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ABSTRACT 
Many social network studies have focused on identifying commu-
nities through clustering or partitioning a large social network 
into smaller parts. While community structure is important in so-
cial network analysis, relatively little attention has been paid to 
the problem of “core structure” analysis in many social networks. 
Intuitively, one may expect that many social networks possess 
some sort of a “core” which holds various parts of the network (or 
constituent “communities” ) together. We believe that it is just as 
important to uncover and extract the “core” structure – referred to 
as the “nucleus” in this paper – of a social network as to identify 
its community structure. In this paper, we propose a scalable and 
efective procedure to uncover the “nucleus” of social networks 
by building upon and generalizing ideas from the existing k-shell 
decomposition approach. We employ our approach to uncover the 
nucleus in several example communication, collaboration, interac-
tion, location-based and online social networks. Our methodology 
is very scalable and can also be applied to massive networks (hun-
dreds million nodes and billion edges). 
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• Information systems → Social networks; • Human-centered 
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→ Shortest paths; 
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1 INTRODUCTION 
Networks are often abstractly modelled as a graph where vertices 
represent entities and edges capture the relations (e.g., connections) 
or interactions between them. In the context of (online) social net-
works, community identifcation has received a lot of attention. A 
community is often considered to be a subset of vertices that are 
densely connected internally but sparsely connected to the rest 
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of the network [9, 30, 35–37]. The majority of studies on identi-
fying communities structures in social networks have relied on 
clustering techniques, namely, by partitioning the underlying net-
work/social graph into disjoint (sometimes overlapping) commu-
nities. For example, Newman proposes a measure of betweenness 
– modularity [36, 37] – for identifying disjoint communities in a 
social network. Andersen et al [9] design a local graph partitioning 
algorithm to indentify community structures. This algorithm is 
based on personalized PageRank vectors. Ahn et al [6] introduce 
a novel perspective for discovering hierarchical community struc-
tures by categorizing links only. To obtain an optimal partition and 
to fnd communities at multiple levels, an information-theoretic 
framework is proposed by the authors in [38, 40]. Several stud-
ies use link and content information for uncovering meaningful 
communities in networks [22, 50]. 

Although existing studies of community structure have been 
very successful, most have not considered the existence of “core 
structure" in many networks. Intuitively, one expects that many so-
cial networks possess some sort of “core” as part of their meso-scale 
structure, which holds various parts of the network (or constituent 
“communities” ) together. We believe that it is just as important 
to uncover and extract the “core” structure – referred to as the 
“nucleus” – of a social network as identify its community struc-
ture [39, 49]: unlike “ordinary” constituent communities, the “core” 
structure plays a crucial role in the formation and evolution of 
a social network, to which other (constituent) “communities” are 
attached. Chung and Lu [18] show that power-law random graphs 
almost surely contain a core “subgraph" when the exponent β in 
the power-law degree distribution is such that β ∈ (2, 3). This the-
oretical result suggests that many real-world social networks likely 
posess some sort of cohesive core structure. 

One of the most popular notion of network core is given by the k-
shell decomposition method [15]. This classical graph decomposition 
technique decomposes a network into hierarchically ordered layers 
from the periphery to the core. This method has also be extended 
to weighted graphs [24, 48] and dynamic networks [32]. The k-
shell decomposition method has often been used as a visualization 
tool for studying the core structure of massive complex networks 
such as the Internet [15]. In addition, it has been used to identify 
infuential spreaders in a network [23, 28]. 

When applying the standard k-shell decomposition to uncover 
the core of several example social networks (see § 2), we fnd that 
the resulting “innermost” structure is unlikely to represent the 
“core” of these networks. For example, this “innermost” structure 
may contain the maximum clique of a network but which lies rather 
at its periphery, or it is simply a single vertex in a dense graph. This 
appears to the efect of the (iterative) degree-based pruning process 
of k-shell decomposition, where despite at some point we reach the 
vicinity of the core, the k-shell decomposition continues further, 
which then destroys the “core” structure of the network (see § 3 
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for more illustration). This raises the following important question: 
When should we stop the k-shell decomposition pruning process in 
order to preserve the core graph GC of a network? 

In an attempt to address this question, we develop an efective 
procedure to uncover the nucleus structure of a social network by 
building upon and generalizing ideas from the existing k-shell de-
composition [15] approach, as follows. Firstly, we propose a new 
metric, the dependence value, that measures the location impor-
tance of a node in a network. Intuitively, the dependence of node 
v captures the number of nodes recursively dependent of v that 
have been removed in earlier steps of the k-shell decomposition 
method. Secondly, we derive a new measure called nucleon-index 
(NI) that captures the extend to which a subgraph is a densely 
intra-connected and topological central core. This index can be 
used with a wide variety of functions to transition between core 
and peripheral nodes (e.g., dependence value, closeness [41] and 
betweenness [41] centralities, etc). Using these metrics, we there-
fore modify the standard k-shell decomposition method to stop 
the process earlier, in order to extract a meaningful “core" for so-
cial networks (see § 4). For a Facebook [4, 29] friendship network 
composed of 63,731 nodes and 817,035 edges, this process yields 
a dense “core" subgraph GC with approximately 285 nodes and 
9,616 edges. Given a dense core subgraph GC , we investigate the 
importance of this substructure for the network by analysing the 
following metrics (see § 5): i) the distance between a node v to the 
core subgraph GC ; ii) the ratio of the distance between nodes u and 
v to their respective distance to GC and iii) lastly, the impact of 
removing GC in the structure of the network G (GC ⊂ G). 

We discuss implications and related work in § 6 and § 7. Section 8 
concludes the paper. We summarize the major contributions of our 
paper as follows: 

• We propose two new metrics: i) the dependence value, that 
measures the location importance of a node in the network; 
ii) the nucleon-index (NI) that captures the extend to which a 
subgraph is a densely intra-connected and topological central 
core . Using these metrics, we therefore modify the standard 
k-shell decomposition method to stop the process earlier, in 
order to extract a meaningful “core" for social networks. 

• We apply our approach to uncover the core structure in 
example communication, collaboration, interaction, location-
based and online social networks. Our methodology is very 
scalable and can also be applied to uncover the core structure 
of massive networks (hundreds million nodes and billion 
edges). 

2 DATASETS 
This section presents a summary of the datasets that we use for our 
analysis: 
Autonomous systems graph: This dataset is an undirected graph 
of the AS peering information inferred from Oregon route-views 
between March 31 and May 26, 2001 [2], and its main features are 
summarized on Table 1. 
Social networks graphs: This dataset is a collection of 9 undi-
rected graphs of communication, collaboration, interaction, location-
based and online social networks [1–5, 11, 25, 29, 46](see Table 1 
for a summary of the main features): 

k = 3

k = 2

k=1

Figure 1: A schematic representation of a network under 
k-shell decomposition: the network can be viewed as the 
union of shell 1 up to kmax = 3 (network core). 

Table 1: Main characteristics of the social networks and AS 
graphs: d - node degree; % LCC - percentage size of the largest 
connected component of the original network 

ID # nodes # edges max(d) % LCC 

arenas-jazz 198 2,742 100 1.00 
dnc-corecipient 906 20,858 368 0.94 
arenas-pgp 10,680 24,316 205 1.00 
Oregon-1 11,174 23,409 2,389 1.00 
ca-HepPh 12,008 118,521 491 0.93 
ca-AstroPh 18,722 198,110 504 0.95 
ca-CondMat 23,133 93,497 280 0.92 
email-Enron 36,692 183,831 1,383 0.92 
loc-brightkite 58,228 214,078 1,134 0.97 
Facebook 63,731 817,035 1,098 0.99 

• ca-AstroPh, ca-HepPh, ca-CondMat: collaboration networks 
between authors for papers submitted to Astro Physics, High 
Energy Physics (Phenomenology category) and Condense 
Matter Physics – a graph contains an undirected edge (i, j ), 
if author i co-authored a paper with author j. 

• arenas-jazz: collaboration network between jazz musicians – 
the graph contains an undirected edge (i, j ), if two musicians 
have played together in a band. 

• email-Enron: email communication network – the graph 
contains an undirected edge (i, j ), if address i sent at least 
one email to address j. 

• arenas-pgp: interaction network of users of the Pretty Good 
Privacy (PGP) algorithm. 

• dnc-corecipient: online contact network for people having 
received the same email in the 2016 Democratic National 
Committee email leak – the graph contains an undirected 
edge (i, j ), if two persons received the same email. 

• Facebook: an undirected subgraph of the friendship network 
for the users in Facebook. 

• loc-brightkite: an undirected graph for the friendship net-
work for the users from loc-brightkite location-based online 
social network. 
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(a) Oregon-1

LCC 
(a single node)

(b) ca-AstroPh

2nd LCC contains the
maximum clique 
(298 nodes)

121-core 252-core

LCC

LCC completely dissolves,
2nd LCC remands,
the only CC left

(c) Google+

Figure 2: The size of the largest as well as those of the 2nd, 3rd and 4th largest connected components in the k-core subgraphs

3 K-SHELL NETWORK CORE
K-shell decomposition [15] is one of the most popular and scalable
method to investigate and visualize the core-periphery structure in
complex networks. This method assigns to each node an integer
representing its coreness location according to successive layers
or shells in the network. It works as follows: a) first, remove all
nodes in the network with degree 1 (and their respective edges) –
these nodes are assigned to the 1-shell; b) more generally, at step
k = 2, . . ., remove all nodes in the remaining network with degree
k or less (and their respective edges) – these nodes are assigned to
the k-shell; and c) the process stops when all nodes are removed at
the last step. Small values of k define the periphery of the network
and the innermost network core corresponds to the highest shell
index (kmax ) – see Fig. 1. (Note that this is distinct from k-core
decomposition1 defined in the literature [7, 8]).

In the k-shell decomposition process, at each step k , the remain-
ing subgraph is referred to as “k-core" (Ck ). The k-core subgraph
is the union of all shells with indices larger or equal to k or it is
the maximal induced subgraph Ck ⊆ G such that if v ∈ Ck , then
node v must have at least k + 1 neighbors that belong to Ck−1
and deдk (v ) > 0 (we use deд(v ) to denote the degree of v in the
network and deдk (v ) to denote the degree of v in Ck ). Similarly,
k-shell (Sk ) can be defined as the subgraph induced by the set of
nodes with dk−1 (v ) ≤ k and if v ∈ Sk → deдk (v ) = 0 .

Clearly, for a node to belong to the k-core (thus shell (v ) ≥ k), it
must have at least degree k , i.e., deд(v ) ≥ k . However, deд(v ) ≥ k
is not sufficient to guarantee it to belong to the k-core. For example,
a node v with only neighbors of degree 1 (i.e., v is the root of a
star structure) belongs to the 2-shell, i.e., shell (v ) = 2, no matter
how high its degree is. On the other hand, it is easy to see that if a
node v is part of a clique of k nodes, then shell (v ) ≥ k . However, a
node v does not need to be part of a k-clique to have shell (v ) ≥ k .
Consider a tree T of n nodes (the sparsest graph with n nodes). We
can in fact provide a complete characterization of nodes in T to
have shell (v ) ≥ k in a recursive manner: forv to have shell (v ) ≥ k ,
it must have at least k-neighbors u’s with shell (u) ≥ k − 1 – this

1Which simply removes all nodes with degree less than k in a graph.

characterization also applies to a general graph. We see that in the
case of a tree, nodes with higher k-shell indices must lie more at the
“core” (i.e., the increasingly “denser” part) of the tree. For a general
graph, however, a node with a high k-shell index may not lie at the
“core” of the graph: it can be part of a large clique that is “isolated”
on a periphery of a massive graph. In such a case, the large clique
will break off from the “core” of the network (e.g., as represented
by the largest connected component remaining in the k-core) in
the early stage of the k-shell decomposition process.

This method has been successfully used as a visualization tool
for studying and uncovering the core structure of networks such as
the Internet AS graph [15]. We apply it to the Oregon-1 AS dataset.
Fig. 2(a) shows the size of the largest as well as those of the 2nd,
3rd and 4th largest connected components in the k-core graph. We
observe that the largest connected component decreases smoothly
as k varies from 1 to 20. At kmax = 20, we are left with a very
dense core subgraph composed of 20 nodes and 164 edges – the
network nucleus. This result shows that for the AS graph, nodes
with the highest k-shell indices indeed lie at the “core” (i.e., the
increasingly “denser” part) of the graph. However, our experiments
reveal that applying the k-shell decomposition for other types of
graphs, especially social graphs, may not yield the same results.
There are two possible reasons:

First, for some graphs the kmax -shell seems to contain some
“residual” portions of the nucleus of a graph or simply a singleton
node. For example, Fig. 2(b) shows the k-core graph for the 4 largest
connected components in the ca-AstroPh dataset. We see that at
kmax=57, we are left with just a single node in the k-core graph,
which is unlikely to be the complete inner-core of the graph.

Second, in other graphs the kmax -shell does not appear to lie
at the “core” of the graph: it could be part of a large community
structure (e.g. a maximum clique) that is “isolated” on a periphery
of a graph. To illustrate this, we apply the k-shell decomposition
method to a Google+ reciprocal network2 obtained from a previous

2A network composed with only bi-drectional edges, extracted from a directed social
graph. A reciprocal network can be viewed as the stable “skeleton" network of a
directed social network that holds it together and encodes its main topological charac-
teristics [20]. For more on the reciprocal network of Google+ the reader is referred
to [19, 20].
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study [19, 20] - it consists of more than 40 million nodes and ≈ 400 
million edges. Figure 2(c) shows the size of the largest as well as 
those of the 2nd, 3rd and 4th largest connected components in the k-
core, as k varies from 1 to 308. We note that at step k = 121, a small 
subgraph containing the maximum clique (of size 290) breaks of 
from the largest connected component which desolves after k = 253, 
whereas this subgraph containing the maximum clique persists after 
k = 252 and becomes the largest component; at kmax = 308, we 
are left with this maximum clique plus 10 additional nodes that are 
connected to the maximum clique. Closer inspection of the nodes 
in the maximum clique reveals that its users belong to a single 
institution in Taiwan, forming a close-knit community where each 
user follows everyone else – which is unlikely to be the network 
core of Google+. 

From these results, we see that directly applying the standard 
k-shell decomposition to some graphs (especially, social networks) 
produces an “innermost” structure that does not represent “core” 
of these networks. This is due to the fact that at a certain k-index, 
we reach the vicinity of the core; but going far beyond this index 
would destroy the core structure of the network. 

4 NODE DEPENCENCE VALUES AND 
NETWORK CORE 

In order to extract a meaningful “core” for a general graph G = 
(V , E) (e.g., social networks), we therefore modify the standard k-
shell decomposition method to stop the process earlier. To achieve 
this, we propose a new metric that provides important information 
about the structural function of each node in the graph (we label 
it as “dependence" value) at each k-step. Then, we present a new 
measure called nucleon-index (NI) that captures the extend to which 
a subgraph is a densely intra-connected and topological central 
core – it can be used with a wide variety of functions to transi-
tion between core and peripheral nodes (e.g., dependence value, 
closeness and betweenness centralities, etc). 

4.1 Node Depencence Values 
The dependence value of node v at step k is defned as follows: for 
v ∈ V , dep0 (v, β ) = 0 and for k = 1, . . . , c (v ), 

depk (v, β ) := depk−1 (v, β ) + δk (v ) + β × Σu ∈N k (v ) [dep
k−1 (u, β )] 

(1) 
where β is a control parameter, 0 ≤ β ≤ 1; N k (v ) is the set of neigh-
bors of node v that are removed at step k , and δk (v ) = |N k (v ) |. 
The dependency of node v is recursively defned by measuring the 
number of nodes u (the h-hop neighbors of v , h = 1, ..., k) that are 
removed in earlier steps up to k = c (v ) –the coreness of node v (and 
for k ≥ c (v ), by convention, we defne depk (v, β ) = depc (v ) (v, β )). 

Intuitively, depk (v, β ) captures the number of nodes recursively 
dependent on v that have been removed in earlier steps up to 
k . With β = 0, we note that depk (v, β ) captures the number of 
v’s neighborsPremoved at each step up to k , and for k ≥ c (v ), 
depk (v, β ) = k δ

k (v ) = deд(v ), the degree of node v . With β > 0, 
depk (v, β ) captures not simply the dependence of its neighbors, but 
that of its neighbors’ neighbors, and so forth. However, the number 
of nodes u removed at each step up to k does not infuence the 

Table 2: Arenas − jazz: peak nucleon-indices (NI ) and their 
respective kC -indices (set SK) and β values 

β max(NI) kC 

0.0 0.011019 26 
0.1 0.006561 25 
0.2 0.006125 24 
0.3 0.006841 24 
0.4 0.007256 24 
0.5 0.007500 24 
0.6 0.007818 25 
0.7 0.008545 25 
0.8 0.009222 25 
0.9 0.009849 25 
1.0 0.010433 25 

dependence value of the node v uniformly. Their contribution is 
weighted by the parameter β in eq.(1). The parameter β quantifes 
the contribution of node u to the total dependence value of node v . 
More precisely, at the kth-step, we multiply the number of h-step 
removed neighbors of v by βh−1 (see the proof in the appendix). 
Thus, the further a node u is to node v , the less it will contribute to 
the total dependence value of node v . Hence, a node v having more 
nodes u with high dependence values in its vicinity will also have a 
high dependence value, creating the dependency propagation efect. 
Therefore, we posit that the network core should contain only nodes 
with very high dependence because the depk (v, β ) values of any 
v ∈ V grows as k increases (more nodes are removed as we move 
from the periphery of the graph to its core). In the next section, we 
use the dependence value of node v as a measure of its coreness. 

4.2 Nucleon Index and Network Nucleus 
To derive a meaningful “core" structure in social networks, we pos-
tulate that the nucleus of a network G (V , E) is an induced subgraph 
GC having the following properties: 

(1) Subgraph GC (VC , EC ) is connected and composed of a collec-
tion of nodes in G with dense aggregate centralities by some 
measure. 

(2) The set VC is fundamental for the structural properties of the 
network, e.g., in terms of connecting nodes via short paths 
through the network. 

(3) GC is the minimal subgraph with these properties. 
To fnd a subgraph GC with the above properties, we consider 

an appropriately defned “decomposition” process (e.g., the k-shell 
decomposition) which yields a (fltration) sequence of (sub)graphs 
{Gk }’s of G: G0 := G ⊃ G1 ⊃ · · · ⊃ GK = ∅. Given a node centrality 
measure θ (i ), i ∈ V , we defne the nucleon-index (NI) to capture 
the extent to which a subgraph constitutes a “densely connected”, 
topological central core in this sequence: XVk Ek 1 

NI (Gk , θ (i )) := × × { × θ (i )} (2)
Vk−1 Vk × (Vk − 1) Vk i ∈Gk 

where by abuse of notation, we use Ek to denote the number of 
edges between nodes in Gk and Vk the number of nodes in Gk 
(and |VK | = 0). The second term in eq.(2) measure the density of 
Gk and the last term the average centrality of Gk . Ideally, if Gk 
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