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Abstract 

Past decades have seen ever more devices connected to the Internet and new net-

worked services created. Demands for networks—whether campus or enterprise net-

works that support most of our daily work activities or data center networks that power 

today’s cloud services such as web, social media, music or video streaming services— 

have seen rapid growth. Managing and securing these networks with growing size and 

complexity have become a daunting task, as today’s networks are primarily “manually” 

managed by network operators. This task is further compounded by lack of effective 

tools for network configurations and monitoring systems to provide visibility as to what is 

going on inside a network. This thesis studies existing network management approaches 

and identifies their limitations. We develop new network management frameworks—in 

particular, leveraging emerging networking technologies—to assist network operators 

and users in better managing and securing networks. We specifically focus on three 

key management tasks: diagnosing security policy misconfigurations, enhancing routing 

flexibility, and gaining on-demand flow visibility for better network control. 

First, we study security group (i.e., the primary means for cloud customers to con-

figure security policies to protect their virtual machine instances from attacks) configu-

rations and usage by customers in a public cloud platform based on real-world datasets. 

Motivated by the results and insights obtained from this measurement study, we develop 

a cloud security group analysis system which helps cloud customers diagnose potential 

misconfigurations and provides suggestions to refine security group configurations. 

Second, we propose a novel framework for incremental and graceful transition from 

legacy networks to Software-Defined Networking (SDN) networks in stages by gradu-

ally replacing legacy devices with SDN-enabled devices as needed and as budgets allow. 

Hence, network operators can gracefully experiment with SDN networks to gain expe-

rience and build confidence while eliminating or minimizing service disruption. More 

importantly, operators can enjoy the benefits as fully deployed SDN networks. We de-

velop a novel unified network management controller that exerts SDN-like, fine-grained 

routing control over both SDN-enabled and legacy switches in hybrid networks. 
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Third, with the goal of obtaining on-demand visibility as to monitor “who is talking 

to whom”, we propose clairvoyant networks to provide visibility for any network flow 

at any time with low cost. Clairvoyant networks are partially programmable—they 

require as few as one SDN switch—and rely on a specialized network controller that 

controls paths through both the SDN and legacy networks. Our proposed clairvoyant 

controller allows operators to define what to see, where to see, and how to see; then 

enables/disables the specified flows’ visibility in a task scheduler, within milliseconds. 

In summary, this thesis studies the management of enterprise and data center net-

works. Our developed systems are capable of: i) helping operators and users understand 

and diagnose security policy configurations; ii) providing unified routing control to en-

able incremental and graceful transition from legacy networks to SDN networks; and 

iii) gaining on-demand network visibility for better network control. 
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Chapter 1 

Introduction 

With ever more devices connected to the Internet and new services created, demands 

for networks—whether campus or enterprise networks that support most of our daily 

work activities or data center networks that power today’s cloud services such as web, 

email, social media, music or video streaming services—have seen rapid growth. It is 

reported that Google’s current data center has more than 100 times the capacity of 

its first generation of data center [1]. Undoubtedly, network management complexity 

is also dramatically increasing [2]. According to a Avaya survey [3], 94% of European 

businesses are negatively affected by the complexities of their networks. Managing these 

networks typically needs a huge group of operators to perform daily management tasks 

such as registering new devices, configuring routing policies, setting up firewall rules, 

and maintaining efficient network utilization as well as reliable network availability. It 

is reported in a recent survey [4] that 69% of networking professionals rely on manual 

processes, and 97% of networking professionals experienced network outages as a direct 

result of human error. 

With the goal of enhancing the network management in enterprises and data-centers, 

this thesis designs and develops new network management systems that enhance access 

control, routing, visibility, and controllability in enterprise and data center networks. 

The key challenges are the large number of hosts, switches, and applications in these 

networks and the need for dynamic policies, flexible routing paths, and real-time visibil-

ity. To address these challenges, we propose three key ideas: i) designing a configuration 

diagnosis system to help cloud tenants visualize and refine security policy settings; ii) 
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providing flexible and unified path control in enterprise networks by leveraging emerging 

Software-Defined Networking (SDN) paradigm through incremental and strategical de-

ployment of programmable devices; iii) gaining on-demand network visibility for better 

network control. 

1.1 Thesis Statement 

The central thesis of this dissertation is as follows: 

Today’s network management, relying on extensive manual processes and low-level 

configurations, introduces high complexity and little manageability. 

This thesis develops new tools and systems—in particular, leveraging emerging net-

working technologies—to assist network operators and users in better managing and 

securing networks. We specifically focus on three key management tasks: diagnosing 

security policy misconfigurations, enhancing routing flexibility, and gaining on-demand 

network visibility for better network control. 

1.2 Outline and Contributions 

This dissertation studies network management in security policy configuration, routing, 

and monitoring separately. The outline of this dissertation, along with the primary 

contributions of this dissertation are as follows: 

Understanding Security Group Usage in a Public IaaS Cloud (Chap-

ter 3). In this chapter, we investigate and understand how cloud tenants configure 

security groups and assist them in designing better security groups. We first conduct a 

measurement-oriented analysis of security group configuration and usage by tenants in 

a public IaaS cloud based on real-world datasets. The goal is to understand what are 

the usage patterns (“good” and “bad” practices) in how cloud tenants configure their 

security groups. Motivated by the results and insights obtained from this measurement 

study, we propose and develop a cloud security group analysis system called Socrates, 

which employs visual analytics to assist cloud tenants in understanding the static and 

dynamic access relations among VM instances. Socrates also helps diagnose potential 

misconfigurations and provides suggestions to refine security group configurations based 
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on observed traffic traversing tenants’ VMs. By applying Socrates to all existing tenants 

hosted on the public IaaS cloud, Our results reveal that more than 80% tenants do not 

have security groups configured properly, which can lead to security vulnerabilities. To 

the best of our knowledge, our work is the first to analyze cloud security group usage 

based on real-world datasets, and to develop a system to help cloud tenants understand, 

diagnose and better refine their security group configurations. 

Unified Fine-Grained Path Control in Legacy and SDN Hybrid Networks 

(Chapter 4). In this chapter, we argue that it is possible to achieve most of the ben-

efits of a fully deployed SDN at a fraction of the cost by strategically replacing only 

few legacy switches with—or introducing a few—new SDN-enabled switches in a legacy 

network, thus creating a hybrid network. Hence, network operators can gracefully ex-

periment with SDN networks to gain experience and build confidence while eliminating 

or minimizing service disruption. More importantly, operators can enjoy much of the 

benefits as fully deployed SDN networks. We design and build Magneto, a unified net-

work controller that exerts SDN-like, fine-grained path control over both SDN-enabled 

and legacy switches in hybrid networks. Magneto i) introduces magnet MAC addresses 

and dynamically updates IP-to-magnet MAC mappings at hosts via gratuitous ARP 

messages for visibility and routing control; and ii) uses the ability of SDN switches to 

send “custom” packets into the data plane to manipulate legacy switches into updating 

forwarding entries with magnet MAC addresses for enhanced routing flexibility. Our 

evaluation on a lab testbed and through extensive simulations on large enterprise net-

work topologies show that Magneto is able to achieve full control over routing when only 

20% of network switches are programmable, with negligible computation and latency 

overhead. 

Gaining Fine-Grained Network Visibility for On-Demand Monitoring and 

Better Policy Enforcement (Chapter 5). In this chapter, we are exploring beyond 

the unified fine-grained path control. Our goal is to obtain fine-grained network visibility 

as to monitor “who is talking to whom”, “how much traffic is being sent to a destination, 

say Google”. We propose clairvoyant networks to provide visibility for any flow at any 

time and with low cost. Clairvoyant networks are partially programmable—they require 

as few as one SDN switch—and rely on a specialized network controller that controls 

paths through both the SDN and legacy networks. The clairvoyant controller allows 
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operators to define what to see, where to see, and how to see; then enables/disables the 

specified flows’ visibility in a task scheduler, within milliseconds. Our evaluation on a lab 

testbed and through extensive simulations on large enterprise network topologies show 

that, even with a single SDN-enabled switch, operators can make any flow visible for 

monitoring within milliseconds, albeit at 38% average increase in path length. With as 

many as 2% strategically chosen legacy switches replaced with SDN switches, clairvoyant 

networks achieve on-demand flow visibility with negligible overhead. 

This thesis studies and designs management systems for enterprise and data center 

networks. Our proposed systems are capable of: i) helping operators and users under-

stand and refine security policy configurations; ii) enhancing routing flexibility so as 

to increase network utilization and efficiency; and iii) gaining network visibility to for 

better policy control and fine-grained network monitoring. 

The remainder of this dissertation introduces background and motivation (Chap-

ter 2); presents the security group usage in a public IaaS cloud and our cloud security 

group analysis system (Chapter 3); presents our designed unified network controller 

that exerts SDN-like, fine-grained path control in hybrid SDN networks (Chapter 4); 

presents clairvoyant networks to provide visibility for any network flow at any time and 

with low cost (Chapter 5); discusses future directions and finally concludes (Chapter 6). 

1.3 Bibliographic Notes 

Part of the contents of Chapter 3 on studying security group usage and designing our 

cloud security group analysis system is from a conference paper, titled “Understanding 

Security Group Usage in a Public IaaS Cloud”, which appeared in the Proceedings of the 

35th IEEE Conference on Computer Communications (INFOCOM), San Francisco, CA, 

USA, April 10-14, 2016 [5]. Our developed unified network controller that exerts SDN-

like, fine-grained path control in hybrid SDN networks is presented in a conference paper 

titled“Magneto: Unified Fine-grained Path Control in Legacy and OpenFlow Hybrid 

Networks”, which appeared in the Proceedings of ACM Sigcomm Symposium on SDN 

Research (SOSR), Santa Clara, CA, USA, April 03 - 04, 2017 [6]. This constitutes 

Chapter 4. Part of Chapter 5 is from a paper titled “Clairvoyant Networks”, which is 

currently under review in a conference in the networking area. 



Chapter 2 

Background and Motivation 

Enterprise networks (e.g., the networks in campuses and corporations) and data-center 

networks (e.g., the network infrastructures hosting cloud services) play a critical role 

in modern society, since most users, devices and applications reside in these networks. 

With emerging techniques such as the Internet of Things, virtual and augmented reality, 

more devices are connected to these networks everyday. It is reported that the number 

of devices connected to the Internet will be three times as high as the global population 

in 2020 [7]. The global data center traffic will grow 3-fold from 2015 to 2020 [8], and the 

global enterprise networking market is expected to reach USD 64.63 billion by 2024 [9]. 

Judicious network management facilitates a healthy and sustainable network. Managing 

these networks to provide secure and reliable network services with high availability and 

performance is a central problem for computer networking research. 

2.1 Today’s Network Management 

Network devices started from parcels of protocols. The control plane (i.e., learning and 

building the routes in a network) and the data plane (i.e., forwarding packets based 

on the decision made by the control plane) reside in a same network device, as shown 

in Figure 2.1. Managing a network generally works as: logging into the devices and 

running vendor-specific commands to set up configurations and tune protocol behaviors. 

Management tools are developed based on operators’ experience and customized to 

specific cases—they are vendor-dependent, low-level, and inextensible. 

5 



6 

Control	Plane

Data	Plane

Management Tools

Figure 2.1: Today’s network management. 

2.1.1 Management Tasks 

Network management in enterprises and data centers involves numerous tasks such as 

registering new devices (e.g., servers, switches, and routers), setting up security policies, 

configuring routing policies, as well as obtaining network visibility to enable monitoring, 

measurement and trouble-shooting. This thesis focuses on security policy configuration, 

routing and monitoring. 

Security policy configuration: Security policy rules are configured to restrict 

the traffic from/to certain source/destination hosts, in order to guarantee the network 

and system security. For example, in an enterprise network, traffic between unrelated 

teams and departments is isolated. In a multi-tenant data center, a tenant should not 

have access to other tenants’ virtual machines (VMs) without permission granted. In 

addition, in each tenant, VMs should have different permissions to access resources 

based on their roles (e.g., a public front-end web server shall not have open access to 

database servers). These security policies are typically fine-grained and involves low-

level configurations. 

Routing: A typical enterprise network is comprised of (legacy) Ethernet switches 

with VLAN capabilities. Standard layer 2 Ethernet switches perform two main func-

tions: learning (the next-hop switch towards a destination MAC address) and forwarding 

(a packet according to learned information). To learn the next-hop switch for a packet, 

layer 2 switches broadcast the packet on all ports except the one on which the packet 

arrived. To prevent loops they restrict the underlying topology to a spanning tree by 
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turning off (e.g., using the Spanning Tree Protocol (STP)) or aggregating (e.g., using 

link aggregation) multiple links. In other words, ports associated with “off-tree” links 

are de-activated or blocked. The path of a packet is static and changes only if there are 

topology or configuration changes in the network. To increase path diversity, operators 

can slice the network into multiple VLANs, each with its own spanning tree and set of 

forwarding entries. 

Monitoring: Operators need to monitor the network traffic for various purposes 

such as accounting, anomaly detection, troubleshooting, and traffic engineering. For 

example, operators in data centers may need to identify the large flows in the network to 

better configure their routing for traffic engineering (i.e., a flow is a sequence of packets 

that share the same packet header properties such as source address/port, destination 

address/port, and/or protocol). In addition, having the visibility of network can help 

track network events and topological information. 

2.1.2 Limitations of Existing Network Management 

Coupled control plane and data plane: As shown in Figure 2.1, the control plane 

is coupled with the data plane. The control plane on each device exchanges information 

with other devices in the network, and then computes its routing/forwarding table. 

The data plane forwards packets based on the tables built by the control plane. Each 

device only has a partial (local) view of a network, so that it cannot make network-wide 

decisions and it is slow to recover from failures. 

Vendor-specific and low-level configurations: Network devices are sold as 

monolithic boxes with the coupled control plane and data plane, and the configuration 

interface varies from vendor to vendor. No change on the control-plane or data-plane 

can be easily made since these boxes are closed and proprietary. In this case, network 

management eventually becomes configuring the control plane with the given vendor 

APIs. As a result, operators have to master low-level details to be able to tune protocol 

behaviors correctly. 

Error-prone manual process: Manual configuration has been widely-used in 

network management and proved to be error-prone [4]. Dependency in different network 

elements and the increasing scale make it a Herculean task to manage a network without 

a good automated system. For example, just to bring a server online in a campus 
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Control	Plane
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Figure 2.2: Network management with software-defined solutions. 

network, operators need to add a new entry in the DHCP server, configure VLANs 

correctly, set up firewall rules, and make sure no blocking configuration exists in switches 

or routers. 

2.2 Rethinking Network Management with Software-Defined 

Solutions 

2.2.1 Software-Defined Networking 

Software-Defined Networking (SDN) [10, 11, 12, 13, 14] decouples the control plane 

from the data plane, as shown in Figure 2.2. With a (logically) centralized control 

plane [15, 16] and a programmatic match-action data plane abstraction [17, 18, 19], SDN 

enables flexible, fine-grained network control and monitoring, and offers the potential to 

transform network management: from today’s largely manual process to an automated 

process governed by (high-level) network policies. The control plane (i.e., controller, 

a.k.a., network OS) decides the behaviors of data-plane switches by installing match-

action rules using a standard protocol (e.g., OpenFlow). The match determines which 

headers in the packet to match and their values, and the action(s) determines a sequence 

of actions to perform on the matched packets. For example, forwarding the packets 

destined to a server Alice to port 2 can be defined with “destination MAC address = 

Alice’s MAC address” in the match field and “output to port 2” in the action field. 
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With the centralized control plane, network operators can easily access to the global 

view of a network in order to make good network-wide decisions. The interface between 

control plane and data plane is open and vendor-agnostic, so different controllers can be 

developed to serve diverse network set-ups. Management tasks can also be implemented 

as software applications running upon the control plane, so that automating manage-

ment tasks with defining high-level intent is not mission impossible any more. SDN 

made a grand opening in providing software-defined solutions to network management. 

Taking this inspiration, we can explore how to manage network judiciously. 

2.2.2 Security Policy Configuration in IaaS Clouds 

Cloud computing enables ubiquitous access to a shared pool of computing, network, 

and storage resources. It provides users with convenient and on-demand capabilities to 

store, process, and retrieve data in data centers. In Infrastructure-as-a-Service (IaaS) 

cloud computing platform such as Amazon EC2 and OpenStack, cloud customers can 

even outsource the physical and virtual resources to develop their own applications. 

Nonetheless, security is one of the main concerns in the adoption of cloud computing. 

As an example, the data breach at Target resulted in the loss of personal and credit 

card information of up to 110 million individuals [20]. To this end, researchers have 

developed many security solutions to be offered as a cloud service. For instance, virtual 

machine introspection as a cloud service is offered to allow customers to develop their 

own tamper-resistant security tools without relying on cloud providers. 

In IaaS cloud platforms, security group is the primary means for cloud tenants to 

configure security policies to protect their virtual machine (VM) instances against at-

tacks. A security group is a (named) container for a set of security rules. It provides 

tenants the ability to specify the type and direction of traffic allowed by VM instances. 

Unlike the conventional network firewalls where rules are typically configured by ex-

perienced network administrators, security groups and their constituent security rules 

are specified by cloud tenants, some of whom may lack an adequate network manage-

ment background to properly configure security groups. Unfortunately, vulnerabilities 

in one tenants VMs pose security threats not only to the tenant itself but also to the 

entire cloud platform. Ensuring that each cloud tenant properly specifies his/her secu-

rity groups and the rules therein is therefore paramount to cloud platform providers. 
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In Chapter 3, we present a tool that helps operators and users understand and refine 

security group configurations. 

2.2.3 Unified Fine-Grained Routing Control with Incremental SDN 

Deployment 

Today’s networks are maintained by “masters of complexity”: network operators, who 

have accumulated tremendous experience, devote significant efforts to operate highly-

available networks and troubleshoot complex problems. The reason behind is that legacy 

networks lack global visibility and proper abstraction which can enable centralized con-

trol. SDN provides a logically-centralized interface to control and interact with network 

devices. Operators perform network management tasks through software programs ex-

ecuted from a logically centralized controller. The flexible control and global visibility 

offered by SDN can reduce the cost of operating a network by half [21]. However, fully 

benefiting from SDN requires a considerable initial investment: network providers must 

upgrade or replace existing legacy switches with SDN-enabled switches (e.g., whose 

forwarding behaviors are programmable remotely from a logically-centralized controller 

using a specialized protocol such as OpenFlow [17]). 

Recent work, both in academia and industry, attempts to reduce the capital ex-

penditure of SDN while maintaining most of its benefits, by upgrading only a few, 

strategically chosen legacy switches in a network. We refer to such networks as hybrid 

SDN networks. Although effective at controlling routing paths through SDN-enabled 

devices, the control points are also limited to the SDN-enabled devices. None of the 

previous work can dynamically affect the forwarding behaviors of the remaining legacy 

devices and, consequently, the paths through the legacy sub-network. To control those 

paths in the legacy sub-network, manual configurations or additional protocols need to 

be further applied. In Chapter 4, we present a system that enhances routing flexibility 

so as to increase network utilization and efficiency. 
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2.2.4 On-demand Network Visibility for Better Monitoring and Policy 

Enforcement 

Real-time monitoring of all network flows is critical for preserving network health and 

detecting operational problems in enterprises. To make flows visible, network operators 

deploy monitoring tools (e.g., NetFlow, SNMP [22, 23, 24]) pervasively throughout the 

network to cover flow paths or mirror packets to dedicated appliances. For example, 

to identify large flows, NetFlow-enabled switches sample packets and build flow-level 

packet counters. Monitoring tools must be strategically deployed across the data plane 

to enable network-wide visibility, and carefully tuned to avoid overloading the data 

plane [25]. 

Another approach is to jointly optimize routing and monitoring tasks such that flows 

traverse specific monitoring devices [26, 27, 28]. This requires a fully-programmable data 

plane (e.g., SDN-enabled switches) which may not be readily available and is expensive 

to deploy. In Chapter 5, we present a system that gains on-demand network visibility 

by making a network partially programmable. 



Chapter 3 

Understanding Security Group 

Usage in a Public IaaS Cloud 

3.1 Introduction 

In Infrastructure-as-a-Service (IaaS) cloud platforms such as Amazon EC2 and Open-

stack [29, 30], security group is the primary means for cloud tenants to configure security 

policies to protect their virtual machine (VM) instances against attacks [31, 32]. Al-

though similar to the conventional network firewalls in many ways, security groups 

have several distinct features that make their configuration somewhat more complex 

and trickier to use. Unlike firewalls where rules are typically configured by experienced 

network administrators, security groups and their constituent security rules must be 

specified by cloud tenants, some of whom may not be well-trained or lack an adequate 

network management background to properly configure security groups. Unfortunately, 

vulnerabilities in one tenant’s VMs pose security threats not only to the tenant itself 

but also to the entire multi-tenant cloud platform. Ensuring that each cloud tenant 

properly specifies his/her security groups and the rules therein is therefore paramount 

to multi-tenant cloud platform providers. 

In this chapter we first conduct a measurement-oriented analysis of security group 

configuration and usage by tenants in an IaaS cloud based on real-world datasets. Our 

goal of this measurement study is multi-fold: to understand what are the usage patterns 

(“good” and “bad” practices) in how cloud tenants configure their security groups, what 
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they attempt to achieve, what are the common issues and potential security vulnerabil-

ities, and how to help cloud tenants refine their security group configurations to prevent 

these issues and vulnerabilities. As an example of “bad” practices and potential vul-

nerabilities revealed by our analysis of a multi-tenant IaaS cloud system security group 

dataset, we find that a number of tenants simply allow all traffic (0.0.0.0/0) from 

both the external Internet and within the cloud to access their VMs. In general many 

tenants inappropriately configure their security groups by using loose, and sometimes 

inconsistent, rules (see § 3.2 and §3.5 for more discussion on these and related points). 

Motivated by the results and insights obtained from this measurement study, we 

propose and develop a cloud security group analysis tool called Socrates. Socrates takes 

the security group settings of each tenant, the VM mapping as well as the observed 

traffic flows (both allowed and denied) as inputs, and employs visual analytics to assist 

cloud tenants in understanding the static and dynamic access relations among VMs 

based on the security groups they have specified and the traffic observed. Furthermore, 

our tool also helps cloud tenants diagnose potential misconfigurations and provides 

suggestions to refine security group configurations based on real traffic traversing the 

tenant VMs. As a result, cloud tenants can view their security group configurations 

in a high-level, visualized manner, and revise their security group settings immediately 

after they realize some configurations do not meet their intent. 

By applying Socrates to all existing tenants hosted on our IaaS cloud using the 

week-long datasets, we report some key results and lessons we have learned in §3.5. 
As alluded earlier, security groups are often set up by tenants who are “ordinary” 

application developers and may not be experts in network security. Hence we expect to 

see many configuration errors. Nonetheless we are surprised to find many configuration 

issues, some of which can lead to potential security vulnerabilities. For example, we find 

that more than 80% tenants configure security groups in a loose manner. In contrast, 

some tenants verbosely set rules leading to giant security groups with hundreds of rules. 

While many tenants create multiple security groups for their VMs, a large number 

of them do not have a clearly defined structure in mind when creating these security 

groups. Socrates also reveals many redundant or inconsistent rules in the security group 

configurations, likely the result of tenants’ lack of knowledge about the intricacies of 

security groups (e.g., rule ordering is immaterial) or mistakes in configuring rules. To 
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the best of our knowledge, this is the first work of analyzing cloud security groups. Our 

work sheds light on understanding the common usage for security groups and proposes 

a tool to better understand, diagnose and refine security group configurations. 

3.2 Overview and Datasets 

In this section, we first describe the basic concepts of IaaS cloud security groups and 

then the datasets used in our study. 

IaaS Cloud: VMs and Security Groups. Creating a cloud application in an IaaS 

cloud starts with launching VM instances. One critical step in launching a VM is to 

configure security groups. A security group is a container for a set of security group 

rules. It provides tenants the ability to specify the type and direction of traffic allowed 

by VMs. Security groups are applied to individual VMs, whose private IP addresses are 

dynamically assigned only at the time they are launched – in other words, such private 

IP addresses are, in general, unbeknownst to the tenant at the time he/she specifies the 

security group rules. Unlike conventional firewall rules, the default action of security 

group rules is deny; thus, a tenant needs to explicitly specify what type of traffic (in 

terms of protocol and port) and from where (e.g., in the form of a public or private 

IP address prefix) can access his/her instances. Furthermore, security groups can be 

“nested” in the sense that the security group rules in one security group, say, SG-A, can 

use the name of another security group (either belonging to the same tenant or another 

tenant), say, SG-B – in lieu of a (public or private) IP address prefix – to explicitly 

specify that the traffic from VMs in SG-B can access VMs in SG-A on ports permitted 

by the security group rules. Furthermore, the ordering of rules within a security group 

is immaterial; security group rules are not prioritized as in the case of firewall rules. 

Therefore, the most permissive rule gets applied if more than one rule is created for 

a specific port or IP range. Table 3.1 shows an example of a security group. Due 

to nested security group rules or IP ranges’ coverage on VMs, there are dependencies 

among various security groups defined by one tenant (and sometimes among multiple 

tenants). Ideally, a tenant should create security groups based on the roles of VMs in a 

cloud service he/she develops. 

Before getting launched, each VM must be assigned with at least one security group. 
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Table 3.1: An example of security group with 3 rules. 

Action Protocol Port Range IP Range 
ALLOW TCP 80 – 5666 10.0.10.0/24 
ALLOW UDP 68 – 68 SG-A 
ALLOW ICMP 8,0 11.22.33.44/32 

A default security group is defined for all tenants, which by default denies all ingress 

traffic and allows all egress traffic and the traffic among the VMs associated with the 

default security group. When a VM is launched, it is associated with the default security 

group if no security group is specified by the tenant. In addition, a tenant can define 

and customize new security groups. One VM can be associated with multiple security 

groups, and one security group can be assigned to a collect of VMs. Therefore, one 

tenant can have a set of security groups and VMs, and the mapping between them can 

be fairly complex. Finally, tenants can configure security groups by adding or deleting 

rules, but not modifying an existing rule (A rule cannot be modified once it is created). 

Changes are automatically applied to the running VMs associated with the security 

group. 

Datasets. The datasets used in our study are collected from a single multi-tenant 

data center running the OpenStack cloud software. There are three types of datasets: 

the secgroup dataset, the VM-layout dataset and the sFlow dataset. The first type 

of dataset is called secgroup which contains security groups and the constituent rules 

defined by cloud tenants. It contains five main fields: tenant ID, security group name, 

protocol type (TCP, UDP, or ICMP), port range (or ICMP type and code), and the 

source (IP range in the CIDR notation or the name of a security group). A tenant ID 

allows us to match the tenant across multiple datasets. The second type of dataset is 

the VM-layout that stores information about running VMs in the cloud at any given 

time. The important fields are VM name, tenant ID, associated security group(s), 

public IP address (if assigned), and private IP address. Both the security group and 

VM layout datasets are collected from the cloud configuration database. The last type 

of dataset is sFlow that contains flow traces (both allowed and denied flows) collected 

at each switch by random sampling. It stores packet header information, including 

source and destination IP addresses, TCP/UDP port numbers, time, switch identifier, 
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Figure 3.1: Basic statistics of security group usage by tenants. 

and source/destination switch ports associated with the packet. 

3.3 Current Usage of Security Groups 

As security group is still a relatively unknown concept to many IaaS cloud customers, we 

first conduct an extensive measurement-based analysis of security group configuration 

and usage by tenants in an IaaS cloud based on real-world datasets. In the following, 

we present some basic statistics and a few key results from this measurement-based 

analysis of the multi-tenant IaaS cloud security group, VM and flow datasets. The goal 

is to identify the common usage patterns in how cloud tenants generally configure their 

security groups. We also briefly point out a few “bad” practices in cloud tenant security 

group configurations, which we will expand on further in Section 3.5 in conjunction with 

the discussion of the results obtained from applying our Socrates tool. 

3.3.1 Basic Statistics 

Fig. 3.1a shows the number of security groups and the number of VMs in each tenant, as 

well as the number of rules that each security group has. The x -axis is the normalized 

value where n is a base value. As the results show, around 10% tenants have only 

one security group, and the remaining have at least two security groups. Most tenants 

have less than several dozen security groups, whereas not every security group plays a 
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Figure 3.2: The relation between security groups and VMs, and between security groups 
and rules. 

different role. The number of rules in security groups (log value) starts with −1 (it could 

be any negative value, and we use −1 for simplicity) at x -axis, because some tenants 

have empty security groups that do not have any rule. Apart from 15% no-rule security 

groups, most security groups have less than one hundred rules. 

Given the tenants that have multiple security groups and multiple VMs, we are 

interested in the association between security groups and VMs (shown in Fig. 3.1b). Our 

results show 50% security groups are associated with only one VM. In the remaining 

half of security groups, most of them are associated with a few dozen VMs, and very 

few of them are associated with a very large number of VMs. 70% VMs are assigned 

with only one security group, and others are assigned with multiple security groups. 

As depicted in Fig 3.2a, generally the more VMs a tenant has, the more security 

groups it tends to have, so the more sophisticated system the tenant is expected to 

build. However, we also notice that some tenants have a large number of VMs but only 

contain a few number of security groups. One reason is that these tenants have simple 

architectures but very high workload so that they need to launch a number of VMs to 

balance the workload. Another possible reason is that the tenants glue all rules in a 

few security groups instead of reasonably separating them into more security groups 

(discussed in Section 3.5). 
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3.3.2 Rules in Security Groups 

To investigate how security groups are configured in tenants, we start from studying 

their rules. Each rule consists of port and IP range. Based on the IP range, a rule 

can be classified into three groups: only accepting the external traffic1 , only accepting 

the internal traffic, accepting both external and internal traffic (e.g., 0.0.0.0/0). As a 

security group is a set of rules, we can further determine whether a security group is: 

accepting only the external traffic, accepting only the internal traffic, or both. In our 

secgroup dataset, we find that 42% rules allow external traffic (referred to as external 

rules) and they are distributed in 34% security groups. 39% rules allow internal traffic 

and they are distributed in 61% security groups (referred to as internal rules). 19% 

rules allow traffic from everywhere (0.0.0.0/0) and they are distributed in 50% security 

groups (also referred to as external rules). In addition, a rule can be very restrictive or 

very permissive by setting the decimal in CIDR notation. For example, decimal 32 is 

used to specify an individual IP address, and decimal 0 means cover all IP addresses. 

We find that 34% rules use decimal 32 (e.g., a.b.c.d/32). Around 60% external rules 

use decimal 32 to set individual IP addresses, while most internal rules use IP blocks 

(i.e., 0 < decimal < 32). 

In terms of the port range used by each rule, our results show that the top five 

mostly-used TCP port ranges are 80, 443, 8080, 22, and 1-65535. We are surprised to 

see many rules use 1-65535 in port range, because simply allowing all ports is very risky. 

Moreover, ICMP rules’ configurations are more biased, more than 90% ICMP rules are 

coarsely set to allow all types and all codes. 

Furthermore, we also observe that 14% security groups distributed in 48% tenants 

contain redundant or inconsistent rules: for instance, two rules allow traffic on the same 

port (say, TCP 443) but from two different IP address prefixes, one a sub-prefix of the 

other. Such rules make little sense, as traffic will be allowed by the less restrictive rule. 

This appears to be a result of a tenant attempting to modify an existing rule by adding 

a new rule but forgetting to delete the old rule. Fig. 3.2c shows the number of rules 

and the number of redundant rules each security group has. 

1We define external IPs as the addresses that do not belong to the IaaS cloud. In contrast, internal 
IPs are owned by the cloud. For simplicity, external traffic is referred to as the traffic between internal 
IPs and external IPs, and internal traffic denotes traffic between internal IPs. 
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3.3.3 Security Group Dependency 

Based on the understanding of rule settings and the fact that a security group is actually 

a set of rules, now we study the security group usage at the tenant level. As a rule 

can be categorized into external rules and internal rules, a security group can also be 

categorized into external (only has external rules), internal (only has internal rules), 

and mixed (has both external and internal rules). 

In our dataset, all tenants allow external traffic to some extent. 15% tenants consist 

of only external security groups. The security group rules for external traffic should be 

more carefully configured in order to protect the VMs from outside attacks. As most 

tenants have multiple security groups, we are interested in the relationship among the 

security groups in the same tenant. The relation can be depicted as a graph (discussed 

in details in Section 3.4), where each security group is a node and each directed edge 

indicates that the successor allows certain type of traffic from the predecessor. 70% 

security group graphs have bidirectional edges between each pair of security groups. 

Among them, around 40% share same port ranges on the same pair of bidirectional 

edges. 

3.3.4 Bad Practice in Security Group Configurations 

As part of the motivation for the Socrates tool, we provide some sample results from an 

initial analysis of the secgroup dataset (see Table 3.2). Our analysis shows that “good 

practice” (i.e., use nested security groups to scope communications among VMs) is not 

widely adopted yet – only 5% tenants employ nested security group rules. It reveals 

a fact that many cloud tenants have not completely grasped the concept of security 

groups or the subtle intricacies involved, and as a result, often specify rules that are 

either semantically incorrect or too loose. 

We find that 24% tenants open all ports on their VMs to accept traffic. Out of these 

tenants, 19% tenants allow traffic from 0.0.0.0/0, i.e., accept traffic from anywhere 

on the Internet. This extremely-permissive setting exposes the tenants as victims of 

potential security attacks because it does not filter any traffic. When looking into the 

IP ranges specified in the rules, we find that some tenants do not even understand 

the CIDR notation. 13% tenants in our dataset have rules with a.b.c.d/0 (where 
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a.b.c.d != 0.0.0.0) and 5% have rules with 0.0.0.0/x (where x!= 0), which is semantically 

incorrect. In addition, many tenants often use rules with 10.0.0.0/8 instead of nested 

security groups when their intention is to simply enable communications among VMs 

between certain security groups (see Section 3.5 for more detail). 

Table 3.2: Initial analysis of secgroup dataset. 

Usage Tenants Rules 
Bad usage 
Bad usage 

Bad usage 

24% 
13% 

5% 

Open all ports (1–65535) 
Meaningless CIDR: a.b.c.d/0 (a.b.c.d != 
0.0.0.0) 
Meaningless CIDR: 0.0.0.0/x (x!=0) 

Good usage 5% Use nested security groups 

In some tenants’ configurations, all of their security groups surprisingly open all 

ports for all VMs belonging to the tenants. This loose setting arouse our investigation in 

their flow usage. We find that their flows are much more restrictive (i.e., only contacting 

some ports from a subset of VMs) compared to the configured rules. These observations 

motivated us to design and develop a tool which visualizes the security group setting, 

analyzes real flows against the security group rules, and generates diagnostic reports, 

which detailing problems with the security group rules. Section 3.4 explains the design 

of our tool Socrates. 

3.4 Socrates: A Security Group Analysis Tool 

In this section we provide an overview of Socrates – a cloud security group analysis 

tool that we have developed 2 – and briefly describe its key components. Part of the 

rationale for Socrates is our recognition that many IaaS cloud tenants are “ordinary” 

application developers who may not be very familiar with notion of security group and 

its intricacies, let alone being a network security expert. Ideally, when a tenant develops 

and deploys a service or application on an IaaS cloud platform, security groups should 

be created to reflect the roles of VMs and meet their security and management require-

ments. As we briefly discussed in Section 3.3 and further expanded on in Section 3.5, 

2The name, Socrates, is derived as an anagram of the capitalized letters in SECurity gROup AnalySis 
Tool. 
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creating and configuring security groups can be quite a challenging task for many ten-

ants. Unfortunately, vulnerabilities in one tenant’s VMs pose security threats not only 

to other tenants but also to the entire multi-tenant cloud platform. Hence ensuring 

security for each tenant is crucial. 

Socrates is designed to assist cloud tenants in understanding their security group 

settings and help them diagnose their configuration issues. Socrates takes the security 

group settings of each tenant, the VM mapping as well as the observed traffic flows 

(both allowed and denied) as inputs, and produces a visual representation of security 

group/VM structure as well as a diagnosis and recommendation report to help tenants 

diagnose and improve their security group configurations based on observed network 

traffic. Socrates consists of three key components: visualizer, flow analyzer, and recom-

mender, see Fig. 3.3 for a schematic illustration. 

Security Group/VM Structure Visualizer: It displays the dependencies of security 

groups and VMs through directed graph representations based on the (static) security 

group settings and the (dynamic) VMs to security group mappings. The dependency 

between security groups reveals the cloud service infrastructure design that a customer 

has envisioned. Hence, a directed graph (referred to as a security group structure graph) 

is generated to represent security groups of one tenant, where nodes stand for individ-

ual security groups and the edges encode dependencies between security groups. Each 

directed edge indicates the successor security group allows the traffic satisfying the spe-

cific port range and IP range from the predecessor security group (or external networks). 

From the graph, we further identify tiers to which security groups belong. A security 

group is defined as tier N if and only if it allows traffic from tier N −1 but not from any 

other lower tiers. For example, tier 1 security groups contain at least one rule explicitly 

allowing external traffic. Tier 2 security groups allow traffic from tier 1 security groups 

but not from external networks. After building the security group structure graph, we 

next add the VM-level structure into the graph by mapping VMs to assigned secu-

rity groups. VMs are displayed as rectangular nodes inside the corresponding security 

groups. In addition, we introduce edges between VMs within the same security group 

to indicate that traffic is allowed between a particular pair of VMs. On the other hand, 

the dependency between VMs across two security groups are already captured by edges 

between security groups. Fig. 3.4a depicts the security group/VM structure for a real 
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Figure 3.3: Socrates workflow. 

tenant from our datasets, nicknamed “Alice”, where all security groups belong to tier 1 

since they all allow external traffic. 

Flow Analyzer: It infers the cloud service infrastructure design by analyzing the 

traffic flows associated with the service, both allowed and blocked. A particular flow 

between a source VM and a destination VM is considered allowed or blocked based on 

whether it is allowed by rules in the destination VM security group or not. To build 

the flow structure, the analyzer marks flows as either allowed or blocked by checking 

each flow with the rules of all the associated security groups. With both allowed and 

blocked flows, we build the flow structure, a directed graph at the VM-level, based 

on flows’ src IPs, dst IPs and dst ports. The directed edges are labeled as “allow” or 

“block” to differentiate the flows are accepted by rules or not. This VM-level graph 

can also be easily converted to a security group level graph by aggregating the flows 

of VMs belonging to the same security group. An example of flow structure for tenant 

Alice is shown in Fig. 3.4b, where we see that the (dynamic) flow structure is more 

“sophisticated”, e.g., containing more “tiers”, than the simple tier-1 structure depicted 

in Fig. 3.4a. 

Recommender. It utilizes the information generated by the security group structure 

and flow structure in order to identify the differences between the rules created and 

the flows accepted or denied by customer VMs. It further alters customers about the 

mismatch as as well offers suggestions to modify security group by providing the analysis 
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Figure 3.4: Examples of SG/VM Structure and Flow Structure. 

report3 . If the security groups are defined too widely, we can recommend that tenants 

refine their security groups to restrict ports and IPs that do not appear in the flow 

structure. For example, given most security group and VM structures are complete 

graphs, the flow structure can show more sophisticated structures. It also analyzes the 

causes of blocked flows. In terms of the “block” edges, if the same kind (same src IP, 

dst IP and dst port) of blocked flows keeps coming for a long time, Socrates raises alert 

to customers in case of potential misconfigurations or attempt of attacks. 

3.5 Security Group Configuration Analysis and Diagnosis 

To evaluate the efficacy of the proposed tool, we apply Socrates to examine and analyze 

the security group configuration issues of all tenants on our IaaS cloud, using one-week 

datasets of tenant security group settings, VM layouts and traffic flows. In the following, 

we will first provide a brief overview of the results we have obtained, highlighting a few 

configuration issues uncovered by Socrates. Then, we will discuss the structural analysis 

of security group configurations to illustrate how Socrates can help tenants visually 

3We quantify mismatches using the Jaccard distances of corresponding IP ranges and port ranges 
within two structures. While the threshold on Jaccard distances can be set according to management 
needs, we choose a conservative value of 0.1 in our experiments. In other words, we only study most 
significant mismatches. 
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analyze their security group settings and track their changes over time. We will also 

present analysis and discussion of the uncovered configuration issues in the end. 

3.5.1 A Brief Overview of Results Obtained via Socrates 

As alluded earlier, in contrast to firewall rules which tend to be configured by profes-

sional network operators, security groups are often set up by tenants who are “ordinary” 

application developers who may not be an expert in network security. Hence we expect 

to see many configuration errors. Nonetheless we are surprised to find that around 50% 

tenants have at least one security group without any rule configured. A few of them 

even have VMs assigned to these empty security groups. As revealed by the flow anal-

ysis, many tenants configure rules loosely, for example, using rules with sources such as 

0.0.0.0/0 or 10.0.0.0/8, without regards to the actual application requirements. Other 

tenants configure rules verbosely, e.g., by creating one rule per VM (i.e., using a /32 IP 

address as the source), which leads to a giant security group with many rules. While 

many tenants create multiple security groups for their VMs, a large number of them 

do not seem to have a clearly defined structure in mind when creating these security 

groups (see Section 3.5.2). Very few leverage (nested) security group names as an ef-

fective way to permit only traffic between VMs of specific security groups and restrict 

traffic from other VMs not belonging to these security groups; instead they often resort 

to either using overly permissive rules with 10.0.0.0/8 or 10.0.0.0/24 or creating one rule 

per VM address as stated earlier. Socrates also reveals many redundant or inconsistent 

rules in the security group configurations, likely the result of tenants’ lack of knowledge 

about the intricacies of security groups (e.g., rule ordering is immaterial) or mistakes 

in configuring rules. 

3.5.2 Structural Analysis of Security Group Configurations 

Socrates takes the security group settings of each tenant, the VM mapping as well as 

the observed traffic flows as inputs, and employs visual analytics to assist cloud tenants 

in understanding the static and dynamic access relations among VMs based on the 

security groups they have specified and the traffic observed. In this section we report 

some key results we have obtained by applying Socrates to all tenants’ security group 
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Figure 3.5: Three categories of tenant structures. 

settings using the one-week datasets. 

The goal of structural analysis of security group configurations is to help tenants 

visualize and understand the relations among various security groups they have config-

ured, whether they reflect the roles and application requirements of the VMs associated 

with these security groups, and how the observed traffic (both allowed and blocked) 

traffic match what the security group rules are intended to accomplish. We find that 

although a majority of tenants have more than one security group configured, many do 

not appear to have a clearly defined structure in mind. We observe that 51% tenants 

tend to have a single-tier, whereas the remaining have two tiers. No tenant has more 

than two tiers, despite some of them have configured a large number of rules that apply 

to a large number of VMs. 

Fig. 3.5 depicts three representative examples of two-tiered security group structures 

generated by Socrates, which we classify them as: (i) public customer facing web service, 

(ii) private enterprise application, and (iii) back-end service support. The tenants in 

category (i) use the IaaS cloud platform to deploy a public web service serving customers 

from everywhere (0.0.0.0/0), while the tenants in category (ii) may have likely migrated 

a private enterprise application to the IaaS cloud platform and thus restrict it to a 

specific set of IP address ranges belonging to the private enterprises. The tenants in 

category (iii) on the other hand leverage the the IaaS cloud platform for back-end service 

(e.g., databases) support for another service (or tenant). In this case, we often see that 

traffic from another tenant (often in category (i)) is allowed. Judging based on the 
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names of the tenants involved, the two tenants likely belong to the same owner. In 

category (iii), although some traffic from one or two external networks are allowed, they 

are primarily for the management purpose (SSH or ping from the external networks). 

The remaining rules are all restricted to internal VMs, and the commonly used ports 

are for web proxy services, databases services, synchronization services, and monitoring 

services. For tenants with two tiers, 61% are public customer facing, 32% tenants are 

private enterprise application, and 7% tenant are back-end service support. 

The (static) structure of the security group settings is also reflected by the dynamic 

structure in the observed traffic flows through the flow analysis. We find that VMs 

associated with the tier-1 security groups often function as web servers/web proxies, 

load balancers, or jump servers. VMs associated with many tier 2 security groups 

are running database services, certain application services or monitoring services. In 

particular, we notice that VMs associated with the “monitoring” security groups only 

send traffic to other VMs, but hardly allow traffic from other VMs. 

Potential Vulnerabilities. As stated earlier, we find that many tenants have a single-

tier structure. Further analysis reveals that for a majority of tenants (70%), their secu-

rity groups form a full mesh, i.e., any pair of security groups are allowed to communicate 

with each other. Based on our observation, the existence of many full meshes is caused 

by tenants extensively using 10.0.0.0/8 and 10.x.x.x/24 to grant access to their VMs. 

In particular, we find that 16% tenants use 10.0.0.0/8, 23% of tenants use 10.x.x.x/24, 

and 44% tenants use 10.x.x.x/y where 8 < y < 24. On the other hand, based on the 

analysis of observed traffic flows of these tenants, these rules are meant to apply to VMs 

belonging to the tenants’ own security groups. These overly permissive rules imply that 

any other VMs in the cloud platform (even those not belonging to the tenants) are 

allowed to access these VMs, thereby creating potential security vulnerabilities. As a 

tenant may not know the private IP address range dynamically assigned to its VMs, 

many resort to simply use 10.x.x.x/8 or 10.x.x.x/24 to cover its VMs, as opposed to 

use the names of its security groups directly. A particularly concerning problem with 

these tenants with such a “full-mesh” single-tier structure is that as some of the VMs 

are associated with security groups which are “public customer facing”, i.e., allowing 

external traffic to access them. As a result, one compromised customer-facing VM can 

lead to other VMs (even though they are not assigned any public IP address, thus 
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Figure 3.6: Snapshots of an actively-developing tenant Eric. The number of VMs is 
normalized. 

not directly addressable from the outside world) being potentially compromised. By 

analyzing both the static security group settings and dynamic VM layouts as well as 

the observed traffic flows, Socrates is capable of alerting tenants about such potential 

security vulnerabilities and suggest alternative security group structures based on the 

common traffic patterns observed among VMs. 

3.5.3 Tracking Configuration Changes 

By applying Socrates to the security group settings, VM layouts and flow datasets over 

one week, we also track how tenants modify the security group rules to experiment with 

and refine their settings to meet application needs, or adapt to changing application 

requirements. By observing what flows are allowed and what are blocked, and how they 

vary over a period of one week, we can also get a sense of what are “normal” traffic 

activities, but what may be “anomalous” traffic activities. 

In our datasets, 14% of the tenants made security groups configuration changes in 

the one week period. Some tenants made many changes, such as adding new security 

groups, deleting existing security groups. Other tenants made slight modifications to 

existing security groups by either adding new rules (e.g., open more ports or allow more 

IPs) or deleting existing rules. In addition, some new VMs were launched with newly-

added security groups, while some existing VMs were terminated with removing existing 

security groups. We observe that among the tenants which generate most traffic (top 

11% tenants), their security group configurations hardly change at all over the one week 

period, although the numbers of VMs launched and the amount of flows may vary over 
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time. This observation indicates that the services operated by these top tenants are 

well-developed and running in a stable mode. In contrast, we find that a few tenants 

with quite less traffic frequently changed their security group configurations and VM 

association over the one week period, suggesting that they were still developing their 

services and were experimenting with the security group settings. 

Fig. 3.6 provides an example where a tenant Eric modifies its security groups in the 

one week period. Initially (see Fig. 3.6a), the tenant has four security groups and five 

VMs. The number beside each security group indicates the number of VMs associated 

with it. Note here all VMs are also associated with the default security group. Except 

SG3, the other security groups allow external traffic, so that they are in Tier 1. After 

half a day (Fig. 3.6b), additional rules are added to SG2 to allow HTTP and HTTPS 

traffic from more external IPs. By analyzing the observed flows of this tenant, we see 

traffic from these newly-allowed external IP addresses in the same hour as the rules 

were added. Several days later (Fig. 3.6c), two new security groups, SG4 and SG5, were 

added, with rules allowing traffic from other security groups. Similar to SG3, these two 

new security groups function as back-end application services, but with different ports 

open. Two new VMs were launched, one associated with SG4 and one with SG5. The 

flow datasets reveal that indeed there is traffic between the two VMs. 

This example helps illustrate that when a tenant modifies its security group set-

tings, its intention is often to permit or restrict certain traffic. Therefore, the dynamic 

structure in the observed flows should also change accordingly. However, we have also 

observed that the dynamic flow structures change before the security group configura-

tion is modified. While flow structures change may be due to, e.g., attacks, when such 

changes persist over time, they can be an indication of changing application require-

ments or a change in the nature of services. For example, if the same type of flows 

continuously get blocked for a long time, this may be due to a “misconfiguration” (a 

previously too restrictive rule may need to be relaxed). In this case, our tool will raise 

a red flag to notify the tenant. 

Potential Vulnerabilities. As tenants add new rules or modify their existing security 

group settings over time to meet changing application or service requirements, many 

forget to delete their old rules. These lead to redundant or inconsistent rules in the 

security group configurations, say, with multiple rules apply to the same or overlapping 
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or a subset of IP address blocks which permit traffic on a different set of TCP/UDP 

ports. Some of these configuration issues may be due to tenants’ lack of knowledge in 

security group configurations: they may not realize that once a rule is set, it cannot 

be modified/updated; creating a new rule, say, applies to the same IP prefix block but 

with a new port range, does not invalidate the previously configured rule – old rules 

must be explicitly deleted when they are no longer needed. Some tenants may simply 

forget to delete old rules when creating new rules or forget about the existence of these 

old rules. Given that the ordering of rules in a security group does not matter, such 

mistakes can potentially create security holes, especially when a new rule is put in place 

to limit certain unwanted traffic that an old rule previously allows. Socrates is able 

to explicitly flag such redundant or inconsistent rules and alert the tenants about such 

configuration issues which potentially create security vulnerabilities. 

3.5.4 Loose, Verbose, and Inconsistent Configurations 

As mentioned earlier, it is surprising that most tenants (more than 80%) set security 

groups in a loose manner. Tenants are suggested to restrict IP ranges to credible IP 

blocks by using proper CIDR notation or security group names. In addition, tenants 

are encouraged to use nested security groups to specify IP ranges. This feature enables 

allowing traffic from all VMs associated with the nested security group without using 

individual IPs or IP ranges. If there is any VM newly-launched or stopped, the tenant 

does not need to modify the rules. Based on our observation, the flow structure often 

time reveals a subset of the access relationship than the security group structure gen-

erated by security group settings. It also tends to reveal more about the tier structure. 

One of the key reasons is that tenants extensively set security groups loosely, such as 

10.0.0.0/8 and 10.x.x.x/24. Hence, the corresponding security group settings can be 

refined to be more restrictive based on the flow structure. In addition to setting rules 

loosely, some tenants also set security groups loosely. Specifically, instead of setting 

security groups distinctly to present their roles, the tenants simply replicate security 

groups over and over again. In this case, these security groups have exactly the same 

rules but different security group names. However, by looking into their flow structures, 

we clearly see each of these security group’s real intentions and functions are entirely 

different. Hence, we suggest the tenant should refine security groups to reflect their 
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distinct roles. 

In contrast to setting security groups loosely, a few tenants in our cloud set their 

security groups in an extremely verbose manner. Especially some tenants only have one 

giant security group with hundreds of rules. We observe that it is because the rules are 

set by using individual IPs of VMs. If there is any VM launched or stopped, the same 

type of rules need to be added or deleted. 

Redundant or inconsistent rules are the multiple rules which apply to the same or 

a subset of IP address blocks/ports which permit traffic on a different set of ports/IP 

address blocks, one a subset of the other. Such rules make little sense, as traffic will 

be allowed by the most permissive rule. Among the tenants which have redundant 

rules, 30% tenants have more permissive rules followed by more restrictive rules, 40% 

tenants have more restrictive rules followed by more permissive rules, and 30% tenants 

have both cases. With the analysis of sFlow dataset, in terms of the tenants which 

have more permissive rules coming first, 83% tenants have most flows allowed by the 

former permissive rule but cannot be allowed by the latter restrictive one. 17% tenants 

have most flows allowed by the former permissive rule and could also be allowed by 

the restrictive rule. In terms of the tenants which have more restrictive rules coming 

first, we find that 75% of them have only a few flows allowed by the former restrictive 

rule and most flows accepted by the later permissive rule, which indicates the customer 

intends to create a more permissive rule to replace the restrictive one, but unfortunately 

forgets to delete the restrictive rule. 25% tenants have most flows allowed by the former 

restrictive rule while only a few allowed by the latter permissive rule. 

3.6 Summary 

The contributions of this chapter are summarized below: i) Using the real-world datasets 

from a multi-tenant IaaS cloud, we have conducted a first measurement-based analysis of 

security group configuration and usage. Through this measurement-based analysis, we 

have studied the common usage patterns in how cloud tenants generally configure their 

security groups. We revealed some issues and potential vulnerabilities in cloud tenant 

security group configurations. ii) Motivated by the results and insights obtained from 

this measurement study, we then proposed and developed a security group analysis 



31 

tool called Socrates. Socrates enables tenants visualize and hence to understand the 

static and dynamic access relations among VMs. Socrates also helps diagnose potential 

misconfigurations and provides suggestions to refine security group configurations based 

on real traffic traversing tenants VMs. iii) We have applied Socrates on all tenants hosted 

on the IaaS cloud and demonstrate its effectiveness in helping cloud tenants analyze, 

visual, diagnose and refine their security group settings. To the best of our knowledge, 

we believe that our work is the first to analyze cloud security group usage based on real-

world datasets, and to develop a tool to help cloud tenants to understand, diagnose and 

better refine their security group configurations. Our work sheds light on the common 

usage (“good” and “bad” practices) of cloud security groups and on how to design better 

and more secure cloud systems and services. 



Chapter 4 

Unified Fine-Grained Path 

Control in Legacy and OpenFlow 

Hybrid Networks 

4.1 Introduction 

With a (logically) centralized control plane [15, 16] and a programmatic match-action 

data plane abstraction [17, 18, 19], software-defined networking (SDN) [10, 11, 12] en-

ables flexible, fine-grained network control and monitoring, and offers the potential to 

transform network management: from today’s largely manual process to an automated 

process governed by (high-level) network policies. Studies show that SDN can reduce 

the cost of operating a network by half [21]. Thanks to these benefits, earliest adoption 

of SDN occurs in data centers, where size renders manual network management diffi-

cult. SDN has also been applied to wide-area networks (WANs), e.g., those connecting 

multiple data centers [33, 34, 35], to more effectively manage expensive bandwidth of 

WANs and the edge networks of data centers that interconnected with multiple other 

Autonomous Systems (ASes) [36, 37]. Internet Service Providers (ISPs) or carrier net-

works have also started considering the adoption of SDN [38]. 

However, the majority of networks on the Internet are enterprise networks, where 
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deployment of SDN faces major challenges. Unlike data center networks with well-

structured topologies, enterprise networks often evolve in a not well-planned, “organic” 

fashion as the need for network connectivity and bandwidth grows. As a result, enter-

prise network topologies can be arbitrary—often with many quasi-tree like structures 

as access networks and a “semi-mesh” campus core network connecting those access 

networks. Further, most enterprise networks [39, 40, 41] comprise layer 2 (L2) Ether-

net switches supporting VLANs and use layer 3 (L3) IP routers as gateways to route 

between VLANs or for external Internet connectivity. 

Converting enterprise networks to SDN is difficult. First, budget constraints make it 

cost-prohibitive [42] to perform a “wholesale” upgrade from a Ethernet-based “legacy” 

network to a programmable1 SDN network. In addition, enterprises often run mission-

critical applications that rely on existing legacy hardware devices and/or software com-

ponents. Recent work has proposed partial SDN deployments where only a fraction 

of the switches are upgraded to SDN [43, 44, 45, 46, 42]. Operators control the SDN-

enabled devices but cannot affect the paths through the legacy network. Much of the 

routing must be coarsely engineered using VLANs or tunnels [44, 46] or left to the 

latitude of L2 protocols such as Spanning Tree Protocol (STP) or ECMP. This lim-

its network control as some policies cannot be installed. Most network operators of 

enterprise networks have little or no experience in managing and operating new SDN 

networks. They need to gradually gain experience and build confidence in running SDN 

networks. 

In this chapter, we present a novel framework for incremental and graceful transi-

tion of legacy networks comprised primarily of L2 Ethernet switches to SDN-capable 

networks. Rather than performing an expensive and disruptive wholesale upgrade or 

converting parts of the network into “SDN islands”, we argue and advocate that it is 

not only possible but in fact advantageous to migrate a network of legacy switches to a 

hybrid network of mixed legacy switches and SDN-capable switches while at the same 

time reaping as much benefit as a fully deployed SDN network. The key idea behind 

our proposed framework, which we call Magneto, is that by replacing one or a few 

strategically placed L2 legacy switches with SDN-capable switches, or by adding SDN 

1We interchangeably use the terms programmable, OpenFlow(-enabled), or SDN(-capable) to refer to 
devices whose forwarding tables can be configured remotely from a centralized controller. 
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switches, we can influence the forwarding behavior of legacy switches and end hosts 

(i.e., “magnetize” them). This allows us to gain visibility and exert control over legacy 

devices without the need to make any modifications to existing legacy hardware devices 

or software components (e.g., configuring VLANs or virtualization). 

Magneto employs two key mechanisms to exert SDN-like control over legacy L2 

switches: telekinesis where we leverage OpenFlow switches to inject seed packets to 

manipulate legacy switches’ forwarding tables; and magnet addresses where we use 

gratuitous ARP messages to populate the ARP tables at end hosts with “fictitious” or 

“illusory” MAC addresses for the purpose of gaining network visibility and controlling 

routing and forwarding behaviors of end hosts and legacy switches. We describe the 

baseline telekinesis mechanism without the use of magnet MAC addresses in Section 4.3. 

This is the path control mechanism used in our prior work [47] for hybrid networks. This 

baseline mechanism injects seed packets with the native MAC address of a destination 

host of the path to install. This mechanism suffers from two shortcomings: i) it can 

only exert limited, coarse-grained (i.e., per-destination) path control and ii) the path 

installed may be unstable. In Section 4.4, we introduce magnet addresses and outline 

how they can be used to exert fine-grained (i.e., per source-destination pair) path control 

in hybrid networks and formulate the (path) controllability condition. We present the 

detailed Magneto fine-grained path control components in Section 4.5. 

We evaluate Magneto using simulations on larger enterprise network topology and on 

a real-world testbed (Section 5.7). We demonstrate that Magneto is capable of enforcing 

complex policies in hybrid networks, e.g., routing along multiple disjoint paths to the 

same destination for congestion control or load balancing [48, 49, 50]. Magneto can 

install diverse paths with little control and data plane overhead, and exert full control 

over routing even when only 20% of the switches are SDN-capable. 

In a nutshell, Magneto provides a unified network controller to exert SDN-like con-

trol over both programmable and legacy switches in hybrid networks. It enables network 

operators to transition legacy networks to SDN networks in stages by gradually replac-

ing more and more legacy switches with SDN-capable switches as needed and as budgets 

allow. Further, it allows network operators to gracefully experiment with SDN net-

works to gain experience and build confidence while eliminating or minimizing service 

disruption. Our work demonstrates that it is possible to enjoy much of the benefits of 
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Figure 4.1: Path diversity in legacy (left) and hybrid (right) networks: In legacy net-
works, the spanning tree created by STP (solid blue lines) constrains the end-to-end 
paths. In hybrid networks, all links that are part of the spanning tree or adjacent to an 
OpenFlow switch can be used. 

a wholly deployed SDN network but at a fraction of the cost by strategically replacing 

only a few (e.g., 20%) legacy switches with SDN-capable switches. 

4.2 Background and motivation 

We discuss previous work on partial SDN deployment and identify their benefits and 

shortcomings. We then introduce our solution for unified network management for 

hybrid legacy and OpenFlow networks. 

4.2.1 Hybrid Networks 

There are several approaches to transition a legacy network to an SDN-capable net-

work [45, 46, 51, 52, 43, 42, 53]. First, vendors can install additional software modules 

on legacy switches to make them programmable. ClosedFlow [51] configures legacy 

switch features to mimic and support the OpenFlow API and make the switch appear 

OpenFlow-enabled to an SDN controller. This approach however requires modification 

and installation of additional software modules to process and support OpenFlow APIs; 

the solution is vendor-specific and highly depends on the features supported by the 

legacy switches. 

Another approach is through access edge control via virtualization. For example, 

VMWare’s NSX [44] forgoes physical programmable switches altogether and implements 

SDN at the edge of the network as part of hypervisors. This approach requires upgrading 

and installing new networking software on all end devices in a network. This can be a 
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challenging task in most enterprise networks, and may not be feasible in some enterprise 

networks where many devices are BYOD (bring your own device). 

Third, operators can replace all legacy switches in a subnet with SDN switches 

to create SDN islands [54, 43, 45]. The SDN and legacy zones are independent and 

managed separately. The benefits of SDN are limited solely to SDN islands and cannot 

be extended to legacy networks. In addition, network operators must run multiple 

control & management planes, one for legacy networks, and one for each SDN island. 

This can add additional burden on network operators and further complicate their 

management tasks. 

First proposed by Levin et al. [46], a fourth approach is to simply replace a few 

(strategically placed) legacy switches with, or introduce a few, new SDN switches in 

piecemeal fashion. We refer to such a network of mixed legacy and SDN-capable switches 

as a hybrid network. Hybrid networks offer the potential to benefit from the flexibil-

ity and visibility offered by SDN without the considerable initial investment of fully 

transitioning to SDN. By replacing legacy switches with SDN-capable switches (e.g., 

OpenFlow switches), we add control entry points into the network to implement more 

complex policies and exploit path diversity in the underlying physical network topology 

by going beyond the default spanning tree used by legacy switches. 

Consider the example topology on the left in Figure 4.1. The paths between every 

pair of hosts in the legacy network are constrained by the L2 spanning tree constructed 

by STP. This can create congestion on the spanning tree links, while the other links 

are not utilized. If we upgrade switch LE2 to an OpenFlow switch to create a hybrid 

network (Figure 4.1(right)), we expose alternate paths through the OpenFlow switch. 

This allows us to install more diverse policies (e.g., balance traffic across multiple links to 

eliminate congestion). Further, the addition of OpenFlow switches provides fine-grained 

flow-level visibility (e.g., between two hosts). 

Most existing approaches for managing hybrid networks incur significant manage-

ment complexity, as they control legacy and SDN switches via different mechanisms. 

For example, Panopticon [46] resorts to VLANs (whereas NVP [44] employs tunnels) 

to set up paths through the legacy network, requiring additional (manual) configura-

tions. Further, they do not provide sufficient agility (as VLANs cannot be reconfigured 

rapidly [45]) nor diversity (as tunnels cannot select the underlying physical path). In 
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summary, while offering the potentials for increased flexibility and visibility at reduced 

cost, hybrid networks still face complex management issues. Ideally, we would like an 

unified framework to control both legacy and SDN switches that offers flexible forward-

ing control with simple network management and at low operating cost. 

4.2.2 Our Solution 

We propose Magneto, a network controller framework to incrementally and gracefully 

transition a legacy network to an SDN-capable network by strategically placing – or 

replacing a few legacy switches with – OpenFlow switches. We use SDN-capable switches 

to influence and exert control on the forwarding behavior of legacy switches and end 

hosts and to obtain similar network visibility and routing control as in a fully deployed 

SDN. This is achieved via two mechanisms: telekinesis where we leverage OpenFlow 

switches to inject seed packets to effect changes in legacy switches’ forwarding tables; 

and magnet addresses where we employ gratuitous ARP messages to populate the ARP 

cache tables at end hosts with “fictitious” or “illusory” MAC addresses for the purpose of 

gaining network visibility and controlling forwarding behaviors of end hosts and legacy 

switches. 

Magneto unifies hybrid network management using a single OpenFlow-based net-

work controller. Unlike previous approaches, Magneto does not need switch-vendor 

support or additional modules on legacy switches. Although it does not obviate the 

use of VLANs or tunnels, Magneto provides path control and flexibility without the 

overhead of configuring VLANs or setting up tunnels. 

Conceptually similar to Fibbing [55], Magneto indirectly affects network routing by 

injecting fake and harmless information into the network. However, due to the self-

learning switch algorithm, STP and VLANs used by L2 switches, they pose unique and 

different challenges from L3 IP distributed routing, and therefore call for different mech-

anisms. Magneto operates at the data link layer by affecting the forwarding behavior of 

legacy L2 switches. In contrast, Fibbing [55] aims at introducing a centralized control 

over distributed L3 IP routing by injecting carefully crafted “fake” routing messages via 

OSPF. Fibbing’s goal is to enhance the flexibility, diversity and reliability of L3 rout-

ing, not to transition legacy enterprise networks to SDN-capable networks, as enterprise 

networks comprise primarily legacy switches. 
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Figure 4.2: Example of path update: P is the current path, P 0 is the new path; LE1, LE2, 
LE3, LE4, LE5 are legacy switches, OF 6 and OF 7 are OpenFlow switches; (LE1, OF 6, LE2) 
and (LE4, OF 7, LE5) are the subpaths that need to be updated. 
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Figure 4.3: Path update between two hosts, S and D, in a hybrid network consisting of 
two legacy switches (LE1 and LE2) and one OpenFlow switch (OF 3). Switch forward-
ing tables are in blue, host ARP caches are in red. ((a): original network state) 
Traffic between S and D flows through path (LE1, LE2); ((b): basic path update) 
OF 3 injects seed packets to LE1 and LE2, triggering updates in their forwarding tables 
and thereby changing the path between S and D to (LE1, OF 3, LE2); ((c): enhanced 
path update) OF 3 injects seed packets with magnet MACs to both legacy switches 
and end hosts changing the path to (LE1, OF 3, LE2). 

4.3 Baseline Telekinesis Mechanism 

By replacing a few strategically placed legacy switches with SDN-capable switches, we 

are able to, not only directly control the SDN switches, but also configure and influence 

the forwarding behavior of legacy switches. This allows us to enhance routing flexibility 

and increase network utilization through path diversity. We start by describing the 

baseline telekinesis mechanism to control paths through legacy devices, introduced in 

our prior work [47]. We then discuss the shortcomings of this baseline (coarse-grained) 

path control mechanism. In Section 4.4 and 4.5 we describe an enhanced design for 

fine-grained path control which circumvents these shortcomings. 



39 

4.3.1 Basic Idea and Key Mechanisms 

Assumptions. In a hybrid network with both legacy switches and programmable 

switches such as OpenFlow switches, we can only control the programmable switches via 

a central SDN controller, but we cannot directly update the legacy switch forwarding 

entries. We assume that each legacy switch runs MAC learning and that the legacy 

network is configured, either manually or automatically, to avoid forwarding loops (e.g., 

with STP). We call the collection of legacy links that results after this configuration 

the network underlay. The underlay is always a tree or a collection of trees. End hosts 

maintain ARP tables to map MAC addresses to IP addresses. 

Goal. Given a path (i.e., a sequence of switches) P between two hosts A and 

B in a hybrid network and a candidate new path P 0 , reconfigure the network so 
2that all traffic between A and B traverses P 0 or decide that the new path is in-

feasible. This may require updating all switches along the new path. In Figure 4.2, 

(LE1, LE2, LE3, LE4, LE5) is the old path P and (LE1, OF 6, LE2, LE3, LE4, OF 7, LE5) 

is the new path P 0 . 

Seed Packets. The key idea behind telekinesis is to use OpenFlow switches to send 

special (“custom-made”) packets–referred to as seed packets–to the legacy switches on 

the new path. This relies on the ability of an SDN controller to send PacketOut control 

messages to OpenFlow switches and instruct them to send custom-made packets into 

the network. The seed packets take advantage of MAC learning to manipulate legacy 

switches into updating a single forwarding entry in their routing tables. 

Under the baseline telekinesis mechanism, seed packets must satisfy two require-

ments. First, their source MAC address must be the same as the destination MAC of 

the path we want to install in the legacy switch. This ensures that only the forwarding 

entry corresponding to this MAC address is updated. Second, they must arrive at a 

legacy switch on a link that is part of the path we want to install. This ensures that 

the affected entry is correctly updated with the next-hop information. For example, if 

we want to modify the action of a forwarding entry for MAC m from “send to port p1” 

to “send to port p2”, we create a packet whose source address is m and make sure it 

2Throughout the chapter, we refer to this process as installing, configuring, enforcing, or updating 
P 0 . 
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arrives at the switch on port p2. The MAC learning algorithm sees the packet arriv-

ing on p2 and assumes its source address m is reachable on p2, therefore updating the 

corresponding forwarding entry. 

Path Update. Updating the path P between two hosts to a new path P 0 requires 

updating all switches on P 0 if the two paths are disjoint. When old and new paths 

overlap, we need to update only the switches where the paths diverge. We define an 

update subpath as the sequence of adjacent switches that must be updated during a path 

change. For example, in Figure 4.2, we must update OpenFlow switches OF 6 and OF 7 

and legacy switches LE1, LE2, LE4, and LE5. Legacy switch LE3 remains unchanged. 

The update subpaths are (LE1, OF 6, LE2) and (LE4, OF 7, LE5). 

The above example illustrates that by simply replacing one or a few legacy switches 

with OpenFlow switches, we can in fact gain more by leveraging these programmable 

switches to effect changes in legacy switches via telekinesis. However, there are limits as 

to what path telekinesis may control. This is because the seed packets that telekinesis 

uses to remotely manipulate a legacy switch’s forwarding table must arrive at the switch 

on a link that is part of the path telekinesis wants to install. This leads to the following 

control condition of the baseline telekinesis mechanism. 

(Control condition of baseline telekinesis) A path is feasible if (a) every link 

on it is part of the L2 underlay or adjacent to an OpenFlow switch, and (b) every update 

subpath contains at least one OpenFlow switch. 

The first part of the condition ensures that a seed packet reaches the right interface 

on a legacy switch so it can trigger a forwarding entry update. The second part of 

the condition ensures that there is at least one OpenFlow switch to send a seed packet 

to every legacy switch on the update subpath. We will show in Section 4.4 how these 

conditions can be further relaxed via Magneto’s enhanced fine-grained path control 

mechanisms. 

4.3.2 Shortcomings of Baseline Telekinesis 

This baseline telekinesis mechanism suffers from two shortcomings: i) it can only exert 

limited, coarser-grained (i.e., per-destination) path control and ii) the path installed 

may be unstable. We discuss them in more details below. 
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Data Rate (Mbps) Update Success 
0.1 94% 
1 80% 
10 59% 
100 0% 

Table 4.1: Successful path updates using the basic telekinesis mechanism, when we vary the 
data plane rate. A path is successfully updated if it becomes stable in less than five seconds 
from the time when we send the first seed packet. 

Coarse-grained paths. Legacy network L2 routing is destination-based: a desti-

nation MAC is associated with a single interface (and implicitly, path) on each switch. 

Legacy network operators create path diversity at increased management cost using 

VLANs or ECMP. OpenFlow networks can install more fine-grained paths as they can 

match traffic based on both source and destination MACs. Our basic scheme inherits 

the limitations of legacy networks: the update of a path triggers updates on all paths 

to the same destination. In the example on the right of Figure 4.1, both H1 and H4 

send traffic to H3. The legacy switch LE6 will forward all the packets destined to H3 

towards OF 7, including the packets from H4 to H3, if we change the path between H1 

and H3 to (LE1, LE6, OF 7, LE5). 

Unstable paths. MAC learning reacts to all incoming packets, regardless of 

whether they are seed packets or not. A forwarding entry for a MAC address m may 

change every time the switch relays a packet from m. This can make even the simplest 

path update unstable. To better understand this limitation, we consider a common sce-

nario that can lead to unstable paths: traffic between two hosts flows in both directions, 

such as when the hosts use TCP to communicate. Consider the example in Figure 4.2. 

If the update from P to P 0 on the direct path is not fast enough, packets on the reverse 

path (which is still P) can invalidate the forwarding entry updates and revert them to 

the original states corresponding to P. A simple solution to make paths stable when 

reverse traffic is present is to continually inject seed packets until forwarding entries 

reach a stable state. The frequency of seed packets depends on the rate of data packets. 

As long as seed packets arrive faster than data packets, they can override any change 

made by reverse path packets and the original direct path will eventually be updated. 

We evaluate this scheme in a small real-world testbed, shown in Figure 4.3. We 
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set up a simple mesh topology with one OpenFlow switch and two legacy switches. 

Each legacy switch is connected to a server. Initially, the default path between servers 

traverses only the legacy switches. We continually send TCP traffic between the servers. 

At the same time, we update the path to traverse the OpenFlow switch as well. An 

update is successful if the path becomes stable in less than five seconds from the first 

seed packet. We compute the percentage of successful updates as we vary the data 

rate over one hundred runs. Table 4.1 shows the results. The basic update mechanism 

success rate decreases as the data plane rate increases and falls to 0 for rates of at least 

100 Mbps. In summary, flooding legacy switches with seed packets does not guarantee 

a successful path update. In addition, it may generate significant network overhead. In 

the next section we present an enhanced path control mechanism that installs stable 

paths with almost zero network overhead. 

4.4 Magnet MAC Addresses and Fine-Grained Path Con-

trol 

We now enhance the baseline telekinesis by integrating it with magnet addresses to 

achieve fine-grained (i.e., per source-destination pair) path control. In the following we 

first introduce magnet (MAC) addresses and briefly discuss how they can be used to 

gain visibility and enforce access control for IP-based applications and services in hybrid 

networks. We then outline the key ideas behind Magneto’s fine-grained path control. 

The detailed path control processes is described in Section 4.5. 

4.4.1 Magnet MAC Addresses & Visibility 

Magneto introduces the key notion of magnet (MAC) addresses to influence and ma-

nipulate both end hosts forwarding behaviors as well as those of legacy switches. A 

magnet address is a fictitious MAC address that does not correspond to any real host 

on the network, but is created by our Magneto controller for the purpose of gaining net-

work visibility and controlling routing & forwarding behaviors of end hosts and legacy 

switches. These magnet addresses are the main reason we name our framework Mag-

neto: similar to the magnetism in physics, by manipulating the magnet addresses, we 

can dynamically attract end hosts and legacy switches to route and forward packets 
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towards OpenFlow switches (paramagnetism), as well as “repulse” routing away from 

OpenFlow switches (diamagnetism). We “magnetize” a hybrid network by controlling 

the (magnet) MAC address mappings at end hosts via unicast gratuitous ARP messages 

generated by the Magneto controller (via OpenFlow switches). 

To gain visibility and enforce access control (for unicast IP-based applications), we 

can pre-populate hosts ARP cache via gratuitous ARP to eliminate the broadcast ARP 

query process. For some “assets” servers that we want to monitor and control the access 

all the time, we can pre-populate the IP-MAC address mappings in all hosts on the same 

L2 LAN segment with the “assets” servers’ magnet addresses. Since the ARP packet 

size is small (though it may vary but is typically less than 80 Bytes), the overhead of 

doing this pre-population is negligible. Further, the controller can adjust the mappings 

dynamically via new gratuitous ARP messages to alter forwarding paths of host. 

4.4.2 Telekinesis with Magnet Addresses 

We now present the Magneto’s fine-grained path control mechanism which seamlessly 

integrate telekinesis with magnet addresses to achieve fine-grained path control. 

When sending seed packets, we set the source address as a magnet MAC address 

associated with the path destination, rather than the real (native) MAC address of 

the destination host. The seed packet triggers the installation of a forwarding entry 

for the magnet MAC address. We also require that the seed packets are ARP packets 

and can reach the source host of the path. Thus, the source learns to associate the 

destination with its new magnet MAC address. Magneto enhances routing by enabling 

multiple paths between source-destination pairs, which enables re-routing a portion of 

the traffic on a congested path to a new path instead of the default spanning tree path. 

In the baseline mechanism, if one source changes its path to a destination, it will affect 

the paths from all other sources too. Magneto uses different magnet MAC addresses 

for other source hosts to update legacy switches, hence packets destined to the same 

destination from different sources can now traverse different paths. The last OpenFlow 

switch on the path rewrites the magnet MAC address to the native MAC address based 

on the destination IP address. 

Figure 4.3 illustrates the enhanced path control at the granularity of per-source-

destination pair. To install a new path between (LE1, OF 3, LE2) between S and D, 
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we generate a new magnet MAC address D MAC 0 associated with D and send a seed 

(unicast) ARP packet from OF 3 to S with the new magnet MAC as the source MAC 

address in the Ethernet packet. The sender hardware address (SHA) field of the ARP 

message is also set to D’s magnet address, i.e., SHA = D MAC 0 . This packet triggers 

the addition of a new forwarding entry at switch LE1 and the update of the ARP table 

on S to add one entry for D’s magnet MAC address and corresponding incoming port. 

The forwarding table of switch LE2 is updated in a similar manner. 

By integrating telekinesis with magnet MAC addresses, we are able to exert fine-

grained (per source-destination pair) path control, thereby significantly increasing path 

diversity that can be exploited for routing and traffic engineering. As a destination host 

can be associated with multiple magnet MAC addresses (for different source hosts), 

we can install multiple paths to the same destination host. Compared to the baseline 

telekinesis mechanism, this leads to the following relaxed path control conditions: 

(Control condition of telekinesis with magnet MAC addresses) A path is 

feasible if (a) every link on it is part of the L2 underlay or adjacent to an OpenFlow 

switch, and (b) the network contains at least one OpenFlow switch. 

The use of magnet MAC addresses also isolates the old path (e.g., the default span-

ning tree path) and the new path between two hosts. This eliminates the unstable 

path problem associated with the baseline telekinesis mechanism. We note that packets 

traversing along the reverse direction of an old path (e.g., the default spanning tree path 

(LE1, LE2) in the bottom example in Figure 4.3) cannot rewrite the forwarding entries 

for a new path in the legacy switches, since these packets must contain either the native 

MAC address or a different magnet MAC address. In a sense, magnet MAC addresses 

achieve a form of network versioning, similar in spirit to the consistent network update 

mechanisms for SDNs proposed in [56, 57]. As the native MAC addresses of hosts can 

always be learned by broadcasting on the default spanning tree, if we want to revert 

a new “off-spanning-tree” path back to the default spanning tree path, Magneto can 

generate a seed packet with the native MAC address in gratuitous ARP message (while 

the magnet MAC address is used as the source MAC address in Ethernet packet header) 

and send it via an OpenFlow switch on the off-spanning-tree path. Using the bottom 

example in Figure 4.3, to revert the path back from (LE1, OF 3, LE2) (the off-spanning-

tree path) to the default spanning tree path (LE1, LE2), Magneto crafts a seed packet 
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Figure 4.4: Three source hosts A, B, and C send traffic to the same destination host D 
via different paths. 
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Figure 4.5: The network topology and underlay affect the diversity of paths enabled by 
Magneto. Given a topology with five legacy switches and one OpenFlow switch (a), the 
performance of Magneto varies across two possible sets of usable links (b,c) (spanning 
tree links plus OpenFlow-adjacent links). 

and sends it towards S with SRC MAC = D MAC 0 and SHA = D MAC (the similar 

process is applied for D). 

4.5 Magneto Path Control Components 

In this section we describe the detailed fine-grained path control components employed 

by Magneto: path verification, path update, and magnet routing. Given a network 

configuration (i.e., forwarding tables on all switches and the network underlay) and 

a new path P 0 to install between two hosts attached to the network, Magneto first 

checks whether the path is feasible. It then installs the path by sending seed packets 

with magnet MACs to every legacy switch on the path. To route each packet to the 

destination along the new path, Magneto must rewrite packet headers and eventually 

replace the magnet MACs with the real MACs. 
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4.5.1 Path Verification and Path Update 

Given a path P 0 and the current network configuration, path verification determines 

whether P 0 is feasible in the network. For each link in the new path that is not present 

in the old path, Magneto verifies whether it is part of the L2 spanning tree or adjacent to 

an OpenFlow switch. This ensures that seed packets can install the path. To maintain 

an updated view of the spanning tree, Magneto periodically queries port information 

from each legacy switch. In addition, Magneto checks that at least one switch on the 

new path is OpenFlow-enabled, unless the new path is only in the L2 spanning tree. 

This ensures that we can send seed packets. 

To install a new path, Magneto generates seed packets and sends them to both 

legacy switches and hosts. We describe both actions next. 

Generating seed packets. The role of seed packets is to trigger updates to legacy 

switch forwarding tables and host ARP caches. Each seed packet is an ARP packet 

whose source MAC address in the Ethernet header is a magnet MAC address associated 

with the destination of the path. In addition, we set the ARP header to map the magnet 

MAC to the destination’s real IP address. 

How do we generate magnet MAC addresses? The simplest way is to generate one 

magnet MAC address for each path through the network. However, this would create a 

large number of magnet MAC addresses and may inflate unnecessarily the size of switch 

forwarding tables. We observe that all feasible paths are constructed from the same 

set of usable links (i.e., links that are part of the underlay or adjacent to OpenFlow 

switches). Further, adjacent legacy switches are controlled by the same seed packet. 

We define a magnet subpath as a sequence of adjacent legacy switches on the path 

to install. A magnet subpath is part of the L2 network underlay and lies between two 

OpenFlow switches or between a host and an OpenFlow switch. All legacy switches 

in the same magnet subpath can be updated by the same seed packet from the same 

OpenFlow switch. Magnet subpaths are different from update subpaths, defined in 

Section 4.3 as sequences of adjacent switches, not necessarily legacy, that must be 

updated when installing a new path. 

We generate one magnet MAC for each unique magnet subpath. We associate the 
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first 42 bits of the address with the OpenFlow switch used to update the magnet sub-

path (e.g., we hash the OpenFlow switch DPID) and the last six bits with the interface3 

of the same switch used to send the seed packet that updates the path. This assign-

ment ensures that the maximum number of magnet MACs is at most the sum of the 

number of interfaces across all OpenFlow switches in the network. In our experiments, 

we generated at most 5,000 different magnet MACs in a network with 100 OpenFlow 

switches. 

Consider the example in Figure 4.4. The paths between A and D and between B 

and D have a common magnet subpath (LE3, LE4). Magneto generates one, rather 

than two, magnet MAC address for this subpath. The OpenFlow switch OF 7 sends a 

seed packet with the magnet MAC to both switches on the subpath. 

Sending seed packets. To support forwarding entry updates on legacy switches, 

we introduce a new primitive, called LegacyFlowMod. We use LegacyFlowMod to gen-

erate seed packets and send them to the switches we want to update. LegacyFlowMod 

relies on OpenFlow’s PacketOut functionality, which allows us to use any OpenFlow 

switch we control to send a packet on the data plane. Given a path to update, Lega-

cyFlowMod calls PacketOut for every legacy switch to update. We must be careful to 

call PacketOut with respect to an OpenFlow switch that can reach the intended legacy 

switch using a link that is on the new path we want to enforce. 

Each seed packet must reach all legacy switches in the magnet subpath that precedes 

the OpenFlow switch sending the packet. In addition, the seed packet sent by the first 

OpenFlow switch on the path must reach the source host, to update its ARP table. In 

Figure 4.4, if C wants to reach D through the same path as B’s, Magneto uses OF 6 to 

send a seed packet to C to updates its ARP cache with the same magnet MAC address 

that B uses to reach D. In contrast, if A or B wants to use the default path in the 

spanning tree, Magneto uses OF 6 to send a seed packet to A or B to update its ARP 

cache with the real MAC address of D. 
3We assume at most 48 interfaces on a switch; for more interfaces, we can change the bit distribution 

between the OpenFlow ID and the interface ID. 
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4.5.2 Magnet Routing 

Associating magnet MACs with subpaths rather than paths helps reduce the size of 

forwarding tables. However, because each magnet subpath of a path is installed us-

ing different magnet MACs, OpenFlow switches between subpaths must rewrite packet 

headers. 

Given a path to be updated, the source hosts sends packets towards the magnet 

MAC associated to the first magnet subpath on the path (assuming a seed packet 

already updated the source’s ARP cache). Legacy switches simply forward packets to 

the next hop according to their forwarding tables. We insert rules in the OpenFlow 

switches that rewrite each packet’s source and destination MAC fields according to the 

next magnet subpath along the path to be installed. The final OpenFlow switch rewrites 

the destination MAC field with the destination’s real MAC address, as the last magnet 

subpath does not have its own magnet MAC. 

In the example in Figure 4.4, to set up the both the direct and reverse paths be-

tween B and D, OF 6 crafts a seed packet with source MAC address as OF6:2, source 

hardware address as OF6:2, source protocol address as D’s IP, and sends it to B through 

LE2. Also, OF 6 crafts another seed packet with source MAC address as OF6:3, source 

hardware address as OF6:3, source protocol address as B’s IP, and send it to D through 

LE3. Similarly, OF 7 crafts one seed packet with magnet MAC OF7:1 to B and another 

seed packet with magnet MAC OF7:2 to D respectively. A packet sent from B to D 

starts with source MAC address as B’s real MAC address and destination MAC address 

as OF6:2. When it reaches OF 6, OF 6 rewrites its source MAC address to be OF6:3 and 

destination MAC address to be OF7:1. Later, OF 7 rewrites the packet header again, 

whose source MAC address to be OF7:2 and destination MAC address to be D’s real 

MAC address. 

4.5.3 Interoperability, Reversibility & Incremental Deployment 

We discuss various aspects of deploying Magneto in a real-world enterprise network 

environment. 

Interaction with STP in Magneto does not require additional configuration on 

legacy switches. Magneto adds a rule in every OpenFlow switch to forward BPDU 
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messages to the controller, so it can passively listen to all BPDU messages and not 

forward them further. This behavior guarantees any interface adjacent to an OpenFlow 

link is not blocked, while a loop-free underlay is still formed among legacy switches. 

BUM traffic represents L2 broadcast, unknown unicast, and multicast traffic. The 

usage of magnet MAC addresses allows Magneto to coexist with broadcast/multicast 

traffic assuming that such traffic cannot update the hosts’ ARP tables such as broadcast 

ARP messages (which are under the control of Magneto). Unknown unicast traffic (e.g., 

used by non-IP services) with real destination MAC addresses can reach destinations 

through the default spanning tree path. On the other hand, unknown unicast traffic 

with magnet destination MAC addresses will be routed through OpenFlow switch(es) 

and their Ethernet packet headers will be rewritten. 

Inter-VLAN Routing and L3 Routers are used in enterprise networks to iso-

late traffic and restrict broadcast domains. Magneto works with existing L3 routing by 

either: (1) utilizing OpenFlow switches on the path between source-destination pairs to 

rewrite VLAN tags, and therefore it can reduce the traffic latency and the load on the 

L3 router, or (2) it breaks the path into segments with one segment for each broadcast 

domain if the policy requires that the traffic go through the L3 router. Then, each 

segment can be assigned different magnet MAC addresses. Finally, Magneto enables 

diverse L2 paths, which can be combined with Fibbing [58, 55] (which enables L3 di-

verse paths) to provide opportunities for joint L2/L3 routing optimization and traffic 

engineering. 

Path diversity depends on the network underlay (i.e., spanning tree), and the 

location of the OpenFlow switch. Consider the topology in Figure 4.5(a) where the 

OpenFlow switch is adjacent to four legacy switches. The controllable links change 

based on the network underlay. For instance, Figure 4.5(b) shows an examples of all 

controllable links (both spanning tree and OpenFlow links) when the spanning tree 

is rooted at LE1. Figure 4.5(c) shows another examples when the spanning tree is 

rooted at LE4 with less controllable paths. Consequently, the placement of OpenFlow 

switches during incremental deployment and configuring the STP is critical in enabling 

many paths in the network that can be controlled by Magneto, which we discuss later 

in Section 4.6.1. 
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Site Source # Switches Max/Avg/Min Degree 
Large [41] 1577 65 / 2.15 / 1 
Emulated this work 415 17 / 5.94 / 1 
Small [60] 16 15 / 4.5 / 3 

Table 4.2: We evaluate Magneto on three diverse network topologies, two of them from 
large campus networks and one randomly generated. Figure 4.6 shows the node degree 
distribution of each topology. 
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Figure 4.6: Switch degree distribution for the three evaluated network topologies. 

Network failures may affect the functionality of Magneto. Magneto detects data 

plane failures by monitoring the TCN and root bridge ID fields in STP BPDU messages 

(for legacy links) or port status messages (for OpenFlow links). Once it identifies a 

failure, Magneto excludes the failed link from the known topology and recomputes 

and updates the flow paths affected by the failure. Because the STP failure recovery 

may change the original spanning tree containing the failed link, the newly updated 

paths may become unusable once the STP recovery finishes. To avoid frequent path 

recomputations, Magneto has the option to exclude the entire spanning tree containing 

the failed link, rather than the link itself, from the known topology before recomputing 

the affected paths. 

If control links fail, the network data plane is still functional, although Magneto may 

not be able to update paths. However, existing magnet MACs eventually expire and 

the network reverts to a standard L2 network. We are currently exploring how to make 

Magneto robust to control network failures [59, 16]. 
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Figure 4.7: Magneto enables control over a hybrid network with a few OpenFlow 
switches. We show the path update success in (a), fraction of usable links in (b), 
and fraction of controllable switches in (c) achieved by Magneto as we upgrade more 
and more legacy switches to SDN. We assume which switch is updated is a random 
decision. 
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Figure 4.8: When we upgrade the high degree switches first, Magneto achieves control 
at a fraction of the cost incurred when the upgrade strategy is greedy. Only 20% of 
OpenFlow switches achieve full routing flexibility. 

4.6 Evaluation 

We evaluate Magneto from three perspectives. First we show that Magneto provides 

high path diversity in various hybrid network topologies, with various OpenFlow place-

ment strategies, even when the number of OpenFlow switches is low. Second, we demon-

strate that path updates are fast and introduce negligible delay to the data traffic. 

Finally, we show that the network overhead introduced by Magneto is negligible. 

We run Magneto both in simulation and on a small hybrid lab testbed. Our simula-

tions use three topologies: two real-world and one synthetic, randomly generated. Ta-

ble 5.1 describes the topologies and Figure 4.6 shows the degree distribution of switches 

in each topology. The “Large” topology represents a large-scale campus network [41] 

while the “Small” topology is the backbone network of a large campus [60]. To generate 
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Figure 4.9: Control delay (the time to install a path) of Magneto remains low as we vary 
the data rate (left) and the number of update subpaths (right) on the path to install. 

the “Emulated” topology, we randomly choose the number of switches (between 400 

and 600) and the number of links, ensuring the topology is connected. In our exper-

iments, we vary the number and placement strategy of OpenFlow switches in each of 

these topologies, thus simulating various SDN transition scenarios. 

4.6.1 Path Control 

The main goal of Magneto is to provide control over the network without the cost of 

making the network fully programmable and at low management cost. We ask how 

effective Magneto is in installing paths across various hybrid network topologies. We 

run Magneto on each of the three topologies described in Table 5.1, and the degree 

distribution of switches is shown in Figure 4.6. For each run, we randomly select two 

hosts and compute the five paths with fewest hops between them. We select at random 

among them a new path to be installed. This makes the simulation realistic since we 

always install good paths. 

The number and location of OpenFlow switches play a key role in the performance 

of Magneto. We vary the percentage of switches that are OpenFlow and place them 

in the network using two strategies: random, where random switches are upgraded to 

OpenFlow, and greedy, where switches are upgraded in decreasing order of their degree. 

Random OpenFlow switch placement. We upgrade random legacy switches 

to OpenFlow switches. We vary the percentage of OpenFlow switches and compute 

the fraction of successful path updates. Figure 4.7a shows averages over 100 runs. 

A spanning tree is built as the network underlay when there is no OpenFlow switch 
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introduced (i.e., the fraction of OpenFlow switches is 0). As expected, as we increase 

the number of OpenFlow switches the more paths we can install. This is because it is 

more likely that the feasibility condition in Section 4.4 is satisfied: links on the paths 

to install are more likely to be adjacent to an OpenFlow switch. Our results show that 

with as much as 40% of all switches transitioned to OpenFlow, we can install any path 

with a probability of 0.6. Recall that these paths are among the best five between 

the pair of end hosts. Other hybrid network controllers, such as Panopticon [46] may 

achieve a higher success rate but at the cost of increased management complexity due 

to the need to configure VLANs. 

The results above are based on several realistic running scenarios and do not capture 

the number of total paths we can install. To understand this, we compute the number 

of links that Magneto can control. A link we cannot control cannot be part of a new 

path. These are the links that are adjacent to an OpenFlow switch or on the network 

underlay. Figure 4.7b shows that with less than half of OpenFlow coverage, at least 

80% of the links are usable. 

Finally, we define the controllable switches as the switches whose forwarding behav-

iors can be manipulated by Magneto. These are the OpenFlow switches and the legacy 

switches whose forwarding tables we can modify. Our results in Figure 4.7c show that 

even when only 20% of the switches are OpenFlow-enabled, Magneto can control as 

many as 75% total switches. The plots show a discrepancy among the different metrics 

used to evaluate the “Large” topology. While the path update success and fraction of 

usable links are high, the fraction of controllable switches is much lower than for the 

other topologies. This is because there are many switches (more than 70%) with degree 

1 in the “Large” topology, as shown in Figure 4.6. These switches provide usable links 

as part of the spanning tree but are not connected to OpenFlow switches therefore not 

controllable. 

Greedy OpenFlow switch placement. Strategic OpenFlow placement can im-

prove the degree of control offered by Magneto. We propose to upgrade the most influ-

ential switches first. We rank the importance of switches according to their degree: the 

more adjacent links a switch has, the more important it is. Figure 4.8 shows the frac-

tions of successful path updates, usable links, and controllable switches as we vary the 

percentage of OpenFlow switches. Greedy OpenFlow placement provides a significant 
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Figure 4.10: Packet header rewriting by OpenFlow switches does not affect the data 
plane delay. We use one OpenFlow switch and five servers, with each server sending 2 
Gbps through the switch and back to itself (left); path installation introduces negligible 
delay even at high switch CPU loads (right). 

boost in efficiency: we can install any path successfully when only 20% of the switches 

are programmable. Because the most connected switches are OpenFlow-enabled, we 

do not need to control many legacy switches. As Figure 4.8(c), controlling few legacy 

switches (less than 10%) is sufficient. 

4.6.2 Control Delay 

The control delay is the time it takes to install a new stable path, i.e., the time between 

when the controller sends the first seed packet and when the first data packet traverses 

the new path without the path reverting to the original. 

We perform experiments on a real-world testbed in our lab. The testbed consists of 

eight Dell servers, five Cisco Catalyst legacy switches [61], and two iwNetworks Open-

Flow switches [62]. First, we consider a single update subpath and repeatedly vary the 

data rate on the path to update. Figure 5.9(a) shows that the control delay remains 

low when we increase the data rate. That the control delay decreases as we increase 

the data rate is an artifact of our measurement: when the data rate is low, the time 

between two consecutive packets is higher therefore our measurement error is higher. 

Next, we set the data rate at 1 Mbps and increase the number of subpaths that need 

to be updated. For this, we place one OpenFlow switch on every subpath. Recall that 

we need to generate and propagate a different magnet MAC for each update subpath. 
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Figure 5.9(b) shows the results. The control delay is not significantly affected by the 

number of subpaths, as generating and propagating magnet MACs are independent 

operations and can be parallelized. 

4.6.3 Overhead 

We quantify the overhead introduced when running Magneto from two perspectives: 

impact on applications and impact on the network. 

Data delay. The data delay is the additional delay introduced in the application 

traffic due to packet transformations along the path performed by OpenFlow switches, 

i.e., rewriting MAC addresses. Recall that, because Magneto uses magnet MACs, Open-

Flow switches must rewrite the source/destination MAC address of every packet travers-

ing a newly installed path. 

To measure the data delay, we connect five servers to an iwNetworks OpenFlow 

switch as shown in Figure 4.10 (left). Each server has four 1 Gbps Ethernet interfaces, 

and we use two interfaces as senders and the other two as receivers. Each server generates 

2 Gbps traffic traversing the OpenFlow switch, together all servers generate traffic at 

10Gbps (or 15 million packets per sec). Each server sends traffic that returns back to 

itself. To measure accurate one-way delay, we use PF RING [63]. We modified the 

pfsend and pfcount codes to timestamp every packet before it is sent out and compute 

its one-way delay when it is received. 

Figure 4.10 (right) shows the delay incurred when rewriting the Ethernet header of 

each packet and when simply forwarding the packet both under low and high (99%) 

CPU load. Rewriting packet headers introduces negligible data plane delay even at 

high CPU load. This matches the findings of an earlier work on application-aware data 

processing in SDN [64]. 

CPU and memory overhead. Injecting seed packets from OpenFlow switches 

could increase the CPU and memory overhead on both legacy switches and OpenFlow 

switches. We measure the CPU utilization and memory usage on our Cisco legacy 

switches and iwNetworks OpenFlow switches, when Magneto controller injects control 

packets with magnet MAC addresses. 

Our results in Table 5.4 prove that Magneto introduces very little CPU and memory 
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(b) Magneto changes flow 2 
to take another route to alle-
viate congestion. 
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Figure 4.11: Magneto alleviates congestion by reconfiguring flows traversing both legacy 
and OpenFlow switches. flow 1 and flow 2 start on the same path and compete for its 
bandwidth. As soon as Magneto updates the path of flow 2, both flows can use all 
available bandwidth. 

Number of CPU CPU Mem Mem 
magnet MACs (iwNetworks) (Cisco) (iwNetworks) (Cisco) 

1,000 4.80% 1.75% 16 KB 8 KB 
5,000 6.09% 2.46% 55 KB 35 KB 
10,000 7.36% 2.89% 146 KB 78 KB 

Table 4.3: CPU and memory load introduced by Magneto on OpenFlow and legacy 
switches when the number of magnet MACs varies. 

overhead on both legacy and OpenFlow switches. Address Learning in Cisco switches of-

swd and ofprotocol in OpenFlow switches are the main processes affected by the sending 

of seed packets. Even with a large number of magnet MAC addresses (10,000), the total 

memory overhead increase was only 78 KB on Cisco switch and 146 KB for iwNetworks 

switch, a small fraction of the total memory available. We collected the CPU utilization 

on the switches every minute immediately after we started injecting seed packets. The 

utilization was systematically low, at most 7.36% for iwNetworks switch and 2.89% for 

Cisco switch. 

Control traffic. Magneto introduces little control traffic into the network. In the 

worst case, the number of seed packets needed to update a path must be twice the num-

ber of subpaths. Because forwarding entries in legacy switches expire, Magneto must 

repeatedly re-inject the same seed packet. Given a standard timeout of five minutes, 

the additional network overhead is still negligible. 



57 

H1 

H3 

LE1 LE4 

OF7 

H2 

LE2 

OF6 LE5 

LE3 

(a) Magneto updates flow 2 
to take the route used before 
to restore end-to-end connec-
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(b) Magneto changes the 
route of flow 2 after STP re-
covers. 
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Figure 4.12: In face of the link failure on (LE2, LE4), Magneto switches flow 2 to the 
original path (LE1, LE5) to rapidly restore connectivity instead of waiting for STP to 
recover. After STP converges, Magneto updates the path of flow 2 again to achieve 
maximum throughput. 

4.7 Case Study: Better Routing and Failure Recovery 

with Magneto 

We show how Magneto improves network performance by exploiting routing diversity 

and reacting quickly to network failures. We deploy a hybrid testbed consisting of three 

servers, five Cisco switches and two iwNetworks OpenFlow switches (Figure 4.11a). STP 

runs on the Cisco switches. 

Flexible routing. To underline Magneto’s ability to find alternate paths quickly, 

we start two flows, from H3 to H2 (flow 1) and from H1 to H2 (flow 2). Both flows 

share the link (LE1, LE5) initially, whose capacity we artificially set to 10Mbps. Flow 1 

starts five seconds before flow 2 (Figure 4.11a). As soon as flow 2 starts, it will compete 

with flow 1 for the entire capacity on the default path. Neither of the flows can benefit 

from the entire capacity. After 10 seconds, we use Magneto to update the default path 

of flow 2 to (LE1, OF 7, LE2, LE4, OF 6, LE5). As soon as the update finishes, both 

flows can run at full rate as they do not compete with each other. Figure 4.11c shows 

the rate of each flow during the experiment. 

Quick failure recovery. We now demonstrate how Magneto can recover from 

network failures. Consider the end of the previous experiment where flow 1 and flow 2 

take non-overlapping paths to their destination. After five seconds, the link (LE2, LE4) 
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fails. As STP forms a loop-free underlay among connected legacy switches, no alter-

native path is available for flow 2 until STP recovery finishes. On the other hand, 

Magneto can adapt immediately by detecting the propagated STP BPDU frames and 

re-routing flow 2 on its original path (LE1, LE5). Although flow 2 competes once again 

with flow 1 for the capacity on (LE1, LE5), the end-to-end connectivity is restored. 

Magneto detects when STP finishes recovery by sending probes between OF 6 and OF 7 

every second. Once the probe is received on the other end, Magneto knows STP fin-

ishes recovery and redirects flow 2 to the path (LE1, OF 7, LE2, LE3, LE4, OF 6, LE5). 

Relying solely on on STP to recover from the failure disconnects flow 2 during the STP 

recovery process, whereas with Magneto, end-to-end connectivity is preserved. 

4.8 Summary 

We present Magneto, a network controller that enables unified, fine-grained routing 

control in hybrid networks. Magneto uses OpenFlow’s ability to send custom-made 

packets into the data plane to manipulate legacy switches into updating forwarding 

entries for specific MAC addresses. Via magnet addresses, Magneto gains visibility 

to the network and allows access control for IP-based applications and services in a 

hybrid network. Our evaluation on a lab testbed and simulations on large enterprise 

network topologies show that Magneto is able to achieve full control over routing when 

only 20% of network switches are programmable and with negligible computation and 

latency overhead. Magneto also poses a number of new research questions such as the 

strategic placement and number of SDN switches as well as magnet addresses needed 

to exert SDN-like control over legacy networks and to what extent such control can be 

exercised. 



Chapter 5 

Gaining Fine-Grained Network 

Visibility for On-Demand 

Monitoring and Better Policy 

Enforcement 

5.1 Introduction 

Real-time monitoring of network flows is critical to preserve enterprise network health 

and detect problems, such as abnormal bandwidth usage [65, 66], inflated paths [67], 

QoS violations [68] or security threats [69]. To identify and quickly react to such issues, 

operators require network-wide visibility, i.e., the ability to monitor any flow at any 

time. 

Traditionally, to achieve network-wide visibility, operators follow the routing-then-

monitoring approach: deploy monitoring tools on the data plane, such that they cover 

all flows’ paths. Indeed, most switches and routers today support NetFlow or similar 

monitoring protocols [24, 23]; intrusion detection systems are inserted at network ingress 

points to inspect all external flows [70]. Such on-path monitoring requires strategic, if 

not exhaustive, deployment and fine tuning to avoid overloading the data plane [25]. 

Offloading the monitoring tasks to specialized off-path appliances by mirroring packets, 
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Figure 5.1: Flow visibility in legacy (left) and hybrid (right) networks. Legacy switches 
are shown in blue, and OpenFlow switches are shown in red. In this example, the 
network policy is updated from an old one (i.e., H1 → H4, H2 → H4&H5, H3 → H5) 
to a new one (i.e., H1 → H4, H2 → H4, H3 → H4&H5). The green arrow indicates 
the path to reach H4 and the orange arrow indicated the path to reach H5. In order to 
verify this network policy update, operators need to deploy monitoring software (e.g., 
sFlow) on LE3 and LE4 in legacy networks. In hybrid networks, all the flows can be 
visible on OF 6. 

e.g., using SPAN [71] or TAP [72], may relieve the load on the data plane, but requires 

careful coordination to avoid oversubscribing the mirroring ports or paths and may not 

be amenable to real-time analysis. 

With the goal of making monitoring more flexible and efficient, several efforts pro-

mote a combined routing-and-monitoring approach to network visibility: deploy moni-

toring tools at select locations in the data plane and set up flow paths to traverse these 

locations. This approach is enabled by software-defined networking (SDN), which allows 

operators to program the data plane remotely. SDN removes the rigidity of traditional 

monitoring and allows the flexibility to install forwarding entries that meet both moni-

toring and routing goals [73, 74]. In addition, SDN-enabled switches provide yet another 

monitoring device, by supporting counting [75] and inspecting [76] packets, or through 

custom monitoring scripts [65]. Unfortunately, SDN-based monitoring requires a signif-

icant upfront investment in deploying or upgrading to SDN-enabled switches [42]. Most 

enterprises are reluctant to invest in SDN without a clear understanding of its benefits 

and disadvantages. 

We propose clairvoyant networks to enable both low-cost and flexible network-wide 

flow monitoring. Clairvoyant networks are partially programmable networks that offer 
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full control over all paths. Any enterprise network can become clairvoyant by adding at 

least one SDN-enabled1 switch and a specialized network controller. In this way, one 

can reap the benefits of SDN-based monitoring at a fraction of the deployment cost. 

Clairvoyant networks offer SDN-based visibility: they may modify the paths of flows 

to redirect them through SDN switches and expose them to SDN-based monitoring tech-

niques [65, 77, 78, 79]. To do this, the Magneto controller incorporates two mechanisms, 

telekinesis and magnet MACs, introduced in a previous paper [6], that can update the 

forwarding tables of legacy switches from an SDN switch. 

Modifying the path of a flow to make it visible is an intrusive policy, which may 

not be acceptable for some enterprises, either due to privacy or performance concerns. 

To make the case that clairvoyant networks can provide significant advantages to SDN-

based monitoring, we perform a measurement study on their benefits and costs. We 

first study the degree of visibility that clairvoyant networks offer (Section 5.3). Using 

real-world and synthetic topologies, we show that even a single OpenFlow switch enables 

monitoring of any flow with various possible paths to choose from. 

We study the performance cost of enabling network-wide visibility (Section 5.4), 

by answering the question of how much the performance of the flows and the network 

suffers in exchange for visibility. The cost of enabling network-wide visibility is high 

when few OpenFlow switches are deployed (paths may be as much as twice longer than 

default) but decreases as we add more OpenFlow switches. Thus, clairvoyant networks 

give operators a trade-off between the upfront cost to enable SDN-based monitoring 

and the performance penalty incurred by enabling such monitoring. 

We target clairvoyant networks for SDN-based monitoring carried through SDN 

switches. However, it is possible to redirect some flows through legacy monitoring 

devices, such as NetFlow-enabled switches [24] or deep packet inspection appliances, as 

long as the monitoring device lies on the path between the source or destination of the 

flow and an SDN switch. This helps control the trade-off between upfront investment 

and network overhead even further. When operators prefer to use traditional monitoring 

devices, only up to 10% of all legacy devices need to support monitoring to cover all 

flows, as opposed to all in current practices. 

1We interchangeably use the terms SDN(-enabled), OpenFlow(-enabled), or programmable to refer 
to devices whose forwarding tables can be configured remotely from a centralized controller. 
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In the second part of this chapter, inspired by our measurement results, we present 

a basic design for clairvoyant networks. We show how to integrate the existing mecha-

nisms of telekinesis and magnet MACs with the visibility tasks to design the Magneto 

controller (Section 5.5). With a goal to inform network architects and operators on 

the trade-offs of adopting a clairvoyant network, we identify specific key performance 

and cost indicators. We then provide a customized design, including a balanced SDN 

deployment strategy and a flow scheduling mechanism, that reduces both the upfront 

deployment cost and the flow and network overhead to offer a practical solution for 

deploying multiple visibility tasks at the same time (Section 5.6). 

Clairvoyant networks provide a low-cost flexible monitoring substrate for enterprises 

where changing the path of flows is an acceptable policy. They can open up new direc-

tions in flow monitoring by allowing hybrid monitoring applications that take advantage 

of the monitoring capabilities of both SDN and legacy devices to build accurate, flexible, 

and efficient monitoring. 

5.2 Clairvoyant networks 

We discuss related research on SDN-based monitoring and introduce the concept of 

clairvoyant networks which provide low-cost, flexible, network-wide monitoring to op-

erators. 

5.2.1 SDN-based monitoring 

A network flow is visible when its path traverses a monitoring device, such as an 

NetFlow-enabled switch, a polling-enabled SDN switch, or any dedicated monitoring 

or packet capture appliance. Network-wide visibility of all flows is important for many 

network management applications such as traffic engineering, access control, anomaly 

detection, or heavy hitter detection [80, 81, 82, 83, 84, 85, 86]. 

Traditional flow monitoring achieves visibility by defining static monitoring tasks 

that require switch support [24, 23] or dedicated monitoring appliances [72, 87]. For 

example, to identify large flows, NetFlow-enabled switches sample packets and build 

flow-level packet counters. Monitoring tools must be strategically deployed across the 

data plane to enable network-wide visibility, and carefully tuned to avoid overloading 
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the data plane [25]. 

SDN disrupts traditional monitoring practices by providing better control and vis-

ibility over the network. First, SDN allows operators to remotely update switch for-

warding entries on demand, enabling more flexible and dynamic monitoring tasks [65, 

88, 89, 90]. Second, SDN-enabled switches double as monitoring devices. They support 

flow-based counters to monitor utilization [91, 92, 77, 93] or help inspect traffic to 

detect unauthorized access [73, 74] or security threats [76]. 

An important impediment to SDN-based monitoring has been the significant upfront 

investment cost it requires. Upgrading the network to SDN is prohibitive for most 

enterprises as it requires replacing most, if not all, legacy switches with SDN-enabled 

switches [42]. Recent work proposes hybrid SDN and legacy (or partially programmable) 

networks to lower the deployment cost of SDN while providing most of its benefits. 

However, with hybrid networks, operators have visibility only over the flows that traverse 

the SDN switches and cannot monitor the traffic in the legacy part [43, 45, 46, 42]. 

5.2.2 Use Cases 

Dynamic flow monitoring enables fine-grained on-demand network visibility. It is de-

sirable to have programmable network visibility, if we can program what to see, where 

to see, and how to see. Such on-demand visibility provides flexible monitoring capabil-

ities for enterprise networks, given that not all flows need to be monitored all the time 

with the same priority. For example, monitoring flows to critical servers is typically 

prioritized over monitoring the traffic generated from a student’s laptop. 

Network policy verification. Network policies change overtime. When new network 

policies get deployed, operators need to verify they are correctly functioning by seeing 

(no) traffic from the affected source hosts (or, to the destination hosts). Dynamic flow 

monitoring makes it possible for operators to verify the updated network policy has 

been enforced successfully at any time anywhere. If any misconfiguration found during 

the verification, operators can fix the policies based on the flow record and re-check 

until the new policies are correctly deployed. One example is shown in Figure 5.1, 

where the updated policy aims to block the traffic from H2 to H5, and allow the traffic 

from H3 to H4. Once operators start to deploy the new network policy, they steer the 

traffic destined to H4 to OF6 and further check whether being able to see traffic from 
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H3 to H4. If yes, the new policy for H3 is successfully updated. Similarly, operators 

query statistics from OF6 to see whether traffic exists from H2 to H5. Under correct 

configuration, no packet shall be seen from H2 to H5. 

Flow performance monitoring. Knowing performance of flows is basis of some routine 

network management tasks, such as traffic engineering and troubleshooting. Dynamic 

flow monitoring makes it possible for operators to select which flows to monitor in real-

time. Following the same example in Figure 5.1, after the new policy mentioned above 

was deployed, operators noticed that the link (LE2, LE3) got congested and complaint 

from H1 and H2’s users for slow network. To help further diagnose, operators want 

to know fine-grained performance information (e.g., throughput) for each flow to H4, 

i.e., (H1, H4), (H2, H4), and (H3, H4). By instructing their traffic to go through OF6, 

operators can easily see which each flow’s performance and alleviate the congestion by 

either rate limiting or rerouting certain flows. 

5.2.3 Proposed idea 

In line with previous research [91, 92, 77, 93, 76], we consider a flow to be visible2 when 

it traverses an SDN switch. We propose to make all flows visible in a hybrid network 

by redirecting them (temporarily) through an SDN switch. In this way, operators could 

apply existing SDN-based monitoring mechanisms to monitor all flows, including those 

whose default path does not traverse an SDN switch. When monitoring is finished, the 

flows would be reverted to their original path. This would dramatically decrease the 

cost of deploying and using SDN-based monitoring, as a wholesale [42] upgrade to SDN 

is not necessary to enable network-wide visibility. 

Towards this goal, we introduce clairvoyant networks: partially programmable net-

works that offer operators the ability to monitor any flow any time. Any enterprise 

network can become clairvoyant by deploying at least one SDN-enabled switch and a 

specialized controller, which we call the Magneto controller. Clairvoyant networks are 

made possible by previous work [6] on using SDN switches to control routing through 

legacy devices. As we describe in detail in Section 5.5, we can change the path of any 

2Throughout the chapter, a flow is “visible” when it traverses an SDN switch and “invisible” oth-
erwise. In Section 5.3, we discuss how to make a flow visible to legacy monitoring devices rather than 
SDN switches. 
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flow traversing the legacy network using simple OpenFlow-based mechanisms. 

Clairvoyant networks raise several questions about the feasibility and cost of flow 

monitoring by changing the path of flows. First, how many flows can we make visible 

by updating their paths compared to a simple hybrid networks? While clairvoyant 

networks focus on SDN-based monitoring (i.e., a flow is visible when it traverses an 

SDN switch), is it possible to redirect flows through traditional monitoring devices 

(e.g., NetFlow-enabled switches). Finally, what are the cost and performance trade-offs 

involved in changing the path of a flow to make it visible? We explore these questions 

through data-driven simulations and real-world deployments in Sections 5.3 and 5.4, 

then present a basic design for clairvoyant networks in Section 5.5. 

5.3 Flow visibility 

Do clairvoyant networks make more flows visible than simple hybrid SDN networks 

that have no ability to update legacy paths? In this section, we investigate the extent 

to which clairvoyant networks provide visibility both through SDN switches and using 

legacy monitoring devices. 

We evaluate the feasibility of clairvoyant networks by investigating three questions: 

1. what is the degree of visibility that we can introduce compared to a regular net-

work? Recall that a flow is visible if it traverses a monitoring device. 

2. what is the performance penalty necessary to make flows visible? Making a flow 

visible requires changing its path to traverse a monitoring device. 

3. what are the side-effects on the network or other flows? 

5.3.1 Methodology 

Network topologies. We evaluate the feasibility of clairvoyant networks on three net-

work topologies, described in Table 5.1. The “Large” and “Small” are the real topologies 

of a large-scale campus network [41] and of a smaller campus backbone network [60]. We 

generate the “Medium” topology to model a medium-size enterprise network. In doing 

so, we try to preserve the features observed in the real “Large” topology: more edge 
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(a) “Large” topology (b) “Medium” topology (c) “Small” topology 

Figure 5.2: Default visibility, as we vary the number and placement of OpenFlow 
switches. 
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Figure 5.3: (a) The average number of possible visible paths for flows whose default 
paths are not naturally visible, for the “Large” topology; we cut the line for highest-
degree at 20 OpenFlow switches, when the default visibility becomes 1. The distribution 
for the number of visible paths for each flow, when we use (b) one OpenFlow switch, or 
(c) ten OpenFlow switches. 

switches than core switches, and multiple components connected through high-degree 

core switches. 

Deployment. We consider four placement strategies for SDN-enabled switches: 

random anywhere, random edge, random core, and highest-degree. Random strategies 

select a legacy switch at random and replace it with an OpenFlow switch. Random 

anywhere and random core provide base cases for comparison, while random edge is 

intended to model a scenario where operators deploy software switches on edge hypervi-

sors or servers. The highest-degree strategy replaces legacy switches in decreasing order 

of their degree and reflects a best case scenario where the most influential switches are 

upgraded first. 

Network flows. We consider all flows that could be installed in the network, i.e., 

between all pairs of edge switches. We do not take into account the popularity of a pair 
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Name Source # Switches/Edge/Core Max/Avg/Min Degree 
Large [41] 1577 / 1160 / 417 65 / 2.15 / 1 
Medium this work 493 / 355 / 138 19 / 3.11 / 1 
Small [60] 16 / 14 / 2 15 / 4.5 / 3 

Table 5.1: We use two real-world (“Large” and “Small”) and one synthetic (“Medium”) 
network topologies to demonstrate the feasibility of clairvoyant networks. 

of switches (e.g., some edge switches connect to more hosts) because it does not affect 

the visibility of a flow. We assume a flow is between two different IP addresses, without 

taking into account port numbers, to match the granularity provided by the path update 

mechanism [6]. Unless otherwise noted, every experiment provides aggregated values 

over 100 runs, resetting the switch placement after each run. 

Visibility. We define the visibility of a network as the probability that a random 

flow in the network is visible, i.e., traversing a monitoring device. The visibility of a 

network takes values between 0 and 1. All flows in a network with visibility 1 can be 

monitored. For example, a network where all switches and routers support NetFlow 

or where all switches are SDN-enabled has visibility 1. We further classify visibility 

according to the type of device that provides it. Natural visibility (or simply visibility) 

represents the visibility achieved from monitoring flows at SDN-enabled switches, while 

supervisibility characterizes a network where flows are monitored at legacy monitoring 

devices such as NetFlow-enabled routers or IDSes. We measure both the natural and 

supervisibility that a clairvoyant network provides while varying both the number of 

OpenFlow switches and their placement strategy. 

5.3.2 Natural visibility 

Natural visibility describes the ability of a clairvoyant network to make any flow visible 

by routing it through an SDN-enabled switch. As the controller can set up any path 

through an OpenFlow switch, the natural visibility of any clairvoyant network is 1. 

However, part of the natural visibility may not even require setup from the controller: 

if the flow’s default path traverses an OpenFlow switch, then it is not necessary to use 

the Magneto controller to make it visible. To understand the benefit that clairvoyant 

networks provide, we must evaluate how much of their natural visibility is achieved using 

the Magneto controller. For this, we compute the default visibility: the probability that 
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any flow is visible initially on its default path. 

Figure 5.2 and Table 5.3 show the default visibility of each network, as we vary the 

number and placement of OpenFlow switches. When replacing more switches, more 

flows are likely to be visible initially, without having their paths updated. The highest-

degree placement performs best. This is because high-degree nodes partition the net-

work in many separate connected components. Most flows are likely to be between 

components and therefore must traverse a high-degree node. This result implies that 

when upgrading the top highest degree legacy switches to SDN, most flows are visible 

by default. However, upgrading the high degree switches is also costlier as they would 

need to support more flows and higher throughput. 

Although the ability to set up a flow’s path through an OpenFlow switch is impor-

tant, the number of possible paths for a flow is equally critical. Path diversity offers 

operators more flexibility in reaching both monitoring and routing goals in path setup. 

Figure 5.3a shows the average number of visible paths that exist for flows whose de-

fault paths are not naturally visible, i.e., do not traverse an SDN-enabled switch, in the 

“Large” topology (Table 5.3 shows results for all topologies). Replacing the high-degree 

switches first increases path diversity and enables more flexible monitoring. Figures 5.3b 

and 5.3c zoom in and show the distribution of the number of visible paths for each flow 

when we have one and ten OpenFlow switches. Path diversity is significant, regardless of 

the switch placement strategy. We assess the performance of these paths in Section 5.4. 

Summary: Clairvoyant networks offer full visibility and provide ample path diver-

sity to set up flow paths. Operators should consider upgrading the high degree switches 

to SDN to gain more default visibility. 

5.3.3 Supervisibility 

When upgrading to a clairvoyant network, only a few legacy switches may be replaced 

with OpenFlow switches. Although OpenFlow switches provide monitoring capabili-

ties [65, 76], being able to use traditional monitoring devices, such as NetFlow-enabled 

legacy switches or intrusion detection systems, may alleviate some of the monitoring 

load on OpenFlow switches. While all flows can be set up through a specific OpenFlow 

switch, not all flows can be set up through a particular legacy device. In fact, flow 

paths can be set up through a legacy device only if the device is on a path between an 
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Figure 5.4: (a) The minimum number of legacy monitoring devices needed to achieve 
full supervisibility (i.e., all flows traverse at least one legacy monitoring device) for the 
“Large” network. The distribution of the minimum number of legacy devices to achieve 
full supervisibility for when we use (b) one OpenFlow switch, or (c) ten OpenFlow 
switches. 
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(a) “Large” topology (b) “Medium” topology (c) “Small” topology 

Figure 5.5: The average flow stretch increase for the top five shortest visible paths when 
we have one OpenFlow switch. 

OpenFlow switch and the source or destination of a flow. The supervisibility reflects 

the ability of a clairvoyant network to set up paths through legacy devices. 

We compute the minimum number of legacy monitoring switches necessary to achieve 

network-wide supervisibility, i.e., any flow’s path would traverse at least one of these 

legacy switches. Figure 5.4a presents the results for the “Large” topology. Interest-

ingly, the highest-degree strategy performs poorly compared to the other strategies: 

more monitoring-enabled legacy switches are needed to cover all flows and achieve a 

supervisibility of 1. This is because there are more paths through high degree switches 

and we need more legacy monitoring devices to cover all of them. 

Figures 5.4b and 5.4c offer a closer look at achieving full supervisibility with one 

and ten OpenFlow switches. One interesting finding is that when we place OpenFlow 

switches at edge, the minimum number of legacy switches needed to cover all flows 
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is lowest and the same as the number of OpenFlow switches. The reason is any SDN 

switch can redirect all the flows to go through itself and then through one of its adjacent 

legacy switches. Of course, placing few switches at the edge may increase the path length 

unnecessarily. 

To maximize the number of visible flows it sees, a monitoring-enabled legacy switch 

should be located as close to an OpenFlow switch as possible. We confirm that all 

legacy switches in the experiments from Figures 5.4b and 5.4c are indeed adjacent 

to OpenFlow switches. This observation also defines an upper bound on how many 

monitoring-enabled legacy switches we need to cover all flows: the total number of 

active interfaces on all OpenFlow switches. 

Summary: Clairvoyant networks offer full supervisibility through few monitoring-

enabled legacy devices, bounded only by the number of active interfaces on all SDN 

switches. Unlike for natural visibility, the high-degree placement performs poorly. Op-

erators should consider the other strategies to gain supervisibility with few legacy mon-

itoring devices. 

5.4 The cost of visibility 

Setting up flow paths through monitoring devices may introduce performance penalties 

to flows and overhead in the network. While monitoring applications may have their own 

overhead, here we focus on several key cost indicators related the effect of updating the 

path of a flow and whose value depends little, or not at all, on how flows are monitored. 

5.4.1 Overhead on flows 

How does visibility affect the performance of a flow? We consider only natural 

visibility. As we saw in the previous section, supervisibility is closely tied to natural 

visibility and flow paths are likely to be similar. We evaluate two flow performance 

metrics. The flow stretch represents the relative increase of the number of hops in 

the new flow path compared to the default path. It reflects the penalty in end-to-

end latency that a flow would pay for becoming visible. The flow stress captures the 

maximum number of other distinct flows with which a flow shares any link. Flow stress 

models the change in throughput that a flow may see when it becomes visible, and 
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Random anywhere Random edge Random core 

L 

# OF switches 1 5 20 1 5 20 1 5 20 
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.0 
1.4 
2.24 
1.9 
21.2 
4.4 

0.02 
10.9 
9.47 
1.4 
7.6 
2.3 

0.08 
44.4 
33.77 
1.3 
3.7 
1.5 

0.0 
1.0 
1.0 
1.8 
21.3 
4.4 

0.01 
5.0 
5.0 
1.5 
7.5 
2.1 

0.03 
20.0 
20.0 
1.4 
3.2 
1.5 

0.01 
2.9 
4.86 
1.7 
20.9 
4.3 

0.06 
29.6 
17.72 
1.4 
7.7 
2.2 

0.18 
110.4 
66.33 
1.2 
3.2 
1.3 

M 

# OF switches 1 5 20 1 5 20 1 5 20 
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.01 
3.2 
2.54 
1.9 
10.1 
3.6 

0.06 
16.3 
8.18 
1.4 
3.6 
1.8 

0.25 
60.6 
29.37 
1.2 
1.6 
1.2 

0.01 
1.0 
2.0 
2.0 
10.5 
3.7 

0.03 
5.0 
6.0 
1.5 
4.0 
1.9 

0.11 
20.0 
21.0 
1.3 
1.6 
1.1 

0.05 
8.2 
3.72 
1.7 
9.3 
3.3 

0.17 
42.6 
13.62 
1.3 
2.7 
1.5 

0.55 
173.2 
56.19 
1.1 
1.4 
1.0 

S 

# OF switches 1 5 10 1 5 10 1 - -
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.13 
6.7 
1.89 
1.5 
5.8 
3.2 

0.59 
31.8 
5.9 
1.1 
1.5 
1.0 

0.93 
41.7 
11.2 
1.0 
2.2 
1.0 

0.14 
3.3 
2.0 
1.9 
6.7 
3.5 

0.6 
15.9 
6.0 
1.3 
2.0 
1.4 

0.93 
30.5 
11.0 
1.3 
1.5 
1.2 

0.0 
34.1 
1.0 
1.2 
0.9 
0.5 

-
-
-
-
-
-

-
-
-
-
-
-

Table 5.2: Results for visibility and cost metrics for the three topologies. We show the 
default visibility, the average number of visible paths for an invisible flow, the minimum 
number of monitoring-enabled legacy switches to achieve full supervisibility, the average 
flow stretch, and the relative increase in flow and network stress between a flow’s default 
and visible paths. For highest-degree strategy, we only present results when we have 
one OpenFlow switch, since the default visibility increases significantly with a few more 
OpenFlow switches (i.e., higher than 0.85 with five OpenFlow switches). In the small 
topology, both the core switches are the highest-degree switches, so their results are the 
same. 

captures the ability of clairvoyant networks to offer monitoring paths that are lightly 

loaded. 

We compute the average flow stretch of the top five shortest visible paths for each 

flow for all runs. Figure 5.5 shows the detailed results for when we have a single 

OpenFlow switch; Table 5.3 shows statistics for more switches. As expected, placing 

OpenFlow switches at the edge has the largest performance penalty, since a visible path 

may need to stretch to the other side of the network. The results show that with only 

2% of switches upgraded to OpenFlow, the average visible path is only 1.3 times greater 

than the default path. This means that, even given the choice between several paths, a 
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High-degree Every-edge 

L 

# OF switches 1 25 
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.48 
16.6 
48.0 
1.4 
7.7 
2.1 

0 
2320+ 
25 
1.2 
1.0 
1.0 

M 

# OF switches 1 8 
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.71 
19.7 
6.0 
1.5 
2.7 
1.1 

0 
710+ 
8 
1.2 
1.0 
1.0 

S 

# OF switches 1 1 
Default visibility 
Possible paths 
Supervisibility 
Flow stretch 
Flow stress increase 
Network stress increase 

0.0 
34.1 
1.0 
1.2 
0.9 
0.5 

0 
28+ 
1 
1.5 
1.1 
1.0 

Table 5.3: Results for visibility and cost metrics for the three topologies. We show the 
default visibility, the average number of visible paths for an invisible flow, the minimum 
number of monitoring-enabled legacy switches to achieve full supervisibility, the average 
flow stretch, and the relative increase in flow and network stress between a flow’s default 
and visible paths. For highest-degree strategy, we only present results when we have 
one OpenFlow switch, since the default visibility increases significantly with a few more 
OpenFlow switches (i.e., higher than 0.85 with five OpenFlow switches). In the small 
topology, both the core switches are the highest-degree switches, so their results are the 
same. 

monitoring application would still likely select a fairly short visible path for a flow that 

is not visible by default. 

Table 5.3 presents the average relative flow stress increase when making a flow visible. 

As expected, as we add more OpenFlow switches, and thus enable more paths, the flow 

stress change is smaller. With only 20 OpenFlow switches, a a flow is likely to increase 

its stress as much as 3.7 times in exchange for being monitored. 

Summary: Making flows visible has little effect on the number of hops they traverse. 

However, it has a significant effect on flow stress as it forces multiple flows through few 

monitoring-enabled switches. Increasing the number of such switches helps spread the 
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load more evenly. 

5.4.2 Overhead on the network 

Making flows visible requires changing their paths which in turn may pose an additional 

burden on some network links and switches. 

How does visibility affect the network links? We define the network stress as 

the maximum number of flows that traverse any link in the network. Table 5.3 shows 

the relative increase in network stress across various placement strategies. High-degree 

strategies do not add much to the network stress when making flows visible, while the 

other strategies require more OpenFlow switches to keep the network stress low. 

How does visibility affect the network switches? The OpenFlow switches 

may see an increased overhead in clairvoyant networks, when compared to simple SDN 

networks, as they are queried more frequently by the controller or mirror traffic for 

further analysis. We consider three metrics for the cost imposed on switches in clairvoy-

ant networks—memory usage, CPU utilization, and number of forwarding entries—and 

study each metric as we increase the number of flows made visible. 

First, we measure the CPU utilization and memory usage on an iwNetworks Open-

Flow switch in two scenarios: when the Magneto controller polls the flow statistics every 

second and when the switch mirrors traffic (e.g., to the Magneto controller or a dedi-

cate server). Previous research [94] shows that the performance of OpenFlow switches 

decreases as the controller polls for statistics. Mirroring packets to the controller, on 

the other hand, packs the captured packets as the payload of PacketIn messages [17], 

which is done by the switch’s CPU. Though it is also possible to send packets to the 

controller as the same to send packets to any destination—output to a specific port by 

Number of CPU CPU Mem Mem 
flows (Query) (Mirror) (Query) (Mirror) 
1 0.05 % 2.26 % 0.22 KB 0.33 KB 
10 0.15 % 2.37 % 0.22 KB 0.51 KB 
100 1.05 % 5.31 % 0.22 KB 2.12 KB 

Table 5.4: CPU and memory load increase on an OpenFlow switch when the number 
of flows varies, under two scenarios: when the controller polls the switch for statistics 
every second and when the switch mirrors packets to the controller. 
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LE1

LE5

Clairvoyant 
Controller

LE4

LE3
OF2

D Y

X

Figure 5.6: Clairvoyant networks require as few as one SDN-enabled switch. The Mag-
neto controller can make the flow (S,D) visible to switch OF2 by setting up the path
S − LE1 − OF2 − LE1 −D and the flow (S, Y ) visible to OF2 by installing the path
S − LE1−OF2− LE3− Y . (X,Y ) is an invisible flow.

the switch hardware, we do not study this approach in this work since it does not involve

the switch’s CPU. Table 5.4 shows the results as we increase the number of concurrent

flows. Clairvoyant networks add little overhead to the SDN switches even with many

flows being monitored at the same time.

The number of forwarding entries required by making flows visible may impact the

performance of switches. For legacy switches, a single additional entry is sufficient to

forward the monitored flows to an OpenFlow switch. The number of forwarding rules

in one SDN switch is bounded by the number of simultaneous flows this switch handles,

since OpenFlow switch needs to rewrite source and destination MAC addresses for every

monitored flow. How to further compress the forwarding rules in SDN switches is out

of scope of this work [95, 96, 97].

5.5 Design

In this section, we present a basic design for clairvoyant networks. As mentioned earlier,

any enterprise network can become clairvoyant by deploying at least one SDN-enabled

switch and a specialized controller—which we call the clairvoyant controller.

The controller consists of two layers: path update and visibility enabler. It receives
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visibility tasks from operators specifying what flows to monitor and, if necessary, up-

dates the paths of the flows to make them visible. For this, it implements Magneto, 

a mechanism, first introduced in a previous paper [6] and summarized below, that can 

change the path of any flow, even when the flow does not traverse an SDN switch. 

The visibility enabling layer reads and schedules enable visibility tasks. How to moni-

tor a flow, i.e., polling specific counters, sampling packets, checking header field values 

is a separate process, at the latitude of the operator, and outside the design of the 

clairvoyant controller. 

5.5.1 Changing paths 

Central to clairvoyant networks is Magneto, a framework to change the path of any 

network flow in a hybrid SDN network, described in detail in a a previous paper [6]. 

Magneto can use one or a few strategically placed SDN-enabled switches to influence the 

forwarding behavior of legacy switches and end hosts. This allows us to gain visibility 

over any network flow without the need of making any modifications to existing legacy 

hardware devices or software components. As shown in Figure 5.6, Magneto can make 

the flow (S, D) visible to the SDN-enabled switch OF 2. We summarize the design and 

properties of Magneto below. 

Two key mechanisms enable Magneto to exert SDN-like control over legacy switches: 

telekinesis and magnet addresses. With telekinesis, OpenFlow switches send special 

seed packets to the legacy switches on the new path to be installed. This relies on the 

ability of an SDN controller to send PacketOut control messages to OpenFlow switches 

and instruct them to send custom-made packets into the network. The seed packets 

take advantage of MAC learning to manipulate legacy switches into updating a single 

forwarding entry in their routing tables. 

Magneto routes using fictitious MAC addresses (called magnet MAC addresses) as-

sociated with end hosts. Magnet MAC addresses are fictitious MAC addresses that do 

not correspond to any real host on the network, but are created by Magneto for the 

purpose of gaining network visibility and controlling routing & forwarding behaviors of 

end hosts and legacy switches. We “magnetize” a hybrid network by controlling the 

(magnet) MAC address mappings at end hosts via unicast gratuitous ARP messages 

generated by Magneto (via OpenFlow switches). When sending seed packets, we set the 
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source MAC address as a magnet MAC address associated with the path destination, 

rather than the real (native) MAC address of the destination host. The seed packet 

triggers the installation of a forwarding entry for the magnet MAC address. We also 

require that the seed packets are ARP packets and can reach the source host of the path. 

Thus, the source learns to associate the destination with its new magnet MAC address. 

Magneto uses different magnet MAC addresses to set up different paths for delivering 

traffic from other source hosts to the same destination. The last OpenFlow switch on 

each path rewrites the magnet MAC address to the native MAC address based on the 

destination IP address. 

Magneto can set up a path through both SDN-enabled switches and strategically 

placed traditional monitoring devices. Figure 5.7 demonstrates how Magneto can set 

up a path through an SDN switch. To make the flow between S and D visible to 

the SDN-enabled switch OF 2 (i.e., the purple dashed line in Figure 5.6), we update 

its path from the top figure to the bottom figure. To install this new path, Magneto 

generates a new magnet MAC address MAGNET. It then crafts a seed packet with 

source MAC address as MAGNET and destination MAC address as S’s MAC address 

(in the Ethernet header), source hardware address as MAGNET and source protocol 

address as D’s IP address (in the ARP header). Magneto uses PacketOut to send this 

seed packet from OF 2 to S. This packet triggers the addition of a new forwarding 

entry in LE1 for the MAGNET MAC address with corresponding incoming port and 

the update of the ARP table on S. Another seed packet with MAGNET MAC address 

and S’s IP address is sent from OF 2 to D, and the ARP table on D is updated in a 

similar manner. 

5.5.2 Enabling visibility 

To make flows visible, we provide a simple language for network operators to create 

visibility tasks for the Magneto controller. With a visibility task, the operator simply sets 

up a flow to be monitored at a specific location in the network. A visibility task consists 

of an action, a monitoring target (what flow(s) to monitor), a monitoring location 

(at what device to monitor the flows), and, optionally, a monitoring mirror (where to 

mirror the monitored flows). The action specifies whether the controller should add or 

delete the task. The monitoring target is a tuple of (source IP, destination IP) and 
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SRC_MAC = MAGNET
SHA = MAGNET, SPA = S_IP
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(b)

S

OF2

DMAC PORT

S_MAC S

D_MAC D

MAGNET OF2

IP MAC

D_IP MAGNET

IP MAC

S_IP MAGNET

MATCH ACTIONS

nw_src=S_IP,
nw_dst=D_IP

set_dl_src=MAGNET,
set_dl_dst=D_MAC,output:LE1

nw_src=D_IP,
nw_dst=S_IP

set_dl_src=MAGNET,
set_dl_dst=S_MAC,output:LE1

LE1

(c)

Figure 5.7: Path update between two hosts, S and D, in a hybrid network shown in
Figure 5.6. Switch forwarding tables are in blue, host ARP caches are in red. ((a):
original network state) Traffic between S and D flows through path in gray dotted
line; ((b): path update) OF2 injects seed packets with magnet MACs to the legacy
switch; ((c): updated network state) end hosts change the path to (LE1, OF2, LE1).

represents the source and destination of the flow to be monitored. The monitoring

location represents the SDN switch where the flow will be monitored. If operators do

not have a preference for the location, the field can be empty or null. In this case, the

task is assigned to the switch closest to the flow source or destination (if the source is

a wildcard). For example, in Figure 5.6, the visibility task “(S,D) OF2” indicates that

traffic between S and D will be monitored at OF2, “(∗, Y ) NULL” indicates that traffic

to Y can be monitored anywhere. Optionally, the operator can specify a monitoring

mirror to have the monitoring switch mirror the flow to another device.

The Magneto controller takes visibility tasks as input and translate them into seed

packets with magnet MACs that, in turn, generate forwarding rules that change the path

of the flows. Given a visibility task, the controller generates a set of parameters about

the flow and its monitoring location and generates magnet MAC addresses. Setting up

a path using the magnet MACs follows the description in Section 5.5.1. Disabling a

visibility task is similar and it requires the controller to send seed packets that revert

the path of the flow back to default. In Section 5.6, we describe a more complex task

scheduling mechanism, inspired by experimental results, and designed to reduce the cost

of achieving visibility for multiple flows at the same time.

We illustrate these operations using Figure 5.6. When a network operator inputs

“add (S,D) OF2”, the Magneto controller generates a magnet MAC address for S to

reach D, another magnet MAC address for D to reach S. These two magnet MAC
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LE1

LE2

H5

LE3

LE4

H4

H1H2

H3

H6

OF5

OF6

OF7

Figure 5.8: In a clairvoyant network, we can place SDN-enabled switches in every-edge— 
connecting each edge legacy switch to one SDN switch. The SDN-enabled switch can 
be either a hardware switch or a software switch running on a server. In this example, 
SDN-enabled switches are depicted in red and legacy switches are in blue. LE1, LE3, 
and LE4 are edge legacy switches, since they connect to end hosts. H1, H2, H3, H4 
represent source hosts, and H5, H6 represent destination hosts. Every source host is 
sending traffic to every destination host. 

addresses can be the same one if OF 2 uses the same link to deliver the traffic to S 

and D (as shown in Figure 5.7). Together with S and D’s IP addresses and real MAC 

addresses, these parameters are used by Magneto to set up the new path between S and 

D traversing OF 2 as mentioned in Section 5.5.1. Later when the operator inputs “del 

(S, D) OF 2” to delete this visibility task, the Magneto controller retrieves the related 

information and injects seed packets to revert the path to default. 

5.6 Case study: edge visibility 

In Section 5.5 we presented a general design for clairvoyant networks that can be used 

by operators as a basic building block towards deployment. As observed from previous 

analysis in Table 5.3, the target flow’s performance can be affected due to the change 

of its path. Such change may even affect other flows’ performance since those flows can 

compete for available bandwidth if their paths share some links. Can we enable a flow’s 

visibility with negligible performance degradation on itself as well as zero-touch effect on 

other non-target flows? Here, we consider a specific deployment scenario and associated 
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Figure 5.9: Visibility delay (the time to make a flow visible) of the Magneto controller 
remains low as we vary the data rate. We measure the visibility delay from both the 
host side (left) and the controller side (right). 
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Figure 5.10: Visibility delay (the time to make a flow visible) of the Magneto controller 
remains low as we increase the distance between the OpenFlow switch and the edge 
legacy switch. We measure the visibility delay from both the host side (left) and the 
controller side (middle). Worst-case flow completion time has negligible increase (right). 

design decisions that enable us to reduce the cost of achieving visibility for flows. 

SDN switch deployment. To reduce the path stretch of monitored flows, we 

propose to introduce a few SDN switches (hardware or software [98]) to connect to 

all edge legacy switches (i.e., all legacy switches that connect to end hosts) such that 

each edge switch connects to at least one SDN switch. In this way, changing the path 

of any flow adds at most two hops (from the edge legacy switch next to the source or 

destination to the connected SDN switch and back). Figure 5.8 shows an example with 

three edge legacy switches (i.e., LE1, LE3, and LE4) connected to SDN switches. To 

make the flow between H1 and H5 visible, the controller redirects it through OF 5 or 

OF 6. 

By pushing visibility to the edge of the network, we guarantee that any flow has 

negligible performance degradation when made visible. In addition, as the only new link 

in the flow’s path is that from its source or destination legacy switch to the adjacent SDN 
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switch, the impact of changing the path on the other network flows is zero. However, 

when multiple flows are monitored by the same SDN switch, they may compete for 

the bandwidth of the link between the SDN switch and its adjacent legacy switch. We 

discuss how to alleviate this problem later in this section. 

The last column in Table 5.3 shows the cost of this deployment strategy. With 48-

port hardware OpenFlow switches and each port connected to one edge legacy switch, 

we need only 2% more OpenFlow switches to cover every edge switch. As expected, the 

average flow stretch and stress are smaller than other deployment strategies with the 

same number of SDN switches. Flow paths can extend on the average 1.5 times when 

made visible, while the competition for the same monitoring device is slightly higher 

than on the default path. 

Visibility scheduling. When multiple flows are made visible through the same 

SDN switch, they will compete for the capacity of the link(s) connecting the SDN 

switch to its adjacent legacy switches. We propose a time-based scheduling in which 

one or more flows become visible in separate time slots such that the throughput of all 

flows in the same slot is lower than the capacity of the shared link. 

First, the clairvoyant controller measures the throughput of each competing flow in 

a round-robin manner: it makes each flow visible for a small period of time (e.g., 1s) and 

polls the counters associated with flow at the end of the visibility period. In Section 5.7, 

we show that making a flow visible and reverting it back to its original path is fast and 

consumes negligible resources. 

Second, the controller combines all visibility tasks with the same monitoring loca-

tions in such a way that the sum of the throughputs of all flows from the same group of 

tasks does not exceed the capacity of the shared network link. We use a greedy heuris-

tic to assign groups of tasks to each monitoring link at each monitoring interval. The 

visibility tasks in each group are enabled for each interval then disabled then enabled 

again until a task is deleted. 

We illustrate the visibility scheduling using Figure 5.8, where each link has speed of 

1 Gbps. An operator inputs two visibility tasks “add (H1, H5) OF 5” (say, flow1) and 

“add (H2, H6) OF 5” (say, flow2). The Magneto controller first enables the visibility 

for flow1 for one second to measure its throughput (say, 500 Mbps) and disables flow1’s 

visibility (i.e., reverts its path back to the default). Then the controller enables flow2’s 
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Figure 5.11: Visibility delay (the time to install a path) of the Magneto controller 
remains low as we introduce high load on the OpenFlow switch’s control plane (i.e., 
saturate CPU usage to be 99%) or data plane (i.e., generate 10 Gbps additional traffic 
to go through the OpenFlow switch). We measure the visibility delay from both the 
host side (left) and the controller side (middle). Worst-case flow completion time has 
negligible increase (right) compared to when there is no additional load. 

visibility for another second to measure its throughput (say, 200 Mbps) and disable its 

visibility. Since the total throughput of flow1 and flow2 is lower than the link capacity 

of (LE1, OF 5), they can be combined in the same time slot to be monitored. 

5.7 Evaluation 

In this section, we first show the Magneto controller can enable a flow’s visibility very 

fast while introducing negligible performance degradation. Second, we demonstrate the 

Magneto controller is scalable—can handle tens of thousands of simultaneous visibility 

tasks on one OpenFlow switch. 

We perform the following experiments on a real-world testbed in our lab. The testbed 

consists of six Dell servers, five Cisco Catalyst legacy switches [61], and two iwNetworks 

OpenFlow switches [62]. Each experiment is conducted for 100 times, unless otherwise 

noted. 

5.7.1 Visibility delay 

We define the visibility delay as the time it takes to make a flow visible, i.e. to update its 

path to traverse an SDN switch. We can measure the visibility delay from the controller 

or from one of the endpoints of the flow. The controller visibility delay represents the 

time between when the controller sends the first seed packet and when it receives the 

first mirrored packet. The endpoint visibility delay is the time between when the host 
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receives the first seed packet and when it sends the first data packet on the new path. 

To measure the visibility delay, we connect two servers and one SDN switch to 

different ports of a Cisco legacy switch. We start a flow between the two servers and 

vary its data rate. Initially, the flow traverses only the legacy switch, but detours 

through the SDN switch once we submit a visibility task for it. 

Figure 5.9 (left) shows the visibility delay measured from the end host. It remains 

low when we increase the data rate. That the visibility delay decreases as we increase 

the data rate is an artifact of our measurement: when the data rate is low, the time 

between two consecutive packets is higher therefore our measurement error is higher. 

Figure 5.9 (right) shows the visibility delay measured from our Magneto controller. It is 

higher than the delay measured from the end host, because it contains (1) the round-trip 

time from the controller to the OpenFlow switch where the seed packet is injected, and 

(2) the round-trip time from the OpenFlow switch to the host. The first round-trip time 

is dominant due to the overhead involved in forwarding a data packet on the control 

channel. 

Next, we set the data rate at 100 Mbps and increase the number of hops between 

the OpenFlow switch and the edge legacy switch. The results in Figure 5.10 show 

that the visibility delay is not significantly affected by increasing the distance to the 

monitoring SDN switch. Figure 5.10 (right) shows the percentage increase of the flow 

completion time compared to the case when the flow is forwarded on the default path. 

We send 2,000 MB flows on the default path, one-hop hairpin path, three-hop hairpin 

path, and five-hop hairpin path. The result proves that the Magneto controller can 

provide visibility of a flow with negligible impact on completion time. 

We can keep a flow visible for as little as 0.1ms—the minimum amount of time we 

achieved between sending two consecutive seed packets. However, ARP implementations 

on end hosts often have protection against ARP trashing, which limits the time between 

consecutive updates to the same ARP entry to one second. As a result, in practice, the 

smallest amount of time to maintain a flow’s visibility is one second. Even with such a 

small visibility window, repeatedly enabling and disabling the visibility of a flow does 

not reduce its completion time. We observed only a 0.38% increase for a 10 GB flow 

when we enable and disable its visibility every second for 89s. 
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Figure 5.12: The Magneto controller can create/update/delete 15,000 individual visi-
bility tasks on one OpenFlow switch in one second. 

5.7.2 Scalability 

Switch load. We evaluate clairvoyant networks when the OpenFlow switches are 

heavily-loaded using the same setup as in Section 5.7.1. To increase the load on the 

control plane, we saturate the CPU by adding dummy flows and querying flow statistics. 

To saturate the data plane, we introduce background traffic. 

Figure 5.11 shows that when we saturate the control plane on the OpenFlow switch 

to reach 99% CPU usage, the visibility time measured on the controller increases by 

about 100 milliseconds. Yet the visibility time measured from the host is not affected. 

In terms of high data plane (DP) load, we introduce 10 Gbps more background traffic 

to the OpenFlow switch and observe that the visibility time from both the controller 

side or the host side is not affected. The flow completion time changes are negligible 

among the cases where there is no additional load, high CPU load, and high data plane 

load. 

Many visibility tasks. How does the clairvoyant controller perform when opera-

tors submit many simultaneous visibility tasks? We vary the number of visibility tasks 

and measure the time it takes the controller to enable them. A visibility task triggers 

two seed packets, one to the source host(s) and the other to the destination host(s). 

There are no flows running for this experiments; we measure the time for the Magneto 

controller to inject seed packets and insert the forwarding rules. Figure 5.12 shows that 

the Magneto controller is capable of serving 15,000 individual visibility tasks on one 

OpenFlow switch in one second. 



84 

Next, we want to understand what happens when each visibility task updates an 

existing flow. For this experiment, we generate 100 flows and submit a visibility task for 

each of them. We are unable to generate more than 100 flows due to the limited number 

of servers in our testbed. Results in Table 5.4 show that making 100 flows visible at the 

same time increases CPU usage by 5.31% and memory usage by 2.12 KB. 

5.8 Discussion 

Deployment of clairvoyant networks in any enterprise is straightforward. Operators 

need to add at least one OpenFlow switch and the clairvoyant controller. To enable 

monitoring, one could proactively set up routes among all hosts through monitoring 

devices (for network-wide monitoring) or set up paths when flows start (for selective 

on-demand monitoring). 

Who can use clairvoyant networks? Primarily enterprises that require fine-

grained monitoring of their applications while accepting a little performance degrada-

tion. As they may increase the application latency by rerouting flows through monitor-

ing devices, clairvoyant networks are not suited for enterprises that run latency-sensitive 

applications. For such specialized networks, hardware-based solutions installed on the 

data plane provide a better benefit/cost trade-off for flow monitoring [67]. 

Programmable monitoring platforms offer customizable and dynamic moni-

toring by relying on the visibility and control provided by SDN [65, 77]. Clairvoyant 

networks open new directions for programmable monitoring by allowing flexible moni-

toring tasks that capture and analyze data from both OpenFlow and legacy devices. 

Interoperability. Clairvoyant networks work with STP, VLAN, BUM traffic and 

ARP poisoning mitigation technique, as described in detail in previous work. Network 

failures may pose a challenge as failed links trigger STP recomputation which in turn 

may lead to some paths becoming unusable. Failures in control plane may pause the 

Magneto controller to serve visibility tasks but the data plane is still functioning as 

usual. 
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5.9 Summary 

We introduced clairvoyant networks, hybrid SDN networks that offer full control over 

all paths. Clairvoyant networks provide a low-cost medium for SDN-based monitoring 

by providing mechanisms to update the path of specific flows to make them traverse 

SDN switches and thus expose them to SDN-based monitoring techniques. 

We studied the feasibility of clairvoyant networks using real-world and emulated 

network topologies and showed that, even with a single SDN-enabled switch, operators 

can make any flow visible for monitoring by an SDN-enabled switch, albeit by increasing 

the average path length by 38%. When clairvoyant networks contain more SDN-enabled 

switches (as little as 2% of all switches), their performance improves: most flows can 

also be monitored on the legacy data plane with little impact on network performance. 

We also provided a basic design for clairvoyant networks by integrating an existing 

mechanism for updating path with a novel approach to specify and compile visibility 

tasks. Inspired by the feasibility study, we proposed a specific deployment scenario for 

clairvoyant networks. By connecting all edge legacy switches to at least one OpenFlow 

switch and implementing flow scheduling in the clairvoyant controller, we are able to 

significantly reduce the cost of making a flow visible. 

Our current work focuses on building a programmable monitoring platform using 

clairvoyant networks. We are developing path selection and load balancing algorithms 

to improve the performance and reduce the cost of visible paths. We are also exploring 

hybrid monitoring applications that use both SDN and legacy monitoring devices to 

offer more efficient and accurate flow monitoring. 



Chapter 6 

Conclusion and Discussion 

In this chapter, we summarize our contributions in Section 6.1, discuss open issues and 

future directions in Section 6.2, and conclude in Section 6.3. 

6.1 Summary of Contributions 

Our main contributions in this dissertation are as follows: 

Our research in [99, 5] first conducts a measurement-oriented analysis of security 

group configuration and usage by customers in a public cloud platform based on real-

world datasets. The goal is to understand what are the usage patterns (“good” and 

“bad” practices) in how cloud customers configure their security groups. Motivated 

by the results and insights obtained from this measurement study, we develop a cloud 

security group analysis system which employs visual analytics to assist cloud customers 

in understanding the static and dynamic access relations among VM instances. Fur-

thermore, our system helps cloud customers diagnose potential misconfigurations and 

provides suggestions to refine security group configurations. By applying the proposed 

system to all existing customers hosted on the public cloud, more than 80% customers 

are identified to have improperly configured security groups. Hence, the novel analysis 

and diagnose system helps prevent cloud applications from potential security vulnera-

bilities and enhance cloud platform security. 

Second, we propose a novel framework [100, 47, 6] for incremental and graceful tran-

sition of legacy networks, which enables operators to transition legacy networks to SDN 
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networks in stages by gradually replacing legacy devices with SDN-enabled devices as 

needed and as budgets allow. Hence, network operators can gracefully experiment with 

SDN networks to gain experience and build confidence while eliminating or minimizing 

service disruption. More importantly, operators can enjoy the benefits as fully deployed 

SDN networks. we design and build a novel unified network management controller 

that exerts SDN-like, fine-grained routing control over both SDN-enabled and legacy 

switches in hybrid networks. Our system can install diverse paths with little control 

overhead, and exert full control over routing even when only 20% of the switches are 

SDN-enabled. Our work successfully demonstrates that it is possible to enjoy the ben-

efits of a wholly deployed SDN network but at a fraction of the cost by strategically 

replacing only a few legacy switches with SDN-enabled switches. 

Third, with the goal of obtaining fine-grained network visibility as to monitor “who 

is talking to whom”,“how much traffic is being sent to a destination, say Google”, we 

propose clairvoyant networks [101] to provide visibility for any network flow at any time 

and with low cost. Clairvoyant networks are partially programmable—they require as 

few as one SDN switch—and rely on a specialized network controller that controls paths 

through both the SDN and legacy networks. The clairvoyant controller allows operators 

to define what to see, where to see, and how to see; then enables/disables the specified 

flows’ visibility in a task scheduler, within milliseconds. Our evaluation on a lab testbed 

and through extensive simulations on large enterprise network topologies show that, even 

with a single SDN-enabled switch, operators can make any flow visible for monitoring 

within milliseconds, albeit at 38% average increase in path length. With as many as 2% 

strategically chosen legacy switches replaced with SDN switches, clairvoyant networks 

achieve on-demand flow visibility with negligible overhead. 

6.2 Open Issues and Future Directions 

Network management has always been worthwhile endeavor, and operators used to 

drive networks with “manual transmission”. Driven by the rising attention to network 

availability, performance, security, resilience and scalability, network management calls 

for the upgrade to “auto transmission” or even “self-driving networks”. The works 

presented in this thesis focused on building systems to make networks more secure and 
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manageable, and raised the following open questions and directions. 

6.2.1 System Integration and Deployment 

We proposed Socrates, a security group configuration diagnosis system, based on se-

curity group configurations from servers run by an IaaS cloud. Security groups are 

currently implemented on the servers that host the associated VMs. The main limita-

tion of such implementation is: the decision of allowing/denying traffic happens in the 

end—destination hosts, which occupies additional network bandwidth to route those 

traffic to the destination hosts. With the adoption of SDN, one future direction is to 

enforce security groups in SDN switches, as close as possible to the source hosts. 

Although Magneto focuses primarily on reaping benefits of SDN in a hybrid L2 

network, one open question is how it integrates with other network components and 

services in real deployment. Generally, enterprise networks consist of L2 switches, L3 

routers, middleboxes (e.g., firewalls, NATs), DHCP and DNS servers. Link-state routing 

protocols (e.g., OSPF and IS-IS) are widely used in legacy L3 networks. Unfortunately, 

these protocols are also relatively inflexible, since they direct all traffic over shortest 

paths. Integrating Magneto and Fibbing [55] will provide opportunities to joint L3/L2 

routing optimization, VLAN management and traffic engineering. 

In Clairvoyant networks, we introduced a software solution to enable network visi-

bility on-demand and proposed to place those visibility enablers in the edge. Though 

we focused on introducing a new software solution to enable dynamic network visibility, 

one future direction is how to integrate our Clairvoyant framework with legacy moni-

toring solutions such as NetFlow and sFlow in order to make use of different monitoring 

techniques to maximize monitoring coverage and benefits. 

6.2.2 Automating Network Management 

With the rapidly increasing scale, production networks need automated management 

systems. Direct human interaction with network devices should be reduced as much as 

possible for two main reasons: efficiency—manual configurations are much slower than 

automated processes, and correctness—manual configurations are more error-prone than 

a program that can handle different cases. 
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Network researchers have made great efforts on the control plane and data plane, 

but much less study has been done on the management plane. One inevitable future 

direction for network management is: how to automate the network management process 

that consists of design, operation, monitoring, and troubleshooting? 

6.2.3 Building Self-Running Networks 

Beyond automating network management, a more ambitious future direction is to build 

self-running networks. A northbound API is provided to network operators to initially 

declare network designs (e.g., device connections, subnet arrangement) and high-level 

policies (e.g., SLAs, ACLs). Taking the input, the network management system auto-

matically configures network devices, enforces network policies, and monitors network 

states and performance. 

The runtime of a self-running network should be automatically learning and adapt-

ing. It translates the pre-defined high-level policies into specific control and monitoring 

tasks, and deploys these tasks correctly and efficiently. Using data analytic techniques, 

a self-running network learns about network states and performance. It then feeds the 

learned information into the control operations. As a result, network control bene-

fits from being integrated with network monitoring and measurements, and adapts its 

control decision to achieve better network and application performance. 

6.3 Concluding Remarks 

In summary, this thesis studies the management of enterprise and data center networks 

towards better manageability and security. We proposed systems that are capable of: 

i) helping operators and users understand and refine security policy configurations; 

ii) enhancing routing flexibility to increase network utilization and efficiency; and iii) 

enabling on-demand network visibility for better network control. 
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