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Abstract. It has been shown that many real networks are not only “scale-free”
(i.e., having a power-law degree distribution), but also contain more complex
structures such as “hierarchy” or “self-similarity” that cannot be captured by the
preferential attachment random network model. These observations have led to
a number of more sophisticated models being proposed in the literature. In this
paper we advocate a multivariate analysis perspective based on the notion of
MRVs as a unifying framework to study complex structures in networks. We
demonstrate the existence of “multivariate heavy tails” in existing network mod-
els and real networks, and argue that they better capture the “hierarchical” or
“self-similar” structures in these networks.

1 INTRODUCTION

Complex networks arising from natural, social, and engineered systems have been a
topic of extensive studies in the past decades. A prevailing feature characterizing most
of these complex networks is the power-law degree distribution, P(k) ≈ k−γ, where k
represents the node degree. This gives rise to the term scale-free (SF) networks. Genera-
tive network models such as preferential attachment (PA) model have been proposed to
provide a plausible explanation for the origin of the power-law degree distribution (also
the “small-world” phenomenon observed in such networks, characterized by the aver-
age shortest path length in the logarithmic (log) order of the network size, O(logN)).
Besides the power-law degree distribution and small-world properties, many real-world
complex networks also exhibit other important features, such as modularity (e.g., as
characterized by a high average clustering coefficient) [1] that is absent in random
scale-free networks generated via the PA model. As an attempt to capture the more
complex structures observed in real-world networks, many additional models (mostly
deterministic) have been introduced in the literature, some of which yield sometimes
confusing, if not contradictory, statements about the structures of complex networks.
These earlier studies all share a common characteristic in their approaches to capture
more complex structures in networks: in addition to the power-law degree distribution,
they introduce – and look for – the scaling law in another metric or form, e.g., the
clustering coefficients [1].

In this paper we bring a multivariate analysis perspective – in particular, the notion
of multivariate heavy tails – to study structural properties of complex networks. As
a generalization of the power law distributions in one dimension, “multivariate heavy
tailed” (more precisely, multivariate regularly varying or MRV in short, see Section 3



for details) distributions embody more complex structures1, and have been applied to
a number of fields, e.g., multivariate time series analysis in finance to identify shared
risks [7]. Like in the previous studies, this multivariate analysis perspective allows us
to study the structural properties of complex networks using multiple metrics (that go
beyond the degree distribution); but unlike the previous studies, it enables us to ex-
plicitly and directly examine the dependence structures defined by a number of dif-
ferent metrics, e.g., node degree and clustering coefficient, or degree-degree depen-
dence structures, in complex networks. Such dependence structures cannot be revealed
by studying each of the network statistical features in the marginal form alone. For
example, intuitively “hierarchical” or “self-similar” structures introduce dependencies
among sub-network structures at multiple scales and these dependences are all explic-
itly built through recursive construction in the growing network models introduced
in [1, 5, 6, 3]. However, finding a scaling law in the marginal distribution in each of
the metrics of interest (e.g., degrees and clustering coefficients) in a real network that
matches those in the synthetic growing network models does not necessarily imply that
the real network has the same dependence structures – at least theoretically speaking,
those marginal heavy tails can occur independently in the network. Nonetheless, ex-
istence of MRVs in the joint distribution of these metrics provides a much stronger
evidence for the “heavy-tailed” dependence structures. Hence we believe that existence
of MRVs provides a better measure to capture the “hierarchical” or “self-similarity”
structures in complex networks. Due to space limitation, we only provide a few exam-
ples in Section 4. In particular, we illustrate that the joint degree-clustering coefficient
distribution in the synthetic growing networks of [1, 5] is “ multivariate heavy-tailed.”
Furthermore, we show that these two models have distinct structures in that the model
in [5] contains a MRV joint degree-degree distribution, whereas that in [1] does not.

In summary, in this paper we advocate a multivariate analysis perspective based on
the notion of MRVs as a unifying framework to study complex structures in networks.
To the best of our knowledge, we believe ours is the first to apply such a framework in
the study of complex networks, and demonstrate the existence of “multivariate heavy
tails” in synthetic and real networks.

2 BEYOND THE POWER-LAW DEGREE DISTRIBUTION: An
Overview of Existing Models

It is known that the structures of many real complex networks are not completely ran-
dom: they are highly modular, and some have some “self-repeating” hierarchical pat-
terns; these complex structures cannot be captured by the scale-free random network
models such as the preferential attachment (PA) model, as shown in [1, 4, 2, 3]. Several
studies have attempted to capture this “self-similarity” or “hierarchy” either in the form
of proposing deterministic graph models or in the form of suggesting a measure. They
have common characteristic in their approaches by finding scaling law relations in dif-
ferent forms and different metrics, in addition to power-law degree distribution. In the
following, we present a brief overview of the existing models.

1 For example, a multivariate distribution can have a power-law marginal distribution in each
variable, but not jointly MRV, i.e., multivariate heavy-tailed.



Fig. 1: Prefrential attache-
ment model

Fig. 2: Ravasaz et al.model Fig. 3: Dorogovtsev et
al.model

Ravasz and Barabasi [1] suggest the scaling law between the degree and clustering
coefficient of the nodes C(k)∼ k−β as a quantity revealing the intrinsic hierarchy of the
networks. They propose a deterministic graph model having this scaling law with an
iterative construction leading to a hierarchical structure. The construction starts from a
5-vertex clique with one of the five nodes indicated as the center. It continues with repli-
cating four copies of this cluster and connecting the center node of the central cluster
to the peripheral nodes of the non-central clusters (see Fig.2). Combining the scale-free
topology with high modularity, the hierarchical modularity of the model results in the
aforementioned scaling law between the node degrees and clustering coefficients. The
authors believe that the hierarchy in real networks is the result of combining many small
but densely connected clusters to form larger but less cohesive groups, with this process
repeating recursively. Dorogovtsev et al. [5] propose a different deterministic network
model which obeys the same scaling law between the node degree and clustering co-
efficient, in addition to the power-law degree distribution. The recursive construction
of this graph starts from an edge connecting two nodes and it grows by adding a node
for every edge in the network and attaching it to both ends of the edge (see Fig.3). The
random variation of this construction is creating a node per unit time and connecting
it to both ends of a randomly chosen edge. Since this graph has no fixed finite frac-
tal dimension, they call it a pseudo-fractal web. This network model also exhibits a
strong short-range degree-degree correlation identified by P(k,k′)∼ k1−γk′−2. A num-
ber of other deterministic graph models have been proposed in the literature to capture
the “self-similarity property” of real networks; all resort to a recursive procedure but
with different constructions. Comellas et al. [8] generalizes the model in [5] by starting
from a clique (q-vertex clique for any q, where q = 2 corresponds to [5]) and contin-
uing by adding one node per clique in the network and attaching it to all nodes in the
clique. Another example is by Zhang et al. [9] which uses the basic Sierpinski Gas-
ket structure or a generalized form obtained by dividing the edges of the triangles to
more than two pieces. They translate these fractal geometrical structures to graphs by
assigning the nodes of the graph to downward pointing triangles, and making two nodes
connected if the boundaries of the corresponding triangles have touching points, consid-
ering the three sides of the outer triangle as three different nodes as well. The networks
constructed thereof all have power-law degree distributions and obey the scaling law
between the node degrees and clustering coefficients.



In contrast to the above deterministic network models which obey the scaling law
between the node degree and clustering coefficients, Chen et al. [6] present a determin-
istic network model with a power-law degree distribution, but all nodes have zero clus-
tering coefficient. It is recursively constructed from square-shaped elements, thus all
nodes having zero clustering coefficient. They state that their network models are con-
sistent with some real networks such as electronic circuits and the Internet at the router
level which have reduced clustering coefficients. Because of its “modular” and “hier-
archical” construction, the authors argue that their network models provide a counter-
proof that hierarchical organization of modularity in complex networks must obey a
scaling law between the node degrees and clustering coefficients as claimed in [1, 4]. In
addition to the studies discussed above, there are also a number of other studies either
attempting to directly capture, e.g., “self-similar” structures in complex networks[2],
or proposing other metrics, e.g., S-metric [11] , to capture degee-degree correlations in
these networks. Due to space limitation, we do not elaborate them here.

3 MULTIVARIATE HEAVY TAILS: A Quick Primer

The theory of regularly varying functions is an essential analytical tool for dealing
with heavy tails, long-range dependence and domains of attraction, see [7, 12]. Roughly
speaking, regularly varying functions are those functions which behave asymptotically
like “power-law” functions. In the following, we provide a quick introduction to mul-
tivariate regularly varying (MRV) functions; the interested reader is referred to [7] for
more details. We conclude with a proposition and a method of our own which pro-
vide a sufficient condition and a convenient tool to check for the existence of MRVs
empirically.
Definition 1. [7] A measurable function U : R+ 7→ R+ is regularly varying at ∞ with
tail index α ∈ R if for any x > 0,

lim
t→∞

U(tx)
U(t)

= xα. (1)

To check whether the distribution F(x) of a single random variable X is regularly vary-
ing, the complementary cumulative distribution function (CCDF) is used in the defini-
tion above by substituting U(x) = 1−F(x) (for large values of x, U(x) gives us the tail
distribution). To get a better sense of eq. (1) it is easy to check that it holds for a random
variable x having the Pareto distribution, as a special case of regularly varying distribu-
tions, with parameters c and α, and cumulative distribution function F(x) = 1− ( c

x )
α.

The equivalent form of the definition above for a regularly varying distribution with a
tail index of α is as follow [12]:

lim
t→∞

tP(X > t
1
α x) = x−α, for x > 0. (2)

Empirically in data analysis the most convenient (and visual) method to verify whether
a random variable has a regularly varying distribution (i.e., it is “heavy-tailed”) is to
plot its CCDF in a log-log scale (cf. the QQ-plot) and check its linearity. This is what
we will use in this paper also. For an instance, our analysis in fig. (5(a)) shows that the
degree of nodes as random variable X , has regularly varying distribution because of its



linear behavior in log-log scale of CCDF plot. But random variable y in fig. (9(b)) is
not regularly varying.

Generalizing Definition 1 to more than one random variable (or equivalently, to
higher-dimensional measurable functions) gives us the notion of multivariate regular
variations (MRVs). (We note that one cannot generalize the definition of “power-law”
in eq.(2) to more than one-dimension in a straightforward manner.) A necessary con-
dition for a multivariate distribution (measurable function) to be multivariate regularly
varying is that all of its marginal distributions must be regularly varying. In the follow-
ing we provide the definition of MRV measurable functions/distributions.

Definition 2. Consider a random vector X with dimension d(≥ 1) and a cone C ⊂ Rd ,
where 1 = (1, . . . ,1) ∈C. We say a (nondecreasing) measurable function U(x) defined
on C, U : C 7→ [0,∞), is multivariate regularly varying (MRV) on C with limit function
λ(·) if λ(·)> 0 and for all x ∈C we have [7]

lim
t→∞

U(tx)
U(t1)

= λ(x). (3)

Since in practical data analysis we often deal with bivariate distributions, we provide
the equivalent form of the conditions for a random vector of two variables (X ,Y ) to be
MRV as below:
i) X has a regularly varying distribution with tail index of α,
ii) the distribution of Y is regularly varying with tail index β,
iii) the limit function µ(·)> 0 does exist for any choice of (x,y) ∈ (0,∞), in the follow-
ing relation

lim
t→∞

tP(X > t1/αx,Y > t1/βy) = µ(x,y). (4)

In empirical data analysis conditions (i) and (ii) can be checked using the standard log-
log plot of the CCDF (or the Q-Q plot) of each variable. However, there is in general
no easy visual tool to check for condition (iii). In the following we show that it suf-
fices to verify condition (iii) by checking for the existence of the limit function along a
particular line (x̌,rx̌) for a fixed x̌ and r ∈ (0,∞) in the cone (0,∞).

Proposition. Assume that conditions (i) and (ii) hold true and that µ(x̌,rx̌) in eq.(4)
exists for a fixed x̌ > 0 and all r ∈ (0,∞). Then the limit µ(x,y) in eq.(4) exists for all
possible pairs of (x,y) ∈ (0,∞).

Proof. First we note that the existence of the limit µ(x,y) along the X- or Y- axes
{(x,0),x > 0}, or {(0,y),y > 0} is guaranteed by condition (i) or (ii). Hence we only
need to consider the cases x > 0,y > 0. For a fixed x̌ > 0, we can rewrite (x,y) in the



form of (c1x̌,c2x̌), where c1 := x/x̌ > 0 and c2 := y/x̌ > 0. Then we have

lim
t→∞

tP(X > t
1
α x,Y > t

1
β y) = lim

t→∞
tP(X > t

1
α c1x̌,Y > t

1
β c2x̌)

= lim
t→∞

tP(X > (cα
1 t)

1
α x̌,Y > (cα

1 t)
1
β

c2

cα/β

1

x̌)

=
1
cα

1
lim

t ′→∞

t ′P(X > t ′
1
α x̌,Y > t ′

1
β

c2

cα/β

1

x̌)

=
1
cα

1
µ(x̌,rx̌)> 0, where r = c2/cα/β

1 > 0. (5)

Without loss of generality, we set x̌= 1 throughout our analyses. Hence, this proposition
reduces condition (iii) that the limit in eq. (4) exists for the entire quadrant {(x,y) ∈
(0,∞)} to that along the half-line {(1,r) : r ∈ (0,∞)}. However, checking the existence
of the limit (of a bivariate function) along this half-line is still not straightforward,
especially when applying to practical data practical. In the following we transform this
problem into that of checking a parametrized family of univariate random variables
Z(r) are regularly varying. Substituting (x,y) = (1,r) into eq.(4), we have

lim
t→∞

tP(X > t
1
α ,Y > t

1
β r) = lim

t→∞
tP(Xαrβ > trβ,Y β > trβ)

= lim
t→∞

tP(min{Xαrβ,Y β}> trβ)

= lim
t→∞

tP(Z(r)> tz), (6)

where the (univariate) random variable Z(r) := min{Xαrβ,Y β} and z = rβ. Hence if
Z(r) is regular varying with the tail index γ = 1 (cf., eq.(2)), i.e., limt→∞ tP(Z(r) >
tz) = z−1 for any z > 0, then eq.(6) holds for z = rβ.

The above results yield a convenient direct and visual tool to check for the exis-
tence of bivariate heavy tails when performing empirical data analysis. Using the same
log-log plotting procedure described earlier for empirically checking the existence of
univariate RVs, we first compute Z(r) from the data for a range of different values of
r, then plot the CCDF of Z(r) in the log-log scale – in a sense this produces a form of
(log-log) “contour” plot of the random variables Z(r) – and check for the linearity of
the “contours.” For large z > 0, more linear all the contours appear, stronger the empri-
cal evidence suggests the existence of MRVs in the data. In the next section we provide
several examples as illustrations.

4 MRV IN NETWORKS
We now apply the theory of MRVs to the existing “hierarchical” and other network
models proposed in the literature. Inspite of their different constructions, a common
characteristic of these models share is that they contain multivariate heavy tails in one
form or another. We also demonstrate that a number of real networks also contain com-
plex structures indicative of multivariate heavy tails. This suggests the theory of MRVs
as a unifying framework to study the more complex structures in networks.



(a) Mariginal deg
distr.

(b) Mariginal CCI
distr.

(c) Z(r) plots for joint
deg-CCI distr.

Fig. 4: MRV Analysis for the Ravasz et al. model.

(a) Mariginal deg
distr.

(b) Mariginal CCI
distr.

(c) Z(r) plots for joint
deg-CCI distr.

Fig. 5: MRV Analysis for the Dorogovtsev et al. model.

We first consider the deterministic “hierarchical” network model proposed in [1]
(see Fig. 2), where in addition to the power-law degree distribution, the node clus-
tering coefficients also exhibits a “scaling law” as a function of the node degree. In
Figs. 4(a) and 4(b), we plot the CCDF of the degree distribution X := ki and the clus-
tering coefficient inverse (CCI), Y = 1/Ci, for all nodes i’s in the log-log scale. The
linearity of both plots indicates that both (marginal) distributions are indeed regularly
varying (i.e., are heavy-tailed). Looking at the joint degree-CCI distribution, we define
and compute Z(r) := {Xαrβ,Y β} (where the tail indices α and β are estimated from
Figs. 4(a) and 4(b)) for a range of r values (see the right bar in Fig. 4(c)). Using the
method presented at the end of Section 3 (the plots in this section are best viewed in
color), we plot the CCDF of Z’s in the log-log scale for this range of r values. The
linear behavior of CCDFs for a wide range of different ratios r indicates that the joint
degree-CCI distribution is bivariate heavy tailed, capturing the “hierarchical” relation
between the high-degree center nodes and the “modules” in the recursive construction
of the network model in [1].

(a) Ravasz model. (b) Dorogovtsev et
al.model

Fig. 6: MRV Analysis for Joint Degree-Degree Distributions



Applying the same MRV analysis to the “hierarchical” network model proposed
in [5] (see Fig.3), we show that the joint degree-CCI distribution of this model is also
bivariated heavy-tailed: Figs.5(a) and 5(b) show the marginals are regularly varying,
while Fig.5(c) verifies the existence of MRV. Comparing these two deterministic net-
work models, besides their “hierarchy” (in the sense of [1]), the network models have
very different structural properties. For instance, Dorogovtsev’s model [5] grows hier-
archically by “glueing” the smaller models at the high-degree nodes (“hubs”) to form
a larger cluster and repeating this process recursively. In contrast, Ravasz’s model [1]
grows hierarchically by recursively attaching the peripheral nodes of the non-central
clusters to the hub of the central cluster. The distinction between these two models can
be revealed when we examine and perform the MRV analysis on the joint degree-degree
distributions2 as shown in Figs. 6(a) and 6(b). The clear non-linearity of the “contours”
in Fig. 6(a) indicates the lack of MRV for degree-degree pairs in Ravasz’s model [1],
whereas the joint degree-degree distribution in Dorogovtsev’s model [5] is bivariate
heavy-tailed.

(a) Mariginal deg
distr.

(b) Mariginal CCI
distr.

(c) Joint deg-CCI
distr.

(d) Joint degree-
degree distr.

Fig. 7: MRV Analysis for the Internet AS dataset.

That MRV analysis captures the common as well as distinctive structural character-
istics of these two models illustrates the ability of the proposed MRV framework as a
tool to help us better analyze and understand the (hierarchical) structure of complex
networks: both networks are “hierarchical” in the sense of [1], but they differ in their
“nature” of hierarchy (or near “self-similarity”). In addition, we note that both networks
have similar marginal features, such as power-law marginal degree and CCI distribu-
tions as well as the “small-world” property. This signifies that marginals alone cannot
capture the dependence structure among various constituting network “modules” and
thus are not as informative as when examining in a multivariate context.

(a) Mariginal deg
distr.

(b) Mariginal CCI
distr.

(c) Joint deg-CCI
distr.

(d) Joint degree-
degree distr.

Fig. 8: MRV Analysis for the PIN dataset.
2 Joint degree-degree pairs are defined for the edges of a network, where each degree belongs to

one endpoint of an edge.



We have also performed MRV analysis to other network models proposed in the lit-
erature. For example, we find that the deterministic network model with zero clustering
coefficients proposed in [6] contains a bivariate heavy-tailed degree-degree distribution.
This captures part of the “modular” structure built in the recursive construction pro-
cess similar to that of [5], but using squares instead of triangles. (The authors claim that
their network model is also “hierarchical” as a contradition to the definition/claim made
in [1]). In fact, we believe that instead of measuring “modularity” in terms of clustering
coefficients, if one uses a generalized modularity metric (e.g., counting the number of
squares a node’s neighbors are in), this network model will likely exhibits a mutivariate
heavy tail in terms of degree and this generalized modularity metric. We also show that
the “self-similar” or “fractal” networks as defined and identified by Song et al.in [2][3]
(e.g., the PIN networks discussed below) contain MRVs in one form or another (e.g.,
joint degree-CCI distribution). Moreover, scale-free networks with self-similarity pat-
terns suggested by high s-metric value [11], tend to show MRV in joint degree-degree
distribution. Due to space limitation, we do not delve into details.

Last but not the least, we have also performed the MRV analysis on number of
real network datasets. Due to space limitation, we provide only two examples: Inter-
net at Autonomous System (AS) level and Protein-Protein Interaction (PIN) networks.
These networks have been characterized as “hierarchical” [1, 13] or “self-similar” [2,
3, 10]. The log-log plots of the marginal degree and CCI and joint degree-CCI as well
as the joint degree-degree distribution for the AS network are shown in Figs.7 (a)-(d)
(for the same range of r values as before, which are not shown in Figs.7(c) & 7(d)).
Those for the PIN network are shown in Figs.8 (a)-(d). We see that all mariginals are
(approximately) regularly varying. The “contours” in the log-log plots for the degree-
CCI distributions for both networks are fairly linear (with the AS network showing
stronger linearity in the “tails”), suggestive of a bivariate heavy tail. On the other hand,
the degree-degree of the AS network contains a clear bivariate heavy tail, while that
of the PIN network lacks a clear bivariate heavy tail. At the end, we provide the MRV
analysis for a random network generated by PA method to emphasize that MRV proper-
ties appear only in “hierarchical” or “self-similar” networks. Fig. (9(a),9(b)) shows the
marginals for degree and CCI of this network indicating the lack of even the necessary
conditions for MRV in degree-CCI (CCI is not heavy-tailed). This network does not
show MRV properties for the other metrics either.

(a) Mariginal deg
distr.

(b) Mariginal CCI
distr.

Fig. 9: marginals for the PA random network



5 CONCLUSION

We have advocated a multivariate analysis perspective based on the notion of MRVs as
a unifying framework to study complex structures in networks. Applying the theory of
MRVs to complex network analysis, we have demonstrated the existence of “multivari-
ate heavy tails” in synthetic and real networks. Our analysis also poses a number of new
research questions such as how to best characterize hierarchical or modular structures
in complex networks. Answering these questions are part of ongoing research. To the
best of our knowledge, we believe ours is the first to apply such a framework in the
study of complex networks, and demonstrate the existence of “multivariate heavy tails”
in synthetic and real networks.
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