G2)× V2(G2),

l+(2)
xy = l+(1)

xy +

(
l
+(1)
xi − l

+(1)
xj

)(
l
+(1)
iy − l

+(1)
jy

)

ωij − ΩG1

ij

(4.12)

Note, as eij is a non-bridge edge, ΩG1

ij 6= 1. In fact, given that G1(V1, E1) is connected,

undirected and unweighted, we have: 0 < ΩG1

ij < 1. Also, as in the case of the two-stage

process, we observe the same element-wise independence for L+
G2

here as well. Once

again, if the quantity of interest is ΩG2 or pairwise expected commute times in random

walks, we can simply use the following corollary.

Corollary 6 ∀(x, y) ∈ V2(G2)× V2(G2),

ΩG2

xy = ΩG1

xy +

[(
ΩG1

xj − ΩG1

xi

)
−
(
ΩG1

jy − ΩG1

iy

)]2

4(ωij − ΩG1

ij )
(4.13)

4.4.2 Deleting a Bridge Edge

Finally, we deal with the case when a bridge edge is deleted from a graph, thus rendering

it disconnected for the first time. This represents the point of singularity in the case

of structural regress (analogous to the first join). Continuing with our convention, let

G1(V1, E1) be a simple, connected, undirected graph with a bridge edge eij ∈ E1(G1).

Upon deleting eij , we obtain G2(V2, E2) and G3(V3, E3), two disjoint spanning sub-

graphs of G1. The orders of G1, G2 and G3 are respectively given by n1, n2 and n3,
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while L+
G1

,L+
G2

and L+
G3

are the respective pseudo-inverse matrices of their Laplacians.

It is easy to see that:

ΩG1

xy = ΩG2

xy , if x, y ∈ V2(G2)

= ΩG3

xy , if x, y ∈ V3(G3)

and ΩG2×G3
xy = ΩG3×G2

xy = ∞, as G1 and G2 are disjoint. To obtain L+
G2

and L+
G3

from

L+
G1

, we use the result in Lemma 1.

Theorem 11 ∀(x, y) ∈ V2(G2)× V2(G2) and ∀(u, v) ∈ V3(G3)× V3(G3),

l+(2)
xy = l+(1)

xy −

n2

∑

z∈V2(G2)

(
l+(1)
xz + l+(1)

zy

)
−

∑

x∈V2(G2)

∑

y∈V2(G2)

l+(1)
xy

n2
2

(4.14)

l+(3)
uv = l+(1)

uv −

n3

∑

w∈V3(G3)

(
l+(1)
uw + l+(1)

wv

)
−

∑

u∈V3(G3)

∑

v∈V3(G3)

l+(1)
uv

n2
3

(4.15)

Note also that L+
G2

∈ ℜn2×n2 and L+
G2

∈ ℜn3×n3 . For convenience, and without loss

of generality, we assume that the rows and columns of L+
G1

∈ ℜn1×n1 have been pre-

arranged in such a way that the first (n2 × n2) sub-matrix (upper-left) maps to the

sub-graph G2 and similarly the lower-right (n3 × n3) sub-matrix to G3.

4.5 Bringing it together: Algorithm, Complexity and

Parallelization

In this section, we bring together the results obtained in preceding sections, to bear on

two important scenarios: (a) dynamic ( time-evolving) graphs (cf. §4.5.1), and (b) real-

world networks of large orders (cf. §4.5.2). In each case, we discuss the time complexity

and parallelizability of our approach in detail.

4.5.1 Dynamic Graphs: Incremental Computation for Incremental

Change

Dynamic graphs are often used to represent temporally changing systems. The most

intuitively accessible example of such a system is an online social network (OSN). An
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OSN evolve not only in terms of order, through introduction and attrition of users

with time, but also in terms of the social ties (or relationships) between the users as

new associations are formed, and older ones may fade off. Mathematically, we model an

OSN as a dynamic graph Gτ (Vτ , Eτ ) where the sub-index τ denotes the time parameter.

We now study a widely used model for dynamic, temporally evolving, graphs called

preferential attachment [19, 61, 21].

The preferential attachment model is a parametric model for network growth de-

termined by parameters (n, κ) such that n is the desired order of the network and κ

is the desired average degree per node. In its simplest form, the model proceeds in

discrete time steps whereby at each time instant 1 < τ + 1 ≤ n, a new node vτ+1 is

introduced in the network with κ edges. This incoming node vτ+1, gets attached to a

node vi : 1 ≤ i ≤ τ , through exactly one of its κ edges, with the following probability:

Pτ+1(vi) =
dτ (i)∑τ
j=1 dτ (j)

(4.16)

where dτ (i) is the degree of node vi at time τ . The end-points of all the edges emanating

from vτ+1 are selected in a similar fashion. At the end of time step τ + 1, we obtain

Gτ+1(Vτ+1, Eτ+1), and the process continues until we have a graph Gn(Vn, En) of order

n.2

Simplistic though it may seem, this model has been shown to account for several

characteristics observed in real-world networks, including the power law degree distri-

butions, the small-world characteristics and the logarithmic growth of network diameter

with time [19, 61, 21]. We return to these in detail in the next sub-section while dealing

with the more general case.

It is easy to see that in order to study the structural evolution of dynamic net-

works, particularly in terms of the sub-structures like spanning trees and forests [42], or

centralities of nodes and edges [25, 53]; or voltage distributions in growing conducting

networks [62], we require not only the final state Gn(Vn, En), but all the intermediate

states of the network. In other words, we need to compute the pseudo-inverses of the

Laplacians for all the graphs in the sequence (G1 → G2 → ... → Gn). Clearly, if the

2 In practice, for κ > 1, the process starts with a small connected network as a base substrate to
facilitate probabilistic selection of neighbors for an incoming node. For κ = 1, we may start with a
singleton node, and the resulting structure is a tree.
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(a) τ = 25 (b) τ = 50 τ = 100

Figure 4.6: Growing a tree by preferential attachment (n = 100, κ = 1). The node vτ ,
being added to the tree at time step τ , is emphasized (larger circle). Dotted edges at
time steps τ = {25, 50} are a visual aid representing edges that are yet to be added.

standard methods are used, the cost at time step τ is O(τ3). The overall asymptotic

cost for the entire sequence is then O

(
n∑

τ=1

τ3 =

[
n(n+ 1)

2

]2)
.

In contrast, using our incremental approach, we can accomplish this at a much lower

computational cost. Note that in the case of growing networks, we do not need an ex-

plicit divide operation at all. The two sub-problems at time step τ + 1 are given a

priori. We have, Gτ (Vτ , Eτ ) and a singleton vertex graph {vτ+1} as a pair of disjoint

sub-graphs. The κ edges emanating from {vτ+1} have end-points in Gτ as determined by

(4.16). The conquer operation is then performed through a first join between the single-

ton node {vτ+1} and the graph Gτ (Vτ , Eτ ). We can assume that L+
Gτ

is already known at

this time step (the induction hypothesis). Also, L+
{vτ+1}

= [0] and n2 = 1 during the first

join. Substituting in Theorem 8 we obtain the desired results. The rest of the κ−1 edges

are accounted for by edge firings (cf. the discussion in §4.3). Therefore, we need only

O(κ·τ2) computations at time step τ , and hence O

(
κ ·

n∑

τ=1

τ2 = κ · n(n+ 1)(2n+ 1)

6

)
,

overall. As κ << n in most practical cases, we have an order of magnitude lower average

cost than that incurred by the standard methods. Further improvements follow from

the parallelizability of our approach. Although we have not discussed it explicitly, it is

evident that node and edge deletions can all be handled within this framework in the

same way and at the same O(n2) cost per operation (cf. the discussion in §4.4).
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4.5.2 Large Real-World Networks: A Divide-And-Conquer Approach

In order to compute L+ for an arbitrary graph G(V,E), in a divide-and-conquer fashion,

we need to first determine independent sub-graphs of G in an efficient manner. The-

oretically, an optimal divide step entails determining a balanced connected bi-partition

P (G1, G2) of the graph G such that |V (G1)| ≈ |V (G2)| and |E(G1, G2)|, the number of

edges violating the partition, is minimized. Such balanced bi-partitioning of the graph,

if feasible, can then be repeated recursively until we obtain sub-graphs of relatively small

orders. The solutions to these sub-problems can then be computed and the recursion

unwinds to yield the final result, using our two-stage methodology in the respective

conquer steps. Alas, computing such balanced bi-partitions, along with the condition of

minimality of |E(G1, G2)|, belongs to the class of NP-Complete problems [63], and hence

a polynomial time solution does not exist. We therefore need an efficient alternative

to accomplish the task at hand. Partitioning of graphs to realize certain objectives has

been studied extensively in diverse domains such as VLSI CAD [64], parallel computing,

artificial intelligence and image processing [14], and power systems modeling [63, 65].

Perhaps, the most celebrated results in this class of problems are the spectral method

[4] and the max-flow = min-cut [66], both of which are computable in polynomial time

[4, 67]. Approximation algorithms for the balanced connected bi-partitions problem,

for some special cases, have also been proposed [68, 69]. Although useful in specific

instances, such methods when used for the divide step may, in themselves, incur high

computational costs thus undermining the gains of the conquer step. We need a simple

methodology that works well on real-world networks.

Real-world networks, and particularly online social networks, have been shown to

have several interesting structural properties: edge sparsity, power-law scale-free degree

distributions, existence of the so called rich club connectivity [19, 61, 21], small-world

characteristics [44] with relatively small diameters (O(log n)). Collectively, these prop-

erties amount to a simple fact: the overall connectivity between arbitrary node pairs is

dependent on higher degree nodes in the network.
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G(V,E) n = |V (G)| m = |E(G)| Leaves Cut-off # Comp. |V (GCC)| |E(GCC)| # Cut-Edges

Epinions 75,888 405,740 35,763 4,429 30,376 37,924 61,482 102,452
SlashDot 82,168 504, 230 28,499 7,012 36,311 41,084 62,225 164,719

Table 4.1: Basic properties: Epinions and SlashDot networks.
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Figure 4.7: Structural regress: Epinions and SlashDot Networks.
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Based on these insights, we now study two real-world online social networks — the

Epinions and SlashDot networks [70] — to attain our objective of a quick and easy

divide step. Table 4.1 gives some of the basic statistics about the two networks.3

It is easy to see that the networks are sparse as m = O(n) << O(n2) in both cases.

Moreover, note that a significant fraction of nodes in the graphs are leaf/pendant nodes,

i.e. nodes of degree 1 (≈ 47% for Epinions and ≈ 34% for SlashDot). From Fig. 4.7

(a-b), it is also evident that the node degrees indeed follow a heavy tail distribution in

both cases. Thus, there are many nodes of very small degree (e.g. leaves) and relatively

fewer nodes of very high degrees in these networks. Therefore, in order to break the

graph into smaller sub-graphs, we adopt an incremental regress methodology of deleting

high degree nodes. Ordering the nodes in decreasing order by degree, we remove them

one at a time. This process divides the set of nodes into three parts at each stage:

a. The Rich Club: High degree nodes that have been deleted until that stage.

b. The Giant Connected Component (GCC): The largest connected component

at that stage.

c. Others: All nodes that are neither in the rich club nor the GCC.

We repeat the regress, one node at a time, until the size of the GCC is less than half

the size of the original graph. We call this the cut-off point. We then retain the GCC

as one of our sub-graphs (one independent sub-problem) and re-combine all the non-

GCC nodes together with the rich club to obtain (possibly) multiple sub-graphs (other

sub-problems). This concludes the divide step.

Table 4.1 shows the relevant statistics at the cut-off point for the two networks. Note

that the cut-off point is attained at the expense of a relatively small number of high

degree nodes (≈ 5% for Epinions and ≈ 8% for SlashDot). Moreover, the number of

nodes in the GCC is indeed roughly half of the overall order, albeit the GCC is surely

sparser in terms of edge density than the overall network (|E(GCC)|/|V (GCC)| =

1.63 vs. |E(G)|/|V (G)| = 5.35 for Epinions and |E(GCC)|/|V (GCC)| = 1.51 vs.

|E(G)|/|V (G)| = 6.13 for Slashdot). Fig. 4.7 (c-d) shows the sizes (in terms of nodes) of

all the connected components for the respective graphs at the cut-off point. It is easy to

3 Although the networks originally have uni-directional and bi-directional links, we symmetrize the
uni-directional edges to make the graphs undirected.



53

see that other than the GCC, the remaining components are of negligibly small orders.

Recombining the non-GCC components together (including the rich club) yields an in-

teresting result. For the Epinions network, we obtain two sub-graphs of orders 37, 933

and 31 respectively while for the Slashdot network we obtain exactly one sub-graph of

order 41, 084. This clearly demonstrates that our simple divide method, yields a roughly

equal partitioning of the network — and thus comparable sub-problems — in terms of

nodes. The pseudo-inverses of these sub-problems can now be computed in parallel.

Albeit, as in the case of all tradeoffs, this equitable split comes at a price of roughly

κ = O(n) edges that violate the cut (cf. Table 4.1). This yields an O(n3) average cost

for the two-stage process (cf. §4.3). However, given the element-wise parallelizability of

our method, we obtain the pseudo-inverses in acceptable times of roughly 15 minutes

for the Epinions and 18 minutes for the SlashDot networks.

4.6 Summary

In this chapter, we presented a divide-and-conquer based approach for computing the

Moore-Penrose pseudo-inverse of the Laplacian (L+) for a simple, connected, undirected

graph. Our method relies on an elegant interplay between the elements of L+ and the

pairwise effective resistance distances in the graph. Exploiting this relationship, we

derived closed form solutions that enable us to compute L+ in an incremental fashion.

We also extended these results to analogous cases for structural regress. Using dynamic

networks and online social networks as examples, we demonstrated the efficacy of our

method for computing the pseudo-inverse relatively faster than the standard methods.

The insights from our work open up several interesting questions for future research.

First and foremost, similar explorations can be done for the case of directed graphs

(asymmetric relationships), where analogous distance functions — such as the expected

commute time in random walks — are defined, albeit the Laplacians (more than one

kind in literature) are no longer symmetric [71]. Secondly, matrix-distance interplays of

the kind exploited in this work, also exist for a general case of the so called forest matrix

and its distance counterpart the forest distance [72, 73], both for undirected and directed

graphs. he results presented here should find natural extensions to the forest matrix

and the forest metric, at least for the undirected case. Finally, our closed forms can be
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used in conjunction with several interesting approaches for sparse inverse computations

[50], to further expedite the pseudo-inverse computation for large generalized graphs.

All these motivate ample scope for future work.
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Operation Ω L+

x, y ∈ G1 : ΩG3
xy = ΩG1

xy l
+(1)
xy −

n2n3

(

l
+(1)
xi

+l
+(1)
iy

)

−n2
2

(

l
+(1)
ii

+l
+(2)
jj

+ωij

)

n2
3

First Join x, y ∈ G2 : ΩG3
xy = ΩG2

xy l
+(2)
xy −

n1n3

(

l
+(2)
xj

+l
+(2)
jy

)

−n2
1

(

l
+(1)
ii

+l
+(2)
jj

+ωij

)

n2
3

x ∈ G1, y ∈ G2 : ΩG3
xy = ΩG1

xi + ωij +ΩG1
jy

n3

(

n1l
+(1)
xi

+n2l
+(2)
jy

)

−n1n2

(

l
+(1)
ii

+l
+(2)
jj

+ωij

)

n2
3

Edge firing ΩG1
xy −

[(

Ω
G1
xj

−Ω
G1
xi

)

−

(

Ω
G1
jy

−Ω
G1
iy

)]2

4(ωij+Ω
G1
ij

)
l
+(1)
xy −

(

l
+(1)
xi

−l
+(1)
xj

)(

l
+(1)
iy

−l
+(1)
jy

)

ωij+Ω
G1
ij

Non-bridge delete ΩG1
xy +

[(

Ω
G1
xj

−Ω
G1
xi

)

−

(

Ω
G1
jy

−Ω
G1
iy

)]2

4(ωij−Ω
G1
ij

)
l
+(1)
xy +

(

l
+(1)
xi

−l
+(1)
xj

)(

l
+(1)
iy

−l
+(1)
jy

)

ωij−Ω
G1
ij

Bridge delete x, y ∈ Gk : ΩGk
xy = ΩG1

xy l
+(1)
xy − nk

∑

z∈Gk
(l+(1)

xz +l+(1)
zy )−

∑

x∈Gk

∑

y∈Gk
l+(1)
xy

n2
k

Table 4.2: Summary of results: Atomic operations of the divide-and-conquer methodology.



Chapter 5

How to “Glue” a Robust

Inter-dependent Network?

Modern infrastructure networks are becoming increasingly complex and dependent on

one another. An example of such an interdependence is that of an electrical power-grid

network regulated by a communication network which in turn depends on the same

power-grid for its electrical supply. Due to such interdependence, failures of elements

in one network, e.g., a small fraction of nodes in a communication network that is

used to control and communicate elements in a smart grid, can induce failures in the

other, i.e. the power grid network, which would in turn cause further failures in the

communication and control network, thus producing a cascade of failures in the inter-

dependent networks. In the recent past, electrical blackouts, like the one in Italy on 28

September 2003 [74], have in fact been caused by such cascaded failures.

Clearly, the extent to which random failures or targeted attacks can lead to a cas-

caded failure, of course, depends on the structural properties of the constituent networks.

In their seminal work, Buldyrev et al [75] have demonstrated that inter-dependent net-

works can behave very differently from each of their constituents. In particular, two

robust power-law networks when made inter-dependent via “random coupling” may be-

come more vulnerable to random failures. Their work, and those of others, quantify

the structural robustness of inter-dependent networks in terms of asymptotic statistical

properties such as the existence of giant connected components under random failures.

56
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As in the case of robustness of single networks, while this complex network theory char-

acterization of network robustness provides valuable insight into the general statistical

properties of interdependences of classes of random graphs/networks, they are not very

useful in practice, as real networks are deterministic and finite. In particular, engineered

infrastructure networks such as power-grids and communication networks, are designed

to perform certain specific functions. There topological structures reflect and are con-

strained by the functional roles of various nodes as well as their geographical locations

that are dictated by, say, user population or other resources. In other words, their

structures may differ significantly from (theoretically generated) random networks, and

the interdependencies between two networks (e.g., communication networks and power

grids are not arbitrary, but often are determined by geographical and other constraints).

In this chapter, we propose a theoretical framework for assessing structural robust-

ness of inter-dependent networks which is not dependent on specific assumptions of

structure like a power-law degree distribution. In doing so, we address the following im-

portant questions related to vulnerability assessment and protection of inter-dependent

networks: (a) how can we characterize the robustness of the inter-dependent network

on a whole? (b) how is the overall robustness of two inter-dependent networks affected

by the manner in which the two networks are coupled (or “glued”) together? (c) how

do we judicially select an appropriate coupling function, namely, select an appropriate

collection of coupled node pairs to introduce “interdependence” (i.e., where the two net-

works are “glued” together) so that the resulting inter-dependent networks are more

robust to random failures or targeted attacks? The answer to the last question provides

insights as to how we can harden two inter-dependent networks.

In the following we demonstrate that these questions can be answered – at least

theoretically – by studying the topological properties captured by our “geometry of

networks” approach [76], namely, by using the Moore-Penrose pseudo-inverse of the

graph Laplacians (L+) for the individual networks and that of the inter-dependent net-

work. Based on the topological interpretations of L+ [77], in particular, the topological

centrality metrics and Kirchhoff index, we develop a (deterministic) “finite-network”

theory to study the robustness of interdependence. This theory enables us to mathemat-

ically quantify the topological centrality and roles of coupled nodes (as well as uncoupled
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nodes) in the inter-dependent networks as well as the robustness of inter-dependent net-

works as a whole. More importantly, this theory allows us to explicitly study how the

way node pairs in two networks are coupled or “glued” together (thereby introducing in-

terdependence) affects the overall robustness of the resulting inter-dependent networks.

Our study leads to some surprising (and somewhat counter-intuitive) results: i) simply

“gluing” together of structurally most central node pairs in the two constituent net-

works (when considered independently) does not always result in the most structurally

robust inter-dependent network ii) coupling a large number of structurally least central

node pairs in the two constituent networks often leads to more robust inter-dependent

networks than coupling the same number of structurally most central node pairs. Intu-

itively, this result suggests that by diffusing and distributing inter-dependencies among

a large number of (geographically dispersed) node pairs in the two constituent networks

produce more robust inter-dependent networks.

5.1 Modeling Interdependent Networks

In this section we briefly describe the basic notations and a simple graph model for inter-

dependent networks. In particular, we introduce a coupling function, C = {[u, v], which
specifies how and where two constituent networks are coupled or “glued” together to

introduce inter-dependencies among the two networks and form a single inter-dependent

network.

Given two networks, N1 and N2, we represent them in terms of their respective

graphs: G1(V1, E1) and G2(V2, E2). Also, for the sake of simplicity, we assume that

|V1| ≈ |V2|, i.e., the two networks are of comparable sizes. Let C denote a collection of

node pairs [u, v], one from each constituent network, i.e. C = {[u, v], u ∈ V1, v ∈ V2}.
We refer to C as a coupling function, and each node pair [u, v] in C a coupled node

pair. Intuitively, the coupled node pairs are where an inter-dependency between two

constituent networks are introduced. The cardinality of C, κ = |C|, represents the

number of inter-dependencies, i.e., the number of coupled node pairs. Hence given a

coupling function C, two networks, N1 and N2, form as a whole a single inter-dependent

network, denoted as Gc(Vc, Ec).

As a graph, the inter-dependent network Gc(Vc, Ec) can be defined as follows. Let
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[u, v], u ∈ V1 and v ∈ V2, be a coupled node pair in C. When glued/coupled together,

u and v will result in a new node u ⊗ v in Gc such that each edge e(u, x) ∈ E1 will

now create an edge e(u⊗ v, x) ∈ E(Gc), if x is an uncoupled node in N1; it will create

an edge e(u ⊗ v, x ⊗ y) ∈ E(Gc) if x is also a node in another coupled pair [x, y] ∈ C.
Similarly, each edge e(v, y) ∈ E2 will create an edge e(u ⊗ v, y) ∈ E(Gc), if y is an

uncoupled node in N2; it will create an edge e(u⊗ v, x⊗ y) ∈ E(Gc) if y is also a node

in another coupled pair [x, y] ∈ C. In other words, where there were two vertices u

and v in the individual networks, we create a macro-vertex u⊗ v in the glued network

with a neighbor set that is a union of the neighbors of u and v in the original networks.

This representation clearly captures the inter-dependent nature of the two vertices in

question, whereby the macro-vertex u ⊗ v fails if either u or v fail in their individual

networks. Similarly, the failure of edge e(u, x) in G1, results in the failure of e(u⊗ v, x)

in Gc. Uncoupled nodes and their associated edges (to other uncoupled nodes) in each of

the two individual networks are transported to the coupled/inter-dependent Gc(Vc, Ec)

as is. Thus, if the number of couplings is κ, then |V (Gc)| = |V (G1)| + |V (G2)| − κ

and |E(Gc)| = |E(G1)| + |E(G2)|. So the order of the glued network reduces by κ as

compared to the total of its constituents, but its volume (number of edges) is the same.

Given this definition of an inter-dependent network Nc := Gc(Vc, Ec) formed by

two constituent networks, N1 and N2, via the coupling function C, we can directly

apply the results obtained in previous chapters: using the Moore-Penrose pseudo-inverse

of the graph Laplacians (L+
c ) for the inter-dependent network Gc(Vc, Ec), we define

the corresponding topological centrality metrics and the Kirchhoff index for the inter-

dependent network to measure the structural roles of individual (coupled and uncoupled)

nodes as well as the overall robustness of the inter-dependent network.

5.2 Effect of Coupling Functions on Network Robustness

Of particular importance, and one of the principal contributions of our work, is that

our theory enables us to investigate the effect of the coupling function C on the overall

robustness of the resulting inter-dependent network. In other words, it allows us to

vary the manner in which we select the node pairs from the two constituent networks

to be glued together, and study the “optimal” way of introducing interdependencies so
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as enhance or “harden” the overall robustness of the resulting inter-dependent network.

For this purpose, we adopt a topological centrality based ordering of the nodes for the

selection process. First, we rank the nodes in the networks N1 and N2 in terms of

their topological centrality values in their respective networks. Having obtained the

ranks, we then define the following three ways of gluing them together: (a) high-high

i.e. the κ-highest ranked nodes from G1 with the κ-highest ranked nodes from G2, (b)

low-low i.e. the κ-lowest ranked nodes from G1 with the κ-lowest ranked nodes from

G2 and (c) random i.e. κ random pairs from G1 and G2. The overall robustness of the

coupled/inter-dependent network is then measured in terms of its Kirchhoff index i.e.

K(Gc).

5.2.1 Atomic Coupling: The First Join

We now present closed form theoretical results on how the point of introduction of in-

terdependent edges, influences the structural robustness of the interdependent network.

Theorem 12 For two disjoint simple, connected, undirected networks G1(V1, E1) and

G2(V2, E2), let Gc(Vc, Ec) be the interdependent network resulting from coupling i ⊗ j:

i ∈ V1(G1), j ∈ V2(G2). Then,

K(Gc) = K(G1) +K(G2) +
n1n2

n1 + n2

(
l
+(1)
ii + l

+(2)
jj + ε

)
(5.1)

where ε → 0.

Observe, that K(Gc) is a linear combination of the Kirchhoff indices of the two

constituent networks; and a linear term involving l
+(1)
ii and l

+(2)
jj , the reciprocals of

topological centralities of the nodes involved in i ⊗ j. Thus, greater the topological

centrality of i and j in their respective networks, lower the value of K(Gc), and more

robust the interdependent network is. This result suffices when there is exactly one

coupling to perform. But seldom is a single coupling enough. In practice, multiple

sites are selected and thus we need another result which determines, analogously, the

Kirchhoff index when a subsequent coupling is introduced.
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5.2.2 Subsequent Atomic Couplings

Theorem 13 For an interdependent network Gc1(Vc1, Ec1), let Gc2(Vc2, Ec2) be another

interdependent network resulting from coupling i⊗j: (i, j) ∈ Vc1(Gc1)×Vc1(Gc1). Then,

K(Gc2) = K(Gc1)−

∑

x∈Vc1(Gc1)

(
l
+(c1)
xi − l

+(c1)
xj

)2

ε+ΩGc1

ij

(5.2)

where ε → 0.

Needless to say, the form in Theorem 13 provides a non-trivial convex optimiza-

tion factor. This is particularly important as the choice of node pairs for subsequent

couplings is dependent on that of the first join. The optimal solution is thus not guar-

anteed by a greedy choice. In the next section, we provide some empirical insight into

the general case — that of multiple simultaneous couplings.

5.3 Experiments

In the following, we first use a simple example (networks with tree topologies) and

then a network with realistic network topology (the Italian power grid) to illustrate

the coupling process and the effect of different coupling functions on the robustness of

resulting interdependence networks.

5.3.1 When Both Networks are Trees

We consider a simple case to illustrate our theory, where two constituent networks are

both trees. We study the coupling of two types of trees: stars and chains/paths of order

n, which represent the most well connected (compact) and the least connected of all trees

for any given n. More importantly, in the context of power-grids (and to an extent in

communication networks), a star topology represents a production/distribution center

i.e. the root of the star, while the pendants represent the consumers/first-hop relay-

ers. Similarly, a chain represents a linear sub-network formed by a series of relay-ers to

disseminate power or information. Recall that for a star topology:

l+root =
n− 1

n2
, and l+pendant =

n2 − n− 1

n2
(5.3)



62
Low-Low High-High

e

b

c

d

5

2

3

4

1a

2b
e

b

c

d

5

3

4

1a

2b
e

b

d

5

4

1a

3c

2b
e

b

5

1a

3c

4d

2b1a 3c 4d

5e

5e

1

2

3

4

a

b

c

d

5e

1

2

3

a

b

c

4d

5e

1

2

a

b

3c 4d

2b 3c 4d

5e

1 a

Low-Low High-High

eb c d

52 3 4

ea b d

51 2 4

2b1a 3c 4d 5e

1a 3c

b c d

2 3 4

ea d

51 4

1a 3c5e 2b

c d

3 4

ea

51

1a 3c5e 2b2b 4d

c

3

e

5

1a 3c5e 2b2b 4d4d 1a4d

Figure 5.1: Coupling in stars and paths (n = 5).

It is easy to see that for n > 2, the root of the star has a lower l+ii value than the

pendants and is therefore more structurally central. Similarly, for a chain of order n,

the l+ii for the ith vertex from the end is given as:

l+ii =
6i2 − 6(n+ 1)i+ 2n2 + 3n+ 1

6n
(5.4)

The form in (5.4) is parabolic in l+ii and i. Clearly, for a given n, the minima is attained

when i = ⌈n/2⌉, i.e. at the middle node/s of the chain, and the maxima is attained

when i = 1 = n i.e. at the pendants. Thus, the topological centrality of nodes in a

chain decreases as we move from the center of the chain towards the pendants on either

side.

Next, we demonstrate the low − low and high − high gluing strategies for a star

and a chain respectively with another star and chain of the same orders in Fig. 5.1, for

increasing values of κ : 1 ≤ κ ≤ n. Observe that for κ ≥ 2, the low − low strategy

produces multiple cycles in the inter-dependent networks, thereby providing alternate

connectivities between nodes and safeguarding against eventual edge failures. It is well

known that greater the number of cycles in a graph, higher the count of spanning

trees which signifies better redundant connectivities between node pairs. In contrast,

the high − high strategy produces small loops between adjacent nodes and leaves the
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Figure 5.2: K(Gc) for glued/coupled networks for the three different coupling functions.

overall structure rather tree like. Thus the low − low strategy results in more robust

glued/coupled networks for κ ≥ 2 in both the star and chain topologies.This effect is well

captured in the values of K(Gc) shown for 1 ≤ κ ≤ n in Fig. 5.2(a) and (b), where the

low− low strategy attains lowest values of K(Gc) for κ > 2 (note that smaller K(Gc) is,

more robust the network is). We see that when κ is small, pairing and coupling the most

structurally central nodes (in the constituent networks) produces more robust networks

than other coupling strategies. However, somewhat counter-intuitively, when κ increases

and becomes sufficiently large, pairing and coupling structurally least central node pairs

in the two constituent networks produces more robust inter-dependent networks. This

result suggests that distributing interdependencies amongst (geographically) disparate

nodes may result in more robust inter-dependent networks. We explore this further

with the help of a real world power-grid network in the next section.

5.3.2 The Italian Power Grid Network Example

The Italian power grid network (cf. Fig. 5.3) is a network of order n = 68 and m = 93.

The nodes in fig. 5.3(a) have been colored by their structural centralities. Notice how

the topological centrality reduces as we move towards the periphery of the network. We

now glue the Italian power grid network with an exact copy of itself, which represents

a communication network (cf. [75]) using various coupling functions C for increasing

values of κ. Once again, (cf. Fig. 5.3(b)) we obtain the same surprising (and somewhat



64

1

2

3

6

4

5

7

8

10

13

9

11
12

15

16

14

17

20

18

22

21

19

23

24

29

25

26

27

28

31

32

30

35

33

34

36

37

38 39

45

46

43

44

47

52

40

41

53

42
51

4954
50

48

59

55

56

58

60

68

57

62

63

66

67
61

64

65

1

2

3

6

4

5

7

8

10

13

9

11
12

15

16

14

17

20

18

22

21

19

23

24

29

25

26

27

28

31

32

30

35

33

34

36

37

38 39

45

46

43

44

47

52

40

41

53

42
51

4954
50

48

59

55

56

58

60

68

57

62

63

66

67
61

64

65

0 10 20 30 40 50 60 70
0

100

200

300

400

500

#Couplings

K
(G

c)

 

 
High−High
Low−Low
Random

(a) IPGN Topology (b) K(Gc) across coupling functions

Figure 5.3: The Italian power grid network coupled with itself: Red → Turquoise
decreasing topological centrality.

counter-intuitive) results that only for small κ, pairing and coupling the most struc-

turally central nodes (in the constituent networks) produce more robust (i.e., smaller

K(Gc)) networks than other coupling strategies; for κ > 10, the low − low strategy

produces more robust inter-dependent network than other strategies. We note that as

κ increases, the low− low strategy glues peripheral nodes thereby creating longer cycles

in the network as compared to the other two strategies. Such longer cycles safeguard

network wide connectivities against random edge failures, thus resulting in more robust

inter-dependent network structures. We also observe similar results for the western

states power grid network in the US.

5.4 Summary

In this chapter, we presented a theoretical framework to assess structural properties

of inter-dependent networks, based on the topological properties of the Moore-Penrose

pseudo-inverse of the graph Laplacians. We demonstrated that the topological centrality

of nodes can be used to select nodes for gluing the two networks together and the

robustness of the inter-dependent network can be measured in terms of its Kirchhoff

index, given by the trace of the L+ of the inter-dependent network. With the help of

example tree structures and the Italian power grid network, we presented comparative

results for three gluing strategies based on the structural centralities of the nodes. Of the



65

three strategies, the low− low strategy eventually wins out, producing the most robust

coupled structures (inter-dependent networks). Our results suggest that by diffusing and

distributing inter-dependencies among a large number of (geographically dispersed) node

pairs in the two constituent networks produce more robust inter-dependent networks.



Chapter 6

Mapping Cellular Data Service

Network Infrastructure via

Geo-intent Inference

With wide adoption of smart phones and other mobile devices, cellular data traffic has

grown tremendously in the past few years. This growth will be further precipitated

by the increasing popularity of newer generations of smart-phones and mobile devices

such as iPhones, Android phones and iPads. As in the case of wireline services, cellular

data traffic will likely surpass the voice traffic in the not-so-distant future. Despite this

tremendous growth, there have been relatively few studies on the (operational) cellu-

lar data service network (CDSN) infrastructure. Apart from various articles, papers

and documentations on the architectural design and component engineering (e.g. 3G

network standards), we know little, for example, about the topology and geographical

distribution of IP network elements over the cellular network substrate such as basesta-

tions. The challenges in conducting measurement-based mapping of operational cellular

data service networks (CDSNs) can be attributed, in part, to the fact that these net-

works are generally “closed”, unlike most of the traditional Internet infrastructure. In

other words, active probing (e.g. traceroute) from outside typically elicits no response

from the internal network elements of a CDSN. Conducting active probing from mo-

bile devices in general does not help much either, as IP addresses assigned to the end

66
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users’ devices are often private IP addresses [78]: the only IP addresses visible to the

outside world are the IP addresses of exit routers of the CDSNs. With the rapid growth

in cellular data traffic, gaining a better understanding of the CDSN infrastructure —

especially the geo-spatial relationships of the IP network overlaid on top of the cellu-

lar (basestation) network substrate — is imperative. Such understanding can not only

provide insights into the evolution and expansion of existing (and future) CDSNs, but

also help guide the development and deployment of innovative location-aware services

and applications that cater to mobile users (see more discussion on this in a latter part

of this section).

In this chapter we propose and explore a novel approach to map the CDSN infras-

tructure via (explicit) user geo-intent. By geo-intent, we mean (explicit) geo-location

information specified by users while submitting queries to certain services (e.g. weather

or map services), in which they explicitly seek information regarding a specific location.

Such geo-intent may be associated with the target of a user query, or the source (i.e.

the user’s own location). The basic intuition behind our approach is two-fold: i) mobile

users often explicitly express their geo-intent when performing certain location-specific

queries; and ii) their explicit geo-intent is often local, namely related to a location in

close vicinity of their current location, e.g. a restaurant nearby or the local weather.

Such queries will occur more frequently as more users adopt GPS-enabled smart phone

and utilize location-based services or apps on their mobile devices. By correlating the

user geo-intent expressed in location-specific queries with information regarding the

CDSN infrastructure, e.g. the basestation a mobile device is currently associated with

or the (first-hop) IP gateway address (such information may be obtained from mobile

devices1 ), we can geo-map the CDSN infrastructure.

To investigate whether — and to what extent — our proposed approach can help

geo-map the CDSN infrastructure, we employ two sources of data collected at a link

inside the (wired) backbone IP network of a CDSN. The first data source comprises of

the RADIUS/RADA packet data sessions which contain the basestation id’s (BSIDs)

and anonymized user id’s; the second data source is collections of application sessions

which contain URLs extracted from HTTP headers and (anonymized) user id’s. Two

1 For example, some smart phone mobile operating systems, e.g. Window Mobile OS, provide
certain APIs via which the BSID of the basestation a mobile device is associated with, the gateway IP
address as well as the IP address assigned to the mobile device can be obtained.
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datasets (containing data from both sources), collected roughly ten months apart, are

used for our study. For a subset of BSIDs, we also have the ground-truth GPS locations.

6.1 Related Work

Much of the existing work on localization in cellular networks has focused primarily on

geo-locating mobile users or devices via signal strength based methods (e.g. triangu-

lation) using known locations of cell towers (basestations). For a very recent study on

this topic and related work, see [79] and the references therein. In contrast, we attempt

to address the problem the other way around, namely, utilizing user geo-intent to map

the CDSN infrastructure. The notion of user geo-intent has been proposed and studied

recently in a different context, web search, with the goal to return search results that are

more relevant to user queries. For instance, in [80], the authors analyze search queries

from users, and classify them into explicit geo-intent and non-geo-intent queries.

In [81], the authors go one step further to extract (implicit) geographical informa-

tion that can plausibly identify users’ locations. Our work adopts a similar notion of

(explicit) geo-intent and applies it to geo-map the CDSN infrastructure.

Trestian et al [82] correlate user-location (at the granularity of basestations) and

application interests over time. In their analysis of user mobility patterns, they find

that many users tend to move around one or a few location “hot-spots” (e.g. residence,

office, or a coffee-shop). This finding indicates that a majority of users’ geo-intent is

likely local to their locations. The study in [78] cited earlier collects the IP addresses

assigned to mobile devices as well as the IP addresses (likely those of exit routers or

NAS gateways) which appear as source IP addresses in the queries sent to a web server

under the authors’ control, and uses them to locate mobile devices by geo-localizing the

IP addresses.; only to find that the geo-mapping results using these IP addresses are

very coarse-grained and often unreliable. Our study shows that the core IP network

is “sparsely” distributed over the dense and geographically dispersed (see fig. 6.1(a))

cellular network substrate, thus providing a plausible explanation for their findings.
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Figure 6.1: Illustration of geo-physical clustering of BSID’s at SID/SID-NID level
(Ground-truth set).

6.2 Preliminaries and Datasets

6.2.1 CDSN Infrastructure

In the traditional layered network architecture terms, a typical (3G) cellular data service

network (CDSN) infrastructure consists of a (layer-1/layer-2) cellular network substrate

and an IP data core network overlaid on top. The cellular network substrate comprises

of a large number of basestations and radio network controllers (RNCs) geographically

dispersed across the entire coverage of a cellular service provider (CSP). Each bases-

tation is uniquely identified by its Basestation Identifier (BSID), which contains three

parts: the System Identifier (SID), Network Identifier (NID), and Cell Identifier (CID).

The BSID namespace is hierarchical and has geo-physical significance. An SID spans

a large geographical region (e.g. one or more states in the US), and is composed of

multiple NIDs, each representing a smaller geo-physical area. An NID, in turn, con-

sists of many basestations, each covering a cell which is uniquely identified by a CID.

Fig. 6.1(b) and (c) respectively illustrate the geo-physical clustering of five sample SIDs

(represented by different shaded clusters), and five NIDs within a single SID.

SIDs are allocated to CSPs by the International Forum on ANSI-41 Standards Tech-

nology (IFAST) based on territories. A database for SIDs, publicly available on the

Internet [83], provides ownership and geo-location (coarse-grained) details. A typical

record in this database has five attributes: a decimal value representing the SID, the city

associated with the SID (usually the name of the most populous city), the state in which

the city lies, name of the CSP to whom the SID has been allocated, and the operational

frequency band. Though coarse-grained, the database serves as a good cross-reference
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Dataset (time) Users Duration #Pkt.&App. Sess.

I (Oct 2008) 2 M 7 days 24 M & 110 M
II (Jul 2009) 1.7 M 1 day 13 M & 147 M

Table 6.1: User and traffic volume statistics.

in our analysis.

The IP network of a CDSN typically consists of IP gateways (usually referred to as

network access servers or NAS gateways) through which data from/to mobile devices

enters/leaves the IP network, (IP) home agents (for user registration and mobile IP

routing), and other standard network elements such as routers, DHCP servers, DNS

servers, and so forth. The IP network also includes a number of RADIUS/RADA 2

servers for authenticating users, and for logging user data access activities for billing

and accounting purposes.

6.2.2 Datasets

Two datasets are used in our study, which are collected at a link inside the core IP

network of a large North American cellular 3G service provider. The first dataset

(henceforth referred to as Dataset I) was collected during a week-long period in Oc-

tober, 2008, and the second dataset (Dataset II) was collected over a single day in

July, 2009. Table 6.1 summarizes overall statistics regarding Datasets I and II. Both

datasets are anonymized packet traces. Each dataset consists of two sources of data:

RADIUS/RADA packet data sessions, and application sessions. The RADIUS/RADA

packet data sessions contain records of user activities such as the beginning and end

times of a user’s data session, the (anonymized) user id, the basestations (BSIDs) the

user’s mobile device is associated with during the data session etc. The application

sessions records are the HTTP headers of users’ Internet activities. We correlate the

records from the two data-sources on the basis of the anonymized IP address in an

HTTP application session, and match the HTTP timestamp such that it is between two

consecutive RADA START and STOP messages, in the RADIUS/RADA packet data

2 RADIUS stands for the Remote Authentication Dial In User Service protocol [84, 85], and RADA
stands for the Radius Authenticated Device Access protocol. Both are used to provide centralized
Authentication, Authorization, and Accounting (AAA) management.
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Hostname Geo-physical identifiers in URL # of URLs

pv3.wirelessaccuweather.com zip=54940&city=Fremont&state=Wi 510,170
mapserver.weather.com lat=43.45&long=–88.63 273,061
maps.google.com q=starbucks&near=Oconomowoc 9,631
addshuffle.com zip=53946&cntry=US 6,434
geo.yahoo.com lat=42.97&lon=–88.09 3,519

Table 6.2: Web services and sample URLs with geo-physical identifiers in Dataset I.

sessions. The URLs accessed in HTTP application sessions are extracted for identifying

geo-intent queries. The BSIDs and (anonymized) user ids are extracted from the RA-

DIUS/RADA packet data sessions. We primarily exploit the HTTP URLs, BSIDs and

(anonymized) user ids, for geo-mapping the CDSN infrastructure. To verify and validate

our geo-intent based mapping approach, we also utilize a collection of basestations for

which we have the ground-truth GPS locations. Recall from fig. 6.1(a), the basestations

in our ground-truth set are widely distributed across the US mainland and provide an

extensive and representative set for verifying and validating the results obtained in our

study.

6.3 Explicit Geo-Intent of Users

This work explores whether we can exploit “explicit geo-intent” of mobile users to learn

the CDSN infrastructure, i.e. the physical locations of basestations and the IP data

network elements. We define explicit geo-intent as location information contained in

queries submitted by users to certain services (e.g. weather or map services) in which

they seek information regarding a specific location. Such geo-intent in user queries may

either be associated with the current (source) location of a user (e.g. locate-me type of

features) or her target location of user (e.g. weather lookups for a region of interest).

One of the greatest challenges faced in this approach is that the geo-intent expressed

in a user’s query is encoded in a format meaningful for specific services and therefore

varies from one service to the other. To address this issue, careful service-specific anal-

ysis is required to extract relevant explicit geo-intent from user queries. In §6.3.1, we
describe our heuristics for doing this. Next, in §6.3.2, we focus on the most dominant
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Figure 6.2: Dominance and geo-physical expanse of weather (category 13) related queries
in Dataset I.

type, namely zip-codes contained in weather-related queries, which are primarily asso-

ciated with the target locations of users’ geo-intent. Lastly, in §6.3.3, we discuss the

relevance of GPS-like information observed in our datasets and identify the cases when

it is relevant and useful.

6.3.1 Extracting Explicit Geo-intent

We employ a set of heuristics to identify and extract geo-intent from the HTTP URLs in

our datasets. Our objective is to find a set of services seen in our URL trace with a geo-

intent format that can be automatically extracted, giving us a mapping between URL

and the geo-intent expressed in that URL. Through a manual process of identifying a set

of location-specific keywords, such as street or state names, zip-codes, and “GPS-like”

coordinates 3 , we create a set of rules to perform such extraction. The output of this

step are rules for extracting the embedded geo-physical identifiers in the URL string

for each hostname (e.g. www.weather.com or www.mapquest.com). Table 6.2 shows

some examples of services and the associated geo-identifier formats. Through such rules

(heuristics), we identify over a million URLs with geo-identifiers from Dataset I and

half a million from Dataset II.

We further analyze the geo-identifier information contained in the extracted URLs

to understand the variety of geo-identifiers they contain. We find that zip-codes and

“GPS” coordinates dominate the set of URLs with geo-identifiers (in ≈ 99% of the

URLs we are able to parse). Henceforth, we focus only on such URLs. Furthermore, to

3 In this chapter we refer to any pair of latitude-longitude coordinates as “GPS” coordinates,
although in fact many of these may not be directly provided by the (satellite) global position system
(GPS) service. See §6.3.3 for a detailed discussion.
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understand better the services associated with such URLs (with zip-code and GPS-like

geo-identifiers), we classify each service (based on hostname) into 13 different cate-

gories: 1-Ads, 2-books, 3-dating, 4-maps, 5-MMS, 6-music, 7-news, 8-photo, 9-search,

10-toolbars, 11-trading, 12-video and 13-weather. Fig. 6.2(a) shows the number of URLs

in each application category separately for two types of geo-identifiers: zip-codes and

GPS-like coordinates. We see that weather services constitute the most dominant cat-

egory accounting for about 94% URLs with either a zip-code or a pair of GPS-like

coordinates (see Fig. 6.2(b)).

In the following subsections we analyze the geo-identifiers contained in the URLs

in weather category to determine whether or not these URLs indeed reveal the user

geo-intent.

6.3.2 Zip-codes in Weather Queries

Weather queries are obvious candidates for finding zip-code information due to the

nature of online weather services. Most phones feature a weather application allowing

users to enter the zip-codes for one or more locations of interest. Quite often, these

queried locations represent the user’s home or place of work. Therefore, the zip-codes

in weather queries provide a good, though not precise, indication of the querying user’s

location. We later evaluate the usefulness and accuracy of such zip-code information in

our datasets for the purposes of geo-mapping the CDSN infrastructure.

In this work, we convert the zip-codes contained in geo-intent queries in terms of

a GPS-like coordinate as follows. The US census bureau [86] provides GPS-like co-

ordinates which delineate the approximate boundaries of the zip-code tabulation area

(ZCTA)4 encompassing all the zip-codes in the US. Using such boundary coordinates

for a given zip-code, we compute the centroid (a pair of GPS-like coordinates). In

the remainder of this chapter the term zip-code will be used exclusively to mean the

corresponding centroid location calculated as described here. Fig. 6.2(c) shows the geo-

graphical distribution of the zip-codes (centroids) contained in all the weather queries in

our datasets. We see that the set of zip-codes in the explicit geo-intent of users pervades

nearly all parts of the US mainland.

4 Some ZCTAs may span several zip-codes in less populous regions. As our results later show, for
our purpose the ZCTAs provide sufficient accuracy.
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Type Geo-physical identifiers in URL Zoom

Req. zip=53108&city=Caledonia&state=Wi&country code=US -
Resp. mzip=53108&mcity=Caledonia&mstate=Wi &mx=–87.93&my=42.82 2
Resp. mzip=53108&mcity=Caledonia&mstate=Wi & mx=–99.76 &my=42.82 1

Table 6.3: GPS coordinates in HTTP responses from web-host.

6.3.3 GPS-like Coordinates in Weather and Other Queries vs. True

Geo-Intent

Next, we investigate the URLs containing GPS-like (latitude-longitude) coordinates. As

shown in Fig. 6.2, the weather category also contains an (almost) equal number of URLs

with GPS-like, latitude-longitude coordinates. A majority of these GPS-like coordinates

appear in the HTTP responses and not the HTTP requests. Further inspection reveals

that these coordinates do not directly reflect the geo-intent of users, and show significant

variance (see table 6.3). However we do observe a few services, e.g. GPSToday hosted

by www.geoterrestrial.com, where the GPS coordinates contained in user queries

submitted to these services do reflect true geo-intent5 . Unfortunately, it represents

a very small fraction of queries in our datasets. Hereafter we refer to this small set of

GPS coordinates as the GPS geo-intent dataset.

For the remainder of the chapter, we focus on zip-code information, except where

noted otherwise. We remark that our geo-mapping methodology presented later is also

able to incorporate GPS coordinates and has the potential to provided greater precision

as more devices and services, which use the capabilities of GPS-enabled smart-phones,

are deployed.

5 For example, careful analysis of the service provider, www.geoterrestrial.com and the queries
submitted to this service reveals that running on GPS-enabled mobile devices, this service is associated
with an application called GeoToday which provides topographical (e.g. altitude) and weather related
information at the user’ current location. Hence the GPS coordinates contained in user queries to this
service reflect explicit user geo-intent, in this case, the source (user) location of the geo-intent. Similar
analysis to a couple of other services also confirm that the GPS coordinates contained in the user queries
also reflect true geo-intent.
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6.4 From User Geo-Intent to Geo-Locations in the CDSN

In this section we correlate the zip-codes extracted from the weather queries with the

basestation infrastructure of the CDSN to investigate whether, and to what extent,

users’ geo-intent can help geo-map the CDSN infrastructure. For this purpose, we use

a subset of basestations for which we have known GPS locations (the ground-truth).

In order to make our analysis of (zip-code) geo-intent agnostic to diurnal and weekly

variations (weekdays vs weekends), we use Dataset I exclusively in §6.4.1 through §6.4.3.

6.4.1 Spread of Geo-intent in the Basestation Infrastructure

To associate the geo-intent expressed in users’ queries with the basestation infrastruc-

ture of the CDSN, we first need to identify and extract relevant basestation information

(BSID associated with a user at the time of query). Henceforth, we say that a bases-

tation B, sees a zip-code Z if at least one user queries for weather information (or any

information in general) for zip-code Z while communicating with basestation B.

Table 6.4 shows some of the statistics obtained using the process of correlating (zip-

code) geo-intent queries with their associated basestations. We see that although the

number of users expressing their explicit geo-intent is a small fraction of the overall user-

base (less than 2%), the number of basestations that see at least one zip-code query

is significantly large (≈ 23%). Moreover, the set formed by such basestations covers

a representative fraction of SID-NID pairs, and consequently SIDs, in the network.

Therefore, explicit geo-intent is pervasive not only in terms of geographic coverage (as

seen in §6.3.2) but also in the CDSN infrastructure. This is particularly important

because if geo-intent of users indeed captures their geo-location, we can possibly geo-

map a significant fraction of the basestation infrastructure across wide geographies.

Fig. 6.3(a) and (b), respectively show the distributions for the number of user

queries containing zip-codes per basestation and unique zip-codes per basestation for

the URLs in Dataset I. We observe that the 50th and 75th percentiles for the number

of queries (containing zip-codes) seen per basestation are 16 and 50 respectively. While

a majority of basestations see a sizable number of geo-intent queries, the 50th and

75th percentiles for the number of unique zip-codes seen per basestation are 3 and 6
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# of Users BSID SID-NID SID

Overall 2 M 62, 534 506 237
Geo-Int. (Zip) 29 K 14, 224 356 219

Table 6.4: Infrastructure coverage of zip-code geo-intent in Dataset I.

respectively. Fig. 6.3(c) shows the distribution of the ratio of unique zip-codes over the

total number of zip-code geo-intent queries per basestation. Once again we observe that

the respective 50th and 75th percentiles for the ratio are 0.2 and 0.4 respectively. This

result clearly indicates that when there are a number of zip-code containing weather

queries seen at a basestation, many of them are associated with only a small number of

zip-codes. This observation has important implications in the process of geo-mapping

of the basestation infrastructure, as will be explored in the next subsection.

Further analysis shows that the spread of zip-code containing geo-intent queries

across the basestation infrastructure is somewhat uneven, where basestations within

urban metropolitan areas generally account for a greater fraction of geo-intent queries

than those in rural areas. This can partly be explained by the difference in population

densities as well as the percentages of “smart” phones and data service plans adopted

by users in these areas. Due to space limitation, we do not provide detailed results

(area-wise statistics) here.

6.4.2 From Geo-intent to Geo-location

With about 23% of the basestations in our dataset seeing zip-code containing weather

queries, can we use the explicit geo-intent information contained therein to geo-localize

the basestations in question? We note that the zip-codes contained in users’ weather
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queries are most likely associated with the target regions of users’ interest; on the other

hand, the basestations seeing the queries are associated with the location of users at the

moment of querying. Hence the extent and accuracy of using user (explicit) geo-intent

to help geo-localize the basestations will depend on how far the target location of users’

interest (as specified by the zip-codes) are from the basestations where the queries are

issued (the source location of users). To investigate this question, we utilize the subset of

basestations for which we have the ground-truth (i.e. their GPS co-ordinates). Among

the basestations with ground-truth GPS locations, we find that roughly 20% (in a similar

percentage as zip-code seeing basestations to the entire basestation set) also see zip-code

queries; moreover, they span 105 SID-NID pairs across 81 SIDs. In the following we

will refer to the set of such basestations (≈ 2, 400 in all), with both the ground-truth

GPS locations and associated zip-code queries, as the ground-truth-location-&-zip-code

BSID dataset.

To examine the relationship between the locations of the basestations and users’ geo-

intent (the zip-codes associated with the basestations), we compute the geo-physical

distances between basestations and the zip-codes as follows. Given a basestation B

with known GPS location denoted by LB = (latB, longB), let ZB = {Z1, Z2, ...., Zk}
be the set of zip-codes queried by the users associated with B. Recall that we identify

each zip-code Zi with a pair of GPS-co-ordinates for its centroid in the form of CZi
=

(lati, longi). We denote the distance between the basestation B and the zip-code Zi

by δBi = dist(LB, CZi
), where the distance is computed over the surface of the earth

using the (angular) latitude and longitude co-ordinates and is then mapped to the

metric distance in kilometers (km)6 . In particular, we define δBmin = min1≤i≤kδ
B
i

and δBmax = max1≤i≤kδ
B
i . Further, for basestations that are associated with multiple

zip-codes (k ≥ 3), we also compute the median of δBi ’s, denoted by δBmed. In addition,

we compute the distance between each basestation and the most frequently7 queried

zip-code associated with it, and denote this distance as δB∗ . The distributions for

δBmin and δBmax are shown in Fig. 6.4 using the ground-truth-location-&-zip-code BSID

dataset. For 50% of the basestations in the ground-truth-location-&-zip-code set, the

distance between basestation B and the closest queried zip-code (δBmin) is within 3.5 km

6 We use the avg. value computed through the haversine and Vincenty formulas and assume a mean
radius of 6,371 km for the earth.

7 If there are two or more such zip-codes, we randomly pick one of them.
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Figure 6.4: Distribution of δBmin and δBmax for basestations in ground-truth-location-&-
zip-code set.

range, and for 75% of them it is less within 5.5 km range. In particular, about 25%

of basestations lie within 1 km range of the nearest zip-code they see. This promises

possibly high accuracy of geo-localizing a basestation on the basis of geo-intent in some

cases. In contrast, δBmax (distance between basestation B and the farthest zip-code it

sees), is within 12.5 km for 50% of basestations and within 20 km for 75% of them;

much larger than corresponding δBmin. Similarly, δBmed is within 3.8 km range for 50%

and within 6.9 km range for 75% of basestations while δB∗ is within 3.9 km range for

50% and within 6.1 km range for 75% of the basestations. In short, we see that while

the distance between the true location of a basestation and the farthest queried zip-code

seen by it can be in the range of 10’s km or more, that between the basestation and

the closest queried zip-code is usually within 10 km (and often within 5 km or less).

Moreover, when multiple zip-codes are queried by the users, more of them tend to be in

the vicinity (around 7 km or less) of the basestation. The frequently queried zip-codes

are often also the closest zip-code or a zip-code not much farther away.

However, using the absolute distance (in km) to correlate geo-intent (zip-codes) and

geo-location (of basestations) does not paint the full picture, as zip-code areas have

varying sizes, depending upon population density and other factors. For instance, large

metropolitan cities tend to have more zip-code areas with smaller geo-physical sizes,

while rural areas have far fewer, and larger, zip-code areas. To better understand the
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relationship between the location of basestation and the zip-codes their users query,

we use the centroid of each zip-code and perform a Voronoi partition of the entire US

mainland 8 . In other words, the US mainland is represented as a contiguous collection

of Voronoi cells, where each zip-code centroid is exclusively contained in a single Voronoi

cell. From the Voronoi diagram representation of the US mainland, we construct the

corresponding Delaunay graph, in which the vertices are the zip-codes, and an edge

is introduced between two zip-codes if and only if they are contained in neighboring

Voronoi cells. As an example, Fig. 6.5 shows a portion of the Voronoi diagram (for

the south-east part of Wisconsin around the Milwaukee metropolitan area) and the

corresponding Delaunay (sub) graph.

We now introduce a new metric to measure the distances between basestations and

zip-codes, in terms of the Voronoi diagram and the Delaunay graph introduced above, to

8 Instead of partitioning the US mainland in terms of the ZCTA boundaries using data from the US
census site http://www.census.gov, we use the Voronoi partition for ease of analysis and computation.
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better gauge the relationship between user geo-intent and the geo-location of the associ-

ated basestation. Given a basestation B with known GPS location LB = (latB, longB),

we first determine the Voronoi cell in which it lies. We associate basestation B with the

zip-code contained in the same Voronoi cell, say ẐB, and refer to this zip-code as the

home zip-code of B. Now for each zip-code Zi seen at basestation B, we compute the

(hop-count) distance between B and Zi as the shortest path distance (in terms of hop-

counts) between ẐB and Zi in the Delaunay graph. We denote this hop-count distance

by hBi .

In order to understand the distribution of hop-count distances (hBi ) between a bases-

tation B and the zip-codes Zi ∈ ZB, we define a multi-hop (l = 1, 2, 3, ...) neighborhood

relationship between the nodes of the Delaunay graph shown below:

Neighborl(ẐB, Zi) = 1 if hBi ≤l (6.1)

= 0 otherwise. (6.2)

Then, the following ratio:

ρBl =

k∑

i=1

Neighborl(ẐB, Zi)

k
(6.3)

where k is the number of zip-codes seen at B, provides similar insight into the hop-

count distance between the home zip-code of B and the zip-codes seen at it, as the δB

functions defined for distances over the surface of the earth. For example, ρB1 tells us

the fraction of zip-codes seen at B that are at most 1 hop away from B in the Delaunay

graph. Fig. 6.6 shows the distribution of ρl’s for l = 1, 2, 3. For example, in fig. 6.6, for

a given l, the value on the Y-axis (length of the bar) corresponding to bin X = 0.5 on

the X-axis represents the number of basestations which have 50% of the associated zip-

codes at most l hops away. Notice the consistent increase in the Y-values corresponding

to larger X-values as we go from l = 1 to l = 3. In fact, over 90% of the basestations

have more than 50% of their associated zip-codes within l = 3 hops. We, therefore, (in

conjunction with the evidence from similar results for absolute distances) conclude that

for a large majority of basestations, a significant percentage of zip-codes queried are in

and around the geo-physical neighborhood of their home zip-codes.
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6.4.3 Geo-intent, Geo-location and User Behavior
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Figure 6.7: Most frequently queried zip-codes (red “+”) seen at (sub) set of basestations
(black “·”).

In this section we analyze user behavior, particularly in terms of user mobility, to gain

further insight into the observations obtained in the preceding sections. This analysis

provides a plausible explanation as to why zip-codes in weather queries – despite being

associated with the target of geo-intent – can help geo-map the basestation infrastructure

to a large extent with a reasonable accuracy, namely, within the range of 3 km to 10

km or 1-3 neighboring zip-code areas for a large majority of basestations.

To study the user mobility behavior, we examine the number of basestations ac-

cessed by those users who express their explicit geo-intent (i.e. issuing a weather query

containing a zip-code) at least once during the observation period. Using Dataset I

which spans a week long period, we observe that almost 50% of the users are associated

with exactly one basestation for the entire duration, while 75% of the users communicate

with 4 or fewer basestations9 . Among those who are associated with multiple (but ≤ 4)

basestations, we find from the ground-truth set (when available) that such basestations

are generally not far apart. This is particularly true for users within a metropolitan

area. As an illustrative example, Fig. 6.7(a) shows a metropolitan area in the Midwest,

where each black “·” indicates the location of a basestation within the metropolitan

area, and each red “+” indicates the centroid of the most frequently queried zip-code

by users associated with this (sub) set of basestations. We see that for a number of

9 For comparison, we also perform similar analysis for those users who do not issue any geo-intent
queries, and obtain similar results.
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Figure 6.8: Error incurred in direct geo-mapping compared to the ground-truth set.

basestations (≈ 80), the most frequently queried zip-codes are very few (≈ 20) and

confined to a small geo-physical region. In contrast, we find that basestations located

in places with high user mobility, e.g. along major interstate highways, frequently see

relatively greater numbers of zip-code queries from different users, but such zip-codes

seem to be far more geographically dispersed (see Fig. 6.7(b) for an example).

Besides user mobility patterns, we also examine user query patterns. We find that

among the users who express their explicit geo-intent at least once during the observation

period, 90% of them query just one zip-code, while 96% query two or fewer zip-codes.

In summary, our analysis shows that a majority of users tend to have limited mobility

(when they access mobile data services) with respect to the basestation infrastructure

(especially in metropolitan/urban areas), and their data access patterns are fairly stable

with respect to the data access points (basestations). As a consequence of such user

behavior and mobility patterns, namely, a majority of users tend to move around one or

a few spots within a relatively limited radius and typically query for a default zip-code

(close to their places of residence or work), their explicit geo-intent (in this case, the

target location of their interest) can indeed help geo-localize the basestations they are

associated with, albeit the extent and accuracy of the geo mapping hinges on the type

of the geo-intent information available.

6.5 Geo-mapping the Basestation Infrastructure

Based on the analysis and observations made in the previous section, we now present

some heuristics to geo-map the basestation infrastructure. In §6.5.1 we first describe

two simple heuristics for geo-localize the basestations which see at least one user zip-

code weather query. We then extend the heuristics to geo-map those basestations that
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do not see any explicit geo-intent queries but share the user base with those that do,

by exploiting user movement over short time intervals. The evaluation results are pre-

sented in § 6.5.2. As a proof of concept, we will also present some results obtained

from similar analysis applied to the GPS co-ordinates related to a particular service

(www.geoterrestrial.com) from Dataset II in §6.5.3.

6.5.1 Geo-Mapping Heuristics

Direct Geo-mapping via Geo-Intent

For those basestations which see at least one zip-code containing weather query, we

directly geo-localize them using the user explicit geo-intent by means of the following

two simple heuristics.

Given a basestation B, let ZB = {Z1, Z2, ..., Zk} be the set of valid zip-codes queried

by its users UB = {U1, U2, ..., Ul}. The first heuristic, the Majority Voting (MV) scheme,

selects the most probable location (or locations) from all possible zip-code locations

(Zi)’s as follows: Each user Ui ∈ UB has one simple vote. Recall that a given user Ui

may query the same zip-code Zj multiple times. In order to prevent such frequent voters

from skewing the vote count, we permit a user to vote only once. Also, a given user

Ui may possibly query multiple zip-codes from the set ZB. In such cases, we split the

simple vote of Ui either equally or proportionally among all the zip-codes s/he queries.

For example, if Ui queries zip-code Z1 thrice and Z2 twice, in equal vote-splitting, both

zip-codes receive 0.5 votes from Ui while in proportional vote-splitting, Z1 receives 0.6

vote and Z2 receives 0.4 vote from Ui. The winner of the election, i.e. the zip-code

receiving most votes, is chosen as the most probable geo-location for the basestation

B. When there are multiple winners (ties), all of them are chosen as probable locations

(with equal probability).

The second heuristic, the Dense Neighborhood Clustering (DNC) scheme, uses both

the frequencies of zip-codes queried as well as the neighborhood relationship among the

zip-codes. Given the Delaunay graph of the US mainland, the zip-codes in ZB induce

a subgraph, denoted by GZ(B), with vertices Zi, 1 ≤ i ≤ k, and there is an edge

between Zi and Zj if and only if the zip-code areas they represent border each other.

Furthermore, we assign each node Zi a weight wi equal to the votes received by it during
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the Majority Voting scheme above. In general, the subgraph GZ(B) consists of multiple

connected components, C1, . . . , Cm, where 1 ≤ m ≤ k (k = |ZB|), each a probable

candidate for the location of B. For each Cp, we define w(Cp) =
∑

Zi∈Cp
w(Zi). We

select the component Cp with the largest w(Cp) as the probable location (a connected

zip-code neighborhood) for the basestation B. We note that in the special case where

m = k, i.e. GZ(B) consists of k disjoint vertices, this scheme reduces to Majority Voting.

A further refinement of this heuristic also filters out cases where the total weight w(Cp)

of the winner component is too small (below a threshold) and GZ(B) consists of mostly

disconnected vertices that are spread over a large geographical area. In such cases, the

heuristic simply labels the location of B as “undecided” instead.

Indirect Geo-mapping based on User Mobility

The direct geo-mapping via geo-intent helps geo-localize around 20% of the basesta-

tions in our datasets. To map other basestations, those not mapped during direct geo-

mapping due to lack of geo-intent queries, we exploit user movement. To do so, we in-

troduce the basestation-user-mobility graph, GM , where the vertices are the basestations

(BSIDs) and an edge e = (Bi, Bj) is introduced between two vertices Bi and Bj if at least

one user10 accesses both of them (regardless of order) within a short interval of time

∆T (say 5 minutes). Given GM thus defined, let Bmapped denote the set of basestations

geo-located via the two direct geo-mapping heuristics described above, and Bunmapped be

the set of unmapped basestations. For each basestation B ∈ Bunmapped, if it is connected

to some basestation B ∈ Bmapped via some paths, we define h(B,B) as the shortest path

distance (hop-count) from B to B. Then, let h(B,Bmapped) = minB∈Bmapped
h(B,B).

Note that h(B,Bmapped) = ∞ if B is not connected to any B ∈ Bmapped.

In our datasets, we have about 22% basestations in Bunmapped that are connected

to at least one basestation in Bmapped at a 1-hop distance (i.e. h(B,Bmapped) = 1).

Hence, we geo-localize them first by exploiting their connectivities to the basestations

in Bmapped. The challenge here is to map the connectivity in GM to geo-locations or

zip-code neighborhoods in the Delaunay graph of US zip-codes. To control the mapping

10 More generally, for each edge e = (Bi, Bj), we count the number of users associated with both
B1 and B2 within a short time interval ∆T , and filter out edges that have a very small common user
count to prevent spurious connections due to noisy data. If a lot of users access Bi and Bj within a
short interval they are likely close to each other



85

1 2 3 4 5
500

1000

1500

2000

Hop−counts (X)

 

 

# Indirectly inferred

F(X)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Distance from center of convex hull  (km)

F

0 1 2 3 4 5 6
0

200

400

600

800

Hop−count distance 

(a) # unmapped BSIDs (b) Dist. Err. (DNC) (c) Hop-count Err. (DNC)

Figure 6.9: Coverage and error incurred in indirect geo-mapping compared to the
ground-truth set.

accuracy of a basestation B ∈ Bunmapped, we introduce two parameters, the hop-count

threshold d, and the (mapped) neighborhood size s. For any B ∈ Bunmapped such that

h(B,Bmapped) ≤ d and it is connected to at least s basestations in Bmapped that are

at most d hops away from B, we geo-localize B by constructing a connected zip-code

neighborhood in the Delaunay graph of zip-codes. Let Nd(B) be the set of home zip-

codes of the (directly mapped) basestations B’s in Bmapped that are at most d-hops away

from B (note that |Nd(B)| ≥ s). Using the centroids of ẐB’s, we construct a convex

hull HB, covering all ẐB’s, as the most probable geo-location for B. Alternatively, we

construct a connected zip-code neighborhood (subgraph), also denoted by HB, which

is formed by the zip-codes whose centroids fall within the convex hull HB. We refer to

HB as the inferred zip-code neighborhood for basestation B.

6.5.2 Evaluation and Validation

To evaluate the efficacy of our heuristics for geo-mapping the basestation infrastructure,

we use the collection of basestations with ground-truth GPS locations. In particular, we

use the basestations in the ground-truth-&-zip-code set for Dataset II to evaluate the

two direct geo-mapping heuristics. Then, we use the other basestations in the ground

truth set, which do not see zip-code queries by their users, in both Dataset I and Dataset

II to evaluate the indirect mapping heuristics.

Using the ground-truth-&-zip-code basestation dataset from Dataset II, Fig. 6.8(a)

shows the distribution of geo-mapping errors, namely, the distance between the inferred

location and the ground-truth location, using the Majority Voting heuristic. In case of

multiple inferred locations (zip-codes) available for a basestation, we compute the error

for each inferred location. We observe that the 50th and 75th percentiles are around
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3.9 and 6.1 km respectively (Dataset II), quite similar to what we observed for δBmin in

Dataset I ( see § 6.4.2).

For the Dense Neighborhood Clustering heuristic, we measure the errors in terms of

both absolute distance and hop-count. For a basestation B, let C(B) be the inferred

zip-code neighborhood. We compute the centroid of C(B) and use the distance (ground-

truth GPS location) between B and the centroid as the absolute distance error. In terms

of hop-count distance error, we use the home zip-code ẐB of the basestation B, and

compute the (shortest distance) hop-count from ẐB to C(B), namely, h(ẐB, CB) as

defined in the indirect geo-mapping heuristics. Figs. 6.8(b) and (c) respectively show

the distributions of absolute and hop-count errors. We see that the errors in absolute

distances are comparable to those obtained for absolute distances in Majority Voting

for most basestations. This is not surprising as most of the clusters in our dataset are of

small sizes ( made of 4 or less zip-codes) and span relatively small geo-graphical areas,

especially in urban locations. We also see that the 50th and 75th percentiles for the

hop-count distance are 2 and 3 respectively.

Next, we evaluate the heuristic for the indirect geo-mapping of basestations in

Bunmapped. To do so, we fix the (mapped) neighborhood size s to 311 , and vary

the hop-count threshold d from 1 to 5. We measure the geo-mapping errors in terms of

the absolute distance (i.e. the distance from the ground-truth GPS location of B to the

centroid of the inferred convex hull HB) and hop-counts (i.e. h(ẐB, HB)). Fig. 6.9(a)

shows the percentage of additional basestations that can be indirectly geo-mapped as

a function of d. Fig. 6.9(b) and (c) show the distributions of absolute distance errors

and hop-count errors, respectively. We see that the errors incurred go up in terms of

distances, even though hop-counts go up only by a few hops. The reason for this is that

the edges in user mobility graph cover long distances in highway areas. Add to it, the

long distances between the vertices of the convex hull HB in such areas due to far apart

zip-codes. Even for small values of d and s, the error incurred in such areas is high.

In contrast, in urban areas, users cannot travel very long distances in short intervals of

time. This means shorter edges in the mobility graph. Also, zip-codes in such areas

are geo-physically close to each other. A combination of the two results in relatively

11 In our dataset, increasing s does not significantly improve the accuracy of the geo-mapping while
considerably reduces the coverage
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lower error in urban areas for the indirect method both in terms of hop-counts (usually

1− 3) as well as absolute error (5− 10 km or less). This helps us realize our objective

of geo-localizing basestations in Bunmapped at city level granularities.
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Figure 6.10: Relationship between population and basestation density and error in geo-
mapping.

To explore the effects of population density in a region, which determines both the

size of zip-codes and basestation densities, on the accuracy of geo-mapping, we conduct

a case study. We select three non-overlapping regions - a metropolitan area (34 zip-

codes, 235 basestations), an urban area with a relatively lower population density than

a metropolitan area (20 zip-codes, 115 basestations), and a stretch of an interstate

highway connecting several urban centers along south-eastern Wisconsin (6 towns, 130

basestations). In each case, we identify high population density centers (7 most populous

zip-codes in the metro, 5 in the urban area and the centroids of the 6 towns in the case

of the highway). Fig. 6.10 shows the (absolute distance) errors incurred in geo-mapping

basestations via explicit geo-intent in all the three cases as a function of distance between

the basestations and the nearest population center. We see that the error varies almost

linearly with the distance from the population centers in the case of metropolitan and

the urban areas (average errors smaller for the metropolitan area than the urban area).

This seems to show that users usually query for information in and around themselves

for some preferred target locations (e.g. downtown, residential areas) represented by the

population centers. On the other hand, the errors incurred in the case of the highway are

substantially high even for relatively short distances from the nearest city in the vicinity.

This is possibly because people usually query information related to the regions they

are coming from or, more likely, going towards, while on the highway.



88

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Error in km

Figure 6.11: CDF of the mean errors (km) in geo-mapping using the small GPS geo-
intent data.

6.5.3 Geo-mapping using GPS Geo-intent

Lastly, we use the small GPS geo-intent dataset discussed in section §6.3.3 to illustrate

the efficacy of our approach when GPS-based geo-intent (in particular, when the GPS

coordinates are associated with the source (user) locations of the geo-intent. We extend

the direct geo-mapping heuristics from §6.5.1 to the case of GPS coordinates, and apply

tessellation and density estimation to geo-localize basestations by computing a (small)

neighborhood area (rectangular cell) as their most probable locations. Due to the space

limitation, the details are omitted. Fig. 6.11 shows the mean distance (error) between

the ground-truth and the inferred (centroid) locations of the two dozen basestations in

the small GPS geo-intent dataset (and for which we have the ground-truth locations).

We see that the overall accuracy is within 0.5 - 1 km. Hence we believe that with the

increasing popularity of newer generations of GPS-enabled smart phones and location-

aware services, geo-mapping based on user geo-intent will yield more accurate results

than what can be obtained using zip-codes alone.
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Figure 6.12: Geo-physical coverage of NAS gateways.

6.6 IP Infrastructure in the CDSN

In this section we examine the IP network infrastructure in the CDSN with the help of

inferred (and ground-truth) locations for the set of geo-mapped basestations. Our goal

is two-fold: i) to infer and understand the relationship (e.g. the geo-spatial distribution)

of the IP network elements with the basestation substrate, and ii) to investigate whether

we can geo-map the network elements in the CDSN to some degree. Here, we use the

packet data sessions to extract the relevant relationships. Recall, the RADIUS/RADA

packets contain basestation ids. In addition, they also contain four types of IP addresses

of interest to us12 . They are: framed IP addresses (assigned to end users’ devices);

the RADIUS/RADA server IP addresses (assigned to servers responsible for authenti-

cating a user’s session), IP addresses of NAS gateways (gateway servers to the IP data

distribution backbone network in the CSDN) and IP addresses of home-agents (servers

that maintain certain user information e.g. user registration, credentials, and current

locations for mobile IP routing).

Not surprisingly, a predominant majority of the IP addresses in the datasets are

framed IP addresses. They mostly come from the private address realm of the IP space;

this is consistent with the findings in [78] where the authors collect and analyze the

IP addresses seen at the end users’ devices. The framed IP addresses appear to be

assigned randomly from the private address ranges agnostic to the geo-location of the

basestations. The number of the other three IP addresses are far smaller: both NAS

gateways and home-agent IP addresses number within 100, and RADIUS/RADA servers

below 10 – in stark contrast to the number of basestations (in tens of thousands). As

the NAS gateways and home-agents are more likely to correlate with user/basestation

12 Note that since the data is collected through passive measurement, we do not have IP addresses
of IP routers, DNS servers, etc., and we are unable to conduct active measurements in the CDSN.
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locations, in the following we explore the geo-spatial distribution of these IP addresses

and their relation to the basestation infrastructure.

For each NAS gateway/home-agent IP address, we extract all the BSIDs which

appear in the same RADIUS/RADA data packets containing the said IP address – these

basestations are where the user data sessions originate. Hence each IP address (NAS

gateway server or home-agent) is associated with a collection of basestations. We study

the geo-spatial distribution of these basestations to investigate whether there is any

significant geo-spatial correlation between the NAS gateways/home agents and locations

of the basestations. We further analyze the relationships between NAS gateways by

clustering them based on the number of basestations they share in common, i.e. the

size of intersection between the basestation collections associated with the two NAS

gateway IP addresses.

As representative examples, Fig. 6.12 depicts the geo-spatial distribution of the

basestations associated with three different NAS gateways. We observe that these NAS

gateways cover rather large geographical areas (spanning multiple states, and in terms

of the basestation infrastructure, multiple SIDs). These areas are typically contiguous

(as in Figs. 6.12 (a) and (b)), but sometimes can be disparate too (as in Fig. 6.12(c)).

Furthermore, two or more NAS gateways may share a large overlapping set of bases-

tations; it appears that these gateways serve the same large geographical region for

load-balancing. We also performed similar analysis for home-agent IP addresses (where

we also take into account the user activities to account for user mobility and roaming).

We find that each home-agent IP address also covers a large geographical region, and

multiple home-agents may cover the same or similar regions for load-balancing. Due to

space limitation, we do not provide these results here.

In summary, we find that in contrast to the basestation infrastructure, the numbers

of NAS gateways and home-agents are far smaller. While these gateways/home-agents

are geo-spatially distributed, each covers a large geographical region spanning multiple

states and corresponds to a large collection of the basestations in the CDSN substrate.

Our findings point to several challenges in attempting to geo-map the CDSN infras-

tructure from the outside (cf. [78]), and in deploying location-aware content distribution

services outside the CDSN to serve users inside the CDSN.

Last but not the least, we remark that comparing the two datasets collected about
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10 months apart, we observe that the amount of cellular data activity and traffic has

grown tremendously: for instance, the numbers of data sessions and application sessions

increased over 3 and 10 times, respectively (see table 6.1). Moreover, the number of

cellular data users have also increased considerably. With the increasing popularity of

new generations of smart phones, the growth in cellular data traffic will further spur

expansion of the IP networks within cellular service provider networks, and we may see

more finer-grain geographic coverage to better cater to the growing user demand within

a CSDN infrastructure.

6.7 Summary

In this chapter we put forth a novel approach for mapping the CDSN infrastructure

via (explicit) user geo-intent, which circumvents the challenges plaguing conventional

approaches (e.g. active probing). The intuition behind the proposed approach is to

exploit specific geo-locations (i.e. geo-intent) contained in user queries to location-based

services, and correlate them with basestation id’s and gateway IP addresses to geo-map

the CDSN infrastructure. To investigate whether — and to what extent — our approach

can help geo-map the CDSN infrastructure, we employed the data (RADIUS/RADA

packet data sessions and HTTP application sessions) collected at the core IP network

inside a CDSN. We developed heuristics for identifying user geo-intent to geo-map the

CDSN infrastructure — in particular, the basestations and IP NAS gateways — and

evaluated their efficacy using a subset of basestations with known ground-truth GPS

locations. Using zip-codes contained in user weather queries, we demonstrated that

a large portion of basestations can be geo-mapped within a 3.9 − 6.1 km range in

general and within 1.5 − 2 km range in densely populated urban areas. Furthermore,

the geo-mapping accuracy is far better (often within 1 km) in large metro-areas with

dense population and smaller zip-code areas. Using the inferred and ground-truth GSP

locations of the basestations, we also examined the geo-spatial distribution of IP network

elements such as NAS gateways and IP home-agents, and their relationship to the

cellular network substrate.

With growing popularity of newer generations of GPS-enabled smart phones and in-

creasing prevalence of location-specific and location-aware services and apps, we expect
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our geo-intent based mapping approach to yield more precise results, as was illustrated

using a small set of user geo-intent queries with GPS coordinates in our datasets.

Given the unprecedented growth in cellular data traffic, mapping the CDSN infras-

tructure is a critical step in understanding how to best expand and evolve the CDSN

infrastructure to better meet growing user demands, and to guide the development and

deployment of innovative location-aware services and applications that cater to mobile

users and devices. Our study is only an initial step in this direction.



Chapter 7

On Activity and Mobility in

Cellular Networks

Recent years have seen a surge in the number of studies related to human mobility

patterns [87, 88, 89, 90]. For large-scale human mobility studies, one of the primary

data sources is the call detail records (CDRs) collected by cellular services providers

for billing and troubleshooting purposes. Consequently, several such CDR databases,

appropriately anonymized for privacy, have been used by researchers to explore and

quantify the basic laws governing human mobility at different scales and in various

contexts [87, 88, 90].

In this chapter, we take a step back to inquire the limitations of using CDR data for

human mobility analysis. Our intuition in doing so is based on two basic reasons. First,

most of the datasets analyzed in the literature are usually voice-call [87, 88, 90], or

additionally, short messaging service (SMS) datasets [91, 92]. Each time a user makes

or receives a voice-call or an SMS message, the user’s location is recorded in terms of

the position of the cell-tower (base-station) that the user is communicating with at that

time. Thus, the sample of observed locations for a user, in such datasets, is largely

dependent upon user initiated activity and requires user participation. The number of

times a user is observed in the CDR dataset is determined completely by the frequency

of his/her voice-call and/or SMS activity. This leads to very sparse representation for

most users as voice-calls have been reported to be bursty in nature[87]. Secondly, and

93
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Figure 7.1: Territorial expanse of the dataset (SF-bay area).

this is an extension of the previous argument, most studies in literature resort to user

sampling whereby high-frequency voice-callers or SMS-users are often selected to study

human mobility patterns. Recently in [93] the authors observe a linear correlation

between the number of voice-calls made by a user and the number of times the users

change locations in Paris. A natural question, therefore, that arises is whether and to

what extent does the selection of high-voice-call activity users skew the overall statistics

for a population?

With rapid growth in mobile data and increasing adoption of smart phones, user

data activities provide another rich source of information to study human mobility, in

particular, to answer the aforementioned question. Unlike voice-calls and SMS activi-

ties, (user) data activities do not always require user initiation, nor user participation.

For example, a plethora of applications running on 3G enabled cellular devices invoke

themselves periodically or sporadically. These include push-mail notifications, periodic

software updates and weather services, to name a few. The data access records which

record such data activities by cellular providers, therefore, provide an unprecedented

opportunity to investigate the limitations, if any, of the voice-call and SMS activities

with respect to studies related to human mobility. However, compared to the number of

studies using voice-calls and SMS CDRs, the number of studies exploiting data-access
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records are far and few in between, notable exceptions being [94, 82].

In contrast, we utilize the user data-access records as well as the conventional CDRS

(containing both voice-call and SMS activities) and take a joint activity-mobility per-

spective to study human mobility. In addition to answering the question posed earlier,

we are also interested in studying whether there are distinct human mobility and activ-

ity patterns associated with different types of cellular activities: data, voice-call, SMS

activities. But first, as always, we must provide a context by reviewing some pertinent

works from literature.

7.1 Related Work

The analysis of human mobility patterns from empirical data has been an active area

of research. Much of the early work reported in the literature had focussed on tracking

devices in wireless LANs, in particular in WiFi university and corporate campuses,

both of which provide a reasonable amount of user data [95]. The analysis of mobility

data from wireless LANs delivered many significant results, too long to list exhaustively

here, but which include the spectral analysis of mobility patterns [96], the evaluation

of movement prediction schemes [97], the derivation of trace-based models [98], and the

heavy-tail nature of movement and pause times (for example lognormal in [98]).

Other work has focused on measurement data collected on short-range networks, in

particular on Bluetooth networks, with insightful results derived on the heavy tailed

nature of inter-contact times (for example [99]). The recent availability of cheap GPS

receivers led others to fit a few dozen willing participants with such receivers to obtain

high-quality GPS mobility traces. They revealed walking patterns consistent with Lévy

flights and heavy tailed inter-contact times, in agreement with earlier work (e.g. [100]).

All the references listed above analyze relatively small amounts of mobility data,

typically from a few dozen to a few thousand users, monitored over periods ranging

from a few weeks to a couple of years. In contrast, the call records collected by wireless

operators provide orders of magnitude larger amounts of data. As the privacy and

anonymization issues are being incrementally sorted, availability of voice-call data has

become greater in the past few years. Much of the work on mobile voice-call records has

focused on the structural analysis of the mobile call graph, for data mining purposes (see
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[101]), and, to a lesser extent, in the study of mobility at aggregate population levels

using statistical parameters like radius of gyration [88] and different kinds of entropies

[90]. In such studies, the sample set of users chosen is usually the frequent voice-callers

as only they provide enough sample points for any meaningful study.

The latest spree of papers that use voice-call CDRs to study human mobility patterns

include [91, 88, 92, 90]. In most of these studies, the CDRs are the primary source of

data used to infer locations of user populations with emphasis on either significant

locations and/or population-wide statistics.

There are some notable exceptions however [102, 94, 82] in which data from location

based services (mobile data records) have been used for mobility related studies. In

particular, the authors in [82] study the spatio-temporal aspects of application usage

patterns for cellular data users in a metropolitan city while the authors in [94] use the

explicit geo-intent expressed by the users of a cellular data network to infer the location

of the cellular infrastructure itself. Such studies are, however, few and far in between.

7.2 Preliminaries

In this section we introduce some of the preliminaries of our work. In §7.2.1, we provide
details of our dataset, followed by a discussion of the activity rates of data-users versus

non-data users in §7.2.2.

7.2.1 Dataset

Our primary dataset consists of anonymized cellular voice-call, SMS and data-session

(2G and 3G) records collected from an operational CDMA 1xRTT-EVDO cellular net-

work. Such records, also referred to as Per-Call Measurement Data (PCMD), are usually

collected by cellular services providers for billing and trouble-shooting purposes. PCMD

contains records of voice-calls, SMS and data activity of each cellular user. CDRs, or

voice CDRs, mainly used for billing, are formed based on the PCMD records for voice

sessions. Each PCMD record is a per-user-per-session record and consists of over 100

fields with information related to both the mobile device and the cellular network. In

our data set, we use a selected set of fields from PCMD and among which, the user

identifier field is anonymized beforehand. In addition, we deal with these fields: the
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beginning and end timestamps for each call, the base-stations (cell-tower) associated

with the beginning and end of each call, and the call-type that recognizes whether the

session in progress is a voice-call, an SMS message or a data-session (2G and 3G). Note,

that the location of the base-stations is known a priori and these are used as proxies for

users location. Spatially, our dataset covers a 7,000 sq. mile wide territory in the San

Francisco bay area, for over a million mobile users studied over a month long period

(July, 2011).

7.2.2 Activity Volumes and Data Users

A user’s activity rate in the cellular network often determines whether or not he is

selected for a study. Studies which use only voice-call CDRs sometimes set the threshold

as high as 0.5 calls per hour on an average [90], to ensure temporal completeness 1 .

1 We also discretize the activity of users into 15 minute long time-slots thereby preventing over
count bias at a location due to bursty activity.
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Figs. 7.2(a) and (b), respectively show the cumulative distribution frequency (CDF) of

the number of records and number of hours of activity per user for each of the three

activity types. Note that the voice-call activity contributes the least in terms of volume

as well as the number of active hours, while the data-access activity contributes the

most. Such high volumes and temporal spread for the data activity can be attributed

in part to automated applications such as push-mail notifications and software updates,

that usually occur in the background without the user’s active participation. In contrast,

voice-calls and SMS activity are largely user initiated, either by the user herself, or by

the party at the other end of the communication. Data activity, therefore, potentially

helps make the overall record of a user more complete in time, imperative for our study.

Thus, we divide the users into two types: users who have data-activity records

(henceforth called data-users), and those who do not (non-data-users). We now show

that selecting data-users for this study will in itself introduce no selection bias. The

average voice-call and SMS activity volumes for data-users is in fact higher than that of

non-data-users (Fig. 7.3) which has two important implications: first, the adoption of

data plans by users does not seem to deter their voice-call and SMS activity volumes.

Second, by using data-users as representatives of the overall population, we do not

discriminate against the high frequency voice-callers or SMS users at all. They are as

well represented in the set of data-users as they are in the set of non-data-users.

In the remainder of this study, unless otherwise mentioned, we focus on the data-user

set which contains over 500 K users in it.

7.3 Is There a Possible Bias In Voice-Call Based Studies?

In this section we explore the question as to whether there is indeed a possibility of

bias if voice-calls are used to study human mobility — individual or of populations.

In §7.3.1, we look at the location profile of a user’s spatial footprint — observed and

significant locations — with particular emphasis on home and work locations. Next we

explore the spatio-temporal aspects of mobility — entropy and radius of gyration — in

§7.3.2 and §7.3.3.
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7.3.1 Locations in a Cellular Network

We first analyze the number of distinct locations (N) visited by a user during the

observation period which provides some insight into the diversity of a users spatial

footprint. Fig. 7.4(a) shows the CDF for the number of locations visited by each

data-user (500K in number) as revealed by their voice-call, SMS and data activities

respectively. We also plot the combined count for comparison. Note that the number

of distinct locations revealed by the data-activity is clearly higher than those revealed

by the voice-call and SMS activities. Interestingly, the SMS activity, despite being

higher than the voice-call activity in terms of volume, fares no better than the voice-

call activity in accounting for the diversity of a user’s spatial footprint. Thus, for

an individual user the voice-call and the SMS activities only partially account for, or

equivalently underestimate, the set of locations where a user can possibly be found at

random.
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Significant Locations

However, not all locations are equal. Most users display a great degree of loyalty to

certain locations (such as home, school and work) as compared to other infrequently

visited ones, for example say a cinema theater. The set of significant locations [92] for

a user is defined as the subset of all locations visited by a user that account for over

90% of his/her observed activity in the cellular network. In other words, a user is more

likely to be found in one of these significant locations at a random point in time than

the remaining 10% peripheral or not-so-significant locations. Indeed we find that the

number of such significant locations as revealed by the voice-call and SMS activities,

is 10 or fewer for over 80% individuals in our dataset (cf. Fig. 7.4(b)). In contrast,

the significant location sets are relatively larger for the same population as revealed by

the data-activity with the 80th percentile at 18 locations per user 2 . Let V be the

set of significant locations revealed by the voice-call activity (and similarly S: SMS and

D: data respectively). We now compute the Jaccard-similiarity between these sets as

follows:

J(A,B) =
|A ∩B|
|A ∪B| (7.1)

Fig. 7.5 shows the probability distribution function for the Jaccard similarities of the

voice-call and SMS activities with respect to the data activity for individual users. Note

that the peaks of the Jaccard similarity are attained at as low as X = 0.1 accounting

for 30% users when comparing the voice-calls and data activities. In other words, for

30% data-users, the overlap between the set of significant locations as revealed by their

voice-call and data activities is as low as 10%. Similarly, the value for X = 0.1 is 50%

when we compare the significant location sets for the SMS and data activities. This

observation clearly suggests that for a significant portion of the user-base, the set of

significant locations may differ significantly (no pun intended). To what extent this

difference matters is what we explore next.

2 Note that this difference may be also be due to the geographic expanse of the San Francisco bay
area which is, in some sense, an extended metropolitan area.
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Home and work

Of all the significant locations of a user, home and work locations are intuitively the most

significant. We first select all users whose overall activity (combination of voice-calls,

SMS and data-records) is spread across 250 or more hours out of the 744 hours in the

observation period and who have at least three significant locations. Our dataset con-

tains about 300 K users who fulfill this criteria, who will be used henceforth throughout

this study for empirical analysis.

Next for each of these users, we consider the 20 working days from the month long

period (excluding weekends and July 4), and divide the day into working hours (9:00

am to 6:00 pm) and non-working hours (the rest). We now compute the work and

home locations of each user by using Hartigan’s leader selection algorithm [103, 92] over

the working-hours and non-working hours respectively. The work and home locations

revealed by all three processes, voice-calls, SMS and data-sessions, quite remarkably, do

not vary across the three processes for over 95% (nearly all) users. Also, we observe

that number of time-slots in which the user is not at either his home or work locations

on weekdays is less than 10% for over 80% users while on holidays it is a close match

(cf. Fig. 7.6(a)).

The difference in the set of significant locations as described in the previous subsec-

tion must then be accounted for by transient locations for example the locations between

home-work commute. Next we look at the length of this commute. For over 57% users

out of the 300 K users, the home and work locations are either the same or fall within

the same zip-code. Fig. 7.6(b) shows the histogram of the home-work distances of users
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whose home and work locations are not within the same zip-code. We observe that the

peak of the distribution lies between 4− 8 km, while 50th and 75th percentiles lie at 10

km and 21 km respectively.

Next we explore the implications of these observations over the observed spatio-

temporal footprint of users.

7.3.2 Spatio-temporal Footprint

We now describe two metrics from literature [88, 90] to analyze the spatio-temporal

characteristics of individual users as well as populations.

The Shannon entropy

Like the random entropy SR, another entropy measure that is commonly used in liter-

ature is the Shannon entropy (also referred to as the temporally uncorrelated entropy

SU in [90]). Precisely,

SU = −
N∑

i=1

Pi log2Pi (7.2)

where Pi is the probability that an activity was observed at location i from the set of N

locations that a user visits. SU is, therefore, a measure of the spread of a user’s activity

over his/her spatial footprint (locations).

The radius of gyration

To quantify the range of a user’s trajectory[88, 90] the so called the radius of gyration

(RG) is often user. Let
−→
Ri denote the position of the user at time i (say time-slot i if

the observation period is discretized). Then the radius of gyration of the user is given

by:

RG =

√√√√ 1

L

L∑

i=1

(
−→
Ri −−−→

Rcm)2 (7.3)

where
−−→
Rcm is the center of mass for all the temporally recorded locations for the user

(L in total).
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Percentile 25th 50th 75th

# Voice-calls 246 437 695

Table 7.1: Quartile-wise break-down of number of voice calls made by high-activity
users.
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Figure 7.7: Shannon entropy (SU ) comparison across voice-caller classes based on fre-
quency.

7.3.3 Looking for Possible Biases

We now look at the following two questions: (i) does using voice-calls CDRs to study

individual mobility patterns potentially introduce a bias in the observed properties?

And (ii) does selecting high-frequency voice-callers to study the mobility characteristics

of the population potentially introduce a bias?

For an individual user

We now compute the SU and RG values for each individual using first only the voice-call

records and then the overall record. Figs. 7.8 and 7.9 (a) respectively show the CDF

distributions of absolute errors incurred in the computation of SU and RG respectively

for individual users. We observe that for over 50% users SU incurs an absolute error

of around 0.25 and above. In contrast, the RG values are estimated to within a 1 km

error range by the voice-call process for over 80% users. Therefore, the only possible

bias voice-call process seems to incur is in terms of the entropy, which we shall look at

greater detail in a subsequent section.
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User-classes by voice-call frequency

Next we explore the question of whether (and to what extent) high-frequency voice-

callers are representatives of the population on a whole? To do so, we partition the

set of 300 K users cited above into four quartiles each of 75 K users, by the number of

voice-calls made by them (see table 7.3.3).Thus we have the low-frequency voice-callers

with fewer than 246 voice-calls in a month (the first quartile) to compare against those

in the other three quartiles. Figs. 7.7(a) and (b), respectively show the probability

distribution of SU for first and the fourth quartile users. Note that SU is computed

using the overall activity record for the user and not just the voice-call activity. We

observe that the peak of the probability distribution shifts from around 3.00 for the first

quartile users to around 4.00 for the fourth quartile (in fact this increase is consistent

across the quartiles). Thus, as far as the population is concerned, the uncorrelated

entropy measure might be overestimated if we select high-frequency voice-callers as

representatives of the population.

Finally, we look at the distribution of the radii of gyration for the users of the four

classes by voice-call frequency. Fig. 7.9(c), shows the log-log distribution of RG of the

first and the fourth quartile users. We observe that the distributions nearly overlap

suggesting a lack of variance across user classes by voice-call frequency (the same is

true for the second and third quartile users). RG distribution of a population is often

characterized in terms of a truncated power-law [88]. We observe that the exponents

for the power-law fit across the four classes are in the range β = [1.76−1.79], consistent

with that in [88].

To summarize therefore, using high-frequency voice-callers to study aggregate mo-

bility of user populations can incur possible biases for the uncorrelated entropy but the

radius of gyration distributions seem to be immune to such selection. But Shannon

entropy is only a number, and thus although it provides a hint into possible differences,

we need better means to characterize these differences. In what follows, therefore, we

motivate mobility studies in the form of a sampling problem to understand as to why

and under what conditions the entropy of a user differs across the activities and how, if

possible, to rectify for it.
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7.4 A Sampling Problem

In this section we look at the nuances of the spatio-temporal footprint of individual

users and the underlying biases in terms of a sampling problem. In §7.4.1 we provide

a case-study to show that preferential locations for different activity types may indeed

lead in an over-counting bias. Then, in §7.4.2, we formally state the sampling problem as

well as motivate an imposed sampling process to compare the voice-call process against.

7.4.1 An Illustrative Example

We now present a case study of a frequent voice-caller to put into perspective the

sampling problem. Our example user, has 510 voice-call records spread over 218 hours

in the observation period. This is higher than the 90th percentile of the number of

voice-calls per user. The user also has over 780 SMS records and 7, 300 data-records

amounting to nearly 8, 500 activity-records in total (voice-calls, SMS and data) spread
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Figure 7.10: Example user: Prob. of observation per location.

over 466 hours. Moreover, the spatial-footprint of the user encompasses 47 distinct

locations in the San Francisco bay area, which is close to the mean number of locations

visited by the users in our dataset. Out of these, the number of locations accounted

for by the voice-call activity alone is 24, once again higher than the mean number of

locations accounted for by voice-calls for the user-base. In short, this user is likely to

be sampled for a mobility study of individuals, with high probability, based on either

selection criteria: activity as well as mobility, irrespective of the kind of activity under

consideration.

Next we compute the probability for this user to make a voice-call over the set of

overall locations visited by the user (cf. Fig. 7.10). Two observations stand out: the

voice-call activity misses some significant locations, and location 44 alone accounts for

almost 50% of the marginal distribution for the voice-call activity. On further inspection,

we discovered that the user is mostly present at location 44 during the evening hours

(cf. Figs. 7.11(a) and (b)) i.e. his home locations. Thus, we observe that this is

a preferential location for the voice-call activity for this user. In contrast, the data

activity (and consequently the overall activity) is more evenly spread over the hour-of-

day.

Such preferential behavior for voice-activity clearly may lead to biased estimates of

both Shannon entropy (an absolute error of 0.34 in this case) as well as the radius of

gyration (0.25 km). Whereas the absolute error in RG is intuitive to understand, we

need a better insight into the Shannon entropy error and if possible make an attempt

to correct for it. This we do in the next subsection.
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Figure 7.11: Example user: Temporal Activity.

7.4.2 Mobility as a Sampling Problem

A user’s activity-profile (say the voice-call activity), is in fact a segmentation of the ob-

servation period whereby events (such as voice-calls) occur at certain times, interspersed

with periods of inactivity of varying lengths. Our view of a user in the cellular network

is entirely dependent on this event-pause sequence. We observe a user and his location if

an only if there is an event and not during the pauses. The observed mobility can there-

fore be posed as a sampling problem in the following way. Given an observation period

of T hours, define a discretized partitioning of T in terms of time-windows of length M

minutes each. The number of maximum observations is given by W = (T ∗ 60)/M . By

abuse of notation, we will use W to represent the set of time-slots as well. A sampling

process S(W ) is then defined over the set W of time-slots, that samples a user’s location

at discrete time intervals determined by a rate function ρ. The output of the sampling

function S(W ) is a subset W ⊂ W , of the overall set of time-slots, where the number

of sampled windows is determined by the rate function ρ. From the point of view of

mobility, if L be the set of all locations visited by a user, this hypothetical sampling

function S(W ) only records a subset of locations L ⊂ L, which the user visits during

the time-windows of the set W .

The goodness of the sampling process S(W ) can then be determined in the following

way. Let PS ∈ ℜN be the marginal probability distribution of the sampling process

S(W ), over the set of all locations that constitute the spatial footprint of the user. The

entry pi ∈ PS , is probability of sampling location i. Similarly, let PO be the marginal

probability of the overall activity distributed over the set of locations. Then the marginal
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distributions can now be compared in terms of the Jensen-Shannon divergence [104]

between the two distributions as follows:

JSD(PS ||PO) =
1

2
(D(PS ||PM ) +D(PO||PM )) (7.4)

where PM = PS+PO

2 and D(PS , PM ) is the Kullback-Leibler divergence between PS and

PM
3 . In information theory, Jensen-Shannon divergence is often used as a measure of

mutual information between two probability distributions (lower the Jensen-Shannon

divergence, more similar the two probability distributions are). Additionally, we can

also compare one or more of the popular metrics in literature (discussed earlier) such as

the set of locations visited by a user, the Shannon entropy and/or the radius of gyration.

We therefore have several ways of quantifying the bias incurred by a sampling process as

compared to the overall observed activity-mobility profile (which in itself is a sampling

over the true mobility of a user).

In view of the above, it is easy to see that the voice-call activity (or for that matter

SMS, data-activity and the overall activity) clearly fits the description of a sampling

process. And we have a measure, namely the Jensen-Shannon divergence of the voice-call

process against the overall activity process, to quantify the bias. However, the Jensen-

Shannon divergence is only a relative measure of difference. In order to make sense of

the difference, we need at least one other process to compare against, and we choose an

artificially imposed one. Can a sampling process defined with the same average rate as

that of the voice-call activity perhaps perform better? This is the question that we now

deal with in detail.

We now formalize the problem of assessing the suitability/goodness of the voice-call

activity as a sampling process. For a given user, let SV (W ) be the sampling process

representing the user’s voice-call activity. If the number of voice-calls made by the user

during the observation period be V , then the average rate-function is simply ρ = V/|∆T |
i.e. the number of calls made by the user between the first and final hour during which

there is a voice-call record associated with him/her. We define the imposed sampling

process SI(W ), as an instance of the set of all sampling processes with the same average

rate ρ as exhibited by the voice-call activity of the cellular user. For convenience we

3 We choose the Jensen-Shannon divergence for these comparisons purely because it is bounded
in the interval [0,1] [105] and also measures mutual information between the two marginal probability
distributions.
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choose a Poisson process with the same intensity function as the average voice-call rate

as our imposed sampling function. The reason for this choice is simple: a Poisson

process is the most evenly spread out random process with a given rate function. The

average call rates of users are easy to estimate and this is the only parameter required

to define the Poisson process, thus making the choice quite obvious.

A second imposed sampling process that we study is one with varying fractions of

the overall activity-rate for a user. Our aim, in doing so, is to determine the sampling

rate at which an imposed activity sampling process provides a good sample of the user’s

observed mobility behavior.

7.5 Experiments

In this section, we describe the experimental results for the various sampling processes

described previously. In §7.5.1 we compare the voice-call process against the imposed

Poisson sampling process with the same intensity followed by a study of varying rate of

sampling with fractions of overall activity rates in §7.5.2.

7.5.1 Voice-call Sampling vs. an Imposed Poisson Process

We now compare the voice-call based sampling for individual users vis-a-vis a Poisson

process with the same intensity as the average number of voice-calls per active hour for

the user. However, before doing so, we first need to pick a relevant sample of users from

the dataset with enough number of voice-calls to make any sensible comparisons. As

observed previously, for data-users the 25th percentile for the number of voice-calls is

68, the 50th percentile is at 153 while the 75th percentile lies at 315. We now classify

the data-users for this comparative study into low-activity (68 to 153 calls), medium-

activity (153 to 315 calls) and high-activity (315 calls and above), based on the quartile

margins. Note that our high activity group is quite similar to the one picked in [90]

where the selection criteria is 0.5 calls per hour which is roughly 372 calls in our case.

Similarly, we also divide each of the three activity classes described above into three

mobility-classes based on the number of locations that constitute the set of significant

locations for each user (as accounted for by his/her overall activity). Recall that despite

a remarkable difference in the number of locations observed by the data process, the
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set of significant locations is 15 or fewer for over 75% of the data users. Once again,

we define as low, medium and high mobility classes for users whose significant location

sets contain 3 − 8, 8 − 15 and 15 and above locations. Note that although considering

significant locations reduces the impact of extremely low probability locations, there is

always a caveat that not all significant locations are equally or competitively significant.

We defer the details to a latter paragraph.

Given user i whose number of voice-calls in the entire duration is at least above the

25th percentile, denoted by Vi. We also note the overall activity span of user i i.e. the

difference in between the times at which user i makes the first and the last voice-calls,

(say ∆Ti in terms of the number of 15 minute intervals separating the first and last

voice-calls). This yields the rate ρ = Vi/∆Ti for the Poisson (and periodic) sampling

processes that we will impose to sample the locations at which user i is active (voice-

SMS-data). Note that the aim is to sample (approx.) the same number of these discrete

time windows as the number of voice-calls made by user i. We also require that the

active interval ∆Ti represent at least a two-week long (14 days) period in order to avoid

random visitors in our population. Also, for the Poisson and periodic sampling process,

we generate 10 different random starting points (determined by overall activity and not

just the voice-activity) for sampling and then take the average of the 10 instances to

avoid temporary void periods.

Marginal distributions

We now present the results of this comparative analysis using the Jensen-Shannon di-

vergence for the marginal probability distributions (cf. Fig. 7.12). Observe that all the

four processes are competitive when the voice-call activity is high, for a large fraction

of the users. The Poisson and the voice-cum-SMS sampling processes perform ever so

slightly better than voice and periodic processes in the high activity category. This is

not surprising as a significant population of data-users with high voice-call rates also

have higher data activity rates. Therefore, the overall activity (voice-SMS-data) only

improves on the temporal spread of the voice-activity in the average case, that is sub-

sequently reflected in higher hit-rates for the imposed Poisson and periodic processes

(cf. Fig. 7.12). Moreover, we observe that the divergences increase for each of the four

processes, on an average, when we move from low to high mobility classes. However,
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Figure 7.12: CDF: Inter-class comparisons mobility and activity; numbers in brackets
indicate users per class.

the Poisson process continues to perform better, again ever so slightly, than the other

three. Particularly, for the high-activity-high-mobility class, we observe that the dif-

ference between the Poisson and the other processes is more pronounced. This clearly

indicates that for users whose observed spatial diversity is higher, and spread over a

number of locations, the voice and SMS processes tend to have selective bias towards

certain specific locations (as shown for the example user in the previous section). This

is important to note as in most previous studies the high-activity class is the only one

that is studied.

For the medium activity group, we observe that the Poisson and voice-cum-SMS

processes combined tend to perform better than the voice process with increasing mo-

bility. Predictably as the number of sample points decrease and the location diversity

increases, the performance of the imposed sampling processes decreases due to lower

hit-rates. Yet, overall we observe that the Poisson and voice-cum-SMS processes per-

form better. This may be a result of the fact that the SMS process augments the voice

process at locations where the users tend to make fewer voice-calls.
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Figure 7.13: CDF: Relative errors in radius of gyration and uncorrelated entropies of
data users.

We observe similar trends in the low activity group barring the low-activity-low-

mobility users for whom the obvious handicap is the extreme sparsity of data.

Therefore, despite several competing factors, we observe that the Poisson and the

voice-cum-SMS processes perform better on an average than the voice process, partic-

ularly as the number of significant locations increases.

Other mobility parameters

We now look at the relative error incurred in computing the radius of gyration and Shan-

non entropies of users by the various sampling process in Figs. 7.13(a) and (b). Notice

once again, that the relative errors incurred by the Poisson process are comparatively

lower than that incurred by the others (even if ever so slightly).

7.5.2 Imposed Sampling Processes with Varying Intensities

We now explore the imposed Poisson sampling process from another perspective. This

time we take into consideration the overall activity rate for individual users (instead

of their voice-call activity) to determine the intensity function for the imposed Poisson

sampling process. We study the performance of this imposed Poisson sampling process

for decreasing rates of the intensity function ρ. We decrease ρ in successive integral steps

of the average activity rate for the user through a decay coefficient κ = {2, 4, 8, 16, ...}.
Our aim in doing so is to determine the least rate of sampling (or equivalently the highest

value of κ) at which the imposed Poisson process incurs a Jensen-Shannon divergence

below a certain threshold ǫ ( < 0.1 say).
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However, before we elaborate on the results, we need to select our sample user set

carefully. The 75th percentile for the number of records (voice-SMS-data combined)

per hour lies at 21 records per hour, or equivalently one record every three minutes on

an average. As, we need users for whom we can explore a wide range of κ values, it

is reasonable to select only those users who have high activity rates to begin with (or

else we might end up with the same issue as demonstrated in the previous subsection).

Therefore, for the purposes of this experiment, we first concentrate on the high-activity-

high-mobility group of users, imposing the same restriction that the user’s first and final

activity must span a period of two weeks at the very least.

Fig. 7.14 shows the Jensen-Shannon divergence of the imposed Poisson sampling

processes vs. the observed marginal distribution. We observe that as the rate of the

sampling process decreases, the Jensen-Shannon divergence increases with regularity,

which in itself is not surprising. However, notice that the divergence becomes greater

than 0.1 for 90% of users only at κ = 32 i.e. when the intensity function for the imposed

Poisson sampling is 1/32 of the average activity rate for these users. Therefore, we

conclude, from the evidence at hand, that an imposed Poisson sampling process with

an intensity function much lower than the overall activity rate for users, performs well

as a sampling process for most users.
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7.6 Summary

In this chapter, we discussed the possible caveats of using voice-call detail records

(CDRs) for studying individual human mobility patterns. While CDRs provide an

unprecedented source for user locations at large population scales, there are some obvi-

ous limitations on them, largely due to the underlying nature of the voice-call process,

which being human initiated depends on the calling frequencies of an individual. This

may lead to a skewed view of the spatio-temporal distribution of an individual over the

set of all locations visited. Using the dataset of over a million cellular users from the

San Francisco bay area, covering several thousands of square miles, for a month long

period, we demonstrated that the voice-call activity does well in inferring significant

locations like home and work, even though it may fail to capture the nuances. When

compared with a Poisson sampling process with the same intensity, the voice-call process

compares reasonably well for high call-activity users, but the Poisson process certainly

improves on the performance, particularly as the activity rates vary. Thus when design-

ing location-sensing applications on a mobile device to sample users’ locations a similar

imposed process might come handy. From the point of view of populations, we observe

that while the radius of gyration does not show variation across different classes of users

by activity, the Shannon entropy values may in fact be over-estimated. Therefore, the

use of voice-calls for human mobility patterns should be taken with advised caution

depending upon the nature and objectives of the study.



Chapter 8

Conclusion and Discussion

In this thesis, we discussed a geometry of networks approach to studying the struc-

tural properties of networks at the granularity of individual nodes and edges, as well

as that of the network as a whole. We demonstrated how the geometric properties

of the eigen space associated with the Moore-Penrose pseudo-inverse of the combina-

torial Laplacian translates to significant topological characteristics at different scales.

We also demonstrated how a network (or the graph associated with it), can be viewed

in terms of its sub-network structures. This observation led to useful computational

developments in the form of a divide-and-conquer methodology for computing the sub-

matrix and pseudo-inverses of the Laplacian for dynamic time-evolving graphs as well as

networks of high orders. We then used these observations to study the case of interde-

pendent (infrastructure) networks where the overall robustness of the system was shown

to depend significantly on the choice of the coupling function. We deduced, through

analytical and empirical analysis, that a seemingly optimal strategy is to diffuse the

inter-dependencies across geographically disparate sites. Needless to say, our methods

are generally applicable to all set-ups where a system can be modeled as a simple, undi-

rected graph. Also, when seen in totality, the several approaches used in our analyses

are derived from diverse numerical and computational disciplines: from random walk/

Markov chain literature to linear algebra and graph theory. Therein lies the universality

of our approach.

Finally, we studied the case of cellular data networks — a class of networks with its

own nuances of structural interdependence. First and foremost, a daunting challenge
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in this case, as discussed previously, is the opaqueness of the underlying infrastruc-

ture from any observer outside the network. We demonstrated how this handicap can

be circumvented by exploiting the explicit geo-intent of cellular users as expressed in

their application data, particularly in weather queries. A critical insight of the study

is that large geo-physical territories, spanned by hundreds of basestations, are often

served by a few NAS server pairs. This leads us to conclude that potential catastrophic

failures in the data plane can lead to significant disruptions in the overall communi-

cation capability. Last but not the least, we studied the problem of inferred human

mobility and the possible biases incurred due to observational limitations in the call-

detail-record datasets. Through real-life trace driven analysis, we showed how we can

not only quantify the bias, but also correct for it through an imposed sampling process.

These observations are important as the dynamics of human populations are vital for

urban planning and disaster management in urban and metropolitan locations. Our

work is therefore a relevant contribution to the body of scientific literature in related

areas.
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[92] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, M. Martonosi, J. Rowland, and

A. Varshavsky. Identifying important places in people’s lives from cellular network

data. 9th International Conference on Pervasive Computing Pervasive, 2011.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Theorem 1

Using ∆H i→k→j = (Cik + Ckj − Cij)/2:

∆H(k) =
1

2n2 V ol(G)

n∑

i=1

n∑

j=1

Cik + Ckj − Cij

Observing Cxy = V ol(G) (l+xx+ l+yy − 2l+xy) [18] and that L+ is doubly centered (all rows

and columns sum to 0) [8], we obtain the proof.

�

A.2 Proof of Theorem 2

Using ∆H i→k→j = (Cik + Ckj − Cij)/2:

∆H(k) =
1

n

n∑

k=1

Cik + Ckj − Cij −
Tr(L+)

n

Observing Cxy = V ol(G) (l+xx+ l+yy − 2l+xy) [18] and that L+ is doubly centered (all rows

and columns sum to 0) [8], we obtain the proof.

�
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A.3 Proof of Theorem 3

From [41] we have, ∆H i→k→j = d(i)−1 V ol(G) U jk
i . The rest of this proof follows by

proving U jk
i = U ik

i + Ukj
i − U ij

i .

From the superposition principle of electrical current, we have V xz
x = V xz

y + V zx
y .

Therefore,

V ik
i + V kj

i − V ij
i = V ik

j + V ki
j + V kj

i − V ij
k + V ji

k

= V ik
j + (V ki

j + V kj
i − V ij

k − V ji
k )

From the reciprocity principle, V xy
z = V zy

x . Therefore, V ik
i + V kj

i − V ij
i = V jk

i . Multi-

plying by d(i) on both sides we obtain the proof.

�

A.4 Proof of Theorem 4

The following result, due to Chebotarev et al. [73, 106], forms the basis of our proof.

Let Fx be the set of spanning rooted forests of G(V,E) with x edges. Precisely, Fx ∈ Fx,

is a spanning acyclic subgraph of G with the same node set as G and is composed of

exactly n− x trees with one node marked as a root in each of these x trees. Let F ii
x , be

the subset of Fx in which node i is the root of the tree in which it belongs. Then,

l+ii =
ε(F ii

n−2)− 1
nε(Fn−2)

ε(Fn−1)
(A.1)

Here, ε(·) simply represents the cardinality of the input set (see [73, 106] for details).

It is easy to see that ε(Fn−1) = n|T (G)|, as a spanning forest with n − 1 edges is a

spanning tree, and each spanning tree has exactly n possible choices of roots. Also,

ε(Fn−2) and ε(Fn−1) are invariants over the set of vertices V (G) for a given graph.

Hence, l+ii ∝ ε(F ii
n−2). The rest of the proof follows from the results of the following

lemmas:

Lemma 2 Let F ii
n−2|P be the set of spanning forests with n − 2 edges (or exactly two

trees) rooted at node i in a given bi-partition P = (S, S′) and T (S), T (S′) be the set of

spanning trees in S and S′ respectively. If i ∈ V (S) then,

ε(F ii
n−2|P ) = |T (S)| |T (S′)| |V (S′)|
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Proof : Let T1 ∈ T (S) and T2 ∈ T (S′). Clearly, |E(T1)| = |V (S)| − 1 and |E(T2)| =
|V (S′)| − 1. As |V (S)|+ |V (S′)| = |V (G)| and |E(T1) ∩ E(T2)| = 0, |E(T1) ∪ E(T2)| =
|V (S)| − 1 + |V (S′)| − 1 = n − 2. Each such pair (T1, T2) is a spanning forest of n − 2

edges. Given i is the root of T1 in S, we can choose |V (S′)| roots for T2 in S′. There

being |T (S)| |T (S′)| such pairs: ε(F ii
n−2|P ) = |T (S)| |T (S′)| |V (S′)|.

�

By symmetry, for j ∈ V (S′) :

ε(F jj
n−2|P ) = |T (S)| |T (S′)| |V (S)|

Lemma 3 Given P(G), the set of all bi-partitions of G:

ε(F ii
n−2) =

i∈V (S)∑

P∈P(G)

|T (S)||T (S′)||V (S′)|

Proof: By definition, ∀F ∈ Fn−2, F belongs to exactly one of the partitions of G.

Hence, F ii
n−2 =

∐
P∈P ε(F ii

n−2|P ). As the RHS is a disjoint union, counting members on

both sides we obtain the proof.

�

Evidently, combining the results of the two lemmas above, we obtain the proof for

Theorem 4.

�

A.5 Proof of Theorem 5

The proof follows exactly in the same logical order as that of the proof of Theorem 5.

�

A.6 Proof of Theorem 6

Once again, the proof follows by summing up the proof of Theorem 4 ∀i ∈ V (G).

�
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A.7 Proof of Corollary 1

The proof follows simply by making the following observations about trees: ε(Fn−1) =

n · 1 = n. Also,

ε(F ii
n−2) =

i∈V (S)∑

P (S,S′)∈P(G)

|V (S′)| (A.2)

and

ε(Fn−2) =
∑

P (S,S′)∈P(G)

|V (S)||V (S′)| =
∑

P (S,S′)∈P(G)

(n− |V (S′)|)|V (S′)| (A.3)

Thus substituting these values in (A.1), we obtain the proof.

�



Appendix B

Proofs for Chapter 4

B.1 Proof of Theorem 7

Given, L ∈ ℜn×n, we note that L · 1 = 0 and 1′ · L = 0′, where 1 ∈ ℜn and 0 ∈ ℜn are

vectors of length n containing all 1′s and 0′s respectively. From [71], we have:

L({n}, {n})−1 = [In−1,−v] L+

[
In−1

−u′

]
(B.1)

where In−1 is the identity matrix of dimension (n− 1× n− 1) and u = v = 1 ∈ ℜn−1

are vectors of all 1′s of length n− 1. Expanding we obtain the following scalar form:

[L({n}, {n})−1]xy = l+xy − l+xn − l+ny + l+nn (B.2)

�

B.2 Proof of Lemma 1

Given, L+ is symmetric and doubly centered and Ωxy = l+xx + l+yy − l+xy − l+yx, we have:

n∑

z=1

Ωxz +Ωzy − Ωxy =
n∑

z=1

[(l+xx + l+zz − 2l+xz) + (l+zz + l+yy − 2l+zy)− (l+xx + l+yy − 2l+xy)]

= 2
n∑

z=1

[l+zz + l+xy]

= 2n l+xy + 2 Tr(L+)

130
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Rearranging terms, we get:

l+xy =
1

2n

(
n∑

z=1

Ωxz +Ωzy − Ωxy

)
− 1

n
Tr(L+) (B.3)

Substituting Tr(L+) =
1

2n

n∑

x=1

n∑

y=1

Ωxy, in the expression above, we obtain the proof.

�

B.3 Proof of Corollary 3

Given, a star Sp with node 1 as root and nodes {2, 3, ..., p} as leaves, we have:

∀x : 2 ≤ x ≤ p, Ω
Sp

1x = 1 & ∀x 6= y : 2 ≤ x, y ≤ p, Ω
Sp
xy = 2 (B.4)

Therefore,
p∑

x=1

p∑

y=1

Ω
Sp
xy = 2(p− 1)2

Also,

p∑

z=1

Ω
Sp

1z+Ω
Sp
zp−Ω

Sp

1p = 2(p−2) & ∀x 6= y : 2 ≤ x, y ≤ p,

p∑

z=1

Ω
Sp
xz+Ω

Sp
zy−Ω

Sp
xy = 2(p−3)

Substituting for these values in Lemma 1, and noting that L+
Sp

is doubly-centered, we

obtain the proof.

�

B.4 Proof of Corollary 4

Given a clique Kp of order p, ∀x 6= y : 1 ≤ x, y ≤ p,Ωxy =
2

p
[1]. Therefore,

p∑

x=1

p∑

y=1

Ω
Kp
xy = 2(p− 1)

Also,

∀x : 1 ≤ x ≤ p,

p∑

z=1

Ω
Kp
xz +Ω

Kp
zx − Ω

Kp
xx =

4(p− 1)

p
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Substituting in Lemma 1, we obtain: l+xx =
p− 1

p2
and, from the fact that L+

Kp
is

doubly-centered, ∀x 6= y : 1 ≤ x, y ≤ p, l+xy = − l+xx
p− 1

= − 1

p2
.

�

B.5 Proof of Theorem 8

We present the proofs for the following two cases: (a) x, y ∈ V1(G1) and, (b) x ∈ V1(G1)

and y ∈ V2(G2). It is obvious that the other two cases, viz. (c) x, y ∈ V2(G2) and (d)

x ∈ V2(G2) and y ∈ V1(G1), follow from symmetry. But first we must express Tr(L+
G3

)

as a function of (Tr(L+
G1

), T r(L+
G2

)), which is useful to us in both cases.

Lemma 4 For two disjoint simple, connected, undirected graphs G1(V1, E1) & G2(V2, E2),

let G3(V3, E3) be the graph resulting from the first join between G1 and G2 by means of

introducing an edge eij : i ∈ V1(G1), j ∈ V2(G2). Then,

Tr(L+
G3

) = Tr(L+
G1

) + Tr(L+
G2

) +
n1n2

n1 + n2

(
l
+(1)
ii + l

+(2)
jj + ωij

)
(B.5)

Proof of Lemma 4

For an arbitrary node x ∈ V1(G1):

ΩG3

xy = ΩG1

xy , if y ∈ V1(G1)

= ΩG1

xi + ωij +ΩG2

jy , if y ∈ V2(G2)

Therefore,

∑

y∈V3(G3)

ΩG3

xy =
∑

y∈V1(G1)

ΩG1

xy +
∑

y∈V2(G2)

(
ΩG1

xi + ωij +ΩG2

jy

)

= n1 l+(1)
xx ++n2

(
l+(1)
xx + l

+(1)
ii − 2 l

+(1)
xi

)
+ n2 ωij + n2 l

+(2)
jj + δ

where δ = Tr(L+
G1

) + Tr(L+
G2

). Summing up over all nodes x ∈ V1(G1):

∑

x∈V1(G1)

∑

y∈V3(G3)

ΩG3

xy = (2 n1 + n2) Tr(L
+
G1

) + n1n2 (l
+(1)
ii + l

+(2)
jj + ωij) + n1 Tr(L+

G2
)

By symmetry,

∑

x∈V2(G2)

∑

y∈V3(G3)

ΩG3

xy = (2 n2 + n1) Tr(L
+
G2

) + n1n2 (l
+(1)
ii + l

+(2)
jj + ωij) + n2 Tr(L+

G1
)
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Therefore,

∑

x∈V3(G3)

∑

y∈V3(G3)

ΩG3

xy =
∑

x∈V1(G1)

∑

y∈V3(G3)

ΩG3

xy +
∑

x∈V2(G2)

∑

y∈V3(G3)

ΩG3

xy

= 2 (n1 + n2)δ + 2 n1n2

(
l
+(1)
ii + l

+(2)
jj + ωij

)

where δ = Tr(L+
G1

) + Tr(L+
G2

). Substituting Tr(L+
G3

) =
1

2n3

∑

x∈V3(G3)

∑

y∈V3(G3)

ΩG3

xy , we

obtain the result.

�

Rest of the Proof of Theorem 8

Case a: x, y ∈ V1(G1)

From Lemma 1, we have:

l+(3)
xy =

1

2n3


 ∑

z∈V3(G3)

ΩG3

xz +ΩG3

zy − ΩG3

xy


− 1

n3
Tr(L+

G3
) (B.6)

For the triangle inequality in the RHS above:

∑

z∈V3(G3)

ΩG3

xz =
∑

z∈V1(G1)

ΩG1

xz +
∑

z∈V2(G2)

(
ΩG1

xi + ωij +ΩG2

jz

)

= (n1 + n2) l
+(1)
xx + n2 l

+(1)
ii − 2n2 l

+(1)
xi + n2 ωij + n2 l

+(2)
jj + δ

where δ = Tr(L+
G1

) + Tr(L+
G2

). By symmetry,

∑

z∈V3(G3)

ΩG3

zy = (n1 + n2) l
+(1)
yy + n2 l

+(1)
ii − 2n2 l

+(1)
yi + n2 ωij + n2 l

+(2)
jj + δ

Finally, for the last of the three terms:

∑

z∈V3(G3)

ΩG3

xy = (n1 + n2)
(
l+(1)
xx + l+(1)

yy − 2 l+(1)
xy

)

Summing the three individual terms along with the value of Tr(L+
G3

) from (B.5) and

substituting the result in (B.6), we obtain the proof.
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Case b: x ∈ V1(G1) and y ∈ V2(G2)

Once again,

l+(3)
xy =

1

2n3


 ∑

z∈V3(G3)

ΩG3

xz +ΩG3

zy − ΩG3

xy


− 1

n3
Tr(L+

G3
) (B.7)

For the triangle inequality in the RHS above:

∑

z∈V3(G3)

ΩG3

xz =
∑

z∈V1(G1)

ΩG1

xz +
∑

z∈V2(G2)

(
ΩG1

xi + ωij +ΩG2

jz

)

= (n1 + n2) l
+(1)
xx + n2 l

+(1)
ii − 2n2 l

+(1)
xi + n2 ωij + n2 l

+(2)
jj + δ

where δ = Tr(L+
G1

) + Tr(L+
G2

). Similarly,

∑

z∈V3(G3)

ΩG3

zy =
∑

z∈V1(G1)

(
ΩG2

yj + ωij +ΩG1

iz

)
+

∑

z∈V2(G2)

ΩG1

zy

= (n1 + n2) l
+(2)
yy + n1 l

+(2)
jj − 2n1 l

+(2)
jy + n1 ωij + n1 l

+(1)
ii + δ

And finally,

∑

z∈V3(G3)

ΩG3

xy =
∑

z∈V3(G3)

ΩG3

xi + ωij +ΩG3

jy

= (n1 + n2)
(
l+(1)
xx + l

+(1)
ii − 2 l

+(1)
xi + ωij + l+(2)

yy + l
+(2)
jj − 2 l

+(2)
jy

)

Summing the three individual terms along with the value of Tr(L+
G3

) from (B.5) and

substituting the result in (B.7), we obtain the proof.

�

B.6 Proof of Theorem 9

We prove Theorem 9 in two steps. First, in the following lemma, we provide a general

result for a perturbation of a positive semi-definite matrix, which is then used to prove

the overall theorem.
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Lemma 5 Given V ∈ ℜn×n is a symmetric, positive semi-definite matrix and X ∈
ℜn×q a perturbation matrix, such that (I+αXTV +X) has an inverse where α = {1,−1},
and V V +X = X, the following holds:

(V + αXXT )+ = V + − αV +X(I + αXTV +X)−1XTV + (B.8)

Proof of Lemma 5:

Observe that the positive semi-definiteness of V guarantees that I + XTV +X has an

inverse.

Let W = V + − αV +X(I + αXTV +X)−1XTV +. Therefore,

(V + αXXT )W = V V + − αV V +X(I + αXTV +X)−1XTV +

+ αXXTV + −XXTV +X(I + αXTV +X)−1XTV +

= V V + − αX(I + αXTV +X)−1XTV +

+ αX
[
I − αXTV +X(I + αXTV +X)−1

]
XTV +

= V V + − αX(I + αXTV +X)−1XTV +

+ αX
[
((I + αXTV +X)− αXTV +X)(I + αXTV +X)−1

]
XTV +

= V V + − αX(I + αXTV +X)−1XTV +

+ αX
[
(I + αXTV +X)−1

]
XTV +

= V V + − αX(I + αXTV +X)−1XTV +

+ αX
[
(I + αXTV +X)−1

]
XTV +

= V V +

From this identity, and the symmetry of V,W & (XXT ), it follows easily thatW satisfies

the four conditions required for a Moore-Penrose pseudo-inverse.

�

Rest of the Proof of Theorem 9

Note that the firing of the edge eij in G1(V1, E1) to obtain G2(V2, E2), results in the

following scalar relationships between the Laplacians of the two graphs:

a. [LG2
]ij = [LG2

]ji = − 1

ωij
, b. [LG2

]ii = [LG1
]ii+

1

ωij
, c. [LG2

]jj = [LG1
]jj+

1

ωij

(B.9)
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For ease of exposition, we permute the rows and columns in LG1
and LG2

in such a way

that i = 1 and j = 2. The above perturbations can then be rewritten as:

LG2
= LG1

+
1

ω12




1 −1 0 ... 0

−1 1 0 ... 0

0 0 0 ... 0
...

...
...

...
...

0 0 0 ... 0




(B.10)

LG2
is therefore a sum of LG1

, a real, symmetric, positive semi-definite matrix, and a

rank(1) perturbation matrix, referred to henceforth as Y . It is easy to see that for a

simple, connected, undirected graph G1(V1, E1), L
+
G1

satisfies all the preconditions in

Lemma 5. Substituting V = LG1
, α = 1 and X =

√
Y = XT , in Lemma 5, we get:

L+
G2

= (LG1
+XXT )+ = L+

G1
− L+

G1
X (I +XL+

G1
X)−1 XL+

G1
(B.11)

All that remains now is to obtain the scalar form for the term:

L+
G1

X (I +XL+
G1

X)−1 XL+
G1

Note:

L+
G1

X =
1√
2 ω12




l
+(1)
11 − l

+(1)
12 −(l

+(1)
11 − l

+(1)
12 ) 0 ... 0

l
+(1)
21 − l

+(1)
22 −(l

+(1)
21 − l

+(1)
22 ) 0 ... 0

...
...

...
...

...

l
+(1)
n−1,1 − l

+(1)
n−1,2 −(l

+(1)
n−1,1 − l

+(1)
n−1,2) 0 ... 0

l
+(1)
n1 − l

+(1)
n2 −(l

+(1)
n1 − l

+(1)
n2 ) 0 ... 0




(B.12)

Similarly,

XL+
G1

=
1√
2 ω12




l
+(1)
11 − l

+(1)
21 l

+(1)
12 − l

+(1)
22 ... l

+(1)
1n − l

+(1)
2n

−(l
+(1)
11 − l

+(1)
21 ) −(l

+(1)
12 − l

+(1)
22 ) ... −(l

+(1)
1n − l

+(1)
2n )

0 0 ... 0
...

...
...

...

0 0 ... 0




(B.13)
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Or,

XL+
G1

X =




Ω
G1
12

2 ω12
− Ω

G1
12

2 ω12
0 ... 0

− Ω
G1
12

2 ω12

Ω
G1
12

2 ω12
0 ... 0

0 0 0 ... 0
...

...
...

...
...

0 0 0 ... 0




(B.14)

where ΩG1

12 = l
+(1)
11 + l

+(1)
22 − l

+(1)
12 − l

+(1)
21 , which yields:

(I +XL+
G1

X)−1 =




1 +
Ω

G1
12

2 ω12
− Ω

G1
12

2 ω12
0 ... 0

− Ω
G1
12

2 ω12
1 +

Ω
G1
12

2 ω12
0 ... 0

0 0
...

... In−2,n−2

0 0




−1

(B.15)

=




2ω12+Ω
G1
12

2(ω12+Ω
G1
12

)

Ω
G1
12

2(ω12+Ω
G1
12

)
0 ... 0

Ω
G1
12

2(ω12+Ω
G1
12

)

2ω12+Ω
G1
12

2(ω12+Ω
G1
12

)
0 ... 0

0 0
...

... In−2,n−2

0 0




(B.16)

Multiplying on the left and right sides of the RHS above with L+
G1

X and XL+
G1

respec-

tively, the following scalar form is obtained:

l+(2)
xy = l+(1)

xy −
(l
+(1)
x1 − l

+(1)
x2 )(l

+(1)
1y − l

+(1)
2y )

ω12 +ΩG1

12

(B.17)

Substituting i = 1 and j = 2 back into the equation above, we obtain the proof.

�

B.7 Proof of Corollary 5

Noting ΩG2
xy = l

+(2)
xx + l

+(2)
yy − l

+(2)
xy − l

+(2)
yx and substituting into the result of Theorem 9,

we obtain the proof.

�
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B.8 Proof of Theorem 10

Deleting a non-bridge edge eij ∈ E1(G1) from G1(V1, E1) to obtain G2(V2, E2), results

in the following scalar relationships between the Laplacians of the two graphs:

a. [LG2
]ij = [LG2

]ji =
1

ωij
, b. [LG2

]ii = [LG1
]ii−

1

ωij
, c. [LG2

]jj = [LG1
]jj−

1

ωij

(B.18)

Once again, for convenience, we rearrange the rows and columns of LG1
and LG2

in

such a way that i = 1 and j = 2. Thus,

LG2
= LG1

− 1

ω12




1 −1 0 ... 0

−1 1 0 ... 0

0 0 0 ... 0
...

...
...

...
...

0 0 0 ... 0




(B.19)

The rest of the proof follows as in the proof of Theorem 9, with the following modifica-

tion. Substituting V = LG1
, α = −1 and X =

√
Y = XT , in Lemma 5, we get:

L+
G2

= (LG1
−XXT )+ = L+

G1
+ L+

G1
X (I +XL+

G1
X)−1 XL+

G1
(B.20)

which yields the following scalar form:

l+(2)
xy = l+(1)

xy +
(l
+(1)
x1 − l

+(1)
x2 )(l

+(1)
1y − l

+(1)
2y )

ω12 − ΩG1

12

(B.21)

Substituting i = 1 and j = 2 back into the equation above, we obtain the proof.

�

B.9 Proof of Corollary 6

Noting ΩG2
xy = l

+(2)
xx + l

+(2)
yy − l

+(2)
xy − l

+(2)
yx and substituting into the result of Theorem

10, we obtain the proof.

�
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B.9.1 Proof of Theorem 11

We present the proof for the case: x, y ∈ V2(G2) as the other case follows by symmetry.

Once again, we need a lemma to determine Tr(L+
G2

) in terms of the elements of L+
G1

.

Lemma 6 Let G1(V1, E1) be a simple, connected, unweighted graph with a bridge edge

eij : i ∈ E1(G1) which upon deletion produces two disjoint simple graphs G2(V2, E2) and

G3(V3, E3). Then,

Tr(L+
G2

) =
∑

x∈V2(G2)

l+(1)
xx − 1

n2

∑

x∈V2(G2)

∑

y∈V2(G2)

l+(1)
xy (B.22)

Proof of Lemma 6

The proof follows simply by observing ΩG2
xy = ΩG3

xy , ∀(x, y) ∈ V2(G2) × V2(G2) and

substituting values in terms of the elements of L+
G1

.

�

Rest of the Proof of Theorem 11

Follows similarly from the triangle inequality in Lemma 1, by confining to node pairs

(x, y) ∈ V2(G2)×V2(G2), and then substituting the result of Lemma 6 and other relevant

effective resistance values in terms of L+
G1

.

�



Appendix C

Proofs for Chapter 5

C.1 Proof of Theorem 12

Recall, by Lemma 4, for two disjoint simple, connected, undirected graphs G1(V1, E1)

and G2(V2, E2), let G3(V3, E3) be the graph resulting from the first join between G1

and G2 by means of introducing an edge eij : i ∈ V1(G1), j ∈ V2(G2). Then,

Tr(L+
G3

) = Tr(L+
G1

) + Tr(L+
G2

) +
n1n2

n1 + n2

(
l
+(1)
ii + l

+(2)
jj + ωij

)
(C.1)

The process of merging two nodes is then the equivalent of introducing an infinites-

imally small resistance ε = ωij between i ∈ V1(G1) and j ∈ V2(G2). It is easy to see

that G3 = Gc here is then the coupled network post first join.

�

C.2 Proof of Theorem 13

Recall, by Theorem 9

l+(2)
xy = l+(1)

xy −
(l
+(1)
xi − l

+(1)
xj )(l

+(1)
iy − l

+(1)
jy )

ωij +ΩG1

ij

(C.2)

Substituting y = x, summing up ∀x ∈ Vc1(Gc1) and substituting ωGc1

ij = ε, we obtain

the proof. Once again, we note that coupling i and j, is the same as introducing an

infinitesimally small resistance between the two nodes.

�
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