
1 23

Journal of Network and Systems
Management

ISSN 1064-7570

J Netw Syst Manage
DOI 10.1007/s10922-016-9373-0

A Virtual Id Routing Protocol for
Future Dynamics Networks and Its
Implementation Using the SDN Paradigm

Braulio Dumba, Hesham Mekky,
Sourabh Jain, Guobao Sun & Zhi-Li
Zhang

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

A Virtual Id Routing Protocol for Future Dynamics
Networks and Its Implementation Using the SDN
Paradigm

Braulio Dumba1 • Hesham Mekky1 • Sourabh Jain2 •

Guobao Sun1 • Zhi-Li Zhang1

Received: 10 August 2015 / Accepted: 28 March 2016

� Springer Science+Business Media New York 2016

Abstract In this paper, we propose Virtual Id Routing (VIRO) a novel ‘‘plug-&-

play’’ non-IP routing protocol for future dynamics networks. VIRO decouples

routing/forwarding from addressing by introducing a topology-aware, structured

virtual id layer to encode the locations of switches and devices in the physical

topology. It completely eliminates network-wide flooding in both the data and

control planes, and thus is highly scalable and robust. VIRO effectively localizes the

effect of failures, performs fast re-routing and supports multiple (logical) topologies

on top of the same physical network substrate to further enhance network robust-

ness. We have implemented an initial prototype of VIRO using Open vSwitch, and

we extend it (both within the user space and the kernel space) to implement VIRO

switching functions in VIRO switches. In addition, we use the POX SDN controller

to implement VIRO’s control and management plane functions. We evaluate our

prototype implementation through emulation and in the GENI (the Global Envi-

ronment for Network Innovations) testbed using many synthetic and real topologies.

Our evaluation results show that VIRO has better scalability than link-state based

& Braulio Dumba

braulio@cs.umn.edu

Hesham Mekky

hesham@cs.umn.edu

Sourabh Jain

simply.sourabh@gmail.com

Guobao Sun

gsun@cs.umn.edu

Zhi-Li Zhang

zhzhang@cs.umn.edu

1 Department of Computer Science and Engineering, University of Minnesota, 4-192 EECS

Building 200 Union Street SE, Minneapolis, MN 55455-0159, USA

2 Google, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

123

J Netw Syst Manage

DOI 10.1007/s10922-016-9373-0

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-016-9373-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-016-9373-0&domain=pdf

protocols (e.g. OSPF and SEATTLE) in terms of routing-table size and control

overhead, as well as better mechanisms for failure recovery.

Keywords VIRO � Open vSwitch � Software Defined Networks � GENI

1 Introduction

The rapid growth in the number of computers, mobile devices, smart appliances and

other machines connected to the Internet today has increased the burden on the

network substrate. Such rapid growth also expedited the need to address some of the

well-known shortcomings of existing networking technologies that ‘‘glue’’ the

Internet together. For instance, the Internet Protocol (IP) tightly couples network

layer functions such as addressing and routing, making it difficult to transition from

IPv4 to IPv6. It has poor support for mobility, inherently reactive approaches for

handling network failures and IP routers require extensive manual configuration. In

contrast, layer-2 technologies such as Ethernet are largely plug-&-play: hosts are

equipped with persistent MAC addresses, and Ethernet switches automatically learn

about host addresses and their locations, adapt to changes in the network topology

as well as host mobility, and perform packet forwarding seamlessly with minimal

operator configuration and intervention. However, Layer-2 Ethernet technology

does not scale to large (& wide-area networks), as it provides sub-optimal routing, it

is slow to adapt to changes in the network and it is not robust to failures. Therefore,

it can hardly meet the scale as well as the requirements for efficiency and robustness

imposed on today’s large and dynamics networks.

To address these challenges, we need better layer-2/layer-3 networking

technologies that are scalable (e.g., small routing tables with fast lookup speed),

provide better support for mobility (e.g., by separating location/addressing and

identity/naming), and provide high availability and reliability (e.g., via proactive

failure discovery and by localizing effects of failures). Furthermore, such

technologies should be easy to manage and deploy—ideally, with the abilities to

self-configure and self-organize, and are endowed with stronger security capabil-

ities. Several non-IP based routing and network architectures [1–4] have been

proposed to mitigate some limitations of the current Internet technologies. In

addition, a flurry of ‘‘fixes’’ [5–10] have also been proposed to address some of

these limitations.

In this paper, we propose VIRO—a non-IP routing protocol. It is a novel ‘‘plug-

&-play’’ routing paradigm for future large dynamic networks [1]. It addresses the

limitations faced by the layer-3 (L3) IP routing protocols as well as the layer-2 (L2)

Ethernet switching technology, while retaining the latter’s plug-&-play feature.

VIRO decouples routing/forwarding from addressing, and provides a (L2/L3)

convergence layer that unifies the conventional L2/L3 routing/forwarding func-

tionalities. VIRO is namespace-independent and allows new addressing schemes to

be introduced into networks with no changes in the core routing and forwarding

functions in the network data plane devices. The fundamental idea of VIRO is the

introduction of a topology-aware, structured virtual id space onto which physical

J Netw Syst Manage

123

Author's personal copy

identifiers and high level names can be mapped. VIRO employs a DHT (distributed

hash table) style routing algorithm to build routing tables, look up objects (name,

addresses, vid’s, etc) and forward packets [1]. Therefore, VIRO eliminates flooding

both in the data and control planes. Furthermore, VIRO is highly scalable and

robust, while offering flexible support for multi-homing, mobility, and access

control (for enhanced security). Unlike the link-state shortest path routing protocols

such as OSPF, VIRO effectively localizes failures and possesses built-in mecha-

nisms for fast rerouting and load-balancing. In addition, VIRO can be readily

extended to enable multiple (logical) topologies or multiple virtualized networks on

top of the same physical network substrate to further enhance network robustness

and service isolation. Because of these features, VIRO is capable of connecting

hundreds of thousands of diverse physical devices (with different layer-2

capabilities)—with relative ease and minimal configuration—to form a large,

dynamic and heterogeneous network (as a single autonomous system or domain).

We have implemented VIRO using Open vSwitch (OVS). To achieve this, we

modify and extend the OVS software to implement VIRO switching functions, in

VIRO switches(nodes), and we adapt SDN controllers to implement VIRO’s control

and management plane functions. Moreover, we evaluate our implementation by

running VIRO in the Global Environment for Network Innovation (GENI) [11]

testbed. GENI is a wide-area testbed developed by the research community to

enable network innovations and large scale experimentations. As part of its network

infrastructure, GENI has employed the SDN platform to facilitate testing and

deployment for large scale experiments.

The remainder of the paper is organized as follows. Section 2 discusses our

related work and we define our notations in Sect. 3. Section 4 describes VIRO and

its three key components: vid space construction and vid assignment, VIRO routing

and vid-lookup/forwarding. Section 5 discusses our implementation of VIRO using

OVS. Section 6 presents our experiments and discusses our experimental results.

We conclude and discuss future work in Sect. 7.

2 Related Work

The concept of using distributed hash tables (DHT) for routing over peer-to-peer

networks was first introduced in Kademlia [12]. Several adaptations have since been

proposed for routing in general, most noticeable of which are the Unmanaged-

Internet-Protocol (UIP) [4], the Virtual-Ring-Routing (VRR) protocol [13] and

Routing on Flat Labels (ROFL) [3]. These schemes advocate the replacement of the

current global IP address space with a flat universal id space and the use of a DHT-

style random and consistent hashing for the ids—creating an id-space agnostic to the

underlying network topology—to perform routing based on logical distances. They

often incur a stretch penalty (which is unbounded in the worst case). Furthermore,

several works such as NoGeo [14] and PathDCS [15] have explored coordinate

based id assignment based on geo-physical node locations. Although useful for

geographically dispersed networks (e.g., a wide-area network), it is of little use in

data center (localized) and fast-ethernet like topologies that are often geographically

J Netw Syst Manage

123

Author's personal copy

localized. By introducing a topology-aware and structured vid space, VIRO

circumvents these problems (see Sects. 4, 6.1).

Closely related to our work is SEATTLE [2]. It employs the OSPF-style shortest

path routing in layer-2 to build switching tables in Ethernet switches. Hence, it

addresses the scalability issues of Ethernet. Such solutions, unfortunately, still

requires network-wide flooding in the control plane for building routing tables;

moreover, it suffers the same scalability and robustness limitations plaguing

shortest-path routing. In addition, with SEATTLE is not easy to implement load-

balancing and fast rerouting. Unlike the link-state shortest path routing protocols,

VIRO completely eliminates network-wide flooding in both the data and control

planes, localizes failures and possesses built-in mechanisms for fast rerouting and

load-balancing.

3 Notations and Definitions

In this section, we define and list the key notations and terminologies that will be

used to describe VIRO in the remaining sections. Below, we describe and explain

our notations:

Logical distance (rðx; yÞ) the logical distance between any two nodes say x and y

in an L-bit vid space is defined as:

rðx; yÞ ¼ L� lcpðvidðxÞ; vidðyÞÞ ð1Þ

Here, vid(x) and vid(y) are the virtual ids for the nodes x and y, lcp(vid(x), vid(y))

is the length of the longest common prefix for binary strings vid(x) and vid(y), e.g, if

vidðxÞ ¼ 0011, vidðyÞ ¼ 0101, and L ¼ 4 ,then rðx; yÞ ¼ 4 � lcpðvidðxÞ; vidðyÞÞ
¼ 4 � 1 ¼ 3.

Bucket (Bk) for a given node x, the kth bucket BkðxÞ, is the set of nodes which are

at a logical distance of k from node x.

Sub-tree (SkðxÞ) for a given node x, the kth sub-tree, SkðxÞ, is the set of nodes

which are at no more than logical distance of k from node x.

Rendezvous point (rdvkðxÞ) for a node x, a rendezvous point at level k, rdvkðxÞ, is

a node in the sub-tree Sk�1ðxÞ, which stores the connectivity information to reach its

kth bucket BkðxÞ. It is the node which is closest to the vid given by

vidl�rðxÞhashrðvidl�rðxÞÞ for r ¼ k � 1 in the virtual id space. As seen from the

vid of the rdvkðxÞ, it ensures a unique kth level rendezvous point for all the nodes in

the sub-tree Sk�1ðxÞ. The connectivity information stored at rdvkðxÞ is the set of

edges (y $ z) in the given topology which connect the nodes y 2 Sk�1ðxÞ to

z 2 BkðxÞ. If the subtrees in the bucket BkðxÞ are disconnected then it also maps each

connectivity information ðy $ zÞ to the prefix in BkðxÞ it connects to.

Gateway the gateway for a node x to reach Bucket BkðxÞ is a node y 2 Sk�1ðxÞ
such that it has a (physical) edge to a node z 2 BkðxÞ. In this case, we refer to node

z as distance k logical neighbor of node x.

Pid we use pid to denote either the physical address (e.g., MAC address), IPv4/

IPv6 addresses, persistent name (e.g., a flat-id name) or other addresses/names that

J Netw Syst Manage

123

Author's personal copy

are used by either lower layer or higher layer to address, name or identify a given

entity (an end-host, information or service of interest, etc). The term pid is defined

in contrast to vid, and is primarily used in address/name resolution and first-hop/

last-hop data delivery (between a VIRO switch and an end-host) in VIRO.

Host-node a host-node for an end-host is the node in the network that it is directly

connected to.

Access-node an access-node for an end-host is the node which stores the mapping

pid) vid. An access-node for a given pid is determined using the

vid ¼ hashLðpidÞ. It is the node closest (based on the xor distance) to the vid

given by the hash value of the pid.

Reachability information it is a 4-tuple set, which contains information about the

reachability to a given bucket BkðiÞ for node i. We denote this by RkðiÞ, and it

consists of the following values:

• Bucket level k.

• vid prefix in BkðiÞ that is reachable using this entry.

• Nexthop to reach any node in this bucket.

• Logically closest gateway to reach this BkðiÞ prefix.

Routing table the routing table for node x consists of the reachability information

for all the buckets BkðxÞ for x. Table 1 shows an example of a VIRO routing table.

4 VIRO: Virtual Id Routing Protocol

4.1 Overview

VIRO is a topology-aware, structured virtual id (vid) routing protocol for future

networks. It introduces a self-configurable, self-organizing virtual id layer (layer-2/3

convergence layer) where both physical identifiers (e.g. MAC addresses), as well as

higher layer addresses/names (e.g., IPv4/IPv6 or flat-id names) are mapped. VIRO’s

structured vid space embeds the physical network topology formed by the

connections among physical network components. Such embedding is illustrated

in Fig. 1 using a Kademlia-like virtual binary tree, where the physical devices (e.g.,

switches) are represented by the leaf nodes. All intermediary nodes in the virtual

binary tree are logical nodes labeled with the bit-strings representing the vid’s of the

VIRO switches residing in that subtree. Next, we describe the main components of

Table 1 Routing table for node

C as seen in Fig. 1
Bucket Prefix NextHop Gateway

1 00101 — —

2 0011* D C

3 000** A C

4 01*** M C

5 1**** A B

J Netw Syst Manage

123

Author's personal copy

VIRO: virtual id space construction and vid assignment, VIRO routing and vid

lookup and forwarding. Moreover, we also describe VIRO’s gateway selection and

failure recovery mechanisms.

4.2 Virtual Id Assignment

In VIRO, the virtual id space is constructed at the network bootstrapping phase

and it is represented by a Kademlia-like (see Fig. 1) virtual binary tree, where only

the leaf nodes correspond to physical devices (e.g., VIRO switches) and all the

intermediate nodes in the virtual binary tree are logical nodes. The virtual id (vid) of

a (leaf) node is a L-bit string vid corresponding to the bits from the root to that leaf

node, e.g, in Fig. 1, the vid of node B is 00010. The parameter L represents the

length of the vid space. It is configured at the bootstrapping phase and it can be

selected depending on the size of the target network or other design considerations

(e.g., L ¼ 32; 48; 64; 128).

During the vid space construction, two key invariant properties must always be

maintained:

• Closeness if nodes x and y are close in the physical topology, then they are also

close in the vid space.

• Connectivity for any two logically adjacent sub-trees, SkðxÞ and SkðyÞ, at the

same level k, there must exist at least one edge e 2 E connecting a pair of nodes

(u, v), where u 2 SkðxÞ and v 2 SkðyÞ.

We have designed two modes of vid space construction/vid assignment: a

centralized algorithm and a distributed algorithm. Both algorithms guarantee that

the constructed vid space satisfies the above properties:

Centralized vid assignment it employs a top-down approach to assign vids. It

starts from the root of the virtual binary tree and recursively partitions the network

topology into two connected subgraphs and appends 1-bit to the (already assigned)

vid prefixes of the nodes in each of the sub-graphs (see Fig. 2 and Algorithm 1).

Fig. 1 Vid space as a virtual binary tree: the grey dotted lines denote physical connectivity and the red
boxes represent the unused vid’s (Color figure online)

J Netw Syst Manage

123

Author's personal copy

Distributed vid assignment it employs a bottom-up approach to assign vid’s,

by starting from the leaf nodes to the root of the binary tree. In this algorithm,

lower-level vid bits are determined first and higher-level bits are recursively

assigned.

The centralized algorithm is designed for networking environments where the (at

least the initial) topology is pre-planned and thus known a priori, e.g, ISPs, large

enterprise and data center networks. However, the distributed algorithm is more

suitable for networking environments where networks are set up in a piecemeal,

unplanned or ad hoc fashion, e.g., home or small office networks and wireless ad

hoc networks.

After the network is set up and the initial vid assignment is completed, using

either a centralized or distributed algorithm, the vid of a subsequent node, say z,

joining the network is assigned based on its location and the vid’s of its physical

neighbors: it is assigned one of the unused vid’s that are closest to one of its

physical neighbors. However, for an end-host that joins the network, its vid is

assigned by its host-node and it comprises of two parts (see Fig. 3): the L-bit

host-node vid part that identifies the host-node (VIRO switch), and a random l-

bit host vid that distinguishes it from other end-hosts attached to the same host-

node.

Fig. 2 Virtual id assignment process using top-down algorithm. In this example, nodes are initially
partitioned in two clusters, S1 and S2. Nodes in S1 are assigned vid 0 and S2 are assigned 1, before the
bootstrap process. In the subsequent steps, the clusters are further sub-divided and ‘0’ or ‘1’ bit is
prepended to their vids

Fig. 3 Vid structure for the
hosts attached to a VIRO switch

J Netw Syst Manage

123

Author's personal copy

Algorithm 1 Vid assignment using top-down graph-partitioning
1: assign vids(G(E, N))
2: N is the set of nodes, E is the set of edges
3: if |N | ≤ 2 then
4: Directly assign 1-bit long vids
5: else
6: [G0(E0, N0), G1(E1, N1)] = partition graph(E, N)
7: Append bits 0 and 1 in the vids of the nodes in N0 and N1 respectively
8: assign vids(G0(E0, N0, V id));
9: assign vids(G1(E1, N1, V id));
10: end if

4.3 VIRO Routing

4.3.1 Overview and the Routing Invariant Property

In VIRO a node maintains a routing table with (at most) L entries—one for each

level in the vid space.1 Hence, given a random node x in a VIRO network, all other

nodes in the network fall within one of L buckets, BkðxÞ, 1� k� L. Thus, each node

x in VIRO only needs to maintain L entries in its routing table. Then, for any level-k

non-empty BkðxÞ, 1� k� L, as long as node x knows how to reach another node

within BkðxÞ, say y 2 BkðxÞ, then x can reach via y any other node in BkðxÞ.
VIRO uses a bottom-up procedure to build up end-to-end connectivity that obeys

the key invariants (closeness and connectivity) discussed in Sect. 4.2. In this

method, for each level k ¼ 2; . . .; L, the first k � 1 routing entries are constructed

before the level-k routing entry is built. More specifically, by the closeness property,

if node y 2 B1ðxÞ then y must be physically connected to node x. Hence, level-1

route entry can be trivially built. For all other level-k (e.g., 2; . . .; k), if BkðxÞ is not

empty, then by the connectivity property there must exist another node y connected

to x within Sk�1ðxÞ that is physically connected to another node z in BkðxÞ. Thus,

node x can reach any node in BkðxÞ via y. Therefore, node y is a level-k gateway to

BkðxÞ, since y 2 Sk�1ðxÞ and rðx; yÞ ¼ k � 1. Using y we can build the level-k

routing entry to reach any node in BkðxÞ and node x uses its level k � 1 routing

entries to reach y. This lead us to the following Routing Invariant Property that any

VIRO routing table construction algorithm must satisfy:

Routing invariant property let V be the set of all VIRO nodes, and E the set of all

physical links between VIRO nodes. Suppose the following connectivity condition

holds for any x 2 V and non-empty BkðxÞ, where 1� k� L:

9z 2 BkðxÞ
^

9y 2 Sk�1ðxÞ such that ðy; zÞ 2 E ð2Þ

Then using y as a level-k gateway (namely, including y as a gateway in x’s level-k

routing entry), it would guarantee the connectivity for node x to reach any node in

BkðxÞ (see proof in [16]).

1 Similar to Kademlia and other DHT routing algorithms.

J Netw Syst Manage

123

Author's personal copy

4.3.2 Routing Table Computation Algorithm

VIRO employs a DHT-like publish-&-query procedure to build its routing table that

satisfies the above invariant property. This procedure completely eliminates

network-wide (control plane) flooding. Each node x discovers a level-k gateway

that satisfies Eq. 2 to reach nodes at every bucket, BkðxÞ (e.g., k ¼ 1; 2; . . .; L), in the

vid space. More generally, in VIRO a node x builds its routing table using the

following steps:

1. Node x discovers its directly connected neighbors via HELO messages or any

local broadcast protocol. Its physical neighbors may reside at any bucket in the

vid space: BkðxÞ; 1� k� L.

2. Node x computes its level-k routing entry using any z 2 BkðxÞ physically

connected to node it as the next-hop to reach Bucket k and itself as the gateway.

Furthermore, node x publishes itself as a level-(k) gateway to a level-(k)

rendezvous point(s), rdvk, thereby announcing to all the other nodes in Sk�1ðxÞ
that its a level-(k) gateway.

3. For the remaining empty entries in its routing table, Bkþ1, node x discovers and

learns a level-ðk þ 1Þ gateway by querying gateway information to one of the

level-ðk þ 1Þ rendezvous point.

The procedure described above is performed periodically by each VIRO node

and its pseudo-code is given by Algorithm 2.

Next, using Fig. 1 as an example, we illustrate how routing tables at node C can

be constructed using the above procedure. Firstly, during the local physical neighbor

discovery process, node C discovers its three direct neighbors: D 2 B2ðCÞ;A 2
B3ðCÞ and M 2 B4ðCÞ. Then, node C constructs a null level-1 routing entry, using

the information about its local physical neighbors. In addition, node C constructs

J Netw Syst Manage

123

Author's personal copy

level-2, level-3 and level-4 routing entries by entering itself as the gateway and

publishing itself as a level-2, level-3 and level-4 gateway to reach B2ðCÞ, B3ðCÞ and

B4ðCÞ respectively. To build its level-5 routing entry, C queries a level-5

rendezvous point and discovers a level-5 gateway node B (which is connected to

node E 2 B5ðCÞ). Then, it installs node B as its level-5 gateway in its routing

table and node A as the next-hop to reach B. We show the final routing table for

node C in Table 1.

4.3.3 Scalability and Complexity of the Routing Algorithm

Given a L-bit vid space, the number of VIRO switches that can be connected to the

network is up to 2L, the size of the VIRO virtual id space. As stated in the previous

section, the value of L can be configured at the bootstrapping phase and selected

based on the size of the target network or other design considerations. Our

implementation of VIRO in OVS (see Sect. 5) uses the 48-bit Ethernet source and

destination MAC addresses for the vid’s, and we choose L ¼ 32 to represent the

switch vid’s (thus with up to 232 switches in a VIRO network) and an additional 16

bits is used to represent host vid’s (thus a total of 216 hosts can be attached to a

single VIRO switch). Compared to the conventional IP networks, VIRO is scalable

in several aspects. Thanks to the inherent hierarchical structure of the vid space,

each VIRO switch only needs to maintain O(L) routing entries, one or a few entries

(for load balancing and resilient routing) per level. This is in contrast to

conventional IP routers where each router must maintain O(N) routing entries,

where N is the number of routers in a single IP network. Given the number of VIRO

switches can be up to N ¼ 2L in a VIRO network, this implies that in the worst case

the routing table size of VIRO scales in the order of Oðlog2 NÞ as opposed to O(N).

We remark that routing table size is a major constraining factor that limits the

scalability of classical IP routers. The much smaller routing table size not only

significantly reduces the memory requirement of VIRO switches, it also leads to

much faster routing table look-up speed, thereby faster data packet processing and

forwarding.

Furthermore, VIRO incurs significantly lower control overheads when compared

to the standard link-state routing protocols such as OSPF used in today’s IP

networks. This is because by design, VIRO does not resort to any form of network-

wide flooding of control packets, in constrast to OSPF which relies on network-wide

flooding of link state adjacency (LSA) packets to learn about network topology and

changes in the topology, nor does VIRO resort to any form of data packet flooding

for forwarding, as in the case of an Ethernet switch which employs an adaptive

‘‘self-learning’’ algorithm to build the switch forwarding table; it broadcasts a data

packet to its neighbors when it does not know where to forward the packet. Instead,

VIRO employs a query-&-reply mechanism through the rendezvous points where a

kth-level gateway registers with the kth-level rendezvous point (rdvk) and other

switches within the k-level subtree query rdvk to build the k-level routing entries

(see Algorithm 2). As a result, it takes O(L) rounds to build the VIRO routing

table with O(L) control messages exchanged between a VIRO switch and

J Netw Syst Manage

123

Author's personal copy

corresponding rendezvous points, where for each level k, it takes Oð2kÞ steps to

deliver these control messages in the worst case per kth-level subtree. This is in

contrast to OSPF where it takes O(N) steps to flood the LSA packets per router with

a total OðN2Þ control messages exchanges; and moreover, it takes OðjEj logNÞ time

complexity per router to compute the routing table using Dijkstra’s algorithm,

where |E| is the number of edges. |E| can be in the order of OðN2Þ in the worst case

for a network with rich topology (e.g., full-meshed).

4.4 Virtual Id Lookup and Forwarding

In VIRO, a Kademlia-style DHTs is used to implement vid look-up mechanisms and

address/name resolution (i.e., pid-vid mappings). Depending on the look-up speed and

memory requirements/constraints, either one-hop or multi-hop DHTs may be used for

these operations, as in SEATTLE [2]. Once the vid of an end-host is looked up using its

pid, packet forwarding between VIRO nodes is performed using vid only. However, at

the network edges the vid’s are mapped to a persistent identifier (pid), e.g., MAC

address/IP address, or vice-versa in order to locate the end-hosts or to route VIRO

packets in the network. For more flexible and better support for mobility, geograph-

ically-scoped hash functions (see [17, 18]) may also be used for vid lookup and

address/name resolution. Next, we discuss VIRO vid-lookup mechanism in details:

The host-node assigns vid’s to any end-host h connected to it. In addition, the

host-node stores end-hosts pid-vid mapping in its local cache. Furthermore, using

pid(h) as the key, it periodically publishes the hpidðhÞ; vidðhÞi mappings (e.g., MAC

address, IP address, or a flat-id name to vid mappings) to the respective access-node

in the network—recall from Sect. 3 that an access-node is a node whose vid is

closest to the hashLðpidðhÞÞ based on the XOR distance, as in [12]. This mechanism

is illustrated in Fig. 4a: when a host y joins the network by connecting to node A,

the host-node A assigns a vid to host y and publishes the pid-vid mapping to the

relevant access node, which is F in this example. Thus, when another node wants to

look up the vid of host y, it uses the hashed key, vid ¼ hashLðpidðyÞÞ to query the

network. Then, the corresponding access-node (whose vid is closest to

hashLðpidðyÞÞ) responds with the stored vid(y) of host y, if it exist; otherwise a

error message is returned.

Fig. 4 VIRO vid-lookup and forwarding mechanism, a vid publish process, b steps in packet forwarding

J Netw Syst Manage

123

Author's personal copy

As stated above, packet forwarding between VIRO nodes is performed using vid

only. In Fig. 4b, we illustrate VIRO’s packet forwarding mechanism, which consists

of two steps:

(a) Host vid lookup when host x wants to send a packet to destination host y, it

sends a pid-vid mapping request to its host-node (node L), which forwards the

request to the corresponding access-node (node F) for host y (step 1 in

Fig. 4b). Then, node F returns host y vid to host x (step 2 in Fig. 4b).

(b) Packet forwarding using vid routing in VIRO is done based on destination vid

and gateway information. When host x sends a packet to host y, according to

VIRO routing protocol, node L will compute the logical distance between its

vid and A’s vid, namely rðL;AÞ ¼ 5. Assuming its level 5 routing table is not

empty, node L will look up its routing table for a level-5 gateway (node H)

and forward the packet to the next-hop to reach its level-5 gateway (which is

also node H). The next-hop follows similar process until the packet is

delivered to the destination node A (step 3 in Fig. 4b).

A similar forwarding mechanism is used to process VIRO control packets, e.g.,

gateway publish or query packets, pid-vid mapping registration, etc. The main

difference here is that the destination vid does not correspond to a physical node,

instead it is a key that is meant to identify the VIRO node whose vid is closest to this

key. In this case, for node x receiving a packet with vid = dest, if its level-k routing

entry is empty, where k ¼ rðx; destÞ, it does not drop the packet. Instead, it flips the

(L� k)th bit (counting from the left) in the destination vid, and uses this updated vid

to look up the routing table, to find a valid next-hop to reach the node closest to the

vid. If the level-(k � 1) routing entry is also empty, it flips the ðL� ðk � 1ÞÞth bit in

the (updated) destination vid, and looks up its level-ðk � 2Þ routing entry. This

process stops either when a next-hop is found or node x discovers that it is the

closest node to this destination vid (see Algorithm 3).

Algorithm 3 Packet (msg) forwarding at node i

1: nexthop = Nil
2: k = σ(i, msg.dest)
3: if Rk(i) not Nil then
4: nexthop = Rk(i).nexthop
5: end if
6: if msg.type = CONTROL then
7: while nexthop = Nil or k = 0 do
8: msg.dest = F lip Kth Bit(msg.dest)
9: k := σ(i, msg.dest)
10: nexthop = Rk(i).nexthop
11: end while
12: end if
13: if msg.dest = i then
14: processPacket(msg)
15: else
16: sendPacket(nexthop, msg)
17: end if

J Netw Syst Manage

123

Author's personal copy

4.5 Gateway Selection Strategy and Multi-Path Routing

We use a gateway selection strategy that is consistent in order to ensure that no

routing loops is formed during the computation of the routing tables. Firstly, let

assume that only one (default) gateway is installed in the routing table of each node.

Then, when node x queries a level-k rendezvous point rdvkðxÞ to discover a level-k

gateway, rdvkðxÞ always select one of those gateways whose vid is closest to the vid

of the querying node x.

However, when multiple gateways are installed in the routing tables (e.g., for

load-balancing or fast rerouting), a generalized consistent gateway selection rule is

achieved by associating each level-k gateway node a special forwarding directive: a

L-bit key, which is associated with the level-k gateway whose vid is closest to this

key and its first L�k bits are the same as those in the vid of the querying node.

Hence, when a (level-k) gateway is selected to reach BkðxÞ, its respective forwarding

directive is also included in the packet header to direct subsequent packet

forwarding towards this gateway.

Thus, if a source node x wants to use a specific gateway z to reach the destination

bucket, it sets the forwarding directive field in the packet to z. Then, if an

intermediary node y sees a packet with the forwarding directive field set, it forwards

the packet towards the forwarding directive instead of the destination. However, if

the forwarding directive field is empty, node y selects an appropriate gateway from

its routing table to set the forwarding directive field. However, when the packet

reaches node, say z, in the forwarding directive, node z can either reset the

forwarding directive field or use the destination vid to forward the packet. The

forwarding directive field is also used to re-route traffic in the event of node/link

failures: if a link to the current next-hop for the destination (or forwarding directive)

has failed, then the current node can forward the packet towards a gateway for

which it has a working next-hop entry. We will further discuss the failure recovery

mechanism in the next section.

By utilizing multiple gateways in the routing tables at each bucket level, VIRO

provides built-in support for multi-path routing, load-balancing and fast re-routing.

For example, using m gateways to reach each bucket enables m-way multipath

routing. More precisely, this allows a node to selectively choose one of the

m different paths to reach a destination bucket, either for load-balancing or for fast

re-rerouting. By including the gateway node’s vid as part of the forwarding directive

in the packet header, we can guarantee that there are no forwarding loops (see [16]

for a correctness proof of the VIRO routing algorithm under the consistent gateway

selection strategy).

4.6 Handling Node/Link Failures

VIRO utilizes a withdraw & update mechanism to handle node/link failures, without

resorting to flooding for failure notifications (as used in OSPF). A node adjacent to a

failed node (e.g., a gateway node) or a failed link (to a gateway node) withdraws its

previously published connectivity information from the appropriate rendezvous

point(s). Thus, when a rendezvous point receives this withdraw notification, it sends

J Netw Syst Manage

123

Author's personal copy

an update message containing the withdrawal of the current gateway, replacing it

with a new gateway to all (or a subset of) nodes in a affected sub-tree – namely,

those that are currently using the failed or no longer reachable gateway in their

routing tables. Therefore, failures are localized because only the nodes that are

affected by the failures, or in the same subtree as the failure node need to update

their routing entries. When a rendezvous node fails, a neighboring node would then

take over and serve as the new rendezvous node. This node would recover the

connectivity information from one or a combination of the following methods:

(a) the current gateway(s) stored in its routing table; (b) another rendezvous point,

when multiple rendezvous points are used; and (c) through periodic publications by

available gateways. In practice, we assume that for large networks, multiple

rendezvous points will be used for enhanced robustness.

5 SDN Implementation OF VIRO

5.1 Design Overview and Implementatin Challenges

We have implemented VIRO using Open vSwitch (OVS). The architecture of our

VIRO node2 is illustrated in Fig. 5. It contains three main components [19]: data

plane, control plane and management plane. VIRO nodes use OVS [20] in the data

plane and POX controllers in both the control and management planes. To

implement the VIRO data plane, we re-purpose the Ethernet MAC address to

represent VIRO virtual id. Furthermore, we also modify and extend OVS OpenFlow

actions (both within the user and kernel spaces) to realize VIRO packet forwarding

functions. The OVS daemon (slow-path in the user space) connects to an OpenFlow

local controller (LC) that executes the VIRO module which is responsible for

running the VIRO routing protocol. Furthermore, the OVS daemon connects to a

remote controller (RC), which is responsible for VIRO’s management plane.

Open vSwitch implements the OpenFlow switch specifications and the SDN

paradigm. When compared to traditional network devices (e.g., Ethernet switches

and IP routers), OpenFlow and OVS enable a far more flexible data plane with

configurable forwarding behaviors at the ‘‘flow’’ level, which are defined by the

‘‘match-action’’ rules specified by a SDN controller. Nonetheless, the existing

Openflow/OVS/SDN platforms are strongly tied to the conventional Ethernet/IP/

TCP protocol stack. In contrast, VIRO has its own ‘‘topology-aware’’ addressing

(vid’s) scheme, with its unique routing and forwarding behaviors. It employs a

distributed routing protocol with a novel ‘‘pub-sub’’ mechanism [1], and it has

build-in multipath and fast failure (re)routing capabilities. Recall from Sects. 4.4

and 4.5, VIRO forwarding is done by using both the destination vid (via vid prefix

matching) and a forwarding directive to look up VIRO routing tables to select a

gateway and then the next-hop. Thus, VIRO’s forwarding behavior cannot be

directly implemented using the standard ‘‘match-action’’ functions in OpenFlow. In

the following, we present our design and implementation framework (VIRO SDN

2 We use the terms ‘‘node’’ and ‘‘switch’’ interchangeably.

J Netw Syst Manage

123

Author's personal copy

Data Plane and VIRO SDN Control Plane) as well as solutions to overcome the

challenges in adapting the OVS to implement a non-IP protocol such as VIRO.

5.2 VIRO SDN Data Plane

For the data plane implementation, we use OVS version 1.0 with Nicira’s

extensions. The OVS implementation consists of two components: a kernel (fast

path) and a user space (slow path). The kernel implements the forwarding engine

responsible for per-packet lookup, modification and forwarding. In addition, it

maintains counters for each forwarding table entry [21]. However, the majority of

the OVS functionality is implemented within the user space. The main component

in the user space is the ‘‘ovs-vswitchd’’ module. It communicates with kernel

module over netlink and with outside world using OpenFlow. This module is

responsible for reading the OpenFlow configuration from ovsdb-server3 [22]. Its

packet classifier supports efficient flow lookup with wildcards and checks datapath

flow counters to handle flow expiration and statistics requests [22].

When a packet arrives to an OVS, it is first processed by the fast path. In the

kernel, the packet header fields are extracted. Then, these header fields are hashed

and used as an index into a set of large hash tables. If an entry is found, the actions

corresponding to this entry are applied to the packet and OVS counters are updated.

Otherwise, the packet is sent to the user space and the OVS miss counter is

incremented. In the slow path, when a packet is received from kernel, it is given to

the classifier to look for matching flows in the flow tables. If there is a table-miss the

Fig. 5 Software stack in a VIRO node

3 Database that holds switch-level configuration.

J Netw Syst Manage

123

Author's personal copy

OpenFlow API calls the connection manager to encapsulate the packet in a

Packet_In message and send it out to the SDN controller attached to the switch.

When the controller receives the Packet_In message, one or more applications

running on the controller may process the message and install rules in the OpenFlow

table in the switch via a Flow_Mod message, so that future packets can be processed

on the switch [23]. Figure 6 illustrates this process (steps 1–5).

To implement VIRO using the OVS-SDN platform, we first define the structure

of a VIRO frame. To achieve this, we re-purpose the standard Ethernet frame as

follows (see Fig. 7): we reuse the 6-bytes of the source and destination MAC

addresses (SMAC and DMAC) to represent VIRO virtual addresses (vids). More

precisely, we use 4-bytes from the DMAC to set the destination switch’s vid

(DVID) and the remaining 2-bytes to set the destination host identifier (DHOST).

Similarly for the SMAC, we re-use the 6 bytes to represent VIRO source switch’s

vid (SVID) and source host (SHOST) identifier respectively. In addition, we

introduce new 6 bytes for the VIRO protocol header field, where 2-bytes are

reserved for VIRO’s protocol identifier (VPID) and the others 4-bytes are used to set

VIRO’s forwarding directive (FD) field. The remaining bytes are used for the

payload of the VIRO frame, which is composed of the EtherType and the payload of

Fig. 6 Packet processing in Open Vswitch

Fig. 7 Structure of a VIRO frame

J Netw Syst Manage

123

Author's personal copy

the standard Ethernet frame. A VIRO frame has the EtherType 0x0802 which

differentiate it from standard Ethernet protocols such as IP, LLDP and ARP. We

also added a new EtherType 0x0803 for VIRO control packets (see Sect. 5.3). The

VIRO frame header uses more bytes than the standard Ethernet frame. Hence, we

use Path MTU Discovery at the end-hosts to reduce their frame size, in order to

avoid encapsulation without using any fragmentation [24].

As discussed in the previous section, the current OpenFlow matching operations,

header fields and allowable actions are still tied to the Ethernet/IP/TCP protocol

stack. On the other hand, VIRO has its unique routing and forwarding behavior.

Thus, VIRO’s forwarding cannot be directly implemented using the standard

‘‘match-action’’ functions of OpenFlow. Therefore, in order to forward our VIRO

frame in the OVS data-path, we modify and extend the match and actions of the

OVS fast and slow paths with the following new actions (see Table 2): insert/

remove VIRO headers, rewrite the forwarding directive and match on VIRO

switch’s vid. With these additions, the OVS fast and slow path are now responsible

for the following tasks:

• OVS Daemon (slow-path) to translate between IP packets/VIRO packets

(EtherType, FD) and to insert rules for routing at kernel.

• OVS Kernel (fast path) to translate between IP packets/VIRO packets (end-host),

to forward IP packets among local machines and to forward VIRO packets.

In addition to routing VIRO packets, the data-plane also forwards standard

Ethernet frames for packets transmitted among local hosts attached to the same

VIRO node.

5.3 VIRO SDN Control Plane

VIRO’s SDN control plane consists of two main components: control plane and

management plane. Next, we describe the functionalities of each of these

components:

Control plane (local controller) the local controller (LC) in the control plane

implements VIRO’s routing functions: neighbor discovery, routing table computa-

tion, failure recovery and all the rendezvous point functions. In addition, it also

Table 2 List of the new actions

added to our extended OVS
Actions Description

PUSH_FD Add VPID and FD

POP_FD Remove VPID and FD

SET_VID_SRC_SW Set the first 4 bytes of the SVID

SET_VID_SRC_HOST Set the last 2 bytes of the SHost

SET_VID_DST_SW Set the first 4 bytes of the DVID

SET_VID_DST_HOST Set the last 2 bytes of the DHost

SET_VID_FD_SW Set first 4 bytes of the FD

SET_VID_FD_HOST Set the last 2 bytes of the FD

J Netw Syst Manage

123

Author's personal copy

handles VIRO’s packet encapsulation/decapsulation (at the end points) and packet

miss from the data-plane (see Sect. 5.4). Recall from Sect. 5.2 that VIRO control

packets are identified by the protocol ID 0x0803 in the frame payload (EtherType)

to differentiate them from VIRO data packets (e.g., IP packets). The LC handles all

types of VIRO control packets:

• RDV_Publish, RDV_Query, RDV_Reply used to publish, query or reply routing

information from/to VIRO rendezvous nodes.

• GW_Withdraw, GW_Remove used to advertise failed gateways information to

others nodes.

• Controller_Echo used to assign switch’s vids by the RC.

• Neighbor Echo Request & Reply heartbeat messages used to discover the

physically attached switches.

• Local_Host used to send host addresses mapping to the LC.

Management plane (remote controller) in the management plane, we have the

VIRO remote controller (RC) and it is the single instance that all VIRO switches in

the network connect to (see Fig. 5). This controller is responsible for all the network

management functions that can be performed in a centralized fashion. It implements

some of the access-node and host-node functions, such as: it assigns vid to end-hosts

and maintains the host’s pid-vid mapping. In addition, RC is also in charge of the

following: network topology discovery and maintenance (host/switch added or

removed), switch vid assignment, ARP and DHCP requests,4 and to maintain a

global view of the network. In the following section, we discuss in details the tasks

of the RC.

5.4 VIRO Network Bootstrapping Events

In this section, we present the main events that occur during the bootstrapping phase

of a VIRO network. Recall that the OVS in each VIRO node is connected to both a

local controller (running the VIRO module) and to a single remote controller

(running centralized management functions) in the network. Initially, the following

events take place:

Connection up when a VIRO switch starts, it immediately connects to both the

local controller(LC) and the remote controller (RC), using the standard OpenFlow

protocol. Upon connection, the RC inserts rules to receive all the ARP and DHCP

packets generated by host machines in the network.

Vid assignment we use a centralized approach to assign vid’s to hosts and

switches. The RC periodically sends Controller_Echo message to the LCs with the

vid assignment to the respective switches5 and it saves the switches DPID/VID

mapping to its topology table. For end-hosts, the RC assigns vid’s during the DHCP

lease process and it also saves the mapping MAC/IP/VID/PORT for every end-host

4 We reuse POX’s ARP and DHCP modules.
5 We will use these echo messages in the future for RC failure discovery.

J Netw Syst Manage

123

Author's personal copy

in the network. In addition, the RC sends the host’s pid-vid mapping information to

the corresponding LC.

Neighbor and failure discovery the LC in a VIRO switch sends Neighbor Echo

Request messages every t seconds to discover the (physically) directly connected

neighbors. It timestamps, tx, when a Neighbor Echo Reply message is received, and

saves the neighbor’s vid and tx values in a table. We use these values to find the

failed neighbors. For example, if an entry in the table is not updated after t0 seconds,

then we consider the correspondent switch as failed. In addition, we also use

OpenFlow Port Status messages for neighbor failure discovery.

Routing table construction the VIRO module attached to each VIRO switch

exchange VIRO control packets (RD_Publish, RDV_Query, RDV_Reply and

Neighbor Echo Request & Reply), in order to build the routing table in each

switch using VIRO’s publish-&-query algorithm described in Sect. 4.3. These

routing tables are later installed in the OVS flow-tables in the slow-path and fast-

path.

End-host discovery during the DHCP lease process, the RC sends Local_Host

messages with IP/MAC/VID/PORT mapping to the LC that the respective end-host

is attached to. The LC stores the pid-vid mapping for future end-host name

resolution, as well as, to build its local view of the network.

Pid-vid resolution as discussed in Sect. 4.4, VIRO uses a one-hop (or multi-hop)

DHT for pid-vid look-up and resolution. However, for simplicity, in our current

implementation, we use a centralized approach for pid-vid resolution. First, when an

end-host joins a VIRO network, it first runs DHCP. The DHCP request is captured

and sent to RC by the VIRO switch attached to it. After leasing an IP address to an

end host, RC assigns the host vid and it saves the mapping pid-vid in its topology

table. Second, when one end-host x wants to communicate with another end-host y

in a VIRO network, it first issues an ARP request. The VIRO switch attached to it

forwards the ARP packet to the RC. Then, RC returns host’s y vid in the ARP reply

by replacing DMAC with host’s y vid (recall that RC has a global view of the

network).

In summary, upon starting, a VIRO switch connects to the VIRO controllers (RC

and LC), and it receives its vid from the RC. Then, it exchanges Neighbor Echo

Request & Reply messages to discover its (physically) direct connect neighbor

switches and uses VIRO’s publish-&-query mechanism to build its routing table.

Lastly, it discovers its attached hosts during the DHCP lease process (Local_Host

messages from RC).

5.5 Packet Forwarding in a VIRO Network

In this section, we explain how the pid-vid mappings and packet forwarding is

performed in a network composed with VIRO switches. To achieve this, we use the

example illustrated in Fig. 8. In this example, host x communicates with host y,

using the following steps:

• Host x sends a ARP query to resolve host y IP address.

• VIRO switch x forwards the ARP query to RC.

J Netw Syst Manage

123

Author's personal copy

• RC returns the ARP reply packet and it replaces the DMAC with the vid of host

y, which is composed of switch y vid prepended to host y l-bit identifier (recall

that RC has a global view of the network).

• Host x receives the ARP reply and generates the first Ethernet frame, whose

DMAC address is host y vid. This frame is forwarded to switch x.

• The Ethernet frame will be received by the source’s access-node (switch x), and

it will generate a miss in the OVS fast-path and slow-path. Then, the frame will

be send to VIRO LC, and it will replace the SMAC with the SVID. In addition, it

will push the VIRO headers into the Ethernet frame and forward the packet to

the next destination, according to its routing table. Lastly, it will add OpenFlow

rules to insert the VIRO packet header into packets received from host x and to

set the SVID and SHOST appropriately. This will cause future packets to be

forwarded by the fast path.

• The intermediary VIRO switches (e.g., switch z) will forward the VIRO packets

to the next hop, according to their VIRO routing table (this process may include

rewriting the FD).

• When the VIRO packet is received by the destination VIRO switch y, it will first

generate a miss in the OVS fast and slow path. Then, the packet will be sent to

VIRO LC. Next, LC will find that it is attached to the destination access-node

(switch y), by comparing the packet DVID with the access node’s vid. Hence,

LC will pop the VIRO header and replace the DVID with host y MAC address

(recall that LC has local view of all host attached to it). Afterwards, LC will

forward the packet to host y. Furthermore, it will add OpenFlow rules to remove

the VIRO packet header and rewrite the destination MAC address for

subsequent packets.

• All packets between host x and y are transmitted in the VIRO network using a

similar process.

• Packets transmitted between host x and k use the standard Ethernet frame,

because both hosts are attached to the same access node VIRO switch x.

Fig. 8 VIRO packet forwarding between two host machines

J Netw Syst Manage

123

Author's personal copy

6 Experiments

In this section, we present the results of our evaluation of VIRO using simulations

and a real testbed. We have developed our customized in-house simulator for VIRO,

and carried out experiments to evaluate and compare VIRO with several existing

routing protocols such as OSPF and SEATTLE [2], using various real and synthetic

network topologies (see Table 3):

• Router level AS topologies we use the following router level AS topologies from

the RocketFuel project [25]: (1) AS 1755, (2) AS 3967, and (3) AS 6461.

• Data center topologies we generated multiple of Fat-Tree [26] topologies by

varying the number of nodes in them. Here, we provide results for the following

three topologies: (1) DC125, (2) DC320, and (3) DC500. These topologies are

arranged in three layers (ToR, Aggregation switches and Core switches). Thus,

the maximum shortest distance between any two switches(nodes) is 4 hops.

• Synthetic router level AS topologies using Brite we use the Barabasi model in

Brite [27] to generate router level AS topologies containing different number of

nodes (200, 400 and 600).

Additionally, we have conducted a number of experiments in the GENI testbed to

evaluate our OVS/SDN prototype of VIRO. We discuss our GENI experiments in

Sect. 6.2.

6.1 VIRO Simulation Experiments

Through extensive simulations, in this section, we evaluate VIRO using the network

topologies in Table 3. In these experiments, we compare VIRO with several

existing link-state routing protocols such as OSPF and SEATTLE [2] using the

following metrics:

Routing table size a key metric for evaluating the scalability of a routing protocol

is the size of the routing table at each node. Recall that nodes in VIRO keep only

one routing entry to reach each level-k Buckets. There are only Oðlog2ðnÞÞ number

of such buckets in a network of n nodes. In contrast, nodes in the link-state routing

keep n routing entry to reach each node in the network. Figure 9 shows the size of

the routing tables for VIRO and link-state routing protocols for different topologies.

It shows that VIRO creates much smaller routing tables than link-state routing

protocol. This is because VIRO stores only one routing entry for each logical

Table 3 Summary of the topologies used in our simulations

Router level ASs Data center BRITE

AS1755 (295, 543) DC125 (125, 500) BT200 (200, 790)

AS3967 (353, 820) DC320 (320, 2048) BT400 (400, 1590)

AS6461 (654, 1332) DC500 (500, 4000) BT600 (600, 2390)

J Netw Syst Manage

123

Author's personal copy

distance. On the other hand, in link-state protocols (e.g., OSPF and SEATTLE)

nodes keep a routing entry for every node in the network, which grows linearly with

the number of nodes in the network.

Routing stretch unlike algorithms such as OSPF, VIRO does not use shortest path

routing. Thus, it induces a small overhead in terms of the routing optimality. This

overhead is measured using routing stretch (RS). We define RS as the ratio of the

length of the path taken using VIRO and the shortest path length between a source

and destination pair. Our experimental results shows that the average RT remains

close to 1 for most of the topologies (see Fig. 10). Additionally, the bottom-up

approach (distributed) for vid assignment incurs much larger RT than top-down

(centralized) vid assignment. It is because an optimal vid assignment is achieved

using graph-partitioning algorithms.

Control overhead we estimate the control-overhead for a node by counting the

number of control-messages processed by that node to build its routing table. We

compare the overhead due to control-messages used by VIRO and link-state

DC125 DC320 DC500 AS1755AS6461AS3967 BT200 BT400 BT600
100

101

102

Topology

R
ou

tin
g

ta
bl

e
si

ze
 p

er
 n

od
e

OSPF VIRO

Fig. 9 Routing table size comparison

DC125 DC320 DC500 AS1755 AS6461 AS3967 BT200 BT400 BT600
0

0.5

1

1.5

2

2.5

3

Topology

Av
er

ag
e

St
re

tc
h

Centralized vid assignment Distributed vid assignment

Fig. 10 Routing stretch distribution for VIRO

J Netw Syst Manage

123

Author's personal copy

protocols. For VIRO, we consider four different variants by allowing more than one

rendezvous node at different level. Here VIRO-1, VIRO-2, VIRO-4 are different

variants of VIRO with maximum of 1, 2 and 4 rendezvous nodes at each level

respectively. Since the number of node pairs increases exponentially with logical

distances, i.e., there are maximum of 2k node-pairs at k logical distance. We also

consider another variant of VIRO by allowing maximum of log(k) number of

rendezvous nodes at kth level. We refer to this variant of VIRO as VIRO-log. The

results are shown in Fig. 12, the x-axis represents the different topologies and y-axis

(plotted on log-scale) shows the average number of control-messages processed by

each node in the network. As seen in this figure, control-overhead is much smaller

for VIRO than link-state. It is because nodes using VIRO’s publish-&-query

mechanism exchange fewer control packets than using the ‘‘flooding’’ based

mechanism used by the link-state routing protocol. Next, we compare the control

overhead on rendezvous nodes at any level. This overhead is created by the

rendezvous publish/query messages processed by rendezvous nodes. In our

simulations, we measure this by counting the number of such publish/query

message received by each rendezvous node. Figure 11 shows the distribution of

control-overhead on rendezvous nodes at different levels. In this Figure, x-axis

represents the level and the y-axis shows the number of publish/query messages

received by the rendezvous node. It shows that control overhead increases with the

level of rendezvous node. However, having more number of rendezvous nodes helps

significantly in reducing the overhead on individual rendezvous nodes.

Vid lookup cost both SEATTLE and VIRO requires the look-up for the host

location to send packets to them. In case of SEATTLE, switches store the host to

switch mapping by constructing a 1-hop DHT. Similarly in VIRO, we store pid-vid

mappings at switches by constructing a Kademlia style DHT. In Fig. 13, we plot the

number of hops taken to resolve these mappings for VIRO and SEATTLE. It shows

that lookup overhead for VIRO is slightly larger than SEATTLE, which is due to the

greater than 1 routing stretch for VIRO. However, the difference is less than a hop

for most of the topologies using the centralized vid assignment.

Failure control-overhead in Fig. 14a we compare the control overhead due to the

failure notification messages for VIRO and OSPF. In this Figure, the y-axis (plotted

using log-scale) shows the average number of control-messages processed by each

2 4 6 8 10
0
5

10
15
20
25
30

Rendezvous Level

N
um

be
r o

f P
ub

lis
h/

 Q

ue
ry

 m
es

sa
ge

s

of rendezvous nodes=1
of rendezvous nodes=2
of rendezvous nodes=4
of rendezvous nodes= log(k)

(a)

2 4 6 8 10
0

10

20

30

40

50

Rendezvous Level

N
um

be
r o

f P
ub

lis
h/

 Q
ue

ry
 m

es
sa

ge
s

of rendezvous nodes=1
of rendezvous nodes=2
of rendezvous nodes=4
of rendezvous nodes= log(k)

(b)

Fig. 11 Comparison of control overhead on rendezvous nodes for VIRO with different number of
rendezvous points a DC125, b BT200

J Netw Syst Manage

123

Author's personal copy

node for VIRO and OSPF for the corresponding topology shown in the x-axis. As

seen in this Figure, the no flooding based mechanism used in VIRO helps in

reducing the number of ‘‘failure notification’’ messages drastically, while the

overhead of OSPF style routing protocols is much larger. In Fig. 14b, we evaluate

the overhead of control messages due to the failures of the rendezvous nodes at

different levels. We observe that the control-overhead to spread the failure

notifications increases with the level of rendezvous node. However, this overboard

remains very small for even higher levels, e.g., it is only 6 control messages per

node for the failure of the rendezvous node at level 14. Lastly, in Fig. 14c, we

investigate the effectiveness of VIRO to localize the effect of failures by comparing

the control overhead on the nodes with the logical distance from the failed node.

This figure shows that nodes which are logically far from the failure are less affected

DC125 DC320 DC500 AS1755 AS3967 AS6461 BT200 BT400 BT600
100

101

102

103

104

Topology

C
on

tro
l O

ve
rh

ea
d

Pe
r N

od
e

OSPF VIRO−1 VIRO−2 VIRO−4 VIRO−log

Fig. 12 Control-overhead comparison

DC125 DC320 DC500 AS1755 AS6461 AS3967 BT200 BT400 BT600
0

1

2

3

4

5

6

7

Topology

Av
er

ag
e

nu
m

be
r o

f h
op

s
pe

r p
id

 to
 v

id
 lo

ok
up VIRO(Distributed−vid) VIRO(Centralized−vid) SEATTLE

Fig. 13 Look-up costs for VIRO and SEATTLE

J Netw Syst Manage

123

Author's personal copy

by the failure. However, failures are more likely to affect the nodes which are close

to it. Hence, VIRO is very effective in localizing the effect of failures.

6.2 VIRO GENI Experiments

We have conducted a number of experiments in the GENI testbed to evaluate our

initial prototype of VIRO. In this section, we describe two sets of experiments. In

the first experiment, we investigate VIRO’s packet encapsulation/decapsulation

overhead at edges switches. In the second experiment, we evaluate and compare

VIRO’s failure recovery mechanism as discussed in Sect. 5.4 (Neighbor Echo

Request & Reply and Port Status). The results of these experiments will help us to

improve our initial prototype of VIRO, e.g., to select the best failure recovery

mechanism.

Encapsulation/decapsulation overhead in this experiment, we are investigating

the processing delay overhead imposed by VIRO’s packets encapsulation/decap-

sulation at the edges switches. To achieve this, we deployed the topology illustrated

in Fig. 15a in GENI using the Illinois GENI Aggregate Manager, 1 raw PC and 4

Xen VMs. We measure the processing delay of ping messages6 from h1 to h2. We

use tcpdump to obtain the timestamps of packets as they enter and leave the

switches. The difference in the timestamps is the ‘‘packet processing delay time’’—

DC125 DC320 DC500 AS1755AS6461AS3967 BT200 BT400 BT600
100

102

104

Topology

 F
ai

lu
re

 N
ot

ifi
ca

tio
n

O

ve
rh

ea
d

Pe
r N

od
e

VIRO OSPF

(a)

<=4 6 8 10 12 14
0

2

4

6

8

10

Rendezvous Node LevelFa
ilu

re
 c

on
tro

l o
ve

rh
ea

d
on

 n
od

es

us
in

g
th

e
fa

ile
d

R
en

de
zv

ou
s

N
od

e

DC125 AS3967 BT200

(b)

<=4 6 8 10 12 14
0

1

2

3

4

5

6

Logical Distance

N
um

be
r o

f f
ai

lu
re

 n
ot

ifi
ca

tio
ns

fo
rw

ar
de

d
by

 e
ac

h
no

de
 n

od
e

DC125 AS3967 BT200

(c)

Fig. 14 Comparison of VIRO and link-state for failures (vertical bars show the 95 % confidence interval
for the mean values), a Control overhead, b RDV failure, c failure localization

6 We generate 100 ping request packets.

J Netw Syst Manage

123

Author's personal copy

since we do not generate high amounts of traffic, we consider the queue delay

negligible. We repeat this experiment using both a traditional OVS (with the

standard IP forwarding) and our extended OVS.

Figures 16a shows the processing time in milliseconds for a traditional OVS,

extended-OVS encapsulation (encap-OVS) and extended-OVS decapsulation (de-

cap-OVS). We observe from our experimental results that the 95 percentile for

packet’s processing delay is 3:11 � 10�2, 3:01 � 10�2 and 3:50 � 10�1 millisec-

onds for OVS, encap-OVS and decap-OVS. These results show that the packet’s

processing delay for OVS and encap-OVS are very close. Surprisingly, we observe

an increase in the packet’s processing time for decap-OVS (see Fig. 16a). In the

future, we will investigate why the processing time for VIRO packet decapsulation

is significantly larger than packet encapsulation.

Failure recovery in this experiment, we are particularly interested in investigating

VIRO’s failure recovery mechanisms: Echo Request & Reply and Port Status. To

achieve this, we use the network topology illustrated in Fig. 15b. We deployed this

topology in GENI using 8 GENI InstaGENI Aggregate Managers (AMs), 10 raw PCs,

14 Xen VMs and EGRE tunnels to connect the GENI AMs. For this experiment, a client

in Seattle communicates with a server in New York. Based on VIRO’s routing tables the

client’s path to communicate with the server is the following: Seattle ! Denver !
KansasCity ! Indianapolis ! Atlanta ! D:C: ! NewYork (see Fig. 15b). During

(a) (b)

Fig. 16 GENI experimental results, a packet processing delay, b failure recovery

Fig. 15 Network topologies of our experiments in GENI, a packet processing delay, b failure recovery

J Netw Syst Manage

123

Author's personal copy

this process, we fail the link Indianapolis ! Atlanta and measure the time it takes for

the network to recover. Before failure, node 0010 is used as the level-3 gateway to

reach the server in New York. However, after failure, node 0010 updates its routing

table and sends a GW_Withdraw message to its level-3 rendezvous point (rdv),

rdv3ð0010Þ ¼ 0000. Thus, the rdv updates its rdv store and sends GW_Remove

messages to all the nodes using node 0010 as their level-3 gateway. Consequently,

node 0010 queries node 0000 for a new level-3 gateway. Then, node 0000 returns

node 0011 as the new level-3 gateway and the new path for the packets from the client

to the server will be the following: Seattle ! Denver ! KansasCity !
Indianapolis ! Chicago ! NewYork.

We use the network tool iperf to generate traffic from the client to the server for

150 s. Figure 16b shows the results of our experiment. We observe that the failure

of link Indianapolis ! Atlanta happens at about 20 s. It takes 20 s for the network

to recover using the port status method (see Fig. 16b). However, it takes about 60 s

for the network to recover using VIRO echo-messages. These results shows that the

Port status method outperforms Neighbor Echo Request & Reply method, as

expected. We also observe that recovery time for both methods is significantly large.

Hence, in the future we will improve the tuning of our experimental parameters in

order to decrease the failure recovery time in our experiments.

7 Conclusion

In this paper, we proposed VIRO—a novel ‘‘plug-&-play’’, scalable and robust non-

IP routing paradigm for future large dynamics networks. The key idea behind VIRO

is the introduction of a topology-aware, structured virtual id (vid) space onto which

both physical identifiers (e.g., Ethernet MAC addresses) as well as higher layer

addresses/names (e.g., IPv4/IPv6 addresses or flat-id names) are mapped. Taking

advantage of such a topology-aware and structured vid space, VIRO employs a

DHT-style routing algorithm to build routing tables, look up objects (names,

addresses, vids, etc.) and forward packets. Hence, VIRO completely eliminates

network-wide flooding in both the data and control planes. Furthermore, because of

the structured vid space, VIRO effectively localizes the effect of failures, performs

fast rerouting and support multiple (logical) topologies on top of the same physical

network substrate to further enhance network robustness. VIRO also facilitates the

support for virtualized networks and network services, as well as enables access

control and isolation of services for security and performance.

We have developed our customized in-house simulator for VIRO and carried out

experiments to evaluate and compare VIRO with several existing routing protocols

such as OSPF and SEATTLE, using various real and synthetic network topologies.

Our experimental results show that VIRO outperforms OSPF and SEATTLE, and it

has immense scalability and robustness, while keeping the control overheads very

low. Furthermore, we have also developed an initial prototype of VIRO using the

OVS-SDN platform and deployed it in the GENI testbed. We modified OVS to

implement VIRO switching functions and adapted the POX SDN controller to

implement VIRO control and management plane functions. In addition, we have

J Netw Syst Manage

123

Author's personal copy

carried out experiments to test our initial prototype of VIRO in the GENI testbed.

Moreover, we plan to expand our current prototype of VIRO to include additional

functionalities. These include further extensions to OVS to support multi-path

routing and resilient routing as well as additional management functions, such as

access control mechanism. In addition, we plan to evaluate the scalability of our

architecture in GENI over larger topologies.

Acknowledgments This research was supported in part by a Raytheon/NSF subcontract

9500012169/CNS-1346688, DTRA grants HDTRA1-09-1-0050 and HDTRA1-14-1-0040, DoD ARO

MURI Award W911NF-12-1-0385, and NSF grants CNS-1117536, CRI-1305237 and CNS-1411636.

References

1. Jain, S., Chen, Y., Zhang Z.: VIRO: A scalable, robust and namespace independent virtual id routing

for future networks. In: Proceedings of the IEEE INFOCOM, (2011). doi:10.1109/INFCOM.2011.

5935058

2. Kim, C., Caesar, M., Rexford, J.: Floodless in Seattle: a scalable ethernet architecture for large

enterprises. In: Proceedings of the ACM SIGCOMM, (2008). doi:10.1145/1402958.1402961

3. Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K., Stoica, I.: ROFL: routing on flat labels.

In: Proceedings of the ACM SIGCOMM, (2006). doi:10.1145/1151659.1159955

4. Ford, B.: Unmanaged internet protocol: taming the edge network management crisis. In: Proceedings

of the ACM SIGCOMM, (2004). doi:10.1145/972374.972391

5. Myers, A., Ng, E., Zhang, H.: Rethinking the service model: scaling Ethernet to a million nodes. In:

Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), ACM (2004)

6. Sharma, S., Gopalan, K., Nanda, S., Chiueh, T.C: Viking: a multi-spanning-tree Ethernet architecture

for metropolitan area and cluster networks. In: Proceedings of the IEEE INFOCOM, (2004). doi:10.

1109/INFCOM.2004.1354651

7. Rodeheffer, T.L., Thekkath, C.A., Anderson, D.C.: Smartbridge: a scalable bridge architecture. In:

Proceedings of the ACM SIGCOMM, (2000). doi:10.1145/347059.347546

8. Kim, C., Rexford J.: Revisiting Ethernet: plug-and-play made scalable and efficient. In: Proceedings

of the 15th IEEE Workshop on Local and Metropolitan Area Networks, (2007). doi:10.1109/

LANMAN.2007.4295993

9. Ray, S., Guerin, R., Sofia, R.: A distributed hash table based address resolution scheme for large-

scale ethernet networks. In: Proceedings of the IEEE International Conference on Communications

(ICC), IEEE (2007). doi:10.1109/ICC.2007.1066

10. Alaettinoglu, C., Shankar, A: Viewserver hierarchy: a new inter-domain routing protocol and its

evaluation. In: Proceedings of the IEEE INFOCOM, (1993). doi:10.1109/INFCOM.1994.337589

11. GENI: Exploring networks of the future. https://www.geni.net/

12. Maymounkov, P., Mazieres, D.: Kademlia: a peer-to-peer information system based on the XOR

metric. In: Proceedings of the IPTPS, (2002)

13. Caesar, M., Castro, M., Nightingale, E. B., O’Shea, G., Rowstron, A.: Virtual ring routing: network

routing inspired by DHTs. In: Proceedings of the ACM SIGCOMM, (2006). doi:10.1145/1159913.

1159954

14. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without

location information. In: Proceedings of the ACM 9th Annual International Conference on Mobile

Computing and Networking (MobiCom), ACM (2003). doi:10.1145/938985.938996

15. Ee, C., Ratnasamy, S., Shenker, S.: Practical data-centric storage. In: Proceedings of the 3rd Con-

ference on Networked Systems Design and Implementation (NSDI), vol. 3, pp. 24–24, ACM (2006)

16. Jain, S., Chen, Y., Zhang Z.: VIRO: A plug & play, scalable, robust and namespace independent

virtual id routing for future networks. In: Tech report. http://networking.cs.umn.edu/veil/viro

17. Lu, G.H., Jain, S., Chen, S., Zhang, Z.: Virtual id routing: a scalable routing framework with support

for mobility and routing efficiency. In: Proceedings of the 3rd International Workshop on Mobility in

the Evolving Internet Architecture (MobiArch), ACM (2008). doi:10.1145/1403007.1403025

J Netw Syst Manage

123

Author's personal copy

http://dx.doi.org/10.1109/INFCOM.2011.5935058
http://dx.doi.org/10.1109/INFCOM.2011.5935058
http://dx.doi.org/10.1145/1402958.1402961
http://dx.doi.org/10.1145/1151659.1159955
http://dx.doi.org/10.1145/972374.972391
http://dx.doi.org/10.1109/INFCOM.2004.1354651
http://dx.doi.org/10.1109/INFCOM.2004.1354651
http://dx.doi.org/10.1145/347059.347546
http://dx.doi.org/10.1109/LANMAN.2007.4295993
http://dx.doi.org/10.1109/LANMAN.2007.4295993
http://dx.doi.org/10.1109/ICC.2007.1066
http://dx.doi.org/10.1109/INFCOM.1994.337589
https://www.geni.net/
http://dx.doi.org/10.1145/1159913.1159954
http://dx.doi.org/10.1145/1159913.1159954
http://dx.doi.org/10.1145/938985.938996
http://networking.cs.umn.edu/veil/viro
http://dx.doi.org/10.1145/1403007.1403025

18. Yu, Y., Lu, G., Zhang, Z.: Enhancing location service scalability with HIGH-GRADE. In: Pro-

ceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, (2004).

doi:10.1109/MAHSS.2004.1392102

19. Dumba, B., Mekky, H., Sun, G., Zhang, Z.: Experience in implementing and deploying a non-IP

routing protocol VIRO in GENI. In: Proceeding of the IEEE International Workshop on Computer

and Networking Experimental Research Using Testbeds, IEEE (2014). doi:10.1109/ICNP.2014.85

20. Open vSwitch. http://www.openvswitch.org/

21. Pettit, J.: A Whirlwind Tour (2011)

22. Pettit, J.: OVS Deep Dive, OpenStack Summit (2013)

23. Mekky, H., Hao, F., Mukherjee, S., Zhang, Z., Lakshman, T.: Application-aware Data Plane. In:

Proceedings of the ACM SIGCOMM Workshop on Hot topics on Software Defined Networks

(HotSDN), ACM (2014). doi:10.1145/2620728.2620735

24. Mekky, H., Jin, C., Zhang, Z.: VIRO-GENI: SDN-based approach for a non-IP protocol in GENI. In:

Proceedings of the Third GENI Research and Educational Experiment Workshop (GREE), IEEE

(2014). doi:10.1109/GREE.2014.14

25. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with rocketfuel. In:

Proceedings of the IEEE/ACM Transactions on Networking, IEEE (2004). doi:10.1109/TNET.2003.

822655

26. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In:

Proceedings of the ACM SIGCOMM, (2008). doi:10.1145/1402946.1402967

27. Medina, A., Matta, I., Byers, J.: BRITE: a flexible generator of Internet topologies. Technical Report,

ACM (2000)

Braulio Dumba is currently a Ph.D. student at the Department of Computer Science and Engineering at

University of Minnesota, Twin Cities. In 2011, he earned a B.A. in Computer Science and Physics, with a

Mathematics minor, from Luther College. His research interests lie in Network Routing Protocols,

Software Defined Networks and Online Social Networks.

Hesham Mekky received his B.Sc. in Computer Science from Alexandria University, Egypt in 2007, and

M.Sc. in Computer Science from University of Minnesota in 2013. He is currently a Ph.D. candidate of

Computer Science at University of Minessota. His research interests include networking, security, and

privacy. He is a student member of IEEE.

Sourabh Jain graduated from University of Minnesota, twin cities, in 2011, with a Ph.D. in Computer

Science. He finished his undergraduate studies in Computer Science and Engineering at Indian Institute of

Technology Roorkee (IIT-Roorkee) (2002–2006). Currently, he is a Software Engineer at Google.

Guobao Sun is a software engineer at Facebook, Inc. He received his B.S. in Computer Science and

Engineering from Shanghai Jiao Tong University in 2013, and M.S. in Computer Science and

Engineering from University of Minnesota, Twin Cities in 2015. His research interests mainly lie in

Software-Defined Networking (SDN) and wireless networking.

Zhi-Li Zhang is a full Professor at the Department of Computer Science and Engineering at University of

Minnesota, Twin Cities. He is also a Qwest Chair Professor, McKnight Distinguished University

Professor and a Fellow of IEEE. His research interests lie broadly in computer communication and

networks, Internet technology, multimedia and emerging applications.

J Netw Syst Manage

123

Author's personal copy

http://dx.doi.org/10.1109/MAHSS.2004.1392102
http://dx.doi.org/10.1109/ICNP.2014.85
http://www.openvswitch.org/
http://dx.doi.org/10.1145/2620728.2620735
http://dx.doi.org/10.1109/GREE.2014.14
http://dx.doi.org/10.1109/TNET.2003.822655
http://dx.doi.org/10.1109/TNET.2003.822655
http://dx.doi.org/10.1145/1402946.1402967

	A Virtual Id Routing Protocol for Future Dynamics Networks and Its Implementation Using the SDN Paradigm
	Abstract
	Introduction
	Related Work
	Notations and Definitions
	VIRO: Virtual Id Routing Protocol
	Overview
	Virtual Id Assignment
	VIRO Routing
	Overview and the Routing Invariant Property
	Routing Table Computation Algorithm
	Scalability and Complexity of the Routing Algorithm

	Virtual Id Lookup and Forwarding
	Gateway Selection Strategy and Multi-Path Routing
	Handling Node/Link Failures

	SDN Implementation OF VIRO
	Design Overview and Implementatin Challenges
	VIRO SDN Data Plane
	VIRO SDN Control Plane
	VIRO Network Bootstrapping Events
	Packet Forwarding in a VIRO Network

	Experiments
	VIRO Simulation Experiments
	VIRO GENI Experiments

	Acknowledgments
	References

