
SAMPO: Online Subflow Association for Multipath
TCP with Partial Flow Records

Yang Zhang∗, Hesham Mekky∗, Zhi-Li Zhang∗, Fang Hao†, Sarit Mukherjee† and T V Lakshman†
∗University of Minnesota, Email: {yazhang, hesham, zhzhang}@cs.umn.edu

†Bell Labs Alcatel-Lucent, Email: {fang.hao, sarit.mukherjee, t.v.lakshman}@alcatel-lucent.comu

Abstract—Multipath TCP (MPTCP) is a promising technique
for boosting application throughput while using well-known and
versatile network socket interfaces. Recently, many interesting
applications of MPTCP in various environments such as wireless
networks and data centers have been proposed, but little work
has been done to investigate the impact of this protocol on
conventional network devices. For example, MPTCP throughput
advantage can be better achieved if all MPTCP subflows are
routed on disjoint paths, but this is currently not feasible since
routers are not designed to recognize the membership of MPTCP
subflows. In this paper, we take a first step to address this issue by
proposing SAMPO, an online algorithm to detect and associate
MPTCP subflows in network. The main challenge is that sampling
techniques and network dynamics may cause a network device to
only obtain partial flow records. SAMPO takes advantage of both
protocol information and statistical characteristics of MPTCP
data sequence number to overcome the challenge in network.
Through analysis and experimentation, we show that SAMPO is
able to detect and associate MPTCP subflows with high accuracy
even when a small portion of the entire flow records are available.

I. INTRODUCTION

MPTCP is designed to boost data transmission throughput
by taking advantage of multiple available paths in network. It
is a major extension to TCP and has been standardized by the
Internet Engineering Task Force (IETF) [7]. MPTCP allows a
pair of hosts to use multiple interfaces for transmission of the
upper layer data stream and has been becoming a promising
technique. MPTCP can not only increase data throughput, but
also seamlessly perform vertical handover between multiple
paths, which makes data transmission more robust against link
failures [11]. Moreover, these features are obtained without re-
quiring any modification at application level. By large, MPTCP
can be deployed in today’s Internet without much impact on
the proper functioning of the existing network devices [16].

The reason why MPTCP can achieve such benefits is
because MPTCP directly relies on TCP as its subflow protocol.
Once MPTCP subflows have been established, upper layer
data can be scheduled to traverse over any of the established
MPTCP subflow sessions. In order to coordinate across mul-
tiple paths, MPTCP adopts two levels of sequence numbers:
a data sequence number (DSN) at MPTCP session level and
a regular sequence number at MPTCP subflow session level.
As in regular TCP, the subflow sequence number guarantees
that the data sent over each subflow can be reliably received
and assembled at the subflow receiver buffer. DSN is shared
across multiple subflows and designed to guarantee reliable
data delivery at MPTCP session level, i.e., to ensure the entire
data stream can be assembled back in sequence.

Although MPTCP is designed to be compatible with most
network devices, MPTCP can not be necessarily understood
by these network devices. To the best of our knowledge,
few network devices are designed with explicit consideration
of MPTCP, and little work has been done to investigate
how to better support this new protocol in the network. For
example, MPTCP is designed to be no more aggressive than
a regular TCP on a shared bottleneck link [20]. This implies
that multiple subflows of a MPTCP session can only bring
throughput improvement if the subflows do not share the same
bottleneck link. However, no mechanism in either the end host
or the network to allow MPTCP subflows to avoid common
links currently exists. On the other hand, if routers could
spread the MPTCP subflows onto disjoint paths, the overall
data goodput could be greatly improved [17].

Furthermore, making network devices MPTCP-aware may
improve the functionality of certain network services. Take
application identification service or intrusion detection service
as an example. If an application/malware signature spans
across multiple MPTCP subflows, the accuracy of the iden-
tification outcome may be improved by assembling subflows
together. Likewise, when a subflow that carries the signature
is identified/blocked, all other subflows belonging to the same
MPTCP session can be identified/blocked too.

In this paper, we take a first step towards making the net-
work devices MPTCP-aware by investigating how to associate
subflows that belong to the same MPTCP session. This is
relatively easy to do at a place where all flow records are
available, e.g., at end hosts. In this case, one can use MPTCP
token in TCP option field carried in the MP JOIN message
of each subflow to identify a MPTCP session. However, the
problem of associating MPTCP subflows becomes more chal-
lenging in network. For example, it is common that network
monitoring devices perform sampling on the data streams
before processing them in order to reduce processing load.
Moreover, flow paths can also change due to network dynamics
and hence the monitoring device may only see a portion of the
flow. All such complications may cause the MPTCP packets
containing the token to be missing from flow records, and
hence a more comprehensive and robust solution is needed for
subflow association in network.

We propose SAMPO, an online subflow association mech-
anism for MPTCP with partial flow records. Our main contri-
bution is a DSN-based algorithm that can associate subflows
based on analysis of DSN values of each subflow, their range
and overlapping pattern. Through extensive theoretical analysis
and experimentation, we find that the DSN-based association
is very effective even when a small fraction of packets from

each subflow are available. For instance, the algorithm reaches
close to 100% accuracy when only 1% of packets are sampled.

The remainder of this paper is organized as follows: we
introduce background information in Section II. The workflow
of the system is illustrated in Section III. MPTCP subflow
association algorithm and its analysis are described in Sec-
tion IV. After that, in Section V, we show the evaluation of
the main algorithm and then conclude.

II. BACKGROUND

In this section, we present background information related
to the MPTCP subflow association problem. We first describe
a token-based solution which is a regular way of associating
MPTCP subflows and then explain why such an approach, al-
though simple and accurate, may not always work in network.

A. Token-based MPTCP Subflow Association

The most straightforward way of solving the problem is to
look for signatures in the MPTCP protocol that can be used
to identify each session. Figure 1 shows the initial MPTCP
protocol exchange during connection establishment. When
sender A initiates a MPTCP connection with receiver B, it
first sends a SYN packet, which contains both MP CAPABLE
flag and sender’s key (KEY A) in the TCP option field of its
header. If MPTCP is supported and enabled at the receiver
side, the receiver sends back a SYN/ACK that contains a
MP CAPABLE flag with receiver’s key (KEY B). The follow-
ing ACK packet from the sender to receiver contains the keys
of both sides. At this point, the first subflow in MPTCP has
been established; this is called meta socket. Later on, when the
sender needs to establish an additional subflow, it sends a SYN
packet with MP JOIN. This SYN packet contains a token,
which is calculated from the receiver’s key that the sender
has obtained during meta socket handshake. In MPTCP Linux
kernel implementation, the token is calculated by taking the
most significant 32 bits out of 160 bits SHA1 function of the
receiver’s key [1]. This SYN packet also contains a nonce field
for further authentication. The next few handshake packets can
be ignored since they are not relevant to MPTCP subflow
association. Further details of MPTCP subflow handshake
procedure can be found in the MPTCP RFC [7].

Since the token is generated from the receiver’s session
key, all subflows in the same MPTCP session contain the same
token. One exception is the meta socket which only contains
keys but not a token. In this case, token generation function can
be used to convert the key into a token so that meta socket can
also be associated with other subflows. Note that in the current
MPTCP Linux kernel implementation, only a sender is allowed
to initiate subflows, so only receiver’s key needs to be used.
However, MPTCP specification allows both sides to initiate
subflows. In the case where other MPTCP implementations
choose to allow a receiver to initiate subflows, sender’s key
can then be stored to derive the token for the reverse direction.

B. Challenges in Network

Although the token-based approach can effectively asso-
ciate MPTCP subflows, it relies on the assumption that the
entire MPTCP handshake process can be captured, so that each
subflow can be identified by using the token or the receiver’s

Host A Host B

Address A1 Address B1Address A2

SYN
MP_CAPABLE, KEY_A

SYN/ACK
MP_CAPABLE, KEY_B

ACK
MP_CAPABLE, KEY_A, KEY_B

SYN
MP_JOIN, TOKEN, NONCE

SYN/ACK
MP_JOIN, NONCE, HMAC

ACK
MP_JOIN, HMAC

ACK

Establishment of an Additional Subflow

Fig. 1. Basic Knowledge for Token-based MPTCP Subflow Association

key. While this is true at the end hosts, e.g., at the hypervisor
where host A or B runs, it is generally not true in network.
We describe two common reasons below.

1) Sampling: Packet sampling is often used in network
monitoring systems as a way to reduce processing and memory
load [21]. As the link speed continues to increase on routers
and switches, it is conceivable that to monitor every packet on
each link will be even more challenging. A common sampling
approach is to randomly sample a fraction of packets from a
link. As a result, only partial flow records may be exposed to
the monitoring system. The higher the sampling rate is set in
network devices, the more bandwidth to transmit packets and
resource to store and process them are required.

2) Network Dynamics: Network path can be changed due
to various reasons. For example, link failure on the Internet
is common due to its size and complexity, as shown in
the measurement study [9]. Link failure may cause network
instability and affect routing convergence on a large scale. For
instance, the inter-domain routing protocol BGP could take up
to 15 minutes to converge after link failures [13]. Such network
dynamics may cause the packets in the same flow to be routed
across different paths, and hence a monitoring device may not
able to capture the entire flow.

Due to the above reasons, we believe that the token-based
association approach will not be a reliable solution for a
monitoring device in network. In the next section, we present
a sophisticated algorithm based on statistical characteristics
of DSNs in each subflow, which can support online MPTCP
subflow association with only partial flow records.

III. OVERVIEW

In this section, we propose SAMPO, an online subflow
association system for MPTCP with partial flow records.

Figure 2 illustrates the workflow of SAMPO. The input to
SAMPO is a set of partial flow records (e.g., sampled packets).
The output is the association result of MPTCP subflows,
identifying sets of subflows belonging to the same MPTCP
session. First, the flow records are grouped according to 5-tuple
information in the packet header. The MPTCP flows are then

Pre-Processing

Unassociated Flows

Associated Flows
Inactive Flow

Flow Cache MPTCP Association

Monitoring Elements

Partial Flow Records
------ System Input

Association Results
------ System Output

MPTCP Subflows
Organized by 5 Tuples

Flows Ready to be Associated

Fig. 2. SAMPO Workflow

selected based on the TCP option field. For flows containing
MPTCP header information, DSNs and corresponding packet
length are extracted from the option field, along with the token
or the receiver’s key, if available. Such information is stored
in a flow cache as part of the flow record to be fed to the
next MPTCP association step. To enable online processing, we
use a sliding window mechanism in the flow cache. MPTCP
association is triggered every γ second. Flows cached within
each time window of γ seconds are processed together. The
inactive flows that have arrived before the current time window
are timed out and removed.

The MPTCP association step consists of two parts: token-
based association and DSN-based association. If a receiver’s
key or token is available, token-based association is then
performed using the method described in Section II. The
results of token-based association along with flow records are
fed into DSN-based association for further association; details
of this step are illustrated in Section IV-A. At the end of
processing, the system produces a report of flows belonging to
the same MPTCP session. For every pair of flows in the report,
there is a confidence value Φ to represent how trustworthy the
result is. Moreover, association results will be stored back into
flow cache for the association of future subflows.

IV. MPTCP SUBFLOW ASSOCIATION

In this section, we describe the main algorithm in our
system and present our analysis. For completeness, the overall
SAMPO system still takes advantage of token-based subflow
association method (Φ is set to 1 if associated by token) pre-
sented in Section II-A, although our main algorithm presented
here only relies on DSN-based association.

A. DSN-based Association

Recall that DSN is used as a global sequence number for
the entire MPTCP data. Since multiple subflows are used for
data transmission, DSN is spread across different subflows.
We define the active range of a subflow as the DSN range
from the beginning to the end of this subflow. Similarly, we
define the DSN segment of a packet as the DSN range between
the beginning and end of this packet. Note that the length of
each DSN segment is the length of this packet. Hence our
main intuition is that if two subflows belong to the same

MPTCP session, their active ranges have a high probability
of overlapping. Furthermore, within their overlapped active
range, the DSN segments of the two subflows should be
interleaving, instead of overlapping. This is because upper-
layer data should only be assigned to one subflow, except for
reinjection packets, which we will address later. DSN-based
association actually uses 2-level overlap analysis to determine
whether two subflows are generated by the same MPTCP
session or not.

EM-1

EM

E1

E2

DSN Space (2^32)

E3

BmB3B2B1

AnA3A2A1

G

Overlapped Active Range

1st Level Overlap

2st Level Overlap

Same MPTCP

Distinct MPTCP

Distinct MPTCP

Y N

Y N

φ2
S φ2

D φ3
S φ3

D

φ1
S φ1

D

Confidence Value φ = max(φi
S, φi

D) , i={1,2,3}

φi
S = 1 - φi

D , i={1,2,3}

Fig. 3. DSN-based Association

As shown in Figure 3, the algorithm first examines whether
the active ranges of two subflows overlap or not. This is
called the first-level overlap. If the first-level overlap holds,
the algorithm further checks if the DSN segments in the
overlapped active range has the second-level overlap. The
second-level overlap is defined as overlapped DSN segments
in the overlapped active range. The colored boxes on the right
side of the figure show steps of the classification logic. Each
step of the decision is associated with a confidence value Φi

X ,
where X can be either S (i.e., same MPTCP session) or D
(i.e., distinct MPTCP sessions). Label i = 1, 2, 3 corresponds
to the outcome of each decision step, as shown in the colored
box. The confidence values range between [0,1]. Φi

S is defined
to be 1 − Φi

D. For example, given that first-level overlap
does not hold, Φ1

D is confidence value of the classification
result that two subflows belong to distinct MPTCP sessions.
Similarly, Φ1

S is confidence value of the classification result
that two subflows belongs to the same MPTCP session. Since
the confidence value, Φ, of an association result for a pair
of subflows is defined as max(Φi

S ,Φ
i
D), the essential task of

DSN-based association is to calculate max(Φi
S ,Φ

i
D). If Φi

S is
larger than Φi

D, the association result is S based on the data

received so far; otherwise, D is. The detailed analysis on the
value of Φi

X is presented in Section IV-B.

In DSN-based association, if a subflow is wrap-around [19]
in terms of DSN in a given window, when this subflow is
associated with other subflows, a virtual DSN space is used
to examine whether two subflows overlap at the first level. In
virtual DSN space, wrap-around part [0, n] is mapped to [S,
S + n] in which S is the total DSN space size.

B. Analysis of DSN-based Association

The confidence value Φi
X generated by DSN-based associ-

ation can be analyzed by using probability theory. Since DSN-
based association is based on a two-level overlap algorithm,
we may have the following questions: for subflows belonging
to the same MPTCP session, what is the probability that they
overlap at the first level? How about subflows belonging to
distinct MPTCP sessions? If two subflows overlap at the first
level and they belong to the same MPTCP session, what is the
probability that they overlap at the second level? How about
subflows belonging to distinct MPTCP sessions in this case?
Understanding these questions helps us better define Φi

X to
tune the algorithm. We first present the analysis for the first-
level overlap, and then present the analysis for the second-level
overlap.

1) First-Level Overlap: The first-level overlap of two
subflows belonging to distinct MPTCP sessions needs to be
investigated, i.e., the probability that active ranges of these two
subflows overlap. The question is formalized as the following:
Given two subflows (length of active range is N1 and N2

respectively) passing through a switch, the initialized data
sequence number (IDSN) follows a discrete uniform distri-
bution with range [0, s], what is the probability that these
two subflows overlap in terms of DSN? (s = 232 − 1 gives
the problem of calculating probability of first-level overlap).
The probability is easily calculated as P (E1E2) = P (E1) ×
P (E2|E1) = N1+N2−1

s+1 in which Ei is the active range of each
subflow.

What if these two subflows belongs to the same MPTCP
session? In order to understand this problem, we need to
understand how MPTCP scheduling algorithm works, i.e., how
data segments are scheduled over multiple links. In MPTCP
Linux kernel implementation [1], the default scheduler chooses
subflow with the lowest RTT until its congestion window is
full. Then, the scheduler assigns data segments to the subflow
with the next lowest RTT. This scheduler is argued to be
the best known till date [12]. Based on such a scheduling
mechanism, it can be inferred that active ranges of two
subflows belonging to the same MPTCP session have very
high probability of overlapping with each other.

Given that two subflows are not overlapped at the first level,
can we guarantee that they must belong to distinct MPTCP?
The brief answer is no. There are three reasons. The first
reason is that it is possible that active range of one subflow
might be too small to overlap with that of another subflow in
the same MPTCP session. The second reason is that MPTCP
data segments may not be transmitted over multiple paths
concurrently. MPTCP end host can specify a path (in fact, end
host specify the interface connected to this path) as a backup
path which will only be used if no default path is available. A

well-known application, Siri, in iOS 7 takes cellular connection
as a backup connection [2]. When WiFi goes down, DSN
over cellular connection would not be overlapped with that
over WiFi. The third reason is that the input to our analysis
is partial subflow instead of complete subflow information,
so it is possible that overlapped active range is missed due
to network dynamics or packet sampling. Despite of various
reasons, if subflows belonging to the same MPTCP session are
not overlapped at the first level, the gap between two active
ranges of two subflows has high probability to be smaller than
the largest gap between two consecutive DSN segments in one
subflow. Thus, Φ1

D is defined as Sigmoid(min(gap subflow)
max(gap DSN) −

1), in which min(gap subflow) is the smaller gap between
two active ranges and max(gap DSN) is the largest gap
between two consecutive DSN segments in the same subflow.
Here, we include the sigmoid function as a “cut-off”. When
min(gap subflow) is small, i.e., min(gap subflow) <

max(gap DSN), Sigmoid(min(gap subflow)
max(gap DSN) −1) will rapidly

get closer to 0, leading to a small probability that two subflows
are belonging to distinct MPTCP.

Another question is: given that two subflows are overlapped
at the first level, can we guarantee that they must belong
to the same MPTCP? The brief answer is also no. Consider
that there are only two subflows passing through a monitoring
element, the probability that two active ranges are overlapped
is P (E1E2) = P (E1) × P (E2|E1) = N1+N2−1

s+1 as analyzed
before. However, what if there are M subflows belonging
to distinct MPTCP sessions passing through the monitoring
element?

We generalize above problem from two subflows to M
subflows and calculate the probability that at least two subflows
have first-level overlap. The question is formalized as given
M subflows with length Ni(i = 1, ...,M) passing through a
switch, the initialized data sequence number follows a discrete
uniform distribution with range [0, s], what is the probability
that at least two subflows are overlapped?

We first calculate the probability P (E1, . . . , EM) that no
subflows are overlapped. Then 1 − P (E1, . . . , EM) is the
probability that at least two subflows are overlapped.

P (E1, . . . , EM) = P (EM |E1, . . . , EM−1)

× P (EM−1|E1, . . . , EM−2) · · ·P (E2|E1)× P (E1)

Given (M − 1) subflows with length Ni(i = 1, ...,M − 1)
passing through a switch, the IDSN follows a discrete uniform
distribution with range [0, s] without any overlap. Given
an additional subflow with length NM passing through this
switch, the probability that this subflow will not be overlapped
with other M − 1 subflows is

P (EM |E1, . . . , EM−1)

=

∑

gapM−1−gM−1×(NM−1)

S ,M > 1
1 ,M = 1

with lower bound:

Pmin(EM |E1, . . . , EM−1)

=

S −
M−1∑
k=1

Nk − (M − 1)× (NM − 1)

S
,M > 1

and upper bound:

Pmax(EM |E1, . . . , EM−1)

=

S −
M−1∑
k=1

Nk −NM + 1

S
,M > 1

in which space size S is 232.
∑
gapM−1 is the total size of

gaps, each of which is equal to or larger than NM , while gM−1

is the number of such gap in total when M-1 subflows have
already been placed.

Explanation for lower bound: there are S different choices
for each IDSN without considering overlap. First count how
many of them are not overlapped. The first IDSN can be chosen
freely, in S different ways. Placing E1 makes N1+Ni−1 out of
S points forbidden as IDSN for other subflows (each of the N1

points contained in that subflow and Ni − 1 points before it).
The total legal IDSN for the second subflow is S−N1−(N2−
1). Choosing the second IDSN will make at most N2 +Ni−1
out of the remaining points invalid. For the IDSN of the third
subflow, there are at most S −N1 −N2 − 2× (N3 − 1) valid

points. Overall, in the worst case, S −
M−1∑
k=1

Nk − (M − 1)×

(NM − 1) points are forbidden when EM needs to be placed.

Explanation for upper bound: in the best case, all active
ranges are connected end to end in which the most valid places
will be available for the next active range. The first IDSN can
still be chosen freely, in S different ways. Adding E1 makes
N1 + NM − 1 out of S points forbidden as IDSN for other
subflows. Then after adding E2 which is end to end with E1,
there are only N1 +N2 +NM − 1 out of S points forbidden
instead of N1 +N2 +2(NM −1) in the worst case. Therefore,

when EM needs to be placed, there are only
M−1∑
k=1

Nk+NM−1

places invalid in the best case.1

P (E1, . . . , EM)

=

M∏
k=2

(

∑
gapk−1−gk−1×(Nk−1)

S),M > 1

1 ,M = 1

with lower bound:

Pmin =

M∏
k=2

(

S −
k−1∑
t=1

Nt − (k − 1)× (Nk − 1)

S
)

and upper bound:

Pmax =

M∏
k=2

(

S −
k−1∑
t=1

Nt −NM + 1

S
)

We refer Taylor series to calculate the approximations of

aforementioned formula. When S �
M∑
t=1

Nt, the lower bound

1In fact, Birthday Paradox [6] is an extreme case of our analysis in which
Ni = 1(i = 1, ...,M) and S = 365. In this extreme case, the lower bound
and upper bound are equal because gM−1 is always equal to the number of
gaps available.

1 2 5 10 100 1,000 10,000
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Flows

P
er

ce
nt

ag
e

of
 1

st
 L

ev
el

 O
ve

rla
p

1,000,000−byte flow upper bound

1,000,000−byte flow lower bound

1,000−byte flow upper bound

1,000−byte flow lower bound

1−byte flow upper bound

1−byte flow lower bound

Fig. 4. First-Level Overlap Rate

1 2 5 10 20 50 100 200 500
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of Packets Available on Each Flow

P
er

ce
n

ta
g

e
o

f
2r

d
 L

ev
el

 O
ve

rl
ap

upper bound

lower bound

Fig. 5. Second-Level Overlap Rate

can be approximated as:

Pmin ≈ e−
(M−1)×(

M∑
t=1

Nt−M
2

)

S ,M > 1

and the upper bound can be approximated as:

Pmax ≈ e−

M∑
k=2

k∑
t=1

Nt−(M−1)

S ,M > 1

The derivation of lower bound and upper bound is in
Appendix A. Figure 4 shows the rate that two active ranges are
overlapped given different subflow size. we can see that given
hundreds of subflows, the overlap rate is relatively high. For
example, as a switch in the middle of the network, it captures
numerous subflows simultaneously. Even though two subflows
are not generated by the same MPTCP session, the chance that
their active ranges are overlapped could not be ignored. Thus,
the algorithm still cannot make a rash classification that two
subflows are belonging to the same MPTCP session if their
active ranges are overlapped. The algorithm needs to further
analyze the DSN segments in the overlapped active range.

2) Second-Level Overlap: In the second-level overlap, we
analyze the DSN segments from two subflows in the over-
lapped active range and see how this can help the algorithm
make better classification. The probability of the second-level
overlap is calculated given two subflows belonging to the same
MPTCP session or distinct MPTCP sessions.

Given two subflows belonging to the same MPTCP session,
what is the probability that they are overlapped at the second
level? As we known, for two subflows belonging to the same
MPTCP session, their DSN segments are supposed to be
interleaved without overlap. It is because MPTCP scheduler
assigns packets into different subflows according to scheduler
algorithm [12]. It is just like a TCP session. If two packets from
a TCP session are not retransmission packets, they would not
overlap with each other in terms of sequence number segment
which is a segment starting at sequence number and ending at
sequence number plus packet length. The story is similar for
MPTCP session. The only reason why two subflows belonging
to the same MPTCP overlap at the second level is because
of reinjection packets which is retransmission over another
subflow instead of the original subflow. If the packets are
reinjected from a subflow to another, DSN segments of these
two subflows would overlap. For example, packets sent over
WiFi may be reinjected to cellular network when WiFi signal
degrades or WiFi connection is terribly congested. To address
this issue, we need to first understand in which condition, pack-
ets would be reinjected to another subflow. After analyzing
MPTCP implementation [1], we know that reinjection packets
appear if and only if either of the following two conditions
hold: 1) link failure; 2) retransmission timer expiration. In

order to detect reinjection packets, DSN-based association
algorithm includes a heuristic that reinjection packets start with
the same DSN and are of the same size. Thus, Φ2

M is defined
as 0 because the algorithm filters out reinjection packets and
then examines whether two subflows overlap at the second
level or not.

Given two subflows belonging to distinct MPTCP sessions,
what is the probability that they overlap at the second level? As
shown in the bottom of Figure 3, given two subflows with the
length of overlapping active range G, assuming the number
of DSN segments within the overlapping segment is n and
m (n ≥ m) respectively, and the size of each DSN segment
is pAi

(i = 1, . . . , n) and pB i
(i = 1, . . . ,m), what is the

probability that DSN segment Ai(i = 1, . . . , n) overlaps with
DSN segment Bi(i = 1, . . . ,m)? Ai is the ith DSN from
subflow A in the overlapping active range, while Bi is the
corresponding one from subflow B.

This probability problem can be converted into another
form. Given Ai(i = 1, . . . , n) in space G without overlap, what
is the probability of overlapping after all Bi(i = 1, . . . ,m) are
put into G, i.e., P (B1, . . . , Bm|A1, . . . , An). Denote DBk−1

as the distance between the first DSN of the overlapped active
range and the end of DSN segment Bk−1. The probability can
be calculated as

P (B1, . . . , Bm|A1, . . . , An)

= 1− P (B1|A1, . . . , An)× P (B2|B1A1, . . . , An)

· · ·P (Bm−1|B1, . . . , Bm−2A1, . . . , An)

× P (Bm|B1, . . . , Bm−1A1, . . . , An)

in which

P (Bk|B1, . . . , Bk−1A1, . . . , An)

=

∑
gapn+k−1 − gn+k−1 × (pBk

− 1)

G−DBk−1

with lower bound:

Pmin(Bk|B1, . . . , Bk−1A1, . . . , An)

=

G−DBk−1
−

n∑
t=1

pAt
− n× (pBk

− 1)

G−DBk−1

and upper bound:

Pmax(Bk|B1, . . . , Bk−1A1, . . . , An)

=

G−DBk−1
−

n∑
t=1

pAt
− pBk

+ 1

G−DBk−1

Therefore, the probability that Bi(i = 1, . . . ,m) overlaps
with Ai(i = 1, . . . , n) is

P (B1, . . . , Bm|A1, . . . , An)

= 1−
m∏

k=1

∑
gapn+k−1 − gn+k−1 × (pBk

− 1)

G−DBk−1

with lower bound:

Pmin(B1, . . . , Bm|A1, . . . , An)

≈ 1− e−
m×

n∑
t=1

pAt
+nm×

m∑
t=1

pBt
−mn

G

and upper bound:

Pmax(B1, . . . , Bm|A1, . . . , An)

≈ 1− e−
−m+m×

n∑
t=1

pAt
+

m∑
t=1

pBt

G

Based on the probability analysis above, Φ3
M is defined

as the lower bound of P (B1, ..., Bm|A1, ..., An). From a
high level understanding, it means that the probability of
overlapping at the second level is assigned as the confidence
value of judging two subflows belonging to the same MPTCP
session. Given two subflows without overlap at the second
level, the higher probability of overlapping is calculated, the
more confidence that these two subflows are belonging to the
same MPTCP. For example, with more space in G occupied
by increasing DSN segments from two subflows, the lower
bound of P (B1, ..., Bm|A1, ..., An) grows to 99%, but these
two subflows still do not overlap at the second level, and then
we can probably have 99% confidence to classify them as
belonging to the same MPTCP session. The reason we choose
lower bound is because we want to minimize false positive
cases in which subflows belonging to distinct MPTCP session
is classified as the same MPTCP session. The cost of false
positive cases is much larger than that of false negative cases
in which subflows belonging to the same MPTCP session is
mistakenly classified as distinct MPTCP session. It is because
after subflows are classified as the same MPTCP session,
there may have some additional operations needed to be
performed. For example, the application identification function
may assemble subflows belonging to the same MPTCP to
perform analysis.

Since partial subflow records could be caused by sampling,
it is possible that overlapping DSN segments are not sampled
in. Thus, DSN-based association also takes sampling rate %
into consideration at the second-level overlap. The solution is
quite straight-forward. Every time the probability of second-
level overlap, P (B1, ..., Bm|A1, ..., An), is calculated, the
algorithm set G = G/%.

Figure 5 shows the second-level overlap rate, we take G as
1,000,000 and 1428 bytes (maximum Ethernet segment size)
as size of the packet. We can see that the more DSN segments
are in the overlapping segment, the more chance they overlap.
Given 50 DSN segments from each subflow in the overlapping
active range, it is highly likely that at least two DSN segments
overlap in terms of data sequence segment. In this case, if
two subflows do not overlap at all, Φ = Φ3

S which is a very
large value. It means that DSN-based algorithms classifies
these two subflows as the same MPTCP session with very
high confidence value.

V. EVALUATION

SAMPO have been implemented to associate subflows
belonging to the same MPTCP session. In this section, we

use Mininet experiments to demonstrate the feasibility and
effectiveness of SAMPO running in network.

A. Experimental Setup

Mininet, a Linux container-based emulation tool, is used
to conduct experiments. It provides a platform to create a
virtual network and generates end hosts and network devices.
The benefits of using Mininet are that the topology of the
network is flexible and real MPTCP implementation can be
used instead of protocol simulation so that experimental results
are more practical. Mininet is installed in Ubuntu 64bit LTS
directly instead of running it in a virtual machine. The machine
running experiments is equipped with Intel Core i7-4770 CPU
@ 3.40GHz × 8, with 32G memory and 512G solid state
drives. End hosts in Mininet are installed with Linux kernel
implementation of MPTCP v0.89. The reason v0.89 is used
because new features in this version provide more flexibility
for the experiments. In this version, MPTCP can be switched
on/off at application level when a socket is initialized, and thus
regular TCP can be generated as the background traffic.

Clients

Switches

Gateway
OVS configured for

sampling Server

......

SAMPO

1Gbps

Fig. 6. Experimental Setup

The setup of our experiment is shown in Figure 6. It
creates a virtual network including a server and 100 clients
in which 40 configured to run MPTCP and the rest 60 to
run standard TCP. Clients and server are connected with pre-
defined bandwidth as shown in the figure. One switch is
configured as a gateway to forward packets across different
subnets. An Open vSwitch [14] is run on the gateway, and
configured to support packet sampling according to experi-
mental requirements. Sampled packets are fed into a virtual
host running SAMPO in real-time. Each client or the server
has two interfaces, and thus 4 subflows are generated for one
MPTCP session between a client and the server. The end hosts
running standard TCP randomly choose an interface when
experiments start. For each experiment, all clients start a task
of downloading a 500 MB file from the server.

In the experiments, we try to classify each pair of MPTCP
subflows (i.e., distinct or same). As a ground truth, the total
number of MPTCP subflows is 160, which gives rise to

(
2

160

)
pairs of subflows. In these pairs of subflows, 240 pairs belong
to the same MPTCP session, and the rest 12480 pairs belong
to distinct MPTCP sessions. For each pair of subflow, if it is
classified as the same MPTCP session and it actually is, we
attribute it as true positive (TP), otherwise it is false positive
(FP); if it is classified as distinct MPTCP and it actually is,
we count the case as true negative (TN), otherwise it is false
negative (FN). The following performance metrics are used
in the evaluation:

• Accuracy is defined as (TP+TN)/(TP+TN+FP+

FN). It represents the fraction of all flows correctly
classified.

• Precision is defined as TP/(TP +FP). It represents
how trustworthy the classification result is.

• Recall is defined as TP/(TP + FN). It represents
how complete the classification result is.

B. Experimental Results

In this section, we present experimental results using DSN-
based association. Token based association is disabled in the
experiments, because association based on token is determin-
istic and does not produce any error.

We first evaluate DSN-based association by using two
different sampling algorithms [21]: count-based sampling (se-
lection triggered at every n packet) and timing-based sampling
(selection triggered at every t microsecond)2. The sliding
window size γ is set to 500 microseconds. Figure 7 and 8 show
the results obtained from count-based sampling and time-based
sampling, respectively. Accuracy, precision and recall increase
with the sampling rate in the figures and all three metrics
approach 100% if one packet is sampled at every 100 packets,
or every 50 microseconds. This implies that given the fixed size
of γ, as more packets are fed into the algorithm, it can achieve
better association results in general. The reason why accuracy
is always high is because there are many more negative cases
(flows belonging to distinct MPTCP sessions) than positive
cases (flows belonging to the same MPTCP session), and the
correctness of identifying negative cases is high. Thus, these
negative cases (it is a practical setting that most subflows
belong to distinct MPTCP sessions) overwhelms the result of
subflows belonging to the same MPTCP session. This is the
reason why we use precision and recall in addition to accuracy.
We can also observe that precision is high. It is because DSN-
based algorithm generates very few FP cases even though
sampling rate is low. The reason why precision and recall are
0 given that sampling rate is 1/800 is because the number of
packets in each flow sampled in to DSN-based algorithm is
very few (only 0 or 1). In such an extreme case, the algorithm
could not generate even one TP case, and thus the precision
and recall are both 0 according to its definition.

Throughout our experiments, we observe that all the per-
formance metrics increase as either the sampling rate or the
window size increases. This is quite intuitive as increase in any
of the parameters contributes more packets to the association
algorithm and that helps in the analysis. Therefore, we set out
to investigate the relationship between the number of examined
packets in each subflow and the accuracy obtained by the DSN-
based algorithm. Since it is difficult to sample exactly the same
number of packets from each subflow (due to the disparity in
their goodput), we take the 50th percentile number amongst
all the subflows as the representative packet count fed into the
algorithm. Figure 9 plots recall against the number of packets
in the 50th percentile over all the subflows. Note that accuracy
and precision are both very close to 100% and are omitted to
maintain clarity in the plot. Observe that with the increase
in the number of packets sampled in, the recall with lower

2Since Open vSwitch does not support timing-based sampling, its result is
generated from simulation.

Count-based Sampling Rate
1/800 1/500 1/200 1/100 1/80 1/50 1/20 1/10 1/8

P
e
rc

e
n

ta
g

e

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

accuracy
precision
recall

Fig. 7. Count Based Sampling

Sampling Interval (us)
1000 500 200 100 80 50 20 10

P
e
rc

e
n

ta
g

e

0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
accuracy
precision
recall

Fig. 8. Timing Based Sampling

Number of Packets in 50 Pencentile Subflow
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

P
e
rc

e
n

ta
g

e

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sampling rate = 1/1
sampling rate = 1/100
sampling rate = 1/500

Fig. 9. Relation between the number of Packets and Recall Rate
Time Span from Start of Each Subflow (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

C
D

F

0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sampling rate = 1/1
sampling rate = 1/100
sampling rate = 1/500

Fig. 10. Time Spent to Reach Correct Result

sampling rate reaches 100% faster than that with higher rate.
This is due to the manifestation of the first-level overlap. When
a fixed number of packets are sampled in, lower sampling rate
covers a larger time window into the flow compared to the
higher rate. Therefore, with lower sampling rate, the first-level
overlap decision can be made sooner.

The DSN-based algorithm keeps on refining the association
decision with newly sampled packets. That is, for the same pair
of subflows, the current association decision with lower Φ is
always replaced by a higher one. Thus, we investigate how
long it takes to get the correct result that is never replaced by
the wrong result later. Figure 10 shows the resultant cumulative
distribution function of the time spent from the start of each
subflow. Since the number of packets sampled within a window
with a higher sampling rate is larger than that with a lower
rate, the time spent to achieve the correct result with a higher
sampling rate is much smaller than that with the lower rate.

Since DSN-based association is an online algorithm, its
space and time performance is important too. We have per-
formed the experiments to run SAMPO in real time fed with
traffic sampled using Open vSwitch. As DSN-based associa-
tion only processes data in a window of size γ, it greatly re-
duces the number of packets to be processed in the association
stage. Since around 40 packets in each subflow can produce
fairly good result from Figure 10 (with higher sampling rate,
this number will be smaller), given 160 MPTCP subflows in
total (around 6400 packets in a sliding window γ), association
of these subflows from scratch takes 237 millisecond on an
average. For each subflow, DSN-based association only keeps
DSN segment of each packet in the current γ time period. It
also maintains a triangular matrix where the relation of each
pair of subflows with confidence value Φ is stored. The relation
here means whether these two subflows belong to the same
MPTCP session. To give an idea of the space requirements
of DSN-based association, within a sliding window γ, 20 MB
traffic generated by 160 MPTCP subflows costs no more than

1 MB memory. If the algorithm needs to process network
traffic collected from multiple sources (e.g. multiple switches),
DSN space (232) can be split into multiple subspaces and each
can be handled by a dedicated distributed node. In this case,
MPTCP subflow association can be performed in a parallel.

Last but not least, the impact of 64-bit MPTCP DSN space
is discussed. MPTCP specification states that the length of
MPTCP DSN space can be set as 64-bit. 64-bit DSN actually
benefits the accuracy of DSN-based association, because two
subflows belonging to distinct MPTCP have even less probabil-
ity of overlapping in term of active range (first level overlap).
For subflows belonging to the same MPTCP connection, since
they are more likely to overlap (have been analyzed above),
they will not be influenced by DSN space size. Moreover, 64-
bit DSN decreases the probability of DSN wrap-around.

From the experimental results, we can see that DSN-based
association is able to associate MPTCP subflows with high
accuracy even when a very small portion (e.g. high sampling
rate) of the entire flow records are available. Note that SAMPO
also uses token information to associate MPTCP subflows.
Therefore, it is more accurate and effective in online MPTCP
subflow association with partial flow records.

VI. RELATED WORK

MPTCP has generated lots of interest from many re-
searchers in the past few years [4], [5], [10], [15], [16]. Olivier
has recently written an annotated bibliography on MPTCP [3].

Our work is motivated by the mptcptrace tool developed by
Hesmans et al., which is designed to analyze MPTCP flows [8].
The main difference is that mptcptrace works as an offline tool
and requires full flow records; it uses token-based approach
to associate MPTCP flows. On the other hand, SAMPO is
designed to be an online tool that can work with either full or
partial flow records.

Sandri et al. [17] have designed a method to improve
MPTCP performance by distributing subflows of the same
MPTCP connection across different paths. An OpenFlow con-
troller is used to associate MPTCP subflows and hence it
relies on reactive flow processing, which may bring scalability
concerns. In addition, their subflow association algorithm is
based on token only, ignoring MPTCP meta socket. SAMPO
does not assume a centralized point where all flows would pass
through and hence can be used in a more flexible setting.

Relatively less work has been done to support MPTCP
based services. Greory et al. have designed a middlebox that
supports translation between MPTCP and TCP. In addition,
Zubair et al. have investigated the security issues exposed by
the multiple MPTCP subflows. They have discovered a new
MPTCP cross-path attack [18], which allows a service provider
to infer the path quality of its competitors if its customer’s
MPTCP subflows go through multiple provider’s networks.
However, their work does not explicitly address the subflow
association issue.

VII. CONCLUSIONS

Making network devices MPTCP-aware may benefit both
the performance of MPTCP sessions and the quality of network
services. In this paper, we explore a first step towards this
goal by solving online MPTCP subflow association problem.
Associating MPTCP subflows in network is more challenging
than doing it at end hosts because the identity of a MPTCP
subflow can be missing due to network dynamics or packet
sampling. SAMPO solves this problem by using both tokens
(when available) and analysis of overlapping in DSN space.
Both our theoretical analysis and experimental results show
that SAMPO can detect and associate MPTCP subflows with
high accuracy even when only a very small portion of each
MPTCP subflow is available.

VIII. ACKNOWLEDGMENTS

The work was supported in part by NSF grants CNS-
1117536, CRI-1305237, CNS-1411636, and DTRA grant
HDTRA1-14-1-0040 and DoD ARO MURI Award W911NF-
12-1-0385. We are also grateful to the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] Mptcp - linux kernel implementation. http://www.multipath-tcp.org/.
[2] Mptcp in apple siri. https://support.apple.com/en-us/HT201373.
[3] Bonaventure. Multipath tcp: An annotated bibliograph. 2015.
[4] Y.-C. Chen, Y. sup Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and

D. Towsley. A measurement-based study of multipath tcp performance
over wireless networks. IMC, 2013.

[5] A. Croitoru, D. Niculescu, and C. Raiciu. Towards wifi mobility without
fast handover. NSDI, 2015.

[6] P. Flajolet, D. Gardy, and L. Thimonier. Birthday paradox, coupon
collectors, caching algorithms and self-organizing search. Discrete
Applied Mathematics, 1992.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. Tcp extensions
for multipath operation with multiple addresses. RFC 6824, 2013.

[8] B. Hesmans and O. Bonaventure. Tracing multipath tcp connections.
SIGCOMM 14, 2014.

[9] G. Iannaccone, C.-n. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot.
Analysis of link failures in an ip backbone. IMW, 2002.

[10] F. Németh, B. Sonkoly, L. Csikor, and A. Gulyás. A large-scale
multipath playground for experimenters and early adopters. SIGCOMM,
2013.

[11] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure.
Exploring mobile/wifi handover with multipath tcp. CellNet, 2012.

[12] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental
evaluation of multipath tcp schedulers. CSWS, 2014.

[13] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study of bgp path vector
route looping behavior. In Distributed Computing Systems, 2004.

[14] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of open vswitch. NSDI, 2015.

[15] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath tcp. SIGCOMM, 2011.

[16] C. Raiciu, C. Paasch, S. Barr, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How hard can it be? designing and
implementing a deployable multipath tcp. NSDI, 2012.

[17] M. Sandri, A. Silva, L. Rocha, and F. Verdi. On the benefits of using
multipath tcp and openflow in shared bottlenecks. AINA, 2015.

[18] M. Z. Shafiq, F. Le, M. Srivatsa, and A. X. Liu. Cross-path inference
attacks on multipath tcp. HotNets-XII, 2013.

[19] L. Z. V. Jacobson, R. Braden. TCP Extension for High-Speed Paths.
RFC 1185, October 1990.

[20] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath tcp.
NSDI, 2011.

[21] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall. Sampling
and filtering techniques for ip packet selection. RFC 5475, 2013.

APPENDIX

Key steps of lower bound derivation:

e−

k−1∑
t=1

Nt+(k−1)×(Nk−1)

S ≈ 1−

k−1∑
t=1

Nt + (k − 1)× (Nk − 1)

S

M∏
k=2

(1−

k−1∑
t=1

Nt + (k − 1)× (Nk − 1)

S
)

≈ e−

1∑
t=1

Nt+(N2−1)

S · · · × e−

M−1∑
t=1

Nt+(M−1)×(NM−1)

S

= e−

(M−1)×(

M∑
t=1

Nt−M
2

)

S

Key steps of upper bound derivation:

e−

M−1∑
t=1

Nt+NM−1

S ≈ 1−

M−1∑
t=1

Nt +NM − 1

S

M∏
k=2

(

S −
M−1∑
t=1

Nt −NM + 1

S
)

≈ e−

2∑
t=1

Nt−1

S × e−

3∑
t=1

Nt−1

S · · · e−

M∑
t=1

Nt−1

S = e−

M∑
k=2

k∑
t=1

Nt−(M−1)

S

