
Understanding Security Group Usage
in a Public IaaS Cloud
Cheng Jin∗, Abhinav Srivastava†, Zhi-Li Zhang∗

∗Computer Science Dept., University of Minnesota, {cheng,zhzhang}@cs.umn.edu
†AT&T Research, {abhinav}@research.att.com

Abstract—To ensure security, cloud service providers employ
security groups as a key tool for cloud tenants to protect their
virtual machines (VMs) from attacks. However, security groups
can be complex and often hard to configure, which may result
in security vulnerabilities that impact the entire cloud platform.
The goal of this paper is to investigate and understand how cloud
tenants configure security groups and to assist them in designing
better security groups. We first conduct a measurement-based
analysis of security group configuration and usage by tenants in
a public IaaS cloud. We then propose and develop a tool called
Socrates, which enables tenants to visualize and hence understand
the static and dynamic access relations among VMs. Socrates
also helps diagnose potential misconfigurations and provides
suggestions to refine security group configurations based on
observed traffic traversing tenants’ VMs. Applying Socrates to all
tenants hosted on the public IaaS cloud, we analyze the common
usage (“good” as well as “bad” practices) of cloud security groups
and report the key lessons learned in our study. To the best of our
knowledge, our work is the first to analyze cloud security group
usage based on real-world datasets, and to develop a system to
help cloud tenants understand, diagnose and better refine their
security group configurations.

I. INTRODUCTION

In Infrastructure-as-a-Service (IaaS) cloud platforms such
as Amazon EC2 and Openstack [1], [2], security group is
the primary means for cloud tenants to configure security
policies to protect their virtual machine (VM) instances against
attacks [3], [4]. Although similar to the conventional network
firewalls in many ways, security groups have several distinct
features that make their configuration somewhat more complex
and trickier to use (see §II for details). Unlike firewalls where
rules are typically configured by experienced network admin-
istrators, security groups and their constituent security rules
must be specified by cloud tenants, some of whom may not be
well-trained or lack an adequate network management back-
ground to properly configure security groups. Unfortunately,
vulnerabilities in one tenant’s VMs pose security threats not
only to the tenant itself but also to the entire multi-tenant cloud
platform. Ensuring that each cloud tenant properly specifies
his/her security groups and the rules therein is therefore
paramount to multi-tenant cloud platform providers.

In this paper we first conduct a measurement-oriented
analysis of security group configuration and usage by tenants
in a public IaaS cloud based on real-world datasets. Our
goal of this measurement study is multi-fold: to understand
what are the usage patterns (“good” and “bad” practices) in
how cloud tenants configure their security groups, what they

attempt to achieve, what are the common issues and potential
security vulnerabilities, and how to help cloud tenants refine
their security group configurations to prevent these issues and
vulnerabilities. As an example of “bad” practices and potential
vulnerabilities revealed by our analysis of a multi-tenant IaaS
cloud system security group dataset, we find that a number of
tenants simply allow all traffic (0.0.0.0/0) from both the
external Internet and within the cloud to access their VMs. In
general many tenants inappropriately configure their security
groups by using loose, and sometimes inconsistent, rules (see
§ II and §V for more discussion on these and related points).

Motivated by the results and insights obtained from this
measurement study, we propose and develop a cloud security
group analysis tool called Socrates. Socrates takes the security
group settings of each tenant, the VM mapping as well
as the observed traffic flows (both allowed and denied) as
inputs, and employs visual analytics to assist cloud tenants in
understanding the static and dynamic access relations among
VMs based on the security groups they have specified and the
traffic observed. Furthermore, our tool also helps cloud tenants
diagnose potential misconfigurations and provides suggestions
to refine security group configurations based on real traffic
traversing the tenant VMs. As a result, cloud tenants can view
their security group configurations in a high-level, visualized
manner, and revise their security group settings immediately
after they realize some configurations do not meet their intent.

By applying Socrates to all existing tenants hosted on our
IaaS cloud using the week-long datasets, we report some key
results and lessons we have learned in §V. As alluded earlier,
security groups are often set up by tenants who are “ordinary”
application developers and may not be experts in network
security. Hence we expect to see many configuration errors.
Nonetheless we are surprised to find many configuration
issues, some of which can lead to potential security vulner-
abilities. For example, we find that more than 80% tenants
configure security groups in a loose manner. In contrast, some
tenants verbosely set rules leading to giant security groups
with hundreds of rules. While many tenants create multiple
security groups for their VMs, a large number of them do
not have a clearly defined structure in mind when creating
these security groups. Socrates also reveals many redundant
or inconsistent rules in the security group configurations, likely
the result of tenants’ lack of knowledge about the intricacies of
security groups (e.g., rule ordering is immaterial) or mistakes
in configuring rules. To the best of our knowledge, this is the

first work of analyzing cloud security groups. Our work sheds
light on understanding the common usage for security groups
and proposes a tool to better understand, diagnose and refine
security group configurations.

II. OVERVIEW AND DATASETS

In this section, we first describe the basic concepts of IaaS
cloud security groups and then the datasets used in our study.
IaaS Cloud: VMs and Security Groups. Creating a cloud ap-
plication in an IaaS cloud starts with launching VM instances.
One critical step in launching a VM is to configure security
groups. A security group is a container for a set of security
group rules. It provides tenants the ability to specify the type
and direction of traffic allowed by VMs. Security groups are
applied to individual VMs, whose private IP addresses are
dynamically assigned only at the time they are launched –
in other words, such private IP addresses are, in general,
unbeknownst to the tenant at the time he/she specifies the
security group rules. Unlike conventional firewall rules, the
default action of security group rules is deny; thus, a tenant
needs to explicitly specify what type of traffic (in terms of
protocol and port) and from where (e.g., in the form of a public
or private IP address prefix) can access his/her instances.
Furthermore, security groups can be “nested” in the sense that
the security group rules in one security group, say, SG-A, can
use the name of another security group (either belonging to
the same tenant or another tenant), say, SG-B – in lieu of a
(public or private) IP address prefix – to explicitly specify that
the traffic from VMs in SG-B can access VMs in SG-A on
ports permitted by the security group rules. Furthermore, the
ordering of rules within a security group is immaterial; security
group rules are not prioritized as in the case of firewall rules.
Therefore, the most permissive rule gets applied if more than
one rule is created for a specific port or IP range. Table I shows
an example of a security group. Due to nested security group
rules or IP ranges’ coverage on VMs, there are dependencies
among various security groups defined by one tenant (and
sometimes among multiple tenants). Ideally, a tenant should
create security groups based on the roles of VMs in a cloud
service he/she develops.

Before getting launched, each VM must be assigned with at
least one security group. A default security group is defined
for all tenants, which by default denies all ingress traffic
and allows all egress traffic and the traffic among the VMs
associated with the default security group. When a VM is
launched, it is associated with the default security group if no
security group is specified by the tenant. In addition, a tenant
can define and customize new security groups. One VM can
be associated with multiple security groups, and one security
group can be assigned to a collect of VMs. Therefore, one
tenant can have a set of security groups and VMs, and the
mapping between them can be fairly complex. Finally, tenants
can configure security groups by adding or deleting rules, but
not modifying an existing rule (A rule cannot be modified once
it is created). Changes are automatically applied to the running
VMs associated with the security group.

TABLE I: An example of security group with 3 rules.

Action Protocol Port Range IP Range
ALLOW TCP 80 – 5666 10.0.10.0/24
ALLOW UDP 68 – 68 SG-A
ALLOW ICMP 8,0 11.22.33.44/32

Datasets. The datasets used in our study are collected from a
single multi-tenant data center running the OpenStack cloud
software. There are three types of datasets: the secgroup
dataset, the VM-layout dataset and the sFlow dataset. The
first type of dataset is called secgroup which contains secu-
rity groups and the constituent rules defined by cloud tenants.
It contains five main fields: tenant ID, security group name,
protocol type (TCP, UDP, or ICMP), port range (or ICMP type
and code), and the source (IP range in the CIDR notation
or the name of a security group). A tenant ID allows us to
match the tenant across multiple datasets. The second type
of dataset is the VM-layout that stores information about
running VMs in the cloud at any given time. The important
fields are VM name, tenant ID, associated security group(s),
public IP address (if assigned), and private IP address. Both
the security group and VM layout datasets are collected from
the cloud configuration database. The last type of dataset is
sFlow that contains flow traces (both allowed and denied
flows) collected at each switch by random sampling. It stores
packet header information, including source and destination
IP addresses, TCP/UDP port numbers, time, switch identifier,
and source/destination switch ports associated with the packet.

III. CURRENT USAGE OF SECURITY GROUPS

As security group is still a relatively unknown concept to
many IaaS cloud customers, we first conduct an extensive
measurement-based analysis of security group configuration
and usage by tenants in a public IaaS cloud based on real-
world datasets. In the following, we present some basic
statistics and a few key results from this measurement-based
analysis of the multi-tenant IaaS cloud security group, VM
and flow datasets. The goal is to identify the common usage
patterns in how cloud tenants generally configure their security
groups. We also briefly point out a few “bad” practices in cloud
tenant security group configurations, which we will expand on
further in Section V in conjunction with the discussion of the
results obtained from applying our Socrates tool.

A. Basic Statistics
Fig. 1a shows the number of security groups and the number

of VMs in each tenant, as well as the number of rules that each
security group has. The x-axis is the normalized value where n
is a base value. As the results show, around 10% tenants have
only one security group, and the remaining have at least two
security groups. Most tenants have less than several dozen
security groups, whereas not every security group plays a
different role. The number of rules in security groups (log
value) starts with −1 (it could be any negative value, and we
use −1 for simplicity) at x-axis, because some tenants have
empty security groups that do not have any rule. Apart from

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 5

C
D

F

Log value base n

of security groups in each tenant
of VMs in each tenant

of rules in each security group

(a) The number of security groups and VMs in each tenant, and
the number of rules in each security group.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 4

C
D

F

Log value base m

of VMs per security group
of security groups per VM

(b) The number of security groups associated with each VM
and the number of VMs associated with each security group.

Fig. 1: Basic statistics of security group usage by tenants.

15% no-rule security groups, most security groups have less
than one hundred rules.

Given the tenants that have multiple security groups and
multiple VMs, we are interested in the association between
security groups and VMs (shown in Fig. 1b). Our results show
50% security groups are associated with only one VM. In the
rest half security groups, most of them are associated with a
few dozen VMs, and very few of them are associated with
more than half hundred VMs. 70% VMs are assigned with
only one security group, and others are assigned with multiple
security groups.

As depicted in Fig 2a, generally the more VMs a tenant has,
the more security groups it tends to have, so the more sophisti-
cated system the tenant is expected to build. However, we also
notice that some tenants have a large number of VMs but only
contain a few number of security groups. One reason is that
these tenants have simple architectures but very high workload
so that they need to launch a number of VMs to balance the
workload. Another possible reason is that the tenants glue all
rules in a few security groups instead of reasonably separating
them into more security groups (discussed in Section V).

B. Rules in Security Groups
To investigate how security groups are configured in tenants,

we start from studying their rules. Each rule consists of
port and IP range. Based on the IP range, a rule can be
classified into three groups: only accepting the external traffic1,
only accepting the internal traffic, accepting both external
and internal traffic (e.g., 0.0.0.0/0). As a security group is
a set of rules, we can further determine whether a security
group is: accepting only the external traffic, accepting only the
internal traffic, or both. In our secgroup dataset, we find that
42% rules allow external traffic (referred to as external rules)
and they are distributed in 34% security groups. 39% rules
allow internal traffic and they are distributed in 61% security

1We define external IPs as the addresses that do not belong to the IaaS
cloud. In contrast, internal IPs are owned by the cloud. For simplicity, external
traffic is referred to as the traffic between internal IPs and external IPs, and
internal traffic denotes traffic between internal IPs.

groups (referred to as internal rules). 19% rules allow traffic
from everywhere (0.0.0.0/0) and they are distributed in 50%
security groups (also referred to as external rules). In addition,
a rule can be very restrictive or very permissive by setting the
decimal in CIDR notation. For example, decimal 32 is used
for specify an individual IP address, and decimal 0 means to
cover all IP addresses. We find that 34% rules use decimal 32
(e.g., a.b.c.d/32). Around 60% external rules use decimal 32
to set individual IP addresses, while most internal rules use IP
blocks (i.e., 0 < decimal < 32).

In terms of the port range used by each rule, our results
show that the top five mostly-used TCP port ranges are 80,
443, 8080, 22, and 1-65535. We are surprised to see many
rules set 1-65535 in port range, because simply allowing all
ports is very risky. Moreover, ICMP rules’ configurations are
more biased, more than 90% ICMP rules are coarsely set to
allow all types and all codes.

Furthermore, we also observe that 14% security groups
distributed in 48% tenants contain redundant or inconsistent
rules: for instance, two rules allow traffic on the same port (say,
TCP 443) but from two different IP address prefixes, one a
sub-prefix of the other. Such rules make little sense, as traffic
will be allowed by the less restrictive rule. This appears to be
a result of a tenant attempting to modify an existing rule by
adding a new rule but forgetting to delete the old rule. Fig. 2c
shows the number of rules and the number of redundant rules
each security group has.

C. Security Group Dependency
Based on the understanding of rule settings and the fact

that a security group is actually a set of rules, now we study
the security group usage in tenant level. As a rule can be
categorized into external rules and internal rules, a security
group can also be categorized into external (only has external
rules), internal (only has internal rules), and mixed (has both
external and internal rules).

In our dataset, all tenants allow external traffic to some
extent. 15% tenants consist of only external security groups.
The security group rules for external traffic should be more

100+r

50+s

#
 o

f
V

M
s

of SGs

(a) The relation between security groups and VMs.

500+t

50+s

#
 o

f
ru

le
s

of SGs

(b) The relation between security groups and rules.

20+m

100+n

#
 o

f
re

d
u

n
d

a
n

t
ru

le
s

of rules

(c) The distribution of rules in every security group.

Fig. 2: The relation between security groups and VMs, and between security groups and rules.

carefully configured in order to protect the VMs from outside
attacks. As most tenants have multiple security groups, we are
interested in the relation among the security groups in the same
tenant. The relation can be depicted as a graph (discussed in
details in Section IV), where each security group is a node
and each directed edge indicates the successor allows certain
type of traffic from the predecessor. 70% security group graphs
have bidirectional edges between each pair of security groups.
Among them, around 40% share same port ranges on the same
pair of bidirectional edges.

D. Bad Practice in Security Group Configurations
As part of the motivation for the Socrates tool, we provide

some sample results from an initial analysis of the secgroup
dataset (see Table II). Our analysis shows that “good practice”
(i.e., use nested security groups to scope communications
among VMs) is not widely adopted yet – only 5% tenants
employ nested security group rules. It reveals a fact that many
cloud tenants have not completely grasped the concept of
security groups or the subtle intricacies involved, and as a
result, often specify rules that are either semantically incorrect
or too loose.

We find that 24% of tenants open all ports on their VMs
to accept traffic. Out of these tenants, 19% tenants allow
traffic from 0.0.0.0/0, i.e., accept traffic from anywhere on the
Internet. This extremely-permissive setting exposes the tenants
as victims of potential security attacks because it does not filter
any traffic. When looking into the IP ranges specified in the
rules, we find that some tenants do not even understand the
CIDR notation. 13% of tenants in our dataset have rules with
a.b.c.d/0 (where a.b.c.d != 0.0.0.0) and 5% have rules with
0.0.0.0/x (where x!= 0), which is semantically incorrect. In
addition, many tenants often use rules with 10.0.0.0/8 instead
of nested security groups when their intention is to simply
enable communications among VMs between certain security
groups (see Section V for more detail).

In some tenants’ configurations, all of their security groups
surprisingly open all ports for all VMs belonging to the
tenants. This loose setting arouse our investigation in their flow
usage. We find that their flows are much more restrictive (i.e.,
only contacting some ports from a subset of VMs) compared
to the configured rules. These observations motivate us to

TABLE II: Initial analysis of secgroup dataset.

Usage Tenants Rules
Bad usage 24% Open all ports (1–65535)
Bad usage 13% Meaningless CIDR: a.b.c.d/0 (a.b.c.d

!= 0.0.0.0)
Bad usage 5% Meaningless CIDR: 0.0.0.0/x (x!=0)

Good usage 5% Use nested security groups

design and develop a tool which visualizes the security group
setting, analyzes real flows against the security group rules,
and generates diagnostic reports, which detailing problems
with the security group rules. Section IV explains the design
of our tool Socrates.

IV. Socrates: A SECURITY GROUP ANALYSIS TOOL

In this section we provide an overview of Socrates – a
cloud security group analysis tool that we have developed 2 –
and briefly describe its key components. Part of the rationale
for Socrates is our recognition that many IaaS cloud tenants
are “ordinary” application developers who may not be very
familiar with notion of security group and its intricacies, let
alone being a network security expert. Ideally, when a tenant
develops and deploys a service or application an IaaS cloud
platform, security groups should be created to reflect the roles
of VMs and meet their security and management requirements.
As we briefly discussed in Section III and further expanded
on in Section V, creating and configuring security groups can
be quite a challenging task for many tenants. Unfortunately,
vulnerabilities in one tenant’s VMs pose security threats not
only to other tenants but also to the entire multi-tenant cloud
platform. Hence ensuring security for each tenant is crucial.

Socrates is designed to assist cloud tenants in understanding
their security group settings and help them diagnose their
configuration issues. Socrates takes the security group settings
of each tenant, the VM mapping as well as the observed traffic
flows (both allowed and denied) as inputs, and produces a
visual representation of security group/VM structure as well
as a diagnosis and recommendation report to help tenants di-
agnose and improve their security group configurations based

2The name, Socrates, is derived as an anagram of the capitalized letters
in SECurity gROup AnalySis Tool. An initial design of the tool [5], together
with some preliminary results, have been reported in a short paper.

+

+
security
group rules

VM layout

sFlow

SG/VM

Visualizer

Flow Analyzer

SG/VM structure

flow structure

Recommender

diagnostic
report

Fig. 3: Socrates workflow.

on observed network traffic. Socrates consists of three key
components: visualizer, flow analyzer, and recommender, see
Fig. 3 for a schematic illustration.
Security Group/VM Structure Visualizer: It displays the
dependencies of security groups and VMs through directed
graph representations based on the (static) security group
settings and the (dynamic) VMs to security group mappings.
The dependency between security groups reveals the cloud
service infrastructure design that a customer has envisioned.
Hence, a directed graph (referred to as a security group
structure graph) is generated to represent security groups of
one tenant, where nodes stand for individual security groups
and the edges encode dependencies between security groups.
Each directed edge indicates the successor security group
allows the traffic satisfying the specific port range and IP range
from the predecessor security group (or external networks).
From the graph, we further identify tiers to which security
groups belong. A security group is defined as tier N if and
only if it allows traffic from tier N − 1 but not from any
other lower tiers. For example, tier 1 security groups contain
at least one rule explicitly allowing external traffic. Tier 2
security groups allow traffic from tier 1 security groups but
not from external networks. After building the security group
structure graph, we next add the VM-level structure into the
graph by mapping VMs to assigned security groups. VMs
are displayed as rectangular nodes inside the corresponding
security groups. In addition, we introduce edges between
VMs within the same security group to indicate that traffic is
allowed between a particular pair of VMs. On the other hand,
the dependency between VMs across two security groups are
already captured by edges between security groups. Fig. 4a
depicts the security group/VM structure for a real tenant from
our datasets, nicknamed “Alice”, where all security groups
belong to tier 1 since they all allow external traffic.
Flow Analyzer: It infers the cloud service infrastructure de-
sign by analyzing the traffic flows associated with the service,
both allowed and blocked. A particular flow between a source
VM and a destination VM is considered allowed or blocked
based on whether it is allowed by rules in the destination
VM security group or not. To build the flow structure, the
analyzer marks flows as either allowed or blocked by checking
each flow with the rules of all the associated security groups.
With both allowed and blocked flows, we build the flow
structure, a directed graph at the VM-level, based on flows’

src IPs, dst IPs and dst ports. The directed edges are labeled
as “allow” or “block” to differentiate the flows are accepted by
rules or not. This VM-level graph can also be easily converted
to a security group level graph by aggregating the flows of
VMs belonging to the same security group. An example of
flow structure for tenant Alice is shown in Fig. 4b, where we
see that the (dynamic) flow structure is more “sophisticated”,
e.g., containing more “tiers”, than the simple tier-1 structure
depicted in Fig. 4a.
Recommender. It utilizes the information generated by the se-
curity group structure and flow structure in order to identify the
differences between the rules created and the flows accepted
or denied by customer VMs. It further alters customers about
the mismatch as as well offers suggestions to modify security
group by providing the analysis report3. If the security groups
are defined too widely, we can recommend that tenants refine
their security groups to restrict ports and IPs that do not appear
in the flow structure. For example, given most security group
and VM structures are complete graphs, the flow structure can
show more sophisticated structures. It also analyzes the causes
of blocked flows. In terms of the “block” edges, if the same
kind (same src IP, dst IP and dst port) of blocked flows keeps
coming for a long time, Socrates raises alert to customers in
case of potential misconfigurations or attempt of attacks.

V. SECURITY GROUP CONFIGURATION ANALYSIS AND
DIAGNOSIS

To evaluate the efficacy of the proposed tool, we apply
Socrates to examine and analyze the security group config-
uration issues of all tenants on our IaaS cloud, using one-
week datasets of tenant security group settings, VM layouts
and traffic flows. In the following we will first provide a brief
overview of the results we have obtained, highlighting a few
configuration issues uncovered by Socrates. Then we will dis-
cuss about structural analysis of security group configurations
to illustrate how Socrates can help tenants visually analyze
their security group settings and track their changes over time.
We will also present analysis and discussion of the uncovered
configuration issues in the end.

A. A Brief Overview of Results Obtained via Socrates
As alluded earlier, in contrast to firewall rules which tend

to be configured by professional network operators, security
groups are often set up by tenants who are “ordinary” ap-
plication developers who may not be an expert in network
security. Hence we expect to see many configuration errors.
Nonetheless we are surprised to find that around 50% tenants
have at least one security group without any rule configured.
A few of them even have VMs assigned to these empty
security groups. As revealed by the flow analysis, many
tenants configure rules loosely, for example, using rules with
sources such as 0.0.0.0/0 or 10.0.0.0/8, without regards to the

3We quantify mismatches using the Jaccard distances of corresponding IP
ranges and port ranges within two structures. While the threshold on Jaccard
distances can be set according to management needs, we choose a conservative
value of 0.1 in our experiments. In other words, we only study most significant
mismatches.

VM10 VM4

VM5 VM6

VM1 VM2

VM3

VM7 VM8

VM9

SG5 SG2

SG3

SG1 SG4

Tenant Alice

Tier 1
Cloud
Environment

External
Networks

0.0.0.0/0

(a) Security Group/VM structure of tenant Alice.

VM10 VM4VM5 VM6

VM1 VM2

VM3

VM7 VM8

VM9

SG5 SG2 SG3

SG1 SG4

Tenant Alice

Tier 1
Cloud
Environment

External
Networks

Tier 2

Tenant Carol

Tenant Bob

external institution 1

external institution 2

2.x.y.z

3.x.y.z

allowed flow
blocked flow

(b) Flow structure for tenant Alice.

Fig. 4: Examples of SG/VM Structure and Flow Structure.

actual application requirements. Other tenants configure rules
verbosely, e.g., by creating one rule per VM (i.e., using a
/32 IP address as the source), which leads to a giant security
group with many rules. While many tenants create multiple
security groups for their VMs, a large number of them do
not seem to have a clearly defined structure in mind when
creating these security groups (see Section V-B). Very few
leverage (nested) security group names as an effective way to
permit only traffic between VMs of specific security groups
and restrict traffic from other VMs not belonging to these
security groups; instead they often resort to either using overly
permissive rules with 10.0.0.0/8 or 10.0.0.0/24 or creating one
rule per VM address as stated earlier. Socrates also reveals
many redundant or inconsistent rules in the security group
configurations, likely the result of tenants’ lack of knowledge
about the intricacies of security groups (e.g., rule ordering is
immaterial) or mistakes in configuring rules.

B. Structural Analysis of Security Group Configurations
Socrates takes the security group settings of each tenant,

the VM mapping as well as the observed traffic flows (both
allowed and denied) as inputs, and employs visual analytics to
assist cloud tenants in understanding the static and dynamic
access relations among VMs based on the security groups
they have specified and the traffic observed. In this section
we report some key results we have obtained by applying
Socrates to all tenants’ security group settings using the one-
week datasets.

The goal of structural analysis of security group configura-
tions is to help tenants visualize and understand the relations
among various security groups they have configured, whether
they reflect the roles and application requirements of the VMs
associated with these security groups, and how the observed
traffic (both allowed and blocked) traffic match what the
security group rules are intended to accomplish. We find that
although a majority of tenants have more than one security
group configured, many do not appear to have a clearly defined
structure in mind. We observe that 51% tenants tend to have

a single tier, whereas the remaining have two tiers. No tenant
has more than two tiers, despite some of them have configured
a large number of rules that apply to a large number of VMs.

Fig. 5 depicts three representative examples of two-tiered
security group structures generated by Socrates, which we
classify them as: (i) public customer facing web service,
(ii) private enterprise application, and (iii) back-end service
support. The tenants in category (i) use the IaaS cloud
platform to deploy a public web service serving customers
from everywhere (0.0.0.0/0), while the tenants in category
(ii) may have likely migrated a private enterprise application
to the IaaS cloud platform and thus restrict it to a specific
set of IP address ranges belonging to the private enterprises.
The tenants in category (iii) on the other hand leverage the
the IaaS cloud platform for back-end service (e.g., databases)
support for another service (or tenant). In this case, we often
see that traffic from another tenant (often in category (i)) is
allowed. Judging based on the names of the tenants involved,
the two tenants likely belong to the same owner. In category
(iii), although some traffic from one or two external networks
are allowed, they are primarily for the management purpose
(SSH or ping from the external networks). The remaining
rules are all restricted to internal VMs, and the commonly
used ports are for web proxy services, databases services,
synchronization services, and monitoring services. For tenants
with two tiers, 61% are public customer facing, 32% tenants
are private enterprise application, and 7% tenant are back-end
service support.

The (static) structure of the security group settings is also
reflected by the dynamic structure in the observed traffic flows
through the flow analysis. We find that VMs associated with
the tier-1 security groups often function as web servers/web
proxies, load balancers, or jump servers. VMs associated with
many tier 2 security groups are running database services,
certain application services or monitoring services. In particu-
lar, we notice that VMs associated with “monitoring” security
groups only send traffic to other VMs, but hardly allow traffic
from other VMs.

Everywhere:
0.0.0.0/0

Jump
Server

Web
Server

AppAdmin

(a) Public Customer Facing Tenant.

External
Institute1

Deploy
Server Proxy

Back-end
ServerMonitor

External
Institute2

(b) Private Enterprise Application Tenant.

External
Network

Load
Balancer

Back-end
ServerDatabase

Tenant David

HTTP, HTTPSSSH, ICMP

(c) Back-end Service Support Tenant.

Fig. 5: Three categories of tenant structures.

Potential Vulnerabilities. As stated earlier, we find that many
tenants have only a single-tier structure. Further analysis
reveals that for a majority of tenants (70%), their security
groups form a full mesh, i.e., any pair of security groups
are allowed to communicate with each other. Based on our
observation, the existence of many full meshes is caused by
tenants extensively using 10.0.0.0/8 and 10.x.x.x/24 to grant
access to their VMs. In particular, we find that 16% of tenants
use 10.0.0.0/8, 23% of tenants use 10.x.x.x/24, and 44% of
tenants use 10.x.x.x/y where 8 < y < 24. On the other
hand, based on the analysis of observed traffic flows of these
tenants, these rules are meant to apply to VMs belonging
to the tenants’ own security groups. These overly permissive
rules imply that any other VMs in the cloud platform (even
those not belonging to the tenants) are allowed to access these
VMs, thereby creating potential security vulnerabilities. As a
tenant may not know the private IP address range dynamically
assigned to its VMs, many resort to simply use 10.x.x.x/8 or
10.x.x.x/24 to cover its VMs, as opposed to use the names of
its security groups directly. A particularly concerning problem
with these tenants with such a “full-mesh” single tier structure
is that as some of the VMs are associated with security groups
which are “customer-facing”, i.e., allowing external traffic to
access them, one compromised customer-facing VM can lead
to other VMs (even though they are not assigned any public
IP address, thus not directly addressable from the outside
world) being potentially compromised. By analyzing both the
static security group settings and dynamic VM layouts and
traffic flow structures, Socrates is capable to alert tenants about
such potential security vulnerabilities and suggest alternative
security group structures based on the common traffic patterns
observed among VMs.
C. Tracking Configuration Changes

By applying Socrates to the security group settings, VM
layouts and flow datasets over one week, we also track how
tenants modify the security group rules to experiment with
and refine their settings to meet application needs, or adapt to
changing application requirements. By observing what flows
are allowed and what are blocked, and how they vary over

a period of one week, we can also get a sense of what
are “normal” traffic activities, but what may be “anomalous”
traffic activities.

In our datasets, 14% of the tenants made security groups
configuration changes in the one week period. Some tenants
made many changes, such as adding new security groups,
deleting existing security groups. Other tenants made slight
modifications to existing security groups by either adding new
rules (e.g., open more ports or allow more IPs) or deleting
existing rules. In addition, some new VMs were launched
with newly-added security groups, while some existing VMs
were terminated with removing existing security groups. We
observe that among the tenants which generate most traffic
(top 11% tenants), their security group configurations hardly
change at all over the one week period, although the numbers
of VMs launched and the amount of flows may vary over time.
This observation indicates that the services operated by these
top tenants are well-developed and running in a stable mode.
In contrast, we find that a few tenants with quite less traffic
frequently changed their security group configurations and VM
association over the one week period, suggesting that they
were still developing their services and were experimenting
with the security group settings.

Fig. 6 provides an example where a tenant Eric modifies
its security groups in the one week period. Initially (see
Fig. 6a), the tenant has four security groups and five VMs. The
number beside each security group indicates the number of
VMs associated with it. Note here all VMs are also associated
with the default security group. Except SG3, the other security
groups allow external traffic, so that they are in Tier 1. After
half a day (Fig. 6b), additional rules are added to SG2 to
allow HTTP and HTTPS traffic from more external IPs. By
analyzing the observed flows of this tenant, we see traffic from
these newly-allowed external IP addresses in the same hour
as the rules were added. Several days later (Fig. 6c), two
new security groups, SG4 and SG5, were added, with rules
allowing traffic from other security groups. Similar to SG3,
these two new security groups function as back-end application
services, but with different ports open. Two new VMs were

External IP1/32

SG2

tcp 443, 80, 8080

SG3

SG1

tcp 8080

default

tcp 822

Everywhere:
0.0.0.0/0

udp 68

2 VMs 1 VM

2 VMs

External IP2/32

5 VMs

(a)

External IP1/32

SG2

tcp 443, 80, 8080

SG3

SG1

tcp 8080

default

tcp 822

Everywhere:
0.0.0.0/0

udp 68

External IP2/32
External IP3/32
External IP4/32

tcp 443, 80

2 VMs 1 VM

2 VMs

5 VMs

(b)

External IP1/32

SG2

tcp 443, 80, 8080

SG3

SG1

tcp 8080

default

tcp 822

Everywhere:
0.0.0.0/0

udp 68

External IP2/32
External IP3/32
External IP4/32

tcp 443, 80

SG4

SG5

2 VMs

2 VMs

1 VM 7 VMs

1 VM

1 VM

(c)

Fig. 6: Snapshots of an actively-developing tenant Eric.

launched, one associated with SG4 and one with SG5. The
flow datasets reveal that indeed there is traffic between the
two VMs.

This example helps illustrate that when a tenant modifies
its security group settings, its intention is often to permit or
restrict certain traffic. Therefore, the dynamic structure in the
observed flows should also change accordingly. However, we
have also observed that the dynamic flow structures change
before the security group configuration is modified. While
flow structures change may be due to, e.g., attacks, when
such changes persist over time, they can be an indication
of changing application requirements or a change in the
nature of services. For example, if the same type of flows
continuously get blocked for a long time, this may be due
to a “misconfiguration” (a previously too restrictive rule may
need to be relaxed). In this case, our tool will raise a red flag
to notify the tenant.

Potential Vulnerabilities. As tenants add new rules or modify
their existing security group settings over time to meet chang-
ing application or service requirements, many forget to delete
their old rules. These lead to redundant or inconsistent rules
in the security group configurations, say, with multiple rules
apply to the same or overlapping or a subset of IP address
blocks which permit traffic on a different set of TCP/UDP
ports. Some of these configuration issues may be due to
tenants’ lack of knowledge in security group configurations:
they may not realize that once a rule is set, it cannot be
modified/updated; creating a new rule, say, applies to the same
IP prefix block but with a new port range, does not invalidate
the previously configured rule – old rules must be explicitly
deleted when they are no longer needed. Some tenants may
simply forget to delete old rules when creating new rules
or forget about the existence of these old rules. Given that
the ordering of rules in a security group does not matter,
such mistakes can potentially create security holes, especially
when a new rule is put in place to limit certain unwanted
traffic that an old rule previously allows. Socrates is able to
explicitly flag such redundant or inconsistent rules and alert
the tenants about such configuration issues which potentially
create security vulnerabilities.

D. Loose, Verbose, and Inconsistent Configurations

As mentioned earlier, it is surprising that most tenants (more
than 80%) set security groups in a loose manner. Tenants
are suggested to restrict IP ranges to credible IP blocks by
using proper CIDR notation or security group names. In
addition, tenants are encouraged to use nested security groups
to specify IP ranges. This feature enables allowing traffic from
all VMs associated with the nested security group without
using individual IPs or IP ranges. If there is any VM newly-
launched or stopped, the tenant does not need to modify the
rules. Based on our observation, the flow structure often time
reveals a subset of the access relationship than the security
group structure generated by security group settings. It also
tends to reveal more about the tier structure. One of the key
reasons is that tenants extensively set security groups loosely,
such as 10.0.0.0/8 and 10.x.x.x/24. Hence, the corresponding
security group settings can be refined to be more restrictive
based on the flow structure. In addition to setting rules loosely,
some tenants also set security groups loosely. Specifically,
instead of setting security groups distinctly to present their
roles, the tenants simply replicate security groups over and
over again. In this case, these security groups have exactly
the same rules but different security group names. However,
by looking into their flow structures, we clearly see each of
these security group’s real intentions and functions are entirely
different. Hence, we suggest the tenant should refine security
groups to reflect their distinct roles.

In contrast to setting security groups loosely, a few tenants
in our cloud set their security groups in an extremely verbose
manner. Especially some tenants only have one giant security
group with hundreds of rules. We observe that it is because
the rules are set by using individual IPs of VMs. If there is
any VM launched or stopped, the same type of rules need to
be added or deleted.

Redundant or inconsistent rules are the multiple rules which
apply to the same or a subset of IP address blocks/ports which
permit traffic on a different set of ports/IP address blocks, one
a subset of the other. Such rules make little sense, as traffic will
be allowed by the most permissive rule. Among the tenants
which have redundant rules, 30% tenants have more permissive
rules followed by more restrictive rules, 40% tenants have

more restrictive rules followed by more permissive rules, and
30% tenants have both cases. With the analysis of sFlow
dataset, in terms of the tenants which have more permissive
rules coming first, 83% tenants have most flows allowed by
the former permissive rule but cannot be allowed by the
latter restrictive one. 17% tenants have most flows allowed
by the former permissive rule and could also be allowed
by the restrictive rule. In terms of the tenants which have
more restrictive rules coming first, we find that 75% of them
have only a few flows allowed by the former restrictive rule
and most flows accepted by the later permissive rule, which
indicates the customer intends to create a more permissive rule
to replace the restrictive one, but unfortunately forgets to delete
the restrictive rule. 25% tenants have most flows allowed by
the former restrictive rule while only a few allowed by the
latter permissive rule.

VI. RELATED WORK

Security is a key concern in the adoption of cloud com-
puting. To this end, researchers have developed many security
solutions to be offered as a cloud service [6], [7], [8]. Brown
et al. [6] developed trusted platform-as-a-service for cloud
tenants to deploy applications in the cloud in a trustwor-
thy manner. Hyun-wook et al. [7] offered virtual machine
introspection (VMI) as a cloud service to allow customers
to develop their own tamper-resistant security tools without
relying on cloud providers. Srivastava et al. [9] created a notion
of cloud app marketplace for distributing system and security
services packaged in VMs.

Popular IaaS clouds [1], [2] provide customers with security
groups [10], [3], [11], [12], [4] to ensure their VM instance
security. Security groups act as firewalls which are sets of rules
controlling the traffic for VMs. While there have been many
prior studies on firewall analysis (see, e.g., [13], [14], [15],
[16], [17], [18], [19]), security groups differ from firewalls
in many aspects. To the best of our knowledge, our work is
the first to analyze security group usage in multi-tenant IaaS
clouds. We apply our proposed security group analysis tool
Socrates (its initial design was reported in a short workshop
paper [5]) – to help cloud tenants visualize and understand the
access relations among VM instances based on the specified
security groups and the traffic observed and to further diagnose
potential misconfigurations.

VII. CONCLUSIONS

The contributions of our paper are summarized below:
i) Using the real-world datasets from a public multi-tenant
IaaS cloud, we have conducted a first measurement-based
analysis of security group configuration and usage. Through
this measurement-based analysis, we have studied the com-
mon usage patterns in how cloud tenants generally configure
their security groups. We revealed some issues and potential
vulnerabilities in cloud tenant security group configurations.
ii) Motivated by the results and insights obtained from this
measurement study, we then proposed and developed a se-
curity group analysis tool called Socrates. Socrates enables

tenants visualize and hence to understand the static and
dynamic access relations among VMs. Socrates also helps
diagnose potential misconfigurations and provides suggestions
to refine security group configurations based on real traffic
traversing tenants VMs. iii) We have applied Socrates on all
tenants hosted on the IaaS public cloud and demonstrate its
effectiveness in helping cloud tenants analyze, visual, diagnose
and refine their security group settings. To the best of our
knowledge, we believe that our work is the first to analyze
cloud security group usage based on real-world datasets, and
to develop a tool to help cloud tenants to understand, diagnose
and better refine their security group configurations. Our work
sheds light on the common usage (“good” and “bad” practices)
of cloud security groups and on how to design better and more
secure cloud systems and services.
Acknowledgment. We thank the anonymous reviews for their
valuable feedback. This research was supported in part by
NSF grants CNS-1117536, CRI-1305237, CNS-1411636 and
DTRA grant HDTRA1-14-1-0040 and DoD ARO MURI
Award W911NF-12-1-0385.

REFERENCES

[1] “Amazon EC2,” http://aws.amazon.com/ec2/.
[2] “OpenStack,” http://www.openstack.org/.
[3] “AWS EC2 security groups,” http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using-network-security.html.
[4] “OpenStack security groups,” http://docs.openstack.org/network-

admin/admin/content/securitygroups.html.
[5] C. Jin, A. Srivastava, Y. Jin, and Z.-L. Zhang, “Secgras: Security group

analysis as a cloud service,” in IEEE ICNP, October 2014.
[6] A. Brown and J. Chase, “Trusted platform-as-a-service: A foundation

for trustworthy cloud-hosted applications,” in ACM Cloud Computing
Security Workshop, 2011.

[7] H. wook Baek, A. Srivastava, and J. K. V. der Merwe, “Cloudvmi:
Virtual machine introspection as a cloud service,” in IEEE International
Conference on Cloud Engineering (IC2E), 2014.

[8] A. Srivastava, H. Raj, J. Giffin, and P. England, “Trusted VM Snapshots
in Untrusted Cloud Infrastructures,” in Proceedings of the 15th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses
(RAID), 2012.

[9] A. Srivastava and V. Ganapathy, “Towards a richer model for cloud app
markets,” in ACM Cloud Computing Security Workshop, 2012.

[10] “Amazon web services:overview of security processes,”
http://aws.amazon.com/security/.

[11] “AWS security groups for VPC,”
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
VPC SecurityGroups.html.

[12] “OpenStack API for security groups and rules,”
http://docs.openstack.org/api/openstack-network/2.0/content/security-
groups-ext.html.

[13] E. Al-Shaer and H. Hamed, “Firewall policy advisor for anomaly
detection and rule editing,” in Proc. IEEE/IFIP Integrated Management
Conference, March 2003.

[14] ——, “Discovery of policy anomalies in distributed firewalls,” in Proc.
IEEE Infocomm, March 2004.

[15] S. M. Bellovin, “Distributed firewalls,” in ;login:, November 1999.
[16] M. J. Chapple, J. DArcy, and A. Striegel, “An analysis of firewallrulebase

(mis)management practices,” in ISSA, February 2009.
[17] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith,

“Implementing a distributed firewall,” in CCS, November 2000.
[18] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “Fire-

man: a toolkit for firewall modeling and analysis,” in IEEE Symposium
on Security and Privacy, May 2006.

[19] K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer, “Analysis of firewall
policy rules using data mining techniques,” in IEEE/IFIP Network
Operations and Management Symposium, April 2006.

