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Abstract Google+ is a directed online social network where nodes have ei-
ther reciprocal (bidirectional) edges or parasocial (one-way) edges. As recipro-
cal edges play an important role in the structural properties, formation and 
evolution of online social networks, we study the core structure of the sub-
graph formed by them, referred to as the reciprocal network of Google+ — in 
a sense, a reciprocal network can be viewed as the stable “skeleton” network of 
a directed online social network that holds it together. We develop an effective 
three-step procedure to hierarchically extract and unfold the core structure of a 
network by building up and generalizing ideas from the existing k-shell decom-
position and clique percolation approaches. Our scheme produces higher-level 
representations of the core structure of the Google+ reciprocal network and 
it reveals that there are ten subgraphs (“communities”) comprising of dense 
clusters of cliques lying at the center of the core structure of the Google+ 
reciprocal network. Together they form the core to which “peripheral” sparse 
subgraphs are attached. Furthermore, our analysis shows that the core struc-
ture of the Google+ reciprocal network is very stable as the network evolves. 
Our results have implications in the design of algorithms for information flow, 
and in development of techniques for analyzing the vulnerability or robustness 
of online social networks. 
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1 Introduction 

Many online social networks (OSNs) are fundamentally directed: they consist 
of both reciprocal edges, i.e., edges that have already been linked back, and 
parasocial edges, i.e., edges that have not been or is not linked back [1]. Re-
ciprocal edges represent the most stable type of connections or relations in 
directed network – they reflect strong ties between nodes or users [2–4], such 
as (mutual) friendships in an online social network or following each other in 
a social media network like Twitter and Google+. 

Reciprocity is defined as the ratio of the number of reciprocal edges to 
the total number of edges in the network, and it is believed that it plays an 
important role in the structural properties, formation and evolution of online 
social networks. Hence, this metric has been widely studied in the literature 
in various contexts, see, e.g., [1,5–9]. Many studies have used reciprocity (a 
single-valued aggregate metric) to characterize massive directed OSNs, which 
we believe is inadequate. Instead, we consider the reciprocal graph (or reciprocal 
network) of a directed OSN – namely, the bidirectional subgraph formed by the 
reciprocal edges among users in a directed OSN (see Fig. 1 for an illustration). 
In a sense, this reciprocal network can be viewed as the stable “skeleton” net-
work of the directed OSN that holds it together. We are interested in analyzing 
and uncovering the core structural properties of the reciprocal network of a 
directed OSN, as they could reveal the possible organizing principles shaping 
the observed network topology of an OSN [5]. For example, using the core, 
we can build network models that can help us to understand the topological 
features of the nodes and structural properties of the network, as well as, to 
predict the topological growth of the network and provide upper bounds of 
the distance between the nodes – see the jellyfish model of the Internet in [24]. 
Furthermore, unveiling the core structure (referred to as the “nucleus”) of a 
reciprocal network may have implications in the design of algorithms for infor-
mation flow, and in development of techniques for analyzing the vulnerability 
or robustness of OSNs (more in Sect. 9). 

In this paper, we perform a comprehensive empirical analysis of the “core 
structure” of the reciprocal network of Google+. Based on a massive Google+ 
dataset (see Sect. 2 for a brief overview of Google+ and a description of the 
dataset), we find that out of more than 74 million nodes and ≈ 1.4 billion edges 
in (a snapshot of) the directed Google+ OSN, more than two-third of the nodes 
are part of Google+’s reciprocal network and more than a third of the edges 
are reciprocal edges (with a reciprocity value of roughly 0.31). This reciprocal 
network contains a giant connected subgraph with more than 40 million nodes 
and close to 200 million edges (see Sect. 3 for more details). Existence of 
this massive (giant connected) reciprocal (sub)graph in Google+ raises many 
interesting and challenging questions. How is this reciprocal network formed? 
Does it contain a “core” network structure? If yes, what does this structure 
look like? 

In an attempt to address these questions, we develop an effective three-step 
procedure to hierarchically extract and unfold the core structure of Google+’s 
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reciprocal network1 , building up and generalizing ideas from the existing k-
shell decomposition [11] and clique percolation approaches [12], extending our 
work in [10]: i) We first apply (a modified version of) the k-shell decomposition 
method to prune nodes and edges of sparse subgraphs that are likely to lie at 
the periphery of the Google+ reciprocal network (see Sect. 4). The standard 
k-shell decomposition method has been proposed to extract the “core” of a 
network, e.g., that of the Internet AS graph [11]. However, directly applying 
this method to the Google+ reciprocal yields a final graph – a clique of 290 
nodes (the maximum clique of the Google+ reciprocal network) that consists 
of a close-knit community of users in Taiwan – which is unlikely to lie at the 
“core” of the Google+ reciprocal network (see discussion in Sect. 7, where we 
show this clique in fact lies more at the outer ring of Google+’s dense core 
structure). Instead, we introduce a new metric, the dependence value for a node 
that measures the location importance of a node in a network (see Sect. 5). 
Then, using this metric we propose a modified version of the k-shell decom-
position method by identifying the kC -index where we should stop pruning 
the network in order to preserve its core structure. This process yields a dense 
“core” subgraph of the Google+ reciprocal network with approximately 48K 
nodes and 6M edges. ii) Given this dense “core” subgraph, we first compute 
the maximal clique that each node is part of (using a simplified Bron-Kerbosh 
algorithm), and then form a new directed (hyper)graph – a form of clique per-
colation [12], where the vertices are (unique) cliques of various sizes, and there 
exists a directed edge from clique Ci to clique Cj if half of the nodes in Ci are 
contained in Cj (see Sect. 6). This new (hyper)graph provides a higher-level 
representation of the dense core graph of the Google+ reciprocal network: the 
intuition is that the maximal clique containing each node v represents the most 
stable structure that node v is part of, and the directed edge in a sense reflects 
the “attraction” (or “gravitational pull”) that one clique (constellation) has 
over the other. We find that this (hyper)graph of cliques comprises of 1700+ 
connected components (CCs). iii) Finally, considering these CCs as the core 
“community” structures (a dense cluster of cliques) of the Google+ recipro-
cal network, we define three metrics to study the relations among these CCs 
in the underlying Google+ reciprocal network: the number of nodes shared 
by two CCs, the number of nodes that are neighbors in the two CCs, and 
the number of edges connecting these neighboring nodes (see Sect. 7). These 
metrics produce a set of new (hyper)graphs that succinctly summarize the 
(high-level) structural relations among the core “community” structures and 
provide a “big picture” view of the core structure of the Google+ reciprocal 
network and how it is formed. In particular, we find that there are ten CCs 
that lie at the center of this core structure through which the other CCs are 
most richly connected. We also find that the core structure of the Google+ re-
ciprocal network is very stable as the network evolves (see Sect. 8). We discuss 
implications and related work in Sect. 9 and Sect 10. In Sect. 11, we conclude 
the paper with a brief discussion of the future work. 

1 Our methodology can also be applied to others online social networks. 
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Fig. 1 Illustration of the reciprocal network (H) of a directed graph (Ω). Specifically, 
(B, C), (C, B), (B, D), (D, B), (D, E), (E, D), (C, E), (E, C) are reciprocal edges; (A, B), 
(C, A), (D, F ), (F, E) are parasocial edges. The reciprocity of Ω is 8/12 = 0.67. 

We summarize the major contributions of our paper as follows. To the 
best our knowledge, our paper is the first study on the core structure of a 
“reciprocal network” extracted from a massive directed social graph. While this 
paper focuses on Google+, our approach is also applicable to other directed 
OSNs. 

– We propose a new metric, the dependence value, that measures the location 
importance of a node in the network. Using this metric, we therefore modify 
the standard k-shell decomposition method to stop the process earlier, in 
order to extract a meaningful “core” for social networks 

– We develop an effective three-step procedure to hierarchically extract and 
unfold the core structure of a reciprocal network arising from a directed 
OSN. 

– We apply our method to the reciprocal network of the massive Google+ 
social network, and unfold its core structure. In particular, we find that 
there are ten subgraphs (“communities”) comprising of dense clusters of 
cliques that lie at the center of the core structure of the Google+ reciprocal 
network, through which other communities of cliques are richly connected; 
together they form the core to which other nodes and edges that are part 
of sparse subgraphs on the peripherals of the network are attached. 

– We observe that the core structure of the Google+ reciprocal network is 
very stable as the network evolves: the size of the core communities (hy-
per)graph increases as the network evolves, as well as, its density. Addi-
tionally, the set of nodes that participates in the core is very stable over 
time, with few percentage of nodes (e.g: 5% and 9%) that move away from 
the core to the periphery as the network evolves. 

– We observe that the number of communities lying at the center of the core 
structure of the Google+ reciprocal network is also very stable: it increases 
from 10 to 11 core communities across snapshots H1 → H2 and from 11 to 
13 core communities across snapshots H2 → H3 in the core communities 
(hyper)graphs. 
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Table 1 Main characteristics of Google+ snapshots: (start-date, duration) – Γ1: (24-08-12, 
17 days), Γ2: (10-09-12, 11 days) and Γ3: (20-06-13, N/A) 

ID # nodes # edges max(in) max(out) reciprocity density 

Γ1 74,419,981 1,396,943,404 2,289,874 9,981 0.31 2.52 × 10−7 
Γ2 97,150,410 1,849,319,588 3,463,060 9,872 0.27 1.95 × 10−7 
Γ3 170,830,352 2,937,087,979 5,089,789 10,840 0.23 1.01 × 10−7 

Table 2 Main characteristics of the LWCC of Google+: (start-date, duration) – Ω1: (24-
08-12, 17 days), Ω2: (10-09-12, 11 days) and Ω3: (20-06-13, N/A) 

ID # nodes # edges max(in) max(out) reciprocity density 

Ω1 66,237,724 1,291,890,737 1,822,999 9,981 0.34 2.94 × 10−7 
Ω2 84,789,166 1,633,199,823 2,579,551 9,872 0.30 2.27 × 10−7 
Ω3 145,478,563 2,548,275,802 3,793,031 10,840 0.26 1.20 × 10−7 

2 Google+ Overview and Dataset 

In this section, we briefly describe key features of the Google+ service and a 
summary of our dataset. 
Platform Description: On June 2011 Google launched its own social net-
working service called Google+. The platform was announced as a new gen-
eration of social network. Previous works in the literature [8,9] claim that 
Google+ cannot be classified as particularly asymmetric (Twitter-like), but it 
is also not as symmetric (Facebook-like) because Google+ features have some 
similarity to both Facebook and Twitter. Therefore, they labelled Google+ as 
a hybrid online social network[8]. Similar to Twitter (and different from Face-
book) the relationships in Google+ are unidirectional. In graph-theoretical 

2terms, if user x follows user y this relationship can be represented as a di-
rected social edge (x, y); if user y also has a directed social edge (y,x), the 
relationship x, y is called symmetric[13]. Similar to Facebook, each user has 
a stream, where any activity performed by the user appears (like the Face-
book wall). For more information about the features of Google+ the reader is 
referred to [14,15]. 
Dataset: We obtained our dataset from an earlier study on Google+ [9]. The 
dataset is a collection of three massive directed graph (denoted as Γi, for 
i = 1, 2, 3) of the social links of the users3 in Google+, collected from August, 
2012 to June, 2013. We use Breadth-First-Search (BFS) to extract the largest 
weakly connected component (LWCC) of Γi. We label the extracted LWCC as 
subgraph Ωi. Since the users Ωi form the most important component of the 
Google+ network [9], we extract the reciprocal network of Google+ from the Ωi 

subgraph (see Sect. 3). The main characteristics of Γi and Ωi are summarized 
in Table 1 and Table 2, where each snapshot represents a complete graph 

2 In this paper we use the terms “user” and “node” interchangeable 
3 Google+ assigns each user a 21-digit integer ID, where the highest order digit is always 

1 (e.g., 100000000006155622736) 
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Table 3 Main characteristics of the reciprocal network of Google+: H 

ID # nodes # edges max(degree) density 

H1 40,403,216 197,838,519 4,294 2.42 × 10−7 
H2 49,161,409 226,373,003 4,425 1.87 × 10−7 
H3 74,539,728 327,204,637 4,743 1.78 × 10−7 

of the social relations among all users in Google+ and density is defined as 
|E|/[|V |(|V | − 1) for a directed graph, and 2|E|/[|V |(|V | − 1) for an undirected 
graph – here |V | is the number of nodes and |E| is the number of edge. We 
observe that reciprocity and density decrease for both Γi and Ωi. This is due to 
the fact that new users joining Google+ tend to be less “social” and they make 
fewer connections as the network evolves – findings reported by the authors 
in [16]. 

3 Overview of the Reciprocal Network 

In this section, we first describe our methodology to extract the reciprocal net-
work of Google+4 . We then provide a brief overview of some global structural 
properties of the reciprocal network. Firstly, to derive the reciprocal network 
of Google+, we proceed as follows: from Ω, we extract the subgraph composed 
of nodes with at least one reciprocal edge. We label this new subgraph as G. 
However, G is not a connected subgraph. Hence, we use BFS (breadth-first-
search) to extract its largest connected component (LCC); we label this new 
subgraph as H. In this paper, we consider this subgraph H as the “recipro-
cal network” of Google+5 . The main statistics of subgraphs Hi are listed in 
Table 3. 

Figure 2 shows the complementary cumulative distribution function (CCDF) 
of the degrees of nodes in the subgraphs Hi – we note that they represent the 
mutual degrees or reciprocal degrees of the same nodes in Ωi. For comparison, 
we also plot the CCDFs of the in-degrees and out-degrees for these nodes in 
Ωi. We can see that these curves have approximately the shape of a power 
law distribution. The CCDF of a power law distribution is given by Cx−α and 
x, α,C > 0. By using the tool in [17,18], we estimate the exponent α that 
best models each of our distributions. We obtain α = 2.72 for mutual degree, 
α = 2.41 for out-degree and α = 2.03 for in-degree distributions. We observe 
that the mutual degree and out-degree distributions have similar x-axis range 
and the out-degree curve drops sharply around 5000. We conjecture that this 
is because Google+ maintains a policy that allows only some special users to 
add more than 5000 friends to their circles [19]. The observed power-law trend 

4 For clarity of notation, we sometimes drop the subscript index i from the subgraphs 
notations, unless we are referring to a specific snapshot i 

5 It contains more than 90% of the nodes with at least one reciprocal edge in Google+. 
Hence, our analysis of the dataset is eventually approximate. 
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(c) Out-degree distribution 

Fig. 2 Log-log plot of a) mutual degree, b) in-degree and c) out-degree complementary 
cumulative distribution functions (CCDF) for several snapshots of the reciprocal network 
of Google+ (subgraphs Hi, i=1,2 and 3). All distributions show properties consistent with 
power-law networks. 

in the distributions implies that a small fraction of users have a disproportion-
ately large number of connections, while most users have a small number of 
connections – this is characteristics of many social networks. 
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Fig. 3 A schematic representation of a network under k-shell decomposition: the network 
can be viewed as the union of shell 1 up to kmax = 3. The innermost core of the network is 
highlighted by the blue circle (the largest shell index: 3). 

Fig. 4 The k-shell decomposition method on the reciprocal network of Google+ (subgraph 
H1). For each k-shell, we plot the number of nodes belonging to the k-shell as k varies from 
1 to kmax = 308. 

4 Extracting the Nucleus of the Reciprocal Network using K-Shells 

K-shell decomposition is a classical graph decomposition technique which has 
been used as an analysis and visualization tool to extract and study the “core” 
structure of complex networks, such as that of the Internet AS graph [11]. In 
this method, nodes are assigned a k-shell index according to their remaining 
degree, after pruning all nodes with degree smaller than the k value of the 
current shell. More specifically, this method works as follow: a) first, remove 
all nodes in the network with degree 1 (and their respective edges) – these 
nodes are assigned to the 1-shell; b) more generally, at step k = 2, . . ., remove 
all nodes in the remaining network with degree k or less (and their respective 
edges) – these nodes are assigned to the k-shell; and c) the process stops when 
all nodes are removed at the last step – the highest shell index is labelled 
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kmax. At the end of the k-shell decomposition process, each node v is assigned 
with a unique k-shell index, denoted by shell(v). The network can be viewed 
as the union of all kmax shells – see Fig. 3 (note that this is distinct from 
k-core decomposition6 defined in the literature [20,21], more in Sect. 10). The 
complexity of this procedure is O(V + E) for a general graph. 

For each k, we define the k-core (Ck) as the union of all shells with indices 
larger or equal to k or as the maximal induced subgraph Ck ⊆ G such that 
if v ∈ Ck, then node v must have at least k + 1 neighbors that belong to 
Ck−1 and degk(v) > 0 (we use deg(v) to denote the degree of v in the network 
and degk(v) to denote the degree of v in Ck). Similarly, k-shell (Sk) can be 
defined as the subgraph induced by the set of nodes with dk−1(v) ≤ k and if 
v ∈ Sk → degk(v) = 0 . 

Clearly, for a node to belong to the k-core (thus shell(v) ≥ k), it must 
have at least degree k, i.e., deg(v) ≥ k. However, deg(v) ≥ k is not sufficient 
to guarantee it to belong to the k-core. For example, a node v with only 
neighbors of degree 1 (i.e., v is the root of a star structure) belongs to the 
2-shell, i.e., shell(v) = 2, no matter how high its degree is. On the other hand, 
it is easy to see that if a node v is part of a clique of k nodes, then shell(v) ≥ k. 
However, a node v does not need to be part of a k-clique to have shell(v) ≥ k. 
Consider a tree T of n nodes (the sparsest graph with n nodes). We can in 
fact provide a complete characterization of nodes in T to have shell(v) ≥ k 
in a recursive manner: for v to have shell(v) ≥ k, it must have at least k-
neighbors u’s with shell(u) ≥ k − 1 – this characterization also applies to a 
general graph. We see that in the case of a tree, nodes with higher k-shell 
indices must lie more at the “core” (i.e., the increasingly “denser” part) of 
the tree. For a general graph, however, a node with a high k-shell index may 
not lie at the “core” of the graph: it can be part of a large clique that is 
“isolated” on a periphery of a massive graph. In such a case, the large clique 
will break off from the “core” of the network (e.g., as represented by the largest 
connected component remaining in the k-core) in the early stage of the k-shell 
decomposition process. 

We apply the k-shell decomposition method to the Google+ reciprocal 
network for subgraph H1 (we analyze the other subgraphs in Sect. 8). We 
find that the kmax = 308, and the kmax-core is a clique of size 290 nodes 
(the maximum clique in the Google+ reciprocal network). Figure 4 shows the 
number of nodes belonging to the k-shell as k varies from 1 to 308: we see that 
99% of the nodes in our network fall in the lower k-shells (from k = 1 to 100). 
This is not surprising, as the majority of the nodes in our network have degree 
less than 100. Figure 5(a) shows the average degree of nodes in the k-shell, 
whereas in Fig. 5(b) we zoom in on nodes with deg(v) ≥ 1000, and illustrate 
how they distribute across various k-shells. We see that while a large portion 
of high-degree nodes belong to higher k-shells, in fact the highest degree nodes 
belong to lower k-shells, suggesting that they do not lie at the “core” of the 
Google+ reciprocal network. 

6 Which simply removes all nodes with degree less than k in a graph 
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(a) Average degree of nodes in the k-shells 

(b) K-shell distribuition of the nodes with deg(v) ≥ 1000 

Fig. 5 The k-shell decomposition method on the reciprocal network of Google+ (subgraph 
H1). We plot the degree distributions for nodes in the k-shells, as k varies from 1 to kmax = 
308: a) average degree of nodes in the k-shells, b) we zoom in on nodes with deg(v) ≥ 1000, 
and illustrate how they distribute across various k-shells. 

Figure 6 shows the size of the largest as well as those of the 2nd, 3rd and 
4th largest connected components in the k-core, as k varies from 1 to 308. 
We note that at step k = 121, a small subgraph containing the maximum 
clique (of size 290) breaks off from the largest connected component which 
dissolves after k = 253, whereas this subgraph containing the maximum clique 
persists after k = 252 and becomes the largest component, and at kmax = 
308, we are left with the maximum clique plus 10 additional nodes that are 
connected to the maximum clique. Closer inspection of nodes in the maximum 
clique reveals that its users belong to a single institution in Taiwan, forming 
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Fig. 6 The k-shell decomposition method on the reciprocal network of Google+ (subgraph 
H1). For each k-core subgraph, we plot the size of the largest as well as those of the 2nd, 3rd 
and 4th largest connected components (LCC) in the k-core, as k varies from 1 to kmax = 308. 
At k-core=121, the 2nd LCC contains the maximum clique of the network and it becomes 
the 1st LCC in the network after k-core=252. This component persists up to kmax=308 
(the network nucleus). 

a close-knit community where each user follows everyone else. We see that 
directly applying the standard k-shell decomposition to the Google+ reciprocal 
network produces a clique of size 290, which we believe is unlikely to be the 
“core” of the Google+ reciprocal network. 

From this result, we see that directly applying the standard k-shell decom-
position to Google+’s reciprocal network produces an innermost structure that 
does not represent the core of this network. This is due to the fact that at a 
certain k-index, we reach the vicinity of the core; but going far beyond this 
index would destroy the core structure of the network. 

5 The Depencence Value and Core Subgraph 

In order to extract a meaningful core of the Google+ reciprocal network, we 
therefore modify the standard k-shell decomposition method to stop the pro-
cess earlier. To achieve this, we propose a new metric that provides important 
information about the structural function of each node in the graph (we label 
it as “dependence” value) at each k-step: 

The dependence value of node v at step k is defined as follows: for v ∈ V , 
dep0(v, β) = 0 and for k = 1, . . . , c(v), 

depk(v, β) := depk−1(v, β) + δk(v) + β × Σu∈Nk(v)[dep
k−1(u, β)] (1) 

where β is a control parameter, 0 ≤ β ≤ 1; Nk(v) is the set of neighbors 
of node v that are removed at step k, and δk(v) = |Nk(v)|. The dependency 
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Fig. 7 Log-log plot of the average dependency values for the reciprocal network of Google+ 
(subgraph H1). We plot the normalized average dependence value for the nodes in the k-
shells, as k varies from 1 to kmax = 308. 

Fig. 8 Degree distribution for nodes in subgraph G120 extracted from H1. Note that degree 
here refers to that of a node in G120, the 120-core graph after the kC -th shell decomposition 
process, it is not the (original) degree of the node in the Google+ reciprocal network. 

of node v is recursively defined by measuring the number of nodes u (the 
h-hop neighbors of v, h = 1, ..., k) that are removed in earlier steps up to 
k = c(v) – the coreness of node v (and for k ≥ c(v), by convention, we define 
depk(v, β) = depc(v)(v, β)). 

Intuitively, depk(v, β) captures the number of nodes recursively dependent 
on v that have been removed in earlier steps up to k. With β = 0, we note 
that depk(v, β) captures the number of v’s neighbors removed at each step up P 
to k, and for k ≥ c(v), depk(v, β) = deg(v) = δ(v), the degree of node v.k 
With β > 0, depk(v, β) captures not simply the dependence of its neighbors, 
but that of its neighbors’ neighbors, and so forth. However, the number of 
nodes u removed at each step up to k does not influence the dependence value 
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of the node v uniformly. Their contribution is weighted by the parameter 
β in eq.(1). The parameter β quantifies the contribution of node u to the 
total dependence value of node v. More precisely, at the kth-step, we multiply 
the number of h-step removed neighbors of v by βh−1 (see the proof in the 
appendix). Thus, the further a node u is to node v, the less it will contribute 
to the total dependence value of node v. Hence, a node v having more nodes 
u with high dependence values in its vicinity will also have a high dependence 
value, creating the dependency propagation effect. 

Given eq.(1), the dependence values of any v ∈ V grows as k increases 
(more nodes are removed as we move from the periphery of the graph to its 
core). We posit that the network core should contain only nodes with very high 
dependence values. Hence, when we reach the vicinity of the network core, the 
nodes’ dependence value will grow significantly as we increase k further, due 
to the dependency propagation effect. From this intuition, we develop the fol-
lowing empirical heuristic for terminating the k-shell decomposition process: 
for any graph G with a dense core structure, we should stop the k-shell decom-
position method at the k-index (kC ), where we observe a very sharp increase 
(largest “upward slope” or “gradient ascent”) in the average dependence values 
of the nodes in the k-core graphs or k-shells of G, as k increases from 1 up to 
kmax. 

Our approach to calculate the dep(v, β) score for node v is dependent on 
the k-shell decomposition method and degree computation which have a com-
plexity of O(V +E). Then, given that the degree and coreness of each node are 
known, our procedure has a complexity of O(E). Therefore, our methodology 
is highly scalable and can be applied to massive networks. Figure 7 shows the 
average dependency value per k-shell index for our massive Google+ reciprocal 
network (subgraph H1). The parameter β is set to 0.25 (see the appendix for a 
discussion on the selection of this parameter). Applying the criteria described 
above, we therefore terminate the k-shell decomposition at kC = 120, which 
yields the kC -core graph with kC = 120: this core graph G120 has 48,229 nodes 
and 6,378,596 edges, with an average degree of 132 and a density of approxi-
mately 0.00548, which is much greater than that of the reciprocal network H1 

as a whole. Figure 8 shows the degree distribution of the nodes in the 120-
core graph (note that degree here refers to that of a node in G120, the 120-core 
graph after the kC th shell decomposition process, it is not the (original) degree 
of the node in the Google+ reciprocal network). From Fig. 5(a) and Fig. 5(b), 
we see that G120 is comprised of many nodes with (original) high degrees in 
the Google+ reciprocal network, with an average (original) degree of roughly 
500. 

6 Constructing the Core Clique (Hyper)Graph 

Given the dense core subgraph G120 (extracted in the previous section), how 
can we uncover its structure? To answer this question, we consider “maximal 
cliques” as the basic atomic (sub)structures of the network nucleus. Then, we 
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Fig. 9 Log-log plot of clique size complementary cumulative distribution function (CCDF) 
for the core subgraph G120 (extracted from H1) – we extract these cliques using algorithms 1 
and 2. 

extract the minimal set of the largest maximal cliques that cover every node in 
G120. Using these cliques substructures, we build a (hyper)graph as a higher-
level representation of the nucleus7 of a network. To achieve this, we proceed 
as following: 

First, to find the largest maximal clique containing a given vertex in a 
network, we implement algorithm 1. It uses a variation of the popular Bron-
Kerbosh algorithm [22] (we denote it as Simplified Bron-Kerbosh (SBK)) to 
extract maximal cliques. During the search for the largest maximal clique 
containing a given vertex v (thereafter referred to as Cv in short), our heuristic 
removes the vertices that cannot form cliques larger than the clique stored 
in the variable Cmax. Furthermore, our algorithm considers only the set of 
neighbors of v that share at least one edge to another vertex adjacent to v 
at each step, instead of recursively considering all neighbors of v, and thus is 
much faster. This set (denoted by N i(v)) is sorted in decreasing order based 
on the number of shared neighbors between v and u ∈ N i(v) for the following 
reason: in a relatively fairly connected subgraph, a vertex with the largest 
number of shared nodes with v is more likely to be a member of Cv compared 
to any other. Then, in the worst case, algorithm 1 loops over the complete set 
N i(v) at most 4 (max degree in the graph), calling the subroutine SBK at 
most 4 . Thus, the time complexity of our heuristic is bounded by O(42). 
Using algorithm 1, we develop a procedure to extract the minimal set of the 
largest maximal cliques that cover every node in a given graph (algorithm 2). 
The resulting set of cliques returned from this method is always guaranteed to 
contain at least a unique node per clique. We apply this procedure to subgraph 
G120 and obtain 34,501 maximal cliques with an average clique size of 23.03 
nodes. Figure 9 shows the clique size distribution. 

Second, using the extracted 34,501 maximal cliques, we generate a new 
directed (hyper)graph, where the vertices are (unique) cliques of various sizes, 

7 In this paper we use the terms “core” and “nucleus” interchangeable 
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Algorithm 1 Largest Maximal Clique Extraction algorithm (LC) 
1: Input: node u 
2: Output: largest maximal clique containing u 
3: R : currently growing maximal clique 
4: P := N [u]: set of neighbors of vertex u 
5: procedure LC(u) V 
6: N i(u) = {wi, wi, ...|wk=i,j.. ∈ N(u) du(wi) > du(wj )}
7: Cmax = 0 
8: max = 0 
9: for w ∈ N i(u) do 
10: R = [u] 
11: P = N [w] 
12: C = SBK(R, P, max) 
13: k = size(C) 
14: if k > max then 
15: Cmax = C 
16: max = k 
17: return Cmax 

Subroutine: Simplified Bron-Kerbosh (SBK) 

18: procedure SBK(R, P, max) 
19: if size(R) + size(P ) ≤ max then 
20: return . it is not possible to find a clique larger than max 
21: else if P := 0 then 
22: report R as a maximal clique 
23: else 
24: Let unew be the vertex with highest number of neighbors in P 
25: Rnew := R ∪ {unew}
26: Pnew := P ∩ N [unew] 
27: SBK(Rnew , Pnew , max) 

Algorithm 2 Extract Minimal Set of Maximal Cliques from a Graph 
1: procedure EMC(G(V, E)) 
2: construct a set W and W := V 
3: construct a ordered list S of the nodes in V based on their degree (decreasing order) 
4: select the first item in S, vertex i, as the pivot 
5: apply the LC algorithm using i as the pivot vertex 
6: add the reported maximal clique ci containing i to the clique set Ctotal = [cn, cm, ..] 
7: remove the nodes in ci from W : Wj = Wi − ci 
8: select the next item in S, vertex j, as the next pivot vertex such that j 6∈ Ctotal and 

repeat steps(5), (6) and (7) until W = ∅ 

and there exists a directed edge from clique Ci to clique Cj if more than half 
of the nodes in Ci are contained in Cj , i.e., Ci → Cj if (|Ci| ∩ |Cj |)/|Ci| ≥ 
θ = 0.5. We vary the parameter θ from 0.5 to 0.7, and find that it does not 
fundamentally alter the connectivity structure of the (hyper)graph of cliques 
thus generated. We remark that the maximal clique containing each node v 
can be viewed as the most stable structure that node v is part of. The directed 
(hyper)graph of cliques captures the relations among these stable structures 
each node is part of: intuitively, each directed edge in a sense reflects the 
attraction (or gravitational pull) that one clique (a constellation of nodes) has 
over the other. Hence, this (hyper)graph of cliques provides us with a higher-
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level representation of the dense core graph of the Google+ reciprocal network 
– how the most stable structures are related to each other. This procedure can 
be viewed as a form of clique percolation [12]. 

We find that this (hyper)graph of cliques comprises of 1,758 connected 
components (CCs). The largest component has 2,618 cliques, 3,295 nodes and 
437,867 edges, while the smallest has 1 clique, 3 nodes and 3 edges respectively. 
We regard these connected components (CCs) as forming the core communities 
of the core graph of the Google+ reciprocal graph: each CC is composed of 
either one single clique (such a CC shares few than half of its members with 
other cliques or CCs), or two or more cliques (stable structures) (where one 
clique shares at least half of its member with another clique in the same CC, 
thus forming a closely knit community). Figure 10(a) shows the distributions 
of these components in terms of the number of cliques, the number of nodes 
and the number of edges. We observe that for CC id’s from 1 to 100 (which 
contains 30 or more cliques), there is a strong correlation between the number 
of cliques, nodes and edges: in general the connected components with the 
highest number of cliques also have the highest number of nodes and edges. 

Figure 10(b) shows the maximum, minimum, average and 75% percentile 
of clique size for each CC. We observe that there is not a relationship between 
the number of cliques and their respective sizes in the CCs. We observe that 
most cliques have sizes between 10 and 100 nodes. There are largest CCs 
composed with a huge number of cliques of small size (e.g., CC ids from 1 to 
10), whereas there are also small CCs composed with few number of cliques 
but with very large sizes (e.g. CC ids: 31, 44, and 47). We note also that there 
are a number of CCs which contain only one clique, but some of these cliques 
are of large size also. 

7 Analysis of the Core Community (Hyper)Graph & its Structure 

We now investigate the relationship between the connected components (CCs) 
in our clique (hyper)graphs constructed in the previous section (Sect. 6), in 
particular the 70th largest CCs. Recall that we regard the CCs in the clique 
(hyper)graphs as forming the core communities within Google+ reciprocal net-
work nucleus – each CC represents a dense cluster of cliques. In this section, we 
define three metrics to study the relations among these CCs in the underlying 
Google+ reciprocal network: 

– Shared Nodes: the number of nodes that CCi and CCj have in common: 

S(CCi, CCj ) = |{u ∈ V |u ∈ CCi, u ∈ CCj }| (2) 

– Shared Neighbors: the number of nodes in CCi that have an edge to 
another node in CCj : 

N(CCi, CCj ) = |{u ∈ CCi, |∃v ∈ CCj : (u, v) ∈ E}| (3) 

– Cross-Edges: the number of cross edges between two connected compo-
nents (CCi and CCj ): 

B(CCi, CCj ) = |{(u, v) ∈ E|v ∈ CCi, u ∈ CCj }| (4) 
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(a) Number of cliques, nodes and edges 

(b) Clique size: maximum, minimum, average and 75% percentile 

Fig. 10 Statistics of the connected components in the (hyper)graph of cliques constructed 
from the core subgraph G120 (extracted from H1): a) distribution of the number of cliques, 
nodes and edges and b) distribution of the clique size in terms of the maximum, minimum, 
average and 75% percentile of the clique size. 

These metrics produce a set of three new (hyper)graphs that succinctly 
summarize the (high-level) structural relations among the core community 
structures: 1st) a node represents a CC and an undirected edge CCi − CCj 

denotes that both components share at least one node; 2nd) a node represents a 
CC and a directed edge CCi → CCj denotes that CCi has the largest number 
of cross edges to nodes in CCj ; 3rd) a node represents a CC and a directed 
edge CCi → CCj implies that CCi has the largest number of neighboring 
nodes to nodes in CCj . These (hyper)graphs provide a “big picture” view of 
the core graph of the Google+ reciprocal network and yield insights as to how 
it is formed. 
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Table 4 Summary of the statistics for the ten components that lie at the center in the core 
graph of the reciprocal network of Google+. Together they form the core to which peripheral 
sparse subgraphs are attached. 

ID # c # nodes # edges avg |c| max |c| min |c| 75% percentile 

1 2,618 3,295 437,867 30.0 47 4 25 
2 2,745 3,256 494,867 20.2 46 5 26 
3 2,437 3,059 499,356 25.5 47 5 30 
4 2,324 2,877 416,098 20.2 42 7 25 
5 2,340 2,737 449,225 24.3 56 6 32 
7 1,040 1,362 146,151 29.2 55 5 40 
15 513 923 60,191 16.0 33 6 20 
22 473 808 32,031 10.0 23 4 11 
37 262 396 14,324 9.2 15 4 10 
47 69 297 22,629 50.3 139 5 73 

Figures 11(a), 11(b), 11(c) show the (hyper)graphs of the relationship be-
tween the components based on the number of shared nodes, cross-edges and 
shared neighbors. These figures show that there are ten subgraphs (core com-
munities”) comprising of dense clusters of cliques that lie at the center of the 
nucleus of the Google+ reciprocal network, through which other communities 
of cliques are richly connected. Then, the 1,758 connected components (CCs) 
in the clique (hyper)graph form the core graph of the Google+ reciprocal net-
work, to which other nodes and edges that are part of sparse subgraphs on 
the peripherals of the network are attached. Table 4 shows a summary of the 
statistics for the ten CCs, respectively. We observe that the largest CC has 
2,618 cliques, 3,295 nodes and 437,867 edges, while the smallest has 69 cliques, 
297 nodes and 22,629 edges. The set of components in table 4 contains some 
of the largest CC in our clique (hyper)graph. 

From figures 11(a), 11(b) and 11(c), we observe that in the periphery of our 
core communities (hyper)graphs, we find a small CC composed with 36 of the 
largest cliques in the Google+ reciprocal network. The average, minimum and 
maximum sizes of the cliques in this CC are 227, 105 and 290 – the latter is the 
maximum clique of the Google+ reciprocal network. This CC is highlighted by 
a “red circle” in the (hyper)graphs in Fig. 11. It shows this CC lies more at the 
outer ring of Google+’s dense core structure. As mentioned earlier in Sect. 4, 
the 290 users in this maximum clique of the Google+ reciprocal network belong 
to a single institution in Taiwan where every user follows every other. The users 
in this clique also form close relations with many other users, forming 35 other 
cliques. Together, these 35 cliques form a close-knit community. However, we 
see that this community in fact does not lie at the very “center” – instead lies 
more at the outer ring – of the core graph of the Google+ reciprocal network. 
Hence, we see that simply applying the conventional k-shell decomposition 
method to the Google+ reciprocal network would yield the maximum clique 
in the Google+ reciprocal network, but not its core structure. In contrast, the 
ten CCs mentioned above more likely lie at the “center” of the core graph of 
the Google+ reciprocal network. 
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(a) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of shared nodes: a node represents a CC and 
an undirected edge CCi − CCj denotes that both components share at least 
one node. 

(b) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of cross-edges: a node represents a CC and 
a directed edge CCi → CCj implies that CCi has the largest number of 
cross edges to nodes in CCj . 

(c) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of neighboring nodes: a node represents a CC 
and a directed edge CCi → CCj implies that CCi has the largest number of 
neighboring nodes with CCj . 

Fig. 11 (Hyper)Graphs for the core communities (extracted from G120) of the reciprocal 
network of Google+: snapshot - H1. The color intensity of a CC is proportional to its 
degree. The CC highlighted in “red” is the core subgraph yielded by directly applying 
the standard k-shell decomposition to Google+’s reciprocal network. However, our core 
communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 
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Table 5 Main characteristics of the core subgraph (GC ) for the reciprocal network of 
Google+ across several snapshots. 

Hi kC # nodes # edges avg(d) density 

1 
2 
3 

120 
120 
130 

48,229 
52,904 
94,112 

6,378,596 
6,737,630 
14,260,691 

132 
127 
152 

0.00548 
0.00482 
0.00322 

Table 6 Main statistics of the core communities (hyper)graphs for Hi: c - cliques; CC -
connected components 

Hi # c avg|c| # CC max|CC| min|CC| 

1 34,501 23.03 1,758 2,618 1 
2 38,055 20.68 2,221 2,487 1 
3 65,101 24.96 3,802 6,217 1 

8 Evolution of the Core Community (Hyper)Graph 

We now analyze how the core structure of the Google+ reciprocal network 
evolves over time using the remaining snapshots of subgraph H (Hi=2,3). To 
achieve this, we apply our methodology to uncover the core communities (hy-
per)graph for Hi. Table 5 shows the kC -indices where we stop the k-shell 
decomposition method and provides statistics for the core subgraph (GC ) of 
the reciprocal network of Google+ across three different snapshots. We ob-
serve that the size of the nucleus increases as the network evolves, as well as, 
its density – although, we see a slight decrease at H2 (this correlates with the 
release of a new Google+ feature reported by the authors in [16]). Table 6 pro-
vides statistics for the core communities (hyper)graphs. We observe that the 
number of cliques in the core subgraph (GC ) increases as the network evolves. 
Similarly, the number of core communities (CC) and the size of the largest 
CC in the clique (hyper)graph increase as the network evolves. In contrast, 
the size of the smallest CC remains the same across all the snapshots. 

Analyzing the nodes that are found in the nucleus, we find that the set that 
participates is very stable over time. We find changes consisting of a few per-
centage of nodes that moved from the nucleus to a lower k-shell as the network 
evolves: 9% from H1 → H2 and 5% from H2 → H3. We also observe that the 
main structure of the core communities (hyper)graph is stable across all the 
snapshots: it consists of dense clusters of cliques that lie at the center of the 
core graph, through which other communities of cliques are richly connected. 
Additionally, we observe that the number of the most central communities in 
the core communities (hyper)graphs is also very stable: it increases from 10 to 
11 across snapshots H1 → H2 and from 11 to 13 across snapshots H2 → H3. 
Lastly, we see that the community containing the “maximum clique” remains 
in the periphery of the core subgraph as the network evolves – see Fig. 12 and 
Fig. 13 for illustrations. 
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(a) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of shared nodes: a node represents a CC and 
an undirected edge CCi − CCj denotes that both components share at least 
one node. 

(b) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of cross-edges: a node represents a CC and 
a directed edge CCi → CCj implies that CCi has the largest number of 
cross edges to nodes in CCj . 

(c) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of neighboring nodes: a node represents a CC 
and a directed edge CCi → CCj implies that CCi has the largest number of 
neighboring nodes with CCj . 

Fig. 12 (Hyper)Graphs for the core communities (extracted from G120) of the reciprocal 
network of Google+: snapshot - H2. The color intensity of a CC is proportional to its 
degree. The CC highlighted in “red” is the core subgraph yielded by directly applying 
the standard k-shell decomposition to Google+’s reciprocal network. However, our core 
communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 



23 Uncovering the Nucleus of a Massive Reciprocal Network 

(a) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of shared nodes: a node represents a CC and 
an undirected edge CCi − CCj denotes that both components share at least 
one node. 

(b) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of cross-edges: a node represents a CC and 
a directed edge CCi → CCj implies that CCi has the largest number of 
cross edges to nodes in CCj . 

(c) (hyper)graph of the structural relation among the core communities 
(CCs) based on the number of neighboring nodes: a node represents a CC 
and a directed edge CCi → CCj implies that CCi has the largest number of 
neighboring nodes with CCj . 

Fig. 13 (Hyper)Graphs for the core communities (extracted from G120) of the reciprocal 
network of Google+: snapshot - H3. The color intensity of a CC is proportional to its 
degree. The CC highlighted in “red” is the core subgraph yielded by directly applying 
the standard k-shell decomposition to Google+’s reciprocal network. However, our core 
communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 
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9 Implications 

So far, we have demonstrated that our method can effectively uncover and 
extract the nucleus of the Google+ reciprocal network based on large-scale 
dataset. In this section, we discuss the implications of our method and results. 
While our findings are likely applicable to many different applications, we con-
centrate on their effect on the identification of influential spreaders, network 
formation, design and robustness: 
Influential Spreaders: The “coreness” centrality or k-shell index has been 
argued to be a better measure than node degree for identifying influential 
spreaders in a network [28,29]. However, our results show that using k-shell 
indices as a predictor of spreading influence of a node can be misleading. This 
is due to the fact that for a node to have a high k-shell index, it just needs to be 
a part of a very strong structure (e.g., a clique). This structure, however, may 
be isolated and lie at the edge or periphery of the network, instead of its core 
(see Sect. 4). Our analysis shows that the dependency value of a node, depk(i), 
provides important information about the structure function of each node in 
the graph. Thus, we believe that by using a node dependency value along with 
its k-shell index (depk, k), we can better predict the spreading influence of a 
node than simply using its k-shell index. We will investigate this in the future. 
Network Formation: A network core gives a well-defined starting point and 
a way to explore the network topology systematically. For example, a network 
can be reconstructed layer by layer from the core to its periphery. Then, topo-
logical features of the nodes and structural properties of the network can be 
measured at each layer. Furthermore, using the core, we can build macroscopic 
models of the network that can help us predict the topological growth of the 
network and provide good upper bounds of the distance between the nodes 
– see the jellyfish model of the Internet in [24]. Therefore, unveiling the core 
structure of networks can help us uncover and understand possible organiz-
ing principles shaping the observed network topological structure and network 
formation. 
Network Design: Observing the evolution patterns of the core structure of 
social networks can give insights for the design of future social networks by 
other social networking service providers who would like to enter the market. 
Furthermore, it can also help applications for social networks to be designed 
to take advantage of the network core properties. 
Network Robustness: Robustness is often defined as the ability of a network 
to continue to function when it is subject to failures. Uncovering the core 
structure of networks is fundamental in the development of techniques for 
analyzing the vulnerability or robustness of networks. For example, in Google+ 
the tight core coupled with high link reciprocity implies that users in the 
core appear on large number of the shortest paths in the network. Thus, if 
malicious users are able to penetrate the core, they can destroy or remove the 
hubs of information flow (core nodes) in the network. Hence, disrupting the 
functionally of the network. Then, by strengthening the defenses in the core 
subgraph, we can increase the robustness of the social networks. 
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(a) double star graph 

(b) binary tree 

Fig. 14 Example networks of double star and binary tree graphs. These structures cannot 
be decomposed using k-core decomposition. However, they are decomposed into k-shells by 
k-shell decomposition: a) 1-shell: blue nodes and 2-shell: black nodes); b) 1-shell: blue nodes; 
2-shell: grey and black nodes and 3-shell: white nodes. 

10 Related Work 

One of the most popular quantitative methods to investigate core-periphery 
structure was proposed by Borgatti and Everett in 1999 [30]. Based on this 
study, several methods for identifying the core-periphery of a network have 
been proposed [26,31,32]. These algorithms attempt to determine which nodes 
are part of a densely-connected core and which are part of a sparsely connected 
periphery by solving some complex optimization problem. In contrast, some 
studies simply define the network “core” as the maximal clique composed of 
the highest degree nodes in a network [24], while other studies focus instead 
on some notion of connectivity information (e.g. betweenness, closeness, etc.) 
to find the core and periphery of a network [26,27,31,33,34]. Consequently, 
most of these methods are computationally expensive and do not scalable to 
large networks. 

The authors in [35] used the notion of α-β community to extract the “core” 
of a graph. An α-β community is a connected subgraph C with each vertex in 
C connected to at least β vertices of C and each vertex outside of C connected 
to at most α vertices of C (α < β). They extract the network core structure 
by taking the intersection of α-β communities of different size k. A core thus 
corresponds to one or multiple dense regions of the graph. As a result, the 
proposed heuristics in [35] may return multiple dense regions (“cores”) for a 
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given network. In addition, this algorithm does not guarantee to terminate 
within a reasonable amount of running time. 

Closely related to our work, the authors in [20] propose the k-core decom-
position to discover interesting structural properties of networks. A k-core of 
G is a subgraph G∗ obtained by recursively removing all the vertices of degree 
less than k, until all the vertices in the remaining graph have degree at least k. 
This method is very scalable and it has a time complexity similar to the k-shell 
decomposition for general graphs: (O(V +E)). However, k-core decomposition 
is not equivalent to k-shell decomposition, where at each step k, we prune 
vertices of degree k or less. Different from k-shell decomposition, the k-core 
decomposition is unable to uncover the structural properties for certain type 
of graphs or substructures. For example, a double star-like graph S formed by 
two connected vertices v and u with high degrees that connect many vertices 
with degree one cannot be decomposed beyond 1-shell (or 1-core), containing 
all the vertices in graph S, no matter how high are the degree of the vertices v 
and u. Similarly, a binary tree graph T cannot be decomposed beyond the first 
shell, independently of the depth of the tree T – see Fig. 14 for an illustration. 

11 Conclusion 

In this paper, we have developed an effective three-step procedure to hier-
archically extract and unfold the core structure of the reciprocal network of 
Google+. We first applied a modified version of the k-shell decomposition 
method to prune nodes and edges of sparse subgraphs that are likely to lie at 
the peripherals of the Google+ reciprocal network. We then performed a form 
of clique percolation to generate a new directed (hyper)graphs where vertices 
are maximal cliques containing the nodes in the dense “core” graph generated 
in the previous step, and there exists a directed edge from clique Ci to clique 
Cj if half of the nodes in Ci are contained in Cj . We found that this (hy-
per)graph of cliques comprises of 1700+ connected components (CCs), which 
represent the core “communities” of the Google+ reciprocal network. Finally, 
we introduced three metrics to study the relations among these CCs in the 
underlying Google+ reciprocal network: the number of nodes shared by two 
CCs, the number of nodes that are neighbors in the two CCs, and the number 
of edges connecting these neighboring nodes. These metrics produce a set of 
new (hyper)graphs that succinctly summarize the (high-level) structural re-
lations among the core “community” structures and provide a “big picture” 
view of the core structure of the Google+ reciprocal network and how it is 
formed. In particular, we found that there are ten CCs that lie at the center 
of this core structure through which the other CCs are most richly connected. 

Our proposed three-step hierarchical procedure assumes that the core sub-
graph of a network has a large number of cliques. Hence, it may fail to yield a 
meaningful structure for graphs with just a small number of cliques. To address 
this limitation, we can relax the notion of clique by constructing substructures 
which are clique-like. For example, a k-relaxed clique [23] is a set of nodes that 
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Fig. 15 Avg dependency values for Google+ (H1) (β = 0.25, 0.50, 0.75) 

connect to every node in the set except for at most k nodes (a 1-relaxed clique 
is a clique) [24]; and k-clique is a maximal subgraph such that the distance 
between each pair of its vertices is not larger than k. As part of ongoing and 
future work, we will develop a more rigorous characterization of the core graph 
of the Google+ reciprocal network based on the (modified) k-shell decompo-
sition, and provide a more in-depth analysis of the (hyper)graph structures 
of the clique core graph and the (high-level) structural relations among the 
core “community” structures. We also plan to apply our method to a massive 
Twitter dataset (with more than 500 million nodes and ≈ 23 billion edges) 
and other OSNs. 
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12 Appendix 

Beta Parameter Selection: we now proof that the number of n-step re-
moved neighbors of i is multiplied by βn−1 . We also present a discussion on 
how the selection of values for the β parameter in (1) impacts our criteria to 
stop the k-shell decomposition method presented in Sect. 5: 

Given that dep0(i) = 0 and dep1(i) = δ1(i), we can write an expression for 
dep2(i) as following: 

dep2(i) = dep1(i) + δ2(i) + β × Σj∈N2(i)dep
1(j) 

(5) 
= δ1(i) + δ2(i) + β × Σj∈N2(i)δ

1(j) 
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Let’s assume that node i has c(i) = 4, then dep4(i) is computed as following: 

dep4(i) = dep3(i) + δ4(i) + βΣj∈N4 (i)[dep
3(j)] (6) 

Expanding (6) gives: 

dep4(i) = dep3(i) + δ4(i) + βΣj∈N 4(i)[dep
2(j) + δ3(j) 

+ βΣj0 ∈N3(j)dep
2(j0)] 

Substituting (5) gives: 

dep4(i) := dep3(i) + δ4(i) + βΣj [M
3(j) + βδ2(j)ρ1(j0∗) 

+ βΣj0 [M2(j0) + βδ2(j0)ρ1(j00)]] 

where Mk(i) = Σkδ
k(i) and δk(i) = ρk(i), ∀i ∈ V . 

Further simplify dep4(i) gives: 

dep4(i) := dep3(i) + δ4(i) + Σj [βM
3(j) + β2δ2(j)ρ1(j0∗) 

+ Σj0 [β2M2(j0) + β3δ2(j0)ρ1(j00)]] 

We can rewrite the above expressions as: 

dep4(i) := dep3(i) + β0A + Σj [βB + β2C + Σj0 [β2D + β3E]] (7) 

Where: 

– A = δ4(i): 1-step neighbors of i removed at k = 4 
– B = M3(j): 2-step neighbors of i removed at k = 1, 2, 3 
– C = δ2(j)ρ1(j0∗): 3-step neighbors of i removed at k = 1 
– D = M2(j0): 3-step neighbors of i removed at k = 1, 2 
– E = δ2(j0)ρ1(j00): 4-step neighbors of i removed at k = 1 

By generalizing equation (7) (k = 5, ..., n), we observe that at every k-index, 
the number of n-step removed neighbors of i is multiplied by βn−1 . This con-
cludes our proof. 

Essentially, the parameter β quantifies the contribution of node j to the 
total dependence value of node i. Thus, varying β in the range ]0, 1[ will not 
have any impact on the value of the k-index where we should stop the k-shell 
decomposition method — by varying β, we are impacting the contribution of 
any node j to the total dependence value of node i by the same proportion. 
Thus varying the βn−1 does not have any impact in our criteria to stop the 
k-shell decomposition method introduced in Sect. 5 – see Fig. 15 for an illus-
tration. 
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	1 Introduction 
	Many online social networks (OSNs) are fundamentally directed: they consist of both reciprocal edges, i.e., edges that have already been linked back, and parasocial edges, i.e., edges that have not been or is not linked back [1]. Reciprocal edges represent the most stable type of connections or relations in directed network – they reﬂect strong ties between nodes or users [2–4], such as (mutual) friendships in an online social network or following each other in a social media network like Twitter and Google
	-

	Reciprocity is deﬁned as the ratio of the number of reciprocal edges to the total number of edges in the network, and it is believed that it plays an important role in the structural properties, formation and evolution of online social networks. Hence, this metric has been widely studied in the literature in various contexts, see, e.g., [1,5–9]. Many studies have used reciprocity (a single-valued aggregate metric) to characterize massive directed OSNs, which we believe is inadequate. Instead, we consider th
	-
	-

	In this paper, we perform a comprehensive empirical analysis of the “core structure” of the reciprocal network of Google+. Based on a massive Google+ dataset (see Sect. 2 for a brief overview of Google+ and a description of the dataset), we ﬁnd that out of more than 74 million nodes and ≈ 1.4 billion edges in (a snapshot of) the directed Google+ OSN, more than two-third of the nodes are part of Google+’s reciprocal network and more than a third of the edges are reciprocal edges (with a reciprocity value of 
	In an attempt to address these questions, we develop an eﬀective three-step procedure to hierarchically extract and unfold the core structure of Google+’s 
	In an attempt to address these questions, we develop an eﬀective three-step procedure to hierarchically extract and unfold the core structure of Google+’s 
	reciprocal network, building up and generalizing ideas from the existing k-shell decomposition [11] and clique percolation approaches [12], extending our work in [10]: i) We ﬁrst apply (a modiﬁed version of) the k-shell decomposition method to prune nodes and edges of sparse subgraphs that are likely to lie at the periphery of the Google+ reciprocal network (see Sect. 4). The standard k-shell decomposition method has been proposed to extract the “core” of a network, e.g., that of the Internet AS graph [11].
	1 
	-
	-
	-
	-


	Our methodology can also be applied to others online social networks. 
	1 

	Figure
	Fig. 1 Illustration of the reciprocal network (H) of a directed graph (Ω). Speciﬁcally, (B, C), (C, B), (B, D), (D, B), (D, E), (E, D), (C, E), (E, C) are reciprocal edges; (A, B), (C, A), (D, F ), (F, E) are parasocial edges. The reciprocity of Ω is 8/12 = 0.67. 
	We summarize the major contributions of our paper as follows. To the best our knowledge, our paper is the ﬁrst study on the core structure of a “reciprocal network” extracted from a massive directed social graph. While this paper focuses on Google+, our approach is also applicable to other directed OSNs. 
	– 
	– 
	– 
	We propose a new metric, the dependence value, that measures the location importance of a node in the network. Using this metric, we therefore modify the standard k-shell decomposition method to stop the process earlier, in order to extract a meaningful “core” for social networks 

	– 
	– 
	We develop an eﬀective three-step procedure to hierarchically extract and unfold the core structure of a reciprocal network arising from a directed OSN. 

	– 
	– 
	We apply our method to the reciprocal network of the massive Google+ social network, and unfold its core structure. In particular, we ﬁnd that there are ten subgraphs (“communities”) comprising of dense clusters of cliques that lie at the center of the core structure of the Google+ reciprocal network, through which other communities of cliques are richly connected; together they form the core to which other nodes and edges that are part of sparse subgraphs on the peripherals of the network are attached. 

	– 
	– 
	We observe that the core structure of the Google+ reciprocal network is very stable as the network evolves: the size of the core communities (hyper)graph increases as the network evolves, as well as, its density. Additionally, the set of nodes that participates in the core is very stable over time, with few percentage of nodes (e.g: 5% and 9%) that move away from the core to the periphery as the network evolves. 
	-
	-


	– 
	– 
	We observe that the number of communities lying at the center of the core structure of the Google+ reciprocal network is also very stable: it increases from 10 to 11 core communities across snapshots H→ Hand from 11 to 13 core communities across snapshots H→ Hin the core communities (hyper)graphs. 
	1 
	2 
	2 
	3 



	Table 1 Main characteristics of Google+ snapshots: (start-date, duration) – Γ: (24-08-12, 17 days), Γ: (10-09-12, 11 days) and Γ: (20-06-13, N/A) 
	1
	2
	3

	ID 
	ID 
	ID 
	# nodes 
	# edges 
	max(in) 
	max(out) 
	reciprocity 
	density 

	Γ1 
	Γ1 
	74,419,981 
	1,396,943,404 
	2,289,874 
	9,981 
	0.31 
	2.52 × 10−7 

	Γ2 
	Γ2 
	97,150,410 
	1,849,319,588 
	3,463,060 
	9,872 
	0.27 
	1.95 × 10−7 

	Γ3 
	Γ3 
	170,830,352 
	2,937,087,979 
	5,089,789 
	10,840 
	0.23 
	1.01 × 10−7 


	Table 2 Main characteristics of the LWCC of Google+: (start-date, duration) – Ω: (2408-12, 17 days), Ω: (10-09-12, 11 days) and Ω: (20-06-13, N/A) 
	1
	-
	2
	3

	ID 
	ID 
	ID 
	# nodes 
	# edges 
	max(in) 
	max(out) 
	reciprocity 
	density 

	Ω1 
	Ω1 
	66,237,724 
	1,291,890,737 
	1,822,999 
	9,981 
	0.34 
	2.94 × 10−7 

	Ω2 
	Ω2 
	84,789,166 
	1,633,199,823 
	2,579,551 
	9,872 
	0.30 
	2.27 × 10−7 

	Ω3 
	Ω3 
	145,478,563 
	2,548,275,802 
	3,793,031 
	10,840 
	0.26 
	1.20 × 10−7 


	2 Google+ Overview and Dataset 
	In this section, we brieﬂy describe key features of the Google+ service and a summary of our dataset. Platform Description: On June 2011 Google launched its own social networking service called Google+. The platform was announced as a new generation of social network. Previous works in the literature [8,9] claim that Google+ cannot be classiﬁed as particularly asymmetric (Twitter-like), but it is also not as symmetric (Facebook-like) because Google+ features have some similarity to both Facebook and Twitter
	-
	-

	2
	terms, if user x follows user y this relationship can be represented as a directed social edge (x, y); if user y also has a directed social edge (y,x), the relationship x, y is called symmetric[13]. Similar to Facebook, each user has a stream, where any activity performed by the user appears (like the Face-book wall). For more information about the features of Google+ the reader is referred to [14,15]. Dataset: We obtained our dataset from an earlier study on Google+ [9]. The dataset is a collection of thre
	-
	3 

	In this paper we use the terms “user” and “node” interchangeable 
	2 

	Table 3 Main characteristics of the reciprocal network of Google+: H 
	ID # nodes # edges max(degree) density 
	H40,403,216 197,838,519 4,294 2.42 × 107 H49,161,409 226,373,003 4,425 1.87 × 107 H74,539,728 327,204,637 4,743 1.78 × 107 
	1 
	−
	2 
	−
	3 
	−

	of the social relations among all users in Google+ and density is deﬁned as |E|/[|V |(|V |− 1) for a directed graph, and 2|E|/[|V |(|V |− 1) for an undirected graph – here |V | is the number of nodes and |E| is the number of edge. We observe that reciprocity and density decrease for both Γi and Ωi. This is due to the fact that new users joining Google+ tend to be less “social” and they make fewer connections as the network evolves – ﬁndings reported by the authors in [16]. 
	3 Overview of the Reciprocal Network 
	In this section, we ﬁrst describe our methodology to extract the reciprocal network of Google+. We then provide a brief overview of some global structural properties of the reciprocal network. Firstly, to derive the reciprocal network of Google+, we proceed as follows: from Ω, we extract the subgraph composed of nodes with at least one reciprocal edge. We label this new subgraph as G. However, G is not a connected subgraph. Hence, we use BFS (breadth-ﬁrstsearch) to extract its largest connected component (L
	-
	4 
	-
	-
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	Figure 2 shows the complementary cumulative distribution function (CCDF) of the degrees of nodes in the subgraphs Hi – we note that they represent the mutual degrees or reciprocal degrees of the same nodes in Ωi. For comparison, we also plot the CCDFs of the in-degrees and out-degrees for these nodes in Ωi. We can see that these curves have approximately the shape of a power law distribution. The CCDF of a power law distribution is given by Cxand x,α,C > 0. By using the tool in [17,18], we estimate the expo
	−α 

	Figure
	(a) Mutual degree distribuition 
	Figure
	(b) 
	(b) 
	(b) 
	In-degree distribution 

	(c) 
	(c) 
	Out-degree distribution 


	Figure
	Fig. 2 Log-log plot of a) mutual degree, b) in-degree and c) out-degree complementary cumulative distribution functions (CCDF) for several snapshots of the reciprocal network of Google+ (subgraphs Hi, i=1,2 and 3). All distributions show properties consistent with power-law networks. 
	in the distributions implies that a small fraction of users have a disproportionately large number of connections, while most users have a small number of connections – this is characteristics of many social networks. 
	-

	Figure
	Fig. 3 A schematic representation of a network under k-shell decomposition: the network can be viewed as the union of shell 1 up to kmax = 3. The innermost core of the network is highlighted by the blue circle (the largest shell index: 3). 
	Figure
	Fig. 4 The k-shell decomposition method on the reciprocal network of Google+ (subgraph H). For each k-shell, we plot the number of nodes belonging to the k-shell as k varies from 1 to kmax = 308. 
	1

	4 Extracting the Nucleus of the Reciprocal Network using K-Shells 
	K-shell decomposition is a classical graph decomposition technique which has been used as an analysis and visualization tool to extract and study the “core” structure of complex networks, such as that of the Internet AS graph [11]. In this method, nodes are assigned a k-shell index according to their remaining degree, after pruning all nodes with degree smaller than the k value of the current shell. More speciﬁcally, this method works as follow: a) ﬁrst, remove all nodes in the network with degree 1 (and th
	K-shell decomposition is a classical graph decomposition technique which has been used as an analysis and visualization tool to extract and study the “core” structure of complex networks, such as that of the Internet AS graph [11]. In this method, nodes are assigned a k-shell index according to their remaining degree, after pruning all nodes with degree smaller than the k value of the current shell. More speciﬁcally, this method works as follow: a) ﬁrst, remove all nodes in the network with degree 1 (and th
	kmax. At the end of the k-shell decomposition process, each node v is assigned with a unique k-shell index, denoted by shell(v). The network can be viewed as the union of all kmax shells – see Fig. 3 (note that this is distinct from k-core decompositiondeﬁned in the literature [20,21], more in Sect. 10). The complexity of this procedure is O(V + E) for a general graph. 
	6 


	For each k, we deﬁne the k-core (Ck) as the union of all shells with indices larger or equal to k or as the maximal induced subgraph Ck ⊆ G such that if v ∈ Ck, then node v must have at least k + 1 neighbors that belong to Ck−1 and deg(v) > 0 (we use deg(v) to denote the degree of v in the network and deg(v) to denote the degree of v in Ck). Similarly, k-shell (Sk) can be deﬁned as the subgraph induced by the set of nodes with d(v) ≤ k and if v ∈ Sk → deg(v)=0. 
	k
	k
	k−1
	k

	Clearly, for a node to belong to the k-core (thus shell(v) ≥ k), it must have at least degree k, i.e., deg(v) ≥ k. However, deg(v) ≥ k is not suﬃcient to guarantee it to belong to the k-core. For example, a node v with only neighbors of degree 1 (i.e., v is the root of a star structure) belongs to the 2-shell, i.e., shell(v) = 2, no matter how high its degree is. On the other hand, it is easy to see that if a node v is part of a clique of k nodes, then shell(v) ≥ k. However, a node v does not need to be par
	We apply the k-shell decomposition method to the Google+ reciprocal network for subgraph H(we analyze the other subgraphs in Sect. 8). We ﬁnd that the kmax = 308, and the kmax-core is a clique of size 290 nodes (the maximum clique in the Google+ reciprocal network). Figure 4 shows the number of nodes belonging to the k-shell as k varies from 1 to 308: we see that 99% of the nodes in our network fall in the lower k-shells (from k = 1 to 100). This is not surprising, as the majority of the nodes in our networ
	1 

	Which simply removes all nodes with degree less than k in a graph 
	6 

	Figure
	(a) Average degree of nodes in the k-shells 
	Figure
	(b) K-shell distribuition of the nodes with deg(v) ≥ 1000 
	Fig. 5 The k-shell decomposition method on the reciprocal network of Google+ (subgraph H). We plot the degree distributions for nodes in the k-shells, as k varies from 1 to kmax = 
	1

	308: a) average degree of nodes in the k-shells, b) we zoom in on nodes with deg(v) ≥ 1000, and illustrate how they distribute across various k-shells. 
	Figure 6 shows the size of the largest as well as those of the 2nd, 3rd and 4th largest connected components in the k-core, as k varies from 1 to 308. We note that at step k = 121, a small subgraph containing the maximum clique (of size 290) breaks oﬀ from the largest connected component which dissolves after k = 253, whereas this subgraph containing the maximum clique persists after k = 252 and becomes the largest component, and at kmax = 308, we are left with the maximum clique plus 10 additional nodes th
	Figure
	Fig. 6 The k-shell decomposition method on the reciprocal network of Google+ (subgraph H). For each k-core subgraph, we plot the size of the largest as well as those of the 2nd, 3rd and 4th largest connected components (LCC) in the k-core, as k varies from 1 to kmax = 308. At k-core=121, the 2nd LCC contains the maximum clique of the network and it becomes the 1st LCC in the network after k-core=252. This component persists up to kmax=308 (the network nucleus). 
	1

	a close-knit community where each user follows everyone else. We see that directly applying the standard k-shell decomposition to the Google+ reciprocal network produces a clique of size 290, which we believe is unlikely to be the “core” of the Google+ reciprocal network. 
	From this result, we see that directly applying the standard k-shell decomposition to Google+’s reciprocal network produces an innermost structure that does not represent the core of this network. This is due to the fact that at a certain k-index, we reach the vicinity of the core; but going far beyond this index would destroy the core structure of the network. 
	-

	5 The Depencence Value and Core Subgraph 
	In order to extract a meaningful core of the Google+ reciprocal network, we therefore modify the standard k-shell decomposition method to stop the process earlier. To achieve this, we propose a new metric that provides important information about the structural function of each node in the graph (we label it as “dependence” value) at each k-step: 
	-

	The dependence value of node v at step k is deﬁned as follows: for v ∈ V , dep(v, β)=0 and for k =1,...,c(v), 
	0

	dep(v, β) := dep(v, β)+ δ(v)+ β × Σu∈Nk(v)[dep(u, β)] (1) 
	k
	k−1
	k
	k−1

	where β is a control parameter, 0 ≤ β ≤ 1; N(v) is the set of neighbors of node v that are removed at step k, and δ(v)= |N(v)|. The dependency 
	k
	k
	k

	Figure
	Fig. 7 Log-log plot of the average dependency values for the reciprocal network of Google+ (subgraph H). We plot the normalized average dependence value for the nodes in the k-shells, as k varies from 1 to kmax = 308. 
	1

	Figure
	Fig. 8 Degree distribution for nodes in subgraph Gextracted from H. Note that degree here refers to that of a node in G, the 120-core graph after the kC -th shell decomposition process, it is not the (original) degree of the node in the Google+ reciprocal network. 
	120 
	1
	120

	of node v is recursively deﬁned by measuring the number of nodes u (the h-hop neighbors of v, h =1, ..., k) that are removed in earlier steps up to k = c(v) – the coreness of node v (and for k ≥ c(v), by convention, we deﬁne dep(v, β)= dep(v, β)). 
	k
	c(v)

	Intuitively, dep(v, β) captures the number of nodes recursively dependent on v that have been removed in earlier steps up to k. With β = 0, we note that dep(v, β) captures the number of v’s neighbors removed at each step up 
	k
	k

	P 
	to k, and for k ≥ c(v), dep(v, β)= deg(v)= δ(v), the degree of node v.
	k

	k 
	With β> 0, dep(v, β) captures not simply the dependence of its neighbors, but that of its neighbors’ neighbors, and so forth. However, the number of nodes u removed at each step up to k does not inﬂuence the dependence value 
	With β> 0, dep(v, β) captures not simply the dependence of its neighbors, but that of its neighbors’ neighbors, and so forth. However, the number of nodes u removed at each step up to k does not inﬂuence the dependence value 
	k

	of the node v uniformly. Their contribution is weighted by the parameter β in eq.(1). The parameter β quantiﬁes the contribution of node u to the total dependence value of node v. More precisely, at the kth-step, we multiply the number of h-step removed neighbors of v by β(see the proof in the appendix). Thus, the further a node u is to node v, the less it will contribute to the total dependence value of node v. Hence, a node v having more nodes u with high dependence values in its vicinity will also have a
	h−1 


	Given eq.(1), the dependence values of any v ∈ V grows as k increases (more nodes are removed as we move from the periphery of the graph to its core). We posit that the network core should contain only nodes with very high dependence values. Hence, when we reach the vicinity of the network core, the nodes’ dependence value will grow signiﬁcantly as we increase k further, due to the dependency propagation eﬀect. From this intuition, we develop the following empirical heuristic for terminating the k-shell dec
	-
	-

	kmax. 
	Our approach to calculate the dep(v, β) score for node v is dependent on the k-shell decomposition method and degree computation which have a complexity of O(V +E). Then, given that the degree and coreness of each node are known, our procedure has a complexity of O(E). Therefore, our methodology is highly scalable and can be applied to massive networks. Figure 7 shows the average dependency value per k-shell index for our massive Google+ reciprocal network (subgraph H). The parameter β is set to 0.25 (see t
	-
	1
	120 
	-
	1 
	-
	120
	120 

	6 Constructing the Core Clique (Hyper)Graph 
	Given the dense core subgraph G(extracted in the previous section), how can we uncover its structure? To answer this question, we consider “maximal cliques” as the basic atomic (sub)structures of the network nucleus. Then, we 
	120 

	Figure
	Fig. 9 Log-log plot of clique size complementary cumulative distribution function (CCDF) for the core subgraph G(extracted from H) – we extract these cliques using algorithms 1 and 2. 
	120 
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	extract the minimal set of the largest maximal cliques that cover every node in G. Using these cliques substructures, we build a (hyper)graph as a higher-level representation of the nucleusof a network. To achieve this, we proceed as following: 
	120
	7 

	First, to ﬁnd the largest maximal clique containing a given vertex in a network, we implement algorithm 1. It uses a variation of the popular Bron-Kerbosh algorithm [22] (we denote it as Simpliﬁed Bron-Kerbosh (SBK)) to extract maximal cliques. During the search for the largest maximal clique containing a given vertex v (thereafter referred to as Cin short), our heuristic removes the vertices that cannot form cliques larger than the clique stored in the variable Cmax. Furthermore, our algorithm considers on
	v 
	i
	i
	v 
	i
	2
	120 

	Second, using the extracted 34,501 maximal cliques, we generate a new directed (hyper)graph, where the vertices are (unique) cliques of various sizes, 
	Algorithm 1 Largest Maximal Clique Extraction algorithm (LC) 
	1: Input: node u 
	2: Output: largest maximal clique containing u 
	3: R : currently growing maximal clique 
	4: P := N[u]: set of neighbors of vertex u 
	5: procedure LC(u) 
	V 
	6: N(u)= {wi,wi, ...|wk=i,j.. ∈ N(u) d(wi) >d(wj )}
	i
	u
	u

	7: Cmax =0 
	8: max =0 
	9: for w ∈ N(u) do 
	i

	10: R =[u] 
	11: P = N[w] 
	12: C = SBK(R, P, max) 
	13: k = size(C) 
	14: if k > max then 
	15: Cmax = C 
	16: max = k 
	17: return Cmax 
	Subroutine: Simpliﬁed Bron-Kerbosh (SBK) 
	18: procedure SBK(R, P, max) 
	19: if size(R)+ size(P ) ≤ max then 
	20: return . it is not possible to ﬁnd a clique larger than max 
	21: else if P := 0 then 
	22: report R as a maximal clique 
	23: else 
	24: Let unew be the vertex with highest number of neighbors in P 
	25: Rnew := R ∪{unew}
	26: Pnew := P ∩ N[unew] 
	27: SBK(Rnew ,Pnew , max) 
	Algorithm 2 Extract Minimal Set of Maximal Cliques from a Graph 
	1: procedure EMC(G(V, E)) 
	2: 
	2: 
	2: 
	construct a set W and W := V 

	3: 
	3: 
	construct a ordered list S of the nodes in V based on their degree (decreasing order) 

	4: 
	4: 
	select the ﬁrst item in S, vertex i, as the pivot 

	5: 
	5: 
	apply the LC algorithm using i as the pivot vertex 

	6: 
	6: 
	add the reported maximal clique ci containing i to the clique set Ctotal 
	= [cn, cm, ..] 

	7: 
	7: 
	remove the nodes in ci from W : Wj = Wi − ci 

	8: 
	8: 
	select the next item in S, vertex j, as the next pivot vertex such that j 6∈ Ctotal and 


	repeat steps(5), (6) and (7) until W = ∅ 
	and there exists a directed edge from clique Ci to clique Cj if more than half of the nodes in Ci are contained in Cj , i.e., Ci → Cj if (|Ci|∩|Cj |)/|Ci|≥ θ =0.5. We vary the parameter θ from 0.5 to 0.7, and ﬁnd that it does not fundamentally alter the connectivity structure of the (hyper)graph of cliques thus generated. We remark that the maximal clique containing each node v can be viewed as the most stable structure that node v is part of. The directed (hyper)graph of cliques captures the relations amon
	and there exists a directed edge from clique Ci to clique Cj if more than half of the nodes in Ci are contained in Cj , i.e., Ci → Cj if (|Ci|∩|Cj |)/|Ci|≥ θ =0.5. We vary the parameter θ from 0.5 to 0.7, and ﬁnd that it does not fundamentally alter the connectivity structure of the (hyper)graph of cliques thus generated. We remark that the maximal clique containing each node v can be viewed as the most stable structure that node v is part of. The directed (hyper)graph of cliques captures the relations amon
	-

	level representation of the dense core graph of the Google+ reciprocal network 

	– how the most stable structures are related to each other. This procedure can be viewed as a form of clique percolation [12]. 
	We ﬁnd that this (hyper)graph of cliques comprises of 1,758 connected components (CCs). The largest component has 2,618 cliques, 3,295 nodes and 437,867 edges, while the smallest has 1 clique, 3 nodes and 3 edges respectively. We regard these connected components (CCs) as forming the core communities of the core graph of the Google+ reciprocal graph: each CC is composed of either one single clique (such a CC shares few than half of its members with other cliques or CCs), or two or more cliques (stable struc
	Figure 10(b) shows the maximum, minimum, average and 75% percentile of clique size for each CC. We observe that there is not a relationship between the number of cliques and their respective sizes in the CCs. We observe that most cliques have sizes between 10 and 100 nodes. There are largest CCs composed with a huge number of cliques of small size (e.g., CC ids from 1 to 10), whereas there are also small CCs composed with few number of cliques but with very large sizes (e.g. CC ids: 31, 44, and 47). We note
	7 Analysis of the Core Community (Hyper)Graph & its Structure 
	We now investigate the relationship between the connected components (CCs) in our clique (hyper)graphs constructed in the previous section (Sect. 6), in particular the 70th largest CCs. Recall that we regard the CCs in the clique (hyper)graphs as forming the core communities within Google+ reciprocal network nucleus – each CC represents a dense cluster of cliques. In this section, we deﬁne three metrics to study the relations among these CCs in the underlying Google+ reciprocal network: 
	-

	– Shared Nodes: the number of nodes that CCi and CCj have in common: 
	S(CCi,CCj )= |{u ∈ V |u ∈ CCi,u ∈ CCj }| (2) 
	– Shared Neighbors: the number of nodes in CCi that have an edge to another node in CCj : 
	N(CCi, CCj )= |{u ∈ CCi, |∃v ∈ CCj :(u, v) ∈ E}| (3) 
	– Cross-Edges: the number of cross edges between two connected components (CCi and CCj ): 
	-

	B(CCi,CCj )= |{(u, v) ∈ E|v ∈ CCi,u ∈ CCj }| (4) 
	Figure
	(a) Number of cliques, nodes and edges 
	Figure
	Fig. 10 Statistics of the connected components in the (hyper)graph of cliques constructed from the core subgraph G(extracted from H): a) distribution of the number of cliques, nodes and edges and b) distribution of the clique size in terms of the maximum, minimum, average and 75% percentile of the clique size. 
	Fig. 10 Statistics of the connected components in the (hyper)graph of cliques constructed from the core subgraph G(extracted from H): a) distribution of the number of cliques, nodes and edges and b) distribution of the clique size in terms of the maximum, minimum, average and 75% percentile of the clique size. 
	120 
	1



	(b) Clique size: maximum, minimum, average and 75% percentile 
	These metrics produce a set of three new (hyper)graphs that succinctly summarize the (high-level) structural relations among the core community structures: 1st) a node represents a CC and an undirected edge CCi − CCj denotes that both components share at least one node; 2nd) a node represents a CC and a directed edge CCi → CCj denotes that CCi has the largest number of cross edges to nodes in CCj ; 3rd) a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of neighbori
	Table 4 Summary of the statistics for the ten components that lie at the center in the core graph of the reciprocal network of Google+. Together they form the core to which peripheral sparse subgraphs are attached. 
	ID 
	ID 
	ID 
	# c 
	# nodes 
	# edges 
	avg |c| 
	max |c| 
	min |c| 
	75% percentile 

	1 
	1 
	2,618 
	3,295 
	437,867 
	30.0 
	47 
	4 
	25 

	2 
	2 
	2,745 
	3,256 
	494,867 
	20.2 
	46 
	5 
	26 

	3 
	3 
	2,437 
	3,059 
	499,356 
	25.5 
	47 
	5 
	30 

	4 
	4 
	2,324 
	2,877 
	416,098 
	20.2 
	42 
	7 
	25 

	5 
	5 
	2,340 
	2,737 
	449,225 
	24.3 
	56 
	6 
	32 

	7 
	7 
	1,040 
	1,362 
	146,151 
	29.2 
	55 
	5 
	40 

	15 
	15 
	513 
	923 
	60,191 
	16.0 
	33 
	6 
	20 

	22 
	22 
	473 
	808 
	32,031 
	10.0 
	23 
	4 
	11 

	37 
	37 
	262 
	396 
	14,324 
	9.2 
	15 
	4 
	10 

	47 
	47 
	69 
	297 
	22,629 
	50.3 
	139 
	5 
	73 


	Figures 11(a), 11(b), 11(c) show the (hyper)graphs of the relationship between the components based on the number of shared nodes, cross-edges and shared neighbors. These ﬁgures show that there are ten subgraphs (core communities”) comprising of dense clusters of cliques that lie at the center of the nucleus of the Google+ reciprocal network, through which other communities of cliques are richly connected. Then, the 1,758 connected components (CCs) in the clique (hyper)graph form the core graph of the Googl
	-
	-
	-

	From ﬁgures 11(a), 11(b) and 11(c), we observe that in the periphery of our core communities (hyper)graphs, we ﬁnd a small CC composed with 36 of the largest cliques in the Google+ reciprocal network. The average, minimum and maximum sizes of the cliques in this CC are 227, 105 and 290 – the latter is the maximum clique of the Google+ reciprocal network. This CC is highlighted by a “red circle” in the (hyper)graphs in Fig. 11. It shows this CC lies more at the outer ring of Google+’s dense core structure. A
	Figure
	(a) 
	(a) 
	(a) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of shared nodes: a node represents a CC and an undirected edge CCi − CCj denotes that both components share at least one node. 

	(b) 
	(b) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of cross-edges: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of cross edges to nodes in CCj . 

	(c) 
	(c) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of neighboring nodes: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of neighboring nodes with CCj . 


	Figure
	Figure
	Fig. 11 (Hyper)Graphs for the core communities (extracted from G) of the reciprocal network of Google+: snapshot -H. The color intensity of a CC is proportional to its degree. The CC highlighted in “red” is the core subgraph yielded by directly applying the standard k-shell decomposition to Google+’s reciprocal network. However, our core communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
	120
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	– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 
	Table 5 Main characteristics of the core subgraph (GC ) for the reciprocal network of Google+ across several snapshots. 
	Hi 
	Hi 
	Hi 
	kC 
	# nodes 
	# edges 
	avg(d) 
	density 

	1 2 3 
	1 2 3 
	120 120 130 
	48,229 52,904 94,112 
	6,378,596 6,737,630 14,260,691 
	132 127 152 
	0.00548 0.00482 0.00322 


	Table 6 Main statistics of the core communities (hyper)graphs for Hi: c -cliques; CC connected components 
	-

	Hi # c avg|c| # CC max|CC| min|CC| 
	1 34,501 23.03 1,758 2,618 1 2 38,055 20.68 2,221 2,487 1 3 65,101 24.96 3,802 6,217 1 
	8 Evolution of the Core Community (Hyper)Graph 
	We now analyze how the core structure of the Google+ reciprocal network evolves over time using the remaining snapshots of subgraph H (Hi=2,3). To achieve this, we apply our methodology to uncover the core communities (hyper)graph for Hi. Table 5 shows the kC -indices where we stop the k-shell decomposition method and provides statistics for the core subgraph (GC ) of the reciprocal network of Google+ across three diﬀerent snapshots. We observe that the size of the nucleus increases as the network evolves, 
	-
	-
	2 
	-

	Analyzing the nodes that are found in the nucleus, we ﬁnd that the set that participates is very stable over time. We ﬁnd changes consisting of a few percentage of nodes that moved from the nucleus to a lower k-shell as the network evolves: 9% from H→ Hand 5% from H→ H. We also observe that the main structure of the core communities (hyper)graph is stable across all the snapshots: it consists of dense clusters of cliques that lie at the center of the core graph, through which other communities of cliques ar
	-
	1 
	2 
	2 
	3
	1 
	2 
	2 
	3

	Figure
	(a) 
	(a) 
	(a) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of shared nodes: a node represents a CC and an undirected edge CCi − CCj denotes that both components share at least one node. 

	(b) 
	(b) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of cross-edges: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of cross edges to nodes in CCj . 

	(c) 
	(c) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of neighboring nodes: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of neighboring nodes with CCj . 


	Figure
	Figure
	Fig. 12 (Hyper)Graphs for the core communities (extracted from G) of the reciprocal network of Google+: snapshot -H. The color intensity of a CC is proportional to its degree. The CC highlighted in “red” is the core subgraph yielded by directly applying the standard k-shell decomposition to Google+’s reciprocal network. However, our core communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
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	– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 
	Figure
	(a) 
	(a) 
	(a) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of shared nodes: a node represents a CC and an undirected edge CCi − CCj denotes that both components share at least one node. 

	(b) 
	(b) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of cross-edges: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of cross edges to nodes in CCj . 

	(c) 
	(c) 
	(hyper)graph of the structural relation among the core communities (CCs) based on the number of neighboring nodes: a node represents a CC and a directed edge CCi → CCj implies that CCi has the largest number of neighboring nodes with CCj . 


	Figure
	Figure
	Fig. 13 (Hyper)Graphs for the core communities (extracted from G) of the reciprocal network of Google+: snapshot -H. The color intensity of a CC is proportional to its degree. The CC highlighted in “red” is the core subgraph yielded by directly applying the standard k-shell decomposition to Google+’s reciprocal network. However, our core communities (hyper)graphs show that this structure in fact does not lie at the very “center” 
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	– instead lies more at the outer ring – of the core graph of the Google+ reciprocal network. 
	9 Implications 
	So far, we have demonstrated that our method can eﬀectively uncover and extract the nucleus of the Google+ reciprocal network based on large-scale dataset. In this section, we discuss the implications of our method and results. While our ﬁndings are likely applicable to many diﬀerent applications, we concentrate on their eﬀect on the identiﬁcation of inﬂuential spreaders, network formation, design and robustness: Inﬂuential Spreaders: The “coreness” centrality or k-shell index has been argued to be a better
	-
	k
	k
	-

	– see the jellyﬁsh model of the Internet in [24]. Therefore, unveiling the core structure of networks can help us uncover and understand possible organizing principles shaping the observed network topological structure and network formation. Network Design: Observing the evolution patterns of the core structure of social networks can give insights for the design of future social networks by other social networking service providers who would like to enter the market. Furthermore, it can also help applicatio
	-

	Figure
	(a) double star graph 
	Figure
	(b) binary tree 
	Fig. 14 Example networks of double star and binary tree graphs. These structures cannot be decomposed using k-core decomposition. However, they are decomposed into k-shells by k-shell decomposition: a) 1-shell: blue nodes and 2-shell: black nodes); b) 1-shell: blue nodes; 2-shell: grey and black nodes and 3-shell: white nodes. 
	10 Related Work 
	One of the most popular quantitative methods to investigate core-periphery structure was proposed by Borgatti and Everett in 1999 [30]. Based on this study, several methods for identifying the core-periphery of a network have been proposed [26,31,32]. These algorithms attempt to determine which nodes are part of a densely-connected core and which are part of a sparsely connected periphery by solving some complex optimization problem. In contrast, some studies simply deﬁne the network “core” as the maximal c
	The authors in [35] used the notion of α-β community to extract the “core” of a graph. An α-β community is a connected subgraph C with each vertex in C connected to at least β vertices of C and each vertex outside of C connected to at most α vertices of C (α<β). They extract the network core structure by taking the intersection of α-β communities of diﬀerent size k. A core thus corresponds to one or multiple dense regions of the graph. As a result, the proposed heuristics in [35] may return multiple dense r
	The authors in [35] used the notion of α-β community to extract the “core” of a graph. An α-β community is a connected subgraph C with each vertex in C connected to at least β vertices of C and each vertex outside of C connected to at most α vertices of C (α<β). They extract the network core structure by taking the intersection of α-β communities of diﬀerent size k. A core thus corresponds to one or multiple dense regions of the graph. As a result, the proposed heuristics in [35] may return multiple dense r
	given network. In addition, this algorithm does not guarantee to terminate within a reasonable amount of running time. 

	Closely related to our work, the authors in [20] propose the k-core decomposition to discover interesting structural properties of networks. A k-core of G is a subgraph Gobtained by recursively removing all the vertices of degree less than k, until all the vertices in the remaining graph have degree at least k. This method is very scalable and it has a time complexity similar to the k-shell decomposition for general graphs: (O(V +E)). However, k-core decomposition is not equivalent to k-shell decomposition,
	-
	∗ 

	11 Conclusion 
	In this paper, we have developed an eﬀective three-step procedure to hierarchically extract and unfold the core structure of the reciprocal network of Google+. We ﬁrst applied a modiﬁed version of the k-shell decomposition method to prune nodes and edges of sparse subgraphs that are likely to lie at the peripherals of the Google+ reciprocal network. We then performed a form of clique percolation to generate a new directed (hyper)graphs where vertices are maximal cliques containing the nodes in the dense “co
	-
	-
	-

	Our proposed three-step hierarchical procedure assumes that the core subgraph of a network has a large number of cliques. Hence, it may fail to yield a meaningful structure for graphs with just a small number of cliques. To address this limitation, we can relax the notion of clique by constructing substructures which are clique-like. For example, a k-relaxed clique [23] is a set of nodes that 
	Our proposed three-step hierarchical procedure assumes that the core subgraph of a network has a large number of cliques. Hence, it may fail to yield a meaningful structure for graphs with just a small number of cliques. To address this limitation, we can relax the notion of clique by constructing substructures which are clique-like. For example, a k-relaxed clique [23] is a set of nodes that 
	-

	connect to every node in the set except for at most k nodes (a 1-relaxed clique is a clique) [24]; and k-clique is a maximal subgraph such that the distance between each pair of its vertices is not larger than k. As part of ongoing and future work, we will develop a more rigorous characterization of the core graph of the Google+ reciprocal network based on the (modiﬁed) k-shell decomposition, and provide a more in-depth analysis of the (hyper)graph structures of the clique core graph and the (high-level) st
	-


	Figure
	Fig. 15 Avg dependency values for Google+ (H)(β =0.25, 0.50, 0.75) 
	Fig. 15 Avg dependency values for Google+ (H)(β =0.25, 0.50, 0.75) 
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	12 Appendix 
	Beta Parameter Selection: we now proof that the number of n-step removed neighbors of i is multiplied by β. We also present a discussion on how the selection of values for the β parameter in (1) impacts our criteria to stop the k-shell decomposition method presented in Sect. 5: 
	-
	n−1 

	Given that dep(i) = 0 and dep(i)= δ(i), we can write an expression for dep(i) as following: 
	0
	1
	1
	2

	dep(i)= dep(i)+ δ(i)+ β × Σj∈N(i)dep(j) 
	2
	1
	2
	2
	1

	(5) 
	= δ(i)+ δ(i)+ β × Σj∈N(i)δ(j) 
	1
	2
	2
	1

	Let’s assume that node i has c(i) = 4, then dep(i) is computed as following: 
	4

	dep(i)= dep(i)+ δ(i)+ βΣj∈N(i)[dep(j)] (6) 
	4
	3
	4
	4 
	3

	Expanding (6) gives: 
	dep(i)= dep(i)+ δ(i)+ βΣj∈N (i)[dep(j)+ δ(j) 
	4
	3
	4
	4
	2
	3

	+ βΣj∈N(j)dep(j)] 
	0 
	3
	2
	0

	Substituting (5) gives: 
	dep(i) := dep(i)+ δ(i)+ βΣj [M(j)+ βδ(j)ρ(j) + βΣj[M(j)+ βδ(j)ρ(j)]] 
	4
	3
	4
	3
	2
	1
	0∗
	0 
	2
	0
	2
	0
	1
	00

	where M(i)= Σkδ(i) and δ(i)= ρ(i), ∀i ∈ V . 
	k
	k
	k
	k

	Further simplify dep(i) gives: 
	4

	dep(i) := dep(i)+ δ(i)+ Σj [βM(j)+ βδ(j)ρ(j) + Σj[βM(j)+ βδ(j)ρ(j)]] 
	4
	3
	4
	3
	2
	2
	1
	0∗
	0 
	2
	2
	0
	3
	2
	0
	1
	00

	We can rewrite the above expressions as: 
	dep(i) := dep(i)+ βA + Σj [βB + βC + Σj[βD + βE]] (7) 
	4
	3
	0
	2
	0 
	2
	3

	Where: 
	– 
	– 
	– 
	A = δ(i): 1-step neighbors of i removed at k =4 
	4


	– 
	– 
	B = M(j): 2-step neighbors of i removed at k =1, 2, 3 
	3


	– 
	– 
	C = δ(j)ρ(j): 3-step neighbors of i removed at k =1 
	2
	1
	0∗


	– 
	– 
	D = M(j): 3-step neighbors of i removed at k =1, 2 
	2
	0


	– 
	– 
	E = δ(j)ρ(j): 4-step neighbors of i removed at k =1 
	2
	0
	1
	00



	By generalizing equation (7) (k =5, ..., n), we observe that at every k-index, the number of n-step removed neighbors of i is multiplied by β. This concludes our proof. 
	n−1 
	-

	Essentially, the parameter β quantiﬁes the contribution of node j to the total dependence value of node i. Thus, varying β in the range ]0, 1[ will not have any impact on the value of the k-index where we should stop the k-shell decomposition method — by varying β, we are impacting the contribution of any node j to the total dependence value of node i by the same proportion. Thus varying the βdoes not have any impact in our criteria to stop the k-shell decomposition method introduced in Sect. 5 – see Fig. 1
	n−1 
	-
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	Google+ assigns each user a 21-digit integer ID, where the highest order digit is always 1 (e.g., 100000000006155622736) 
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	For clarity of notation, we sometimes drop the subscript index i from the subgraphs notations, unless we are referring to a speciﬁc snapshot i 
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	It contains more than 90% of the nodes with at least one reciprocal edge in Google+. Hence, our analysis of the dataset is eventually approximate. 
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	In this paper we use the terms “core” and “nucleus” interchangeable 
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