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Figure 3: Variation of the nucleon-index per k-core index for several β parameters in the dependence computation 

(a) Oregon-1 (b) ca-AstroPh (c) arenas-jazz (d) dnc-corecipient (e) email-Enron 

Figure 4: Visualization of the core subgraphs: the size of a node is proportional to its degree 

is a “dense core” of G, the product of these two terms should be 
large. The frst term controls the rate of changes in size from Gk 
to Gk +1: intuitively, if Gk is the “nucleus” of G, going from Gk−1 
to Gk should not drastically change its size; but going from Gk to 
Gk+1 amounts to breaking Gk apart, yielding a collection of small 
connected components. In other words, Vk+1 would fall of quickly, 
as Gk+1 is a small connected subgraph or an empty graph. Hence, 
Gk with the largest NI represents the nucleus of G (as produced by 
the decomposition process). 

Considering the node dependence value as a centrality measure, 
we defne θ (i ) as follows: 

depc (i ) (i, β )
θ (i ) := . (3)P 

j ∈G depc (j ) (j, β ) 

Using θ (i ) defned above and applying the nucleon-index to the 
k-shell decomposition procedure, we develop the following stop 
rule for core extraction. 
Stopping rule for core extraction: For any graph G with a dense 
core structure, we should stop the k-shell decomposition method at 
the induced subgraph of the kC -core with maximal nucleon-index. 
Thus, we seek a kC -index that maximizes the nucleon-index (NI). 

Figure 3 plots the nucleon-indices per k-core (Ck ) for Oregon-
1, ca-AstroPh and arenas-jazz networks. To select the optimal β 
parameter for eq. (1), we use the following criteria: let’s assume 

that SK is the set of the k-indices corresponding to the maximum 
nucleon-indices, as β varies in the interval [0, 1] and k increases 
from 1 up to kmax . Then, we select any β associated with the k-
index which appears most often in the set SK . For example, Table 2 
shows the set SK for arenas-jazz. We select a β corresponding to 
the mode kC -index value of 25 (i.e., β = 0.1; β = 0.6; β = 1.0). 

Table 3 shows the (kmax , β , kC ) indices for our social network 
and Internet AS datasets and Fig. 4 provides a visualization of our 
extracted core subgraphs (GC ) for several example networks3. The 
smallest subgraph has 32 nodes and 362 edges (Oregon-1), whereas 
the largest one has 239 nodes and 28,441 edges (ca-HepPh). We will 
further investigate the structure of these core subgraphs (network 
nuclei) in the remaining sections. 

4.3 Other Centralities and Nucleus 
Nodes are more likely to be part of a network’s core if they have 
high centrality score and if they are connected to other core nodes. 
Equation (2) can be used with a wide variety of θ (i ) functions to 
transition between core and peripheral nodes. Thus, it allows one to 
use diferent ways to compute the nucleon-index (NI) and measure 
core quality. Here, we compute the nucleon-index using some of 
the most common centrality metrics: closeness centrality (cc ) [41, 

3We omit the others plots here due to space constraint. 
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Table 3: maximum k-shell index (kmax ); β parameter; k-
index to stop the shells pruning process (kC ); number of 
nodes and edges in the core subgraph N(GC ) and E(GC ) 

Network kmax β kC N (GC ) E (GC ) 

arenas-jazz 29 0.6 25 32 466 
dnc-corecipient 75 0.5 67 87 3,118 
arenas-pgp 33 0.5 31 38 658 
Oregon-1 20 0.5 18 32 362 
ca-HepPh 238 0.5 99 239 28,441 
ca-AstroPh 57 0.6 53 126 3,378 
ca-CondMat 51 0.5 37 37 382 
email-Enron 51 0.5 48 150 4,395 
loc-brightkite 58 0.5 56 66 1,893 
Facebook 64 0.5 61 285 9,616 

Table 4: k-index to stop the shells pruning process (kC ) for 
several centralities: cc - closeness centrality; bc - between-
ness centrality; ec - eigenvector centrality; dep - dependence 

kC 
Network θ (i ) = cc θ (i ) = bc θ (i ) = ec θ (i ) = dep 

arenas-jazz 26 25 26 25 
dnc-corecipient 68 65 68 67 
arenas-pgp 31 30 31 31 
Oregon-1 18 18 18 18 
ca-HepPh 99 99 99 99 
ca-AstroPh 53 53 53 53 
ca-CondMat 42 37 37 37 
email-Enron 48 48 48 48 
loc-brightkite 55 48 56 56 
Facebook 60 60 60 61 

42, 45], betweenness centrality (bc ) [14, 41, 45] and eigenvalue 
centrality (ec ) [12, 34, 41, 45] – we compare the obtained kC -indices 
with the values computed in the previous section. 

The closeness centrality measures how central a node is in terms 
of its distance (shortest path) from all other nodes [41], while the 
betweenness centrality for a node measures the number of shortest 
paths that pass through that node [41]. The eigenvalue centrality 
computes the centrality for a node based on the centrality of its 
neighbors. It is based on the notion that a node should be viewed as 
important if it is linked to other important nodes, where a node im-
portance (or centrality score) corresponds to the largest eigenvector 
of the adjacency matrix [41]. Table 4 shows the kC -indices for the 
diferent centrality measures and Fig. 5 plots the nucleon-indices 
versus k-core indices of several example networks4. In general, 
we observe that all the centralities give consistent kC -indices or 
core structures for our datasets. In particular, we observe that our 
dependence metric, dep (i, β ), derives similar core structure when 
compared to the other metrics. From the consistency of the results 
given by the studied centrality metrics, we can infer that our social 
networks (see § 2) truly have a core structure. 

4We omit the others plots here due to space constraint. 

Table 5: Comparing classical k-shell decomposition (KS), Nu-
cleon Index (NI ) + k-shell decomposition (KS) and Rich-Club 
network core (GC ) in real-world networks : N - number of 
nodes; E - number of edges; D - diameter; P - path length; ρ -
density 

method dataset N E D P ρ 

Oregon-1 20 164 2.0 1.14 0.86 
Classical KS ca-AstroPh 17 136 1.0 1.00 1.00 

email-Enron 36 472 2.0 1.25 0.75 
Oregon-1 32 363 2.0 1.27 0.73 

NI + KS ca-AstroPh 126 3,378 3.0 1.87 0.43 
email-Enron 150 4,395 3.0 1.61 0.39 
Oregon-1 37 314 3.0 1.57 0.47 

Rich-Club ca-AstroPh 82 994 3.0 1.80 0.30 
email-Enron 106 1,660 4.0 1.77 0.30 

All the centrality metrics discussed here are designed to measure 
notions of node importance in a network. Nevertheless, they have 
diferent computational complexity and require diferent network 
information. For example, the closeness and eigenvalue centrali-
ties need the full network information and have a high complexity 
of O(V 3). The betweenness centrality has a lower complexity of 
O (VE) [14]. Our approach to calculate the dep (v, β ) score for node 
v is dependent on the k-shell decomposition method and degree 
computation which have a complexity of O (V +E). Then, given that 
the degree and coreness of each node are known, our procedure has 
a complexity of O (E). For a large sparse social network with O (n)
edges, this yields a linear time algorithm. Therefore, our method-
ology is highly scalable and can be applied to massive networks 
(hundreds million nodes and billion edges). 

We compare our methodology to extract core subgraphs to the 
classical k-shell decomposition [15] and rich club [31, 51] methods. 
Table 5 provides statistics for the structure of the derived core sub-
graphs (GC ) for three of our networks (i.e., Oregon-1, ca-AstroPh 
and email-Enron) – we omit the others networks here due to space 
constraint. In general, for our dataset, we observe that the classical 
k-shell decomposition method (KS) is bias toward small and highly 
dense core subgraphs, GKS , (i.e., a clique) which may not represent C
the “network core" (see § 3). In contrast, our modifed k-shell decom-
position method (NI + KS) generates larger core subgraphs than 
KS . In fact, our core subgraphs are supersets of the cores extracted 

⊃ GKS using KS : GN I +KS . When compared to rich-club, we see C C
that for some networks our modifed k-shell decomposition method 
(NI + KS) generates core subgraphs of similar size (e.g., Oregon-1). 
However, our core subgraphs have more compact structure: small 
diameter, small path length and high density. For other networks, 
our methodology generates larger and denser core subgraphs than 
the rich-club method (e.g., email-Enron). This can be explained due 
to the fact that the rich-club is bias toward nodes with higher de-
gree5. Diferently, our defnition of core is more general, and it 
allows low-degree nodes to belong to the core, as long as, they are 
important components in the structure of the network. 

5Rich-club is a group of high-degree nodes in a network that preferentially connect to 
one another. This structure might be the core subgraph for power law networks 
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(a) Oregon-1 (b) ca-AstroPh (c) arenas-jazz 

Figure 5: Variation of the nucleon-index (NI) per k-core index for several centrality metrics: the value of NI is normalized; the 
k-index to stop the shells pruning process (kC ) corresponds to the max(NI) 

Table 6: Summary of path length (P ) and diameter (D) char-
acteristics: δ (u, GC ) - shortest path from node u to the core 
subgraph GC 

Network P D Avд(δ (u,GC )) 

arenas-jazz 2.21 6 1.27 
dnc-corecipient 2.27 8 1.63 
arenas-pgp 7.65 24 4.27 
Oregon-1 3.62 10 1.54 
ca-HepPh 4.67 13 2.38 
ca-AstroPh 4.17 14 2.24 
ca-CondMat 5.35 14 3.25 
email-Enron 4.03 13 1.74 
loc-brightkite 4.92 18 3.41 
Facebook 4.31 15 2.42 

5 ANALYSIS OF THE NETWORK CORE 
STRUCTURE 

Given the dense structures of our core subgraphs, illustrated in 
Figure 4, we now investigate the importance of this substructure 
for the network. To achieve this, we defne and analyse the following 
metrics: 
Core Path Length: To understand how much the network core 
contributes towards the small path lengths, we measure how many 
hops there are between any user to the core subgraph: δ (u, GC ) = 
miny ∈GC {d (u,y)}; GC ⊂ G. Figure 6 presents the core path length 
and network path length distribuitions for Oregon-1, ca-AstroPh 
and arenas-jazz6, whereas Table 6 shows the average values and 
the diameter for all the networks. From these results, we can see 
that most users are approximately 4 hops away from a random user 
and at most 2 hops away from the core (GC ), which implies that 
our core subgraphs are important structure for the connectivity of 
the nodes in the network. 

6We obtain similar results for the other datasets. We omit the plots here due to space 
constraint. 

Table 7: Ratio of the distance between nodes u and v to their 
respective distance to the core subgraph GC : R (u,v ) 

Network k Avg(R (u,v )) 

arenas-jazz 70 0.96 
dnc-corecipient 700 0.90 
arenas-pgp 8,000 0.89 
Oregon-1 8,000 1.21 
ca-HepPh 8,000 1.03 
ca-AstroPh 8,000 0.96 
ca-CondMat 20,000 0.84 
email-Enron 20,000 1.21 
loc-brightkite 20,000 0.73 
Facebook 20,000 0.92 

Core Centrality: We now investigate the importance of the core 
subgraph for communication and information difusion in the net-
work. To achieve this, we use the following procedure: frst, we 
randomly sample k unique pairs of nodes (u,v ). Then, we measure, 
R (u,v ), the ratio of the distance between nodes u and v to their 
respective distance to the core subgraph, as expressed in eq.(4), 
where d (u,v ) represents the shortest path between u and v , and 
d (u, GC ) or d (v, GC ) represents the shortest path between u or v 
to the core subgraph GC . 

Table 7 shows the average R (u,v ) for k = 70, k = 700, k = 8, 000 
and k = 20, 000 respectively. We observe that the avg(R (u,v )) is 
very close to the optimal value of 1.0, which implies that our core 
subgraph GC contains the nodes with the highest betweeness in the 
network and they act as “bridges" for the connectivity between the 
other nodes in the network. 

d (u, v )
R (u, v ) = (4)

d (u, GC ) + d (v, GC ) 

Core Removal: Lastly, we investigate the impact of removing 
the core subgraph GC in the structure of the studied networks. We 
observe that all the neworks described in § 2 have a giant connected 
component (GCC) contaning more than 90% of all the nodes and 
more than 85% of all edges in the network. After the core removal, 
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(a) Oregon-1 (b) ca-AstroPh (c) arenas-jazz 

Figure 6: Path length distribuitions: P-1: distance between nodes in the original network; P-2: distance between nodes in the 
original network, after core removal; P-3: nodes distance to the core subgraph GC 

we see that, for some networks (i.e., arenas-jazz, dnc-corecipient, 
Oregon-1 and email-Enron), at least 20% of the nodes break away 
from GCC, forming many isolated components of smaller sizes. 
Table 8 shows the number of these new connected components per 
network as well as the ratio of the size of the GCC after and before 
call removal in terms of the number of nodes and edges. From 
these results, we deduce that removing GC signifcantly afects the 
connectivity and density for some of the networks. 

Figure 6 shows the path length distribuition after we remove 
the core from our networks. We observe that the average path 
length increases after the core removal for most of the networks. 
For example, ca-AstroPh, email-Enron and Oregon-1 have average 
path length of 4.17, 4.03 and 3.62 before core removal, and 4.25, 4.49 
and 5.72 after core removal. This result provides further evidence 
that the core subgraph GC is an important structure for reachability, 
communication and information difusion in these networks. Next, 
we discuss the implications of our results. 

Table 8: Basic stats of the giant (largest) connected compo-
nents (GCC) after core removal: cn - number of connected 
components; nj and ni - number of nodes in GCC before and 
after core removal; ej and ei - number of edges in GCC before 
and after core removal 

Network # cn ni /nj ei /ej 

arenas-jazz 2 0.833 0.612 
dnc-corecipient 104 0.757 0.404 
arenas-pgp 26 0.993 0.940 
Oregon-1 3,183 0.688 0.503 
ca-HepPh 73 0.967 0.645 
ca-AstroPh 12 0.946 0.929 
ca-CondMat 2 0.997 0.978 
email-Enron 3,350 0.800 0.711 
loc-brightkite 65 0.972 0.957 
Facebook 66 0.994 0.930 

6 DISCUSSION 
Using examples from communication networks as well as collabo-
ration, location-based, interaction, and online social networks, we 
have demonstrated that our method can efectively uncover and 
extract the nucleus of these networks. In this section, we discuss 
the limitations and implications of our method and results. 

First, our proposed methodology to uncover the nucleus of net-
works can also be applied to weighted and directed networks by 
using a variation of the k-shell decomposition method: Garas et 
al. [24] presented a weighted k-shell decomposition method and 
Batagelj et al. [10] generalized the k-shell decomposition to di-
rected networks. Our method can be applied with these generalized 
algorithms because our dependence and nucleon-index metrics 
are independent to the k-shell decomposition method. Once the 
k-shells are provided by decomposing the network into k-layers, 
the dependence and nucleon-index values can be computed. 

Second, the “coreness” centrality or k-shell index has been argued 
to be a better measure than node degree for identifying infuential 
spreaders in a network [23, 28]. However, our results show that 
using k-shell indices as a predictor of spreading infuence of a node 
can be misleading. This is due to the fact that for a node to have a 
high k-shell index, it just needs to be a part of a very strong structure 
(e.g., a clique). This structure, however, may be isolated and lie at 
the edge or periphery of the network, instead of its core (see § 3). 
Our analysis shows that the dependency value of a node, depk (i ), 
provides important information about the structure function of 
each node in the graph. Thus, we believe that by using a node 
dependency value along with its k-shell index (depk , k ), we can 
better predict the spreading infuence of a node than simply using 
its k-shell index. We will investigate this in the future. 

Third, unveiling the core structure of social networks may have 
implications in the design of algorithms for information fow, and 
in development of techniques for analysing the vulnerability or 
robustness of networks. In addition, analysis of the core structure 
of social networks can help us uncover and understand possible 
organizing principles shaping the observed network topological 
structure and network formation. 
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7 RELATED WORK 
In contrast to the wealth of attention given to community structure 
analysis in the literature, there are comparatively few methods for 
extracting and analyzing the core structure of a network. Some 
studies simply defne the network “core” as the maximal clique 
composed of the highest degree nodes in a network [44], while other 
studies focus instead on some notion of connectivity information 
(e.g. betweeness, closeness, etc.) to fnd the core and periphery of a 
network [16, 17, 27, 33, 43]. 

One of the most popular quantitative methods to investigate 
core-periphery structure was proposed by Borgatti and Everett 
in 1999 [13]. Based on this study, several methods for identifying 
the core-periphery of a network have been proposed [16, 17, 27]. 
These algorithms attempt to determine which nodes are part of a 
densely-connected core and which are part of a sparsely connected 
periphery by solving some complex optimization problem. Conse-
quently, most of these methods are computationally expensive and 
do not scalable to large networks. 

The authors in [47] used the notion of α-β community to extract 
the “core” of a graph. An α-β community is a connected subgraph C 
with each vertex in C connected to at least β vertices of C and each 
vertex outside of C connected to at most α vertices of C (α < β ). 
They extract the network core structure by taking the intersection 
of α-β communities of diferent size k . A core thus corresponds to 
one or multiple dense regions of the graph. As a result, the proposed 
heuristics in [47] may return multiple dense regions (“cores”) for a 
given network. In addition, this algorithm does not guarantee to 
terminate within a reasonable amount of running time. 

8 CONCLUSION 
In this paper, we have advanced and developed an efective pro-
cedure to extract the core structure of social networks. First, we 
introduce a new metric – the node “dependence value" – that mea-
sures the location importance of a node in a network. Second, we 
defne a new measure called nucleon-index that captures the extend 
to which a subgraph is a densely intra-connected and topological 
central core. Then, using these metrics, we proposed a modifed 
version of the k-shell decomposition method by identifying the 
kC -index where we should stop pruning the network in order to 
preserve its core structure. For our social network datasets, we 
found that they contain very dense core subgraphs GC . The small-
est core has 32 nodes and 362 edges (Oregon-1), whereas the largest 
one has 239 nodes and 28,441 edges (ca-HepPh). Finally, given a 
dense core subgraph GC , we investigate the importance of this 
substructure for the network by analysing the following metrics: i) 
the distance between a node v to the core subgraph GC ; ii) the ratio 
of the distance between nodes u and v to their respective distance 
to GC and iii) lastly, the impact of removing GC in the structure of 
the network G (GC ⊂ G). 

As part of ongoing and future work, we will provide a more 
in-depth analysis of the dense core subgraph GC of social networks. 
We also plan to apply our method to a massive Google+ dataset [19, 
20, 26] (with more than 170 million nodes and ≈ 3 billion edges), 
a massive Twitter dataset [21] (with more than 500 million nodes 
and ≈ 23 billion edges) and other social networks. 
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9 APPENDIX 
Beta Parameter Selection: We now establish that the contribu-
tion of the h-step removed neighbors of node i is attenuated by 
βh−1: 

Given that dep0 (i ) = 0 and dep1 (i ) = δ1 (i ), we can write an expres-
sion for dep2 (i ) as following: 

dep2 (i ) = dep1 (i ) + δ2 (i ) + β × Σj ∈N 2 (i )dep
1 (j ) 

(5) 
= δ1 (i ) + δ2 (i ) + β × Σj ∈N 2 (i )δ

1 (j ) 

Let us assume that node i has c (i ) = 4, then dep4 (i ) is computed as 
following: 

dep4 (i ) = dep3 (i ) + δ4 (i ) + βΣj ∈N 4 (i ) [dep
3 (j )] (6) 

Expanding eq. (6) yields: 

dep4 (i ) = dep3 (i ) + δ4 (i ) + βΣj ∈N 4 (i ) [dep
2 (j ) + δ3 (j ) 

+ βΣj′ ∈N 3 (j )dep
2 (j ′ )] 

Substituting eq. (5) yields: 

dep4 (i ) := dep3 (i ) + δ4 (i ) + βΣj [M3 (j ) + βδ2 (j )ρ1 (j ′∗ ) 

+ βΣj′ [M2 (j ′ ) + βδ2 (j ′ )ρ1 (j ′′ )]] 

where Mk (i ) = Σk δ
k (i ) and δk (i ) = ρk (i ), ∀i ∈ V . 

Further simplify dep4 (i ) yields: 

1 (j ′∗ )dep4 (i ) := dep3 (i ) + δ4 (i ) + Σj [βM3 (j ) + β2δ2 (j )ρ 

+ Σj′ [β2M2 (j ′ ) + β3δ2 (j ′ )ρ1 (j ′′ )]] 

We can rewrite the above expressions as: 

dep4 (i ) := dep3 (i ) + β0A + Σj [βB + β2C + Σj′ [β2D + β3E]] (7) 

where: 

• A = δ4 (i ): 1-step neighbors of i removed at k = 4 
• B = M3 (j ): 2-step neighbors of i removed at k = 1, 2, 3 
• C = δ2 (j )ρ1 (j ′∗ ): 3-step neighbors of i removed at k = 1 
• D = M2 (j ′ ): 3-step neighbors of i removed at k = 1, 2 
• E = δ2 (j ′ )ρ1 (j ′′ ): 4-step neighbors of i removed at k = 1 

By generalizing eq. (7) (k = 5, ..., n), we observe that at every k-
index, the number of h-step removed neighbors of i is multiplied by 
βh−1. This concludes our proof. As stated before, the parameter β 
quantifes the contribution of node j to the total dependence value 
of node i . Thus, by varying β , we are impacting the contribution 
of any node j to the total dependence value of node i by the same 
proportion. 
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