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Abstract—With the Internet applications become more com-
plex and diverse, simple network traffc matrix estimation or 
approximation methods such as gravity model are no longer 
adequate. In this paper, we advocate a novel approach of ap-
proximating traffc matrices with multiple low-rank matrices. We 
build the theory behind the MULTI-LOW-RANK approximation 
and discuss the conditions under which it is better than Low-
Rank SVD in terms of both matrix approximation and preserving 
the local (and global) structure of the traffc matrices. Further, 
we develop an effective technique based on spectral clustering of 
column/row feature vectors for decomposing traffc matrices into 
multiple low rank matrices. We perform a series of experiments 
on traffc matrices extracted from a synthetic dataset and two 
real world datasets – one that represents nationwide cellular 
traffc and another taken from a tier-1 ISP. The results thus 
obtained show that; 1) MULTI-LOW-RANK approximation is 
superior for traffc classifcation; 2) it can be used to predict 
complete or missing entries of traffc matrices over time; 3) show 
it’s robustness against noise; and 4) demonstrate that it closely 
follows the optimal solution (i.e., low-rank SVD solution). 

Index Terms—Traffc matrix approximation, Low rank SVD, 
Traffc classifcation. 

I. INTRODUCTION 

The wide proliferation of various kinds of sensors in the 
physical and/or cyber worlds has enabled us to collect a whole 
gamut of (spatial-temporal) data, e.g., voice calls between 
users at various locations in a cellular network, traffc be-
tween different points-of-presence (PoPs) in an ISP (Internet 
service provider) network, human mobility or commuting 
behaviors across different locations in a transport network. 
Traffc matrices such as origin-destination (OD) matrices are 
a natural way to represent many of these datasets arising 
in these application domains. Here, origins and destinations 
may refer to a person, a location or a physical object or 
an abstract entity. And each cell of an OD matrix quantifes 
the relation between a pair of origin and destination using 
certain metrics, e.g., traffc volume, activity counts, that is 
observed during a given time interval. We will be using 
the terms traffc matrices and OD matrices interchangeably. 
With abundance of such data, extracting meaningful patterns 
from OD matrices is an important data analysis task that 
has wide applications, from network traffc engineering to 
urban transportation management, smart city planning, social 
behavior analysis and cyber-physical world security. 

Perhaps the most prominent area where OD matrices have 
been widely studied in the past is Internet traffc analysis, 
where the gravity model – originally proposed in traffc anal-
ysis in transportation networks [1] – and its extensions have 

been developed for PoP-level IP traffc matrix estimation [2], 
[3], [4]. These approaches essentially assume that a (PoP-level) 
OD traffc matrix can be approximated by a low rank matrix, 
and in the case of the standard gravity model, a rank −1 
matrix. Such an assumption may be justifed, if traffc fows on 
different links of the network are roughly independent [5]. The 
goal is to characterize the entire OD matrix for the purpose of 
IP traffc matrix estimation. However, the emergence of large 
cloud-based application service providers such as Google, 
Facebook, Amazon, Netfix, coupled with the dominant role 
of content distribution networks (CDNs) in content delivery, 
has altered the Internet traffc dynamics. It is shown in [6] that 
the simple gravity model is no longer suffcient to capture and 
model the IP traffc matrices in a large ISP network. 

In this paper, we start with a brief discussion on related 
work for traffc matrix approximation based on conventional 
methods such as PCA/SVD and NMF (non-negative matrix 
factorization). All these approaches implicitly assume that 
observed data points come from a latent linear subspace 
with “noises”, and thus can be approximated using a low-
rank matrix. However, as we have observed from many real-
world network traffc matrices such as those from voice 
communications in cellular networks or data communications 
in large ISP backbone networks, this assumption is no longer 
valid. Instead, we postulate that the observed global traffc 
matrix in a network is likely an aggregate of many diverse 
traffc patterns, each of which refects a distinct class of ap-
plication/user communication structures or behaviors, and thus 
can be approximated by a low-rank matrix. In other words, the 
observed data points represent a mixture of several (latent) 
low-dimensional linear sub-manifolds. In such a setting, we 
argue that using the standard SVD/PCA to approximate the 
entire traffc matrix is not adequate; to preserve the local 
structures inherent in the data, it is best to approximate it 
using multiple low-rank matrices, each capturing one latent 
sub-manifold (see Section III). 

Based on the above intuition, we develop a theory behind 
our proposed MULTI-LOW-RANK approximation method and 
discuss the conditions under which its better than a Low-Rank 
SVD in terms of both matrix approximation and preserving 
the local (and global) structure of the traffc matrices (see 
Section IV). In order to identify and extract sub-matrices 
corresponding clusters of data points lying in various linear 
sub-manifolds, we develop an effective technique based on 
spectral clustering of row/column feature vectors: we frst 
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convert the original OD matrix to generate a new (feature) 
similarity graph using Gaussian kernel by treating each row 
(or column) as a feature vector; and we then apply spectral 
clustering to project the feature space into lower dimensional 
manifolds for traffc matrix decomposition and multi-low rank 
matrix approximation (see Section VI). In Sections VII–XI, we 
perform a series of experiments on traffc matrices extracted 
from a synthetic dataset and two real world datasets – one that 
represents nationwide cellular traffc and another taken from a 
tier-1 ISP. The results thus obtained show that MULTI-LOW-
RANK approximation is superior for traffc classifcation. It 
can be used to predict complete or missing entries of traffc 
matrices over time and also it is robust against noise and 
closely follows the optimal solution (via SVD). 

II. BACKGROUND AND RELATED WORK 

One of the earlier attempts in extracting meaningful patterns 
in traffc matrices is made by Lakhina et al [7] where principal 
component analysis (PCA) was employed for approximating 
the low rank matrix by performing either eigenvalue decompo-
sition of co-variance or singular value decomposition (SVD) of 
the data matrix. Since then, many variants of the PCA-based 
approach (e.g., robust PCA for handling noise and outliers) 
and other related techniques such as latent semantic indexing 
(LSI) have been developed for anomaly detection and network 
tomography [8], [9], [10]. The basic premise of PCA (or 
SVD or LSI) is that the data lies in a linear subspace of 
a high dimensional space. This premise is invalidated when 
there are non-linear relations or patterns in the data, although 
such patterns may lie in multiple linear sub-manifolds of low-
dimensional space and have low intrinsic dimensions. For 
such cases, PCA (or SVD) would fail to capture the local 
structure of the data and won’t be able to approximate the low 
rank matrix accurately. Another matrix factorization approach 
is NMF [11] developed to address the interpretability issue 
associated with the low-rank matrix approximations. However, 
NMF also assumes that the entities lie in a lower linear 
subspace of the original high dimensional data space. 

Besides analysis through matrix decomposition, much of 
the previous work in traffc matrix prediction focus on flling 
missing entries in a partially observed matrix under various as-
sumptions such as sparsity or spatio-temporal constraints [12], 
[13], [14]. Most of these problems are solved using the 
techniques obtained from compressive sensing or matrix com-
pletion [15]. However, in our case we are dealing with partially 
observed matrices and are interested in predicting full matrix 
over time in future. This is possible, if the structure of traffc 
matrices remain intact over time in the sense that only few 
local structures of matrix changes at a particular time over 
different time domains. In [16], such a problem is addressed 
by frst constructing partially observed matrix by identifying 
important OD fow links from past data and then converting 
the main problem into popular traffc matrix prediction with 
missing entries. This approach only takes global structure of 
the data into account and does not make an attempt to preserve 
local, but important, structures of the data. 

III. MULTI-LOW-RANK INTRODUCTION AND MOTIVATION 
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Fig. 1: Data consisting of three almost linear sub-manifolds 
M1, M2, M3. 

In this paper, we are interested in approximating a class 
of Internet traffc matrices composed of multiple linear sub-
manifolds as shown in Figure 1. This special structure allows 
us to predict such traffc matrices over time domain based 
on the information available from present day traffc matrices. 
This is possible because, over the time domain, most local 
structures (or clusters) are preserved while few of them change 
in traffc matrices and can be accomplished by approximating 
matrices with multiple low-rank sub-matrices. Through series 
of experiments, we demonstrate and argue that it is more 
appropriate to account for these clusters while approximating 
the traffc matrices. 

Consider a low rank Ab ∈ Rn×m matrix approximation of 
A ∈ Rn×m matrix. Then in general, Ab is obtained through 
minimizing following objective function, where k.kF is the 
Frobenius norm of matrix: 

minimize kA − Ab k2 
F 

Ab (1) 
subject to rank(Ab ) ≤ r, 

The optimal solution of the above function is obtained 
through Low-Rank SVD of A i.e., Ab = Ub Σb Vb T , where Σb ∈ 
Rr×r contains top r singular values and Ub ∈ Rn×r , Vb 

r ∈ 
Rm×r are orthogonal matrices containing the corresponding r 
left and r right singular vectors, respectively. 

SVD provides the best approximation of a matrix under 
rank constraint but does not guarantee preserving the important 
local structure (i.e., clusters) of the data. For example, consider 
a special case of block diagonal matrix A commonly seen 
as origin-destination (OD) matrices in representing Internet 
traffc data. Here, we are interested in a low rank matrix 
approximation while also being able to preserve the useful 
local structure for this block diagonal matrix. ⎡ ⎤ 

A1 0 0 
Let A = ⎣ 0 A2 0 ⎦ = UΣV, where, 

0 0 A3 ⎡ ⎤⎡ ⎤⎡ ⎤ 
U1 0 0 Σ1 0 0 V1 0 0 

UΣV = 0 U2 0 0 Σ2 0 0 V2 0⎣ ⎦⎣ ⎦⎣ ⎦ 

0 0 U3 0 0 Σ2 0 0 V3 
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(a) Structure of a Real Traffc Dataset. 
Depicts total 16 local structures/clusters. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) Structure of the data after Low-Rank SVD 
approximation with error rate = 41.28%. 
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(c) Structure of the data after Multi-Low-
Rank SVD approx. with error rate = 46.66%. 

Fig. 2: Visualization of the local and global structure of a Real Traffc Dataset in R2 using t-SNE. Comparing Figures 2b & 2c 
reveal that MULTI-LOW-RANK SVD approx. (with each sub-matrix rank = 1) preserves the structure of the data much better 
than Low-Rank SVD approx. (having single matrix rank = 16) by sacrifcing a small amount of approximation error rate. 

Let Ab be the Low-Rank SVD approximation of A with 
rank = r and let σr(A1) ≥ σ1(A2), where σj (A) is the top 
jth singular value of A matrix. Then, Ab can be obtained as, ⎡ ⎤⎡ ⎤⎡ ⎤b b bU1 0 0 Σ1 0 0 V1 0 0 b ⎣ ⎦⎣ ⎦⎣ ⎦A = 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

As a result, no information about A2 and A3 clusters are 
extracted from the matrix. Even, if we increase the rank 
r, it is quite possible that a dominant cluster with higher 
singular values can mask the extraction of less dominant but 
important local clusters of the data. To solve this issue, we 
propose MULTI-LOW-RANK approach to preserve the useful 
cluster information in the matrix approximation. Specifcally, 
we consider approximating matrix A via multiple low rank 
sub-matrices {Ab 

s}sC 
=1, where each Ab 

s contains some local 
structure information and C is total number of sub-matrices. 

To motivate further, consider a Real Traffc Dataset (see 

b b b2 2 2k − k k − k k − kA S A S A S+= 1 1 2 2 F 

the following proposition: statewe 

FF 

Rank SVD, particularly for approximation purposes only. First, 

h i h b i
A1 S1Proposition 1. Let A = be a matrix and Sb = 
A2 bS2 

be the approximation of A under the rank constraint (rank ≤ 
r) on sub-matrices Sb 

1, Sb 
2. Then, the optimal approximation is h iA1given by Sb = 

b 
, where Ab 

1, Ab 
2 are rank ≤ r matricesbA2 

obtained via Low-Rank SVD. 

Proof. Formally, the problem can be stated as: 
minimize ||A − Sb||2 

F 
S1,S2
b b (2) 

subject to rank(Sb1) ≤ r, rank(Sb2) ≤ r 

The proof is based on the following simple observation, 

| {z } | {z } (3) 
f1(S1) f2(Sb2 ) 

Since f1(Sb1), f2(Sb2) and corresponding constraint variables 
are independent, equation 2 can be written as:dataset description and defnition of approximate error rate 

min bS1 

b 2|| − ||A S1 1 F + min bS2 

b 2|| − ||A S2 2 Fin Section VIII). We apply the state-of-art visualization tech-
(4)nique, t-SNE [17] in conjunction with spectral clustering to 

s.t. rank(Sb1) ≤ r, rank(Sb2) ≤ rreveal the local and global structure of the data in R2 plane 
as shown in Figure 2a. Note that, we found a total 16 local 
structures/clusters in the data. Then, we proceed to apply t-
SNE on the approximation data obtained through Low-Rank 
SVD and our proposed MULTI-LOW-RANK SVD approxima-
tion method. For MULTI-LOW-RANK SVD approximation, 
we set rank = 1 for each sub-matrix/cluster. To make a 
fair comparison with Low-Rank SVD, we approximate the 

Thus, the optimal solution is straight forwardly obtained via 
SVD of A1, A2 as shown from equation 1. 
Remarks. Proposition 1 shows that under the rank constraint 
on sub-matrices of a matrix, Low-Rank SVD still provides 
the best approximation when performed on the corresponding 
sub-matrices. The above results is valid for only Frobenius 
norm case and not necessarily holds for spectral norm. 

(single) data matrix with rank = 16. This results in obtaining 
Figures 2b & 2c which clearly show that Multi-Low-Rank 
SVD is able to preserve the overall structure of the data much 
better than Low-Rank SVD without much compromising the 
quality of approximation (only ∼ 5.38% of accuracy is lost). 

IV. MULTI-LOW-RANK APPROXIMATION THEORY 

Next, we derive the condition under which approximating 
matrix with multiple low-rank sub-matrices is better than 
approximating with single/global rank for overall matrix. 

Theorem 1. Let An×m be a matrix of the given form" #� � b bA1 A2 A1 A2bA = , S = 
A3 A4 Ab 

3 Ab 
4 

In this section, we provide some theoretical results to help and As are sub-matrices. Let Â be the Low-Rank SVD of 
to justify the approach taken in this paper and the condition A with rank r ≤ min(n, m). Similarly, let S contain sub-
under which MULTI-LOW-RANK SVD is superior than Low- matrices Ab 

s of rank rs ≤ min(ns,ms). 



Then kA − Sbk2 ≤ kA − Ab k2 holds, if it satisfes theF F� 4 rs Pr � 
condition sj − j ≥ 0, where σj is the top jth

P P 
σ2 σ2 

s=1 j=1 j=1 

singular value of A and σsj is the top jth singular value of 
As matrix. 

Proof : Low-Rank SVD matrix approximation error for rank r 
is given by (here qs = min(ns,ms)). 

qX 
kA − Ab k2 

F = σj 
2 

j=r+1 

kA − Sbk2 = kA1 − Ab 
1k2 

F + · · · + kA4 − Ab 
4k2 (5)F F 

4 qsX X 
σ2 = sj 

s=1 j=rs+1 

Further, we can rewrite A in terms of sub-matrices as, 

trace(AT A) = trace(AT 
1 A1) + ... + trace(AT 

4 A4) 
q 4 qsX XX (6)

σ2 σ2 = j sj 
j=1 s=1 j=1 

Here, we used the fact that eigenvalues of AT A are square 
of singular values of A and trace(AT A) corresponds to the 
sum of eigenvalues of a matrix. Finally, using Eq. (6) & (5), 

4 rs rXX X 
kA − Ab kF 

2 − kA − SbkF 
2 = σsj 

2 − σj 
2 (7) 

s=1 j=1 j=1 

Then it follows, kA − Ab k2 ≥ kA − Sbk2 if we have F F ,� 4 rs r �P P P 
σ2 σ2 
sj − j ≥ 0. 

s=1 j=1 j=1 

Remarks. Above result hold for a more general case of block 
matrices and proof can be derived in a similar manner as 
shown above. The above theorem states that in order to 
approximate the low rank matrix better than the Low-Rank 
SVD matrix of rank r, the sum of square of singular values 
of Low-Rank sub-matrices must be greater than the sum 
of square of singular values of Low-Rank SVD matrix of 
rank r. The result is intuitive in the sense that we tend to 
seek the top dominant directions in the data measured by 
singular values and higher values of these (singular values) 
under the constraint of preserving local structure suggest better 
approximation of the data. 

Corollary 1.1. Let An×m be a matrix of the given form and 
let Sb contains sub-matrices As of rank r. ⎡ ⎤ ⎡ ⎤bA1 A1 ⎢ . ⎥ ⎢ . ⎥bA = ⎣ . ⎦ , S = ⎣ . ⎦. . 

Ac bAc 

c r r�P P P � 
Sk2 Ak2 σ2 σ2 

s=1 j=1 j=1 

where σj is the top jth singular value of A and σsj is the top 
jth 

Then kA−b 
F ≤ kA− b 

F , if sj − s ≥ 0, 

singular value of As matrix. 

Proof. Directly follows from Theorem 1. 

Remarks. Here, the sum of (square of) eigenvalues of each 
sub-matrices would contribute towards the quality of matrix 
approximation. Therefore, identifying dominant (local) princi-
pal components will result in reduced matrix approximation 
error along with capturing the local structure of the data. 

Corollary 1.2. Let An×n be a block diagonal matrix of the 
given form and let Sb contain sub-matrices As of rank r. ⎡ 

A1 . . . 0 
⎤ ⎡ bA1 . . . 0 

⎤ ⎢
A = ⎣ . . . 

⎥ ⎢b⎦ , S = ⎣ . . . 
⎥⎦ 

0 . . . Ac 0 . . . bAc 

Then, kA − Sbk2 ≤ kA − Ab kF 
2 , is always satisfes. F 

Proof. For block diagonal matrix, it is easy to see that σj 

are top r singular values of the following set {σsj : σsj ∈ 
σ(As), ∀s}, where σ(As) are singular values of As, and from �Pc Pr Pr � 
there, it directly follows σ2 σ2 ≥ 0.sj − j 

s=1 j=1 j=1 

Remarks. Thus, if the data has a block diagonal form structure, 
it is always better to approximate matrix through MULTI-
LOW-RANK method which will guarantee to provide lower 
approximation error than Low-Rank SVD. Moreover, it also 
helps to preserve both local and global structure of the data. 

A. Computational Complexity 

Time complexity of exact SVD of a An×d matrix is 
bounded by O(min{n2d, nd2}) [18]. As a result, in the case 
of MULTI-LOW-RANK approximation, the complexity will be 

c cP P
2equal to O(min{n d, nsd

2}) where = n and cs ns 
s=1 s=1 

is number of clusters. If n>d, then the time complexity of 
SVD and MULTI-LOW-RANK approximation would be same 
i.e. O(nd2). But for high dimensional data, where n<d, the 
complexity of MULTI-LOW-RANK is less than SVD since 
cP 

2O(n d)<O(n2d).s 
s=1 

V. MULTI-LOW-RANK BASED PROBABILISTIC MATRIX 
FACTORIZATION 

We extend our MULTI-LOW-RANK approach to include 
matrices with missing entries. Since, the objective function 
of SVD under matrix missing entries (where eigenvalue de-
composition is not possible anymore to give optimal so-
lution and need to perform optimization through iterative 
methods) is prone to over-ftting, we a seek more robust 
method, specifcally, probabilistic matrix factorization tech-
nique (PMF) [19]. Let A ∈ Rn×m be a matrix composed of 
multiple {Ac ∈ Rnc×m}C sub-matrices and each of themc=1 
derived from {Dc}C different distributions to represent Cc=1 
clusters in the data. Then, probabilistic matrix factorization 
can be generalized to multi-distributions as follows, 

C nc mYYYh iIcij 
p(A|{Uc, Vc, σc}C 

1 ) = N (Acij |UT
ci 
Vcj , σc 

2) 
c=1 i=1 j=1 

(8) 



∈ Rr×nc ∈ Rr×mwhere, Uc , Vc are latent matrices of 
rank r with Uck , Vck as kth column in the matrix respec-
tively. Also, N (x|µ, σ2) is Gaussian distribution with mean 
µ and variance σ2 . Iij is indicator matrix with entry 0 for 
missing entries in matrix Ac or else 1. Assuming zero-mean 
spherical Gaussian priors on Uc & Vc and deriving the log of 
posterior distribution of Eq. 8 and applying MAP inference, 
results in minimization of following objective function, 

C nc m C ncXXX X X 
E = − UT Vcj ) + λcu kUci k2Icij (Acij ci F 

c=1 i=1 j=1 c=1 i=1 

C mX X 
k2+ λcv kVcj F 

c=1 j=1 

(9) 

σ2 σ2 
c cwhere, λcu = , λcv = and σcu & σcv are priorsσ2 σ2 
cu cv

variance on Uc & Vc respectively. Directly optimizing Eq. (9) 
is NP-hard, since the distribution assignment for each entry 
of A is unknown. But, we can work around this problem 
by frst performing clustering which provides distribution as-
signment for each entry. And secondly, assuming distributions 
are independent which enable us to decouple Eq. (9) intoPC
E = Ec, where each Ec corresponds to PMF of each c=1 
sub-matrix and can be solved independently. Also note that 
Eq. (9) reduces exactly to MULTI-LOW-RANK SVD under 
the condition that all priors variances σcu , σcv →∞. 

VI. DECOMPOSING TRAFFIC MATRICES INTO 
MULTI-LOW-RANK MATRICES 

For decomposing heterogeneous traffc matrices into mul-
tiple sub-matrices with lower ranks, we can adopt two ap-
proaches. a) In many practical applications such as labeled 
traffc classifcation, we can group data points with same 
labels into forming sub-matrices. b) However, in absence of 
such labeled datasets, we can adopt a clustering approach to 
decompose the traffc matrices. Specifcally, we advocate to 
use spectral clustering due to its sound theoretical foundation 
and ability to handle high dimensional as well as non-linearity 
in the data. Other reasons of not directly applying standard 
clustering algorithm such as k-means is due its dependency on 
having clusters to form convex regions which may not be true 
for the data containing multiple linear sub-manifolds. In this 
section, we provide details of applying our version of spec-
tral clustering on traffc matrices which requires constructing 
similarity matrix and graph Laplacian. 
Constructing Similarity Matrix: Computing appropriate 
similarity matrix W of spectral clustering from the data matrix 
X is a crucial step and needs careful consideration. For high 
dimensional data, Gaussian (or heat) kernel W is a suitable 
choice, for which theoretical motivation can be found in [20]. 

kxi−xjk
2 

− 
iWij = e 2σ2 (10) 

Gaussian kernel can be interpreted in many different ways, 
from kernel density estimation (KDE) to representing condi-
tional probability pj|i of picking xj as the neighbor of xi 

data point. As density can be different in different regions, 
choosing σ appropriately in Gaussian kernel is important and 
can greatly affect the mapping of embedded data points in 
low-dimensional space. Instead of setting constant σ for each 
point, we propose to compute σi at each data point xi such 
that the entropy of distribution,X 

− pj|i log pj|i = log k (11) 
j 

is equal to log k, where k is a user defned perplexity parameter 
and can be interpreted as a smooth measure of effective 
number of neighbors. For calculating σi we performed a binary 
search over its value so that gives log k entropy for each data 
point. It turns out that similarity matrix is robust for different 
values of k and typical values lie in the range of 5 − 50. 
Constructing Graph Laplacian: Different version of graph 
Laplacians exist in literature but we adopt a symmetric nor-
malized graph Laplacian (as shown below) proposed by Ng et 
al. [21] as it is less susceptible to bad clustering when different 
clusters are connected with varied degree. 

L = D−1/2WD−1/2 (12) 

where D is the diagonal degree matrix whose elements are 
sum of the rows of similarity matrix. From eigen decompo-
sition of L, d largest eigenvectors are stacked as columns in 
a Y matrix which is renormalized to yield a low-dimensional 
representation of data in Rd space. There are several ways 
to estimate the intrinsic dimension d of the data (e.g., ker-
nel PCA) but graph Laplacian implicitly provides a way to 
estimate d through examining drop in eigenvalues of L. A 
better approach of approximating intrinsic dimension can be 
found in [22]. For our datasets, spectral clustering approach 
was suffcient enough to yield faithful results. After obtaining 
a low dimensional data Y, we apply traditional clustering 
algorithms to obtain clusters. In our paper, we have applied 
DBSCAN for clustering due to its robustness against outliers. 
Finally using cluster labels, we construct sub-matrices and 
approximate them with low rank via SVD. Algorithm 1 shows 
the complete MULTI-LOW-RANK approximation method. 

Algorithm 1 MULTI-LOW-RANK Approximation Algorithm 

1: Input: Traffc Matrix X ∈ RN ×P and k perplexity; 
2: Compute matrix W: 
3: for each 1 ≤ i, j ≤ N do 
4: compute σi for a given k using Eq. (11); 
5: compute Wij using Eq. (10); P 
6: Compute D = j Wij and L = D−1/2WD−1/2; 
7: Compute {v1, v2, .., vd} as d largest eigenvectors of L and 

stack them to form Y ∈ RN ×d matrix; 
8: Normalize Y to have unit length rows; 
9: Apply DBSCAN algorithm to cluster points in Y matrix 

and obtain clusters labels; 
10: Output: Construct {Xc}C sub-matrices using cluster c=1 

labels and approximate them via PMF/SVD. 



VII. APPLICATION OF MULTI-LOW-RANK 
APPROXIMATION IN TRAFFIC CLASSIFICATION 

To demonstrate the importance of preserving local structures 
while approximating the data, we perform traffc classifcation 
on the approximated data obtained via MULTI-LOW-RANK 
SVD and compare the performance with Low-Rank SVD. For 
this purpose, we employed widely used NSL-KDD [23] as a 
benchmark dataset which contains 15 different types of traffc 
(labels). We constructed a partial data matrix X ∈ R1200×2058 

from the subset of data due to memory constraints and perform 
one-hot encoding for each categorical feature. Next, we follow 
the standard procedure of performing 10-fold cross validation 
with LIBSVM [24] library to test the classifcation perfor-
mance. Following methods were considered for comparison: 
1) MULTI-LOW-RANK SVD via traffc labels to approximate 
X with total 15 sub-matrices and setting rank = 1 for each 
of them. 2) MULTI-LOW-RANK SVD via spectral clustering 
to get labels and create sub-matrices. In this case, we obtain 
total 11 such sub-matrices and set rank = 1 to approximate 
each of them. 3) Low-Rank SVD method, and to make fair 
comparison, we set rank = 15 for matrix approximation. 4) 
Full-Rank (without any approximation of the data) method. 

Method Full-
Rank 

Low-Rank 
SVD 

MULTI-LOW-RANK 
SVD via Spectral. 

MULTI-LOW-RANK 
via Label. 

Accuracy 95.28% 90.10% 94.60% 96.58% 

TABLE I: Traffc classifcation accuracy on NSL-KDD Data. 

Table I shows the traffc classifcation accuracy of each 
method. It is clear from the results that MULTI-LOW-RANK 
SVD approximation outperforms the Low-Rank SVD on traffc 
classifcation task. The results conforms with the reasoning of 
preserving local and global structure of the data. Furthermore, 
MULTI-LOW-RANK SVD approximation via traffc labels 
even outperforms the Full-Rank method. It is due to the fact 
that all the local structures are well approximated by only 
few dominant features which boost the performance SVM as 
compare to just using raw features. 

VIII. COMPARISON AND EVALUATION OF MULTI-LOW 
RANK APPROXIMATION ON REAL DATASETS 

Our frst real dataset (RD1) represents a nationwide cellular 
traffc extracted from a call detail record (CDR) dataset. 
This dataset consists millions of (voice and text) call records 
captured by over a 1000 base stations (or towers) spanning an 
entire African nation for over a month. Two features make this 
dataset a good candidate for our traffc matrix analysis: 1) we 
have information about both the origin and destination towers 
associated with every call thereby capturing the amount of 
traffc transmitted or received by towers (or even traffc volume 
between towers), and, 2) the dataset represents an entire nation 
which makes the traffc matrix rich with diverse patterns. For 
this particular dataset, we consider the traffc matrix to be 
in the form of an origin destination matrix, where origins 
and destinations correspond to the cellular towers. The value 

inside the matrix denotes the number of calls made from the 
corresponding origin (or row) to some destination (or column). 
As a result, we obtain a data matrix A ∈ R1214×1214 . 

In order to evaluate the MULTI-LOW-RANK approximation 
method, we use the following relative Frobenius norm differ-
ence metric for calculating matrix approximation error rate: 
kA − Ab k2 /(kAk2 + kAb k2 ) in order to bounded its rangeF F F 
in [0, 1]. We compare our approach with existing algorithms 
specifcally – Bi-clustering, non-negative factorization (NMF) 
and Lo-Rank SVD. Bi-clustering (or Spectral Co-Clustering) 
allows to cluster both rows and columns simultaneously while 
NMF is popular for factorizing with non-negative matrix in 
order to have better interpretation. 
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Fig. 3: (a) Comparing matrix approximation error rate. (b) 
Approximation error rate w.r.t. overall rank. 

Figure 3a shows the matrix approximation error rate for 
different algorithms with respect to the rank. It is important 
to distinguish the meaning of “rank” in the context of dif-
ferent algorithms. For spectral and bi-clustering algorithms, 
rank corresponds to a sub-matrix representing a cluster. In 
our case, we found 16 clusters for this dataset. So here, 
matrix approximation error rate is the sum of approximation 
error of each sub-matrices. While for Low-Rank SVD and 
NMF (non-negative matrix factorization) rank represents the 
single (or global) rank of the full matrix. Figure 3b points 
out the fact Low-Rank SVD or NMF requires higher rank 
to approximate traffc matrix to yield lower approximation 
error. In contrast, it would be better to approximate traffc 
matrix with multiple ranks corresponding to lower error rate 
that tend to preserve local as well global structure of the 
data. However, it is important to point out again that, we 
are no longer approximating matrix A via single specifed 
rank r matrix but rather approximating via 16 small sub-
matrices of rank r (or as rank 16r), so comparison may 
seem misleading. Therefore, we provide Figure 3b to be more 
thorough and discuss its implication later. But the point is that 
approximating a matrix via multiple sub-matrices can be made 
computationally cheaper and also be parallelize to provide 
a faster and better experience. Also, our proposed MULTI-
LOW-RANK via spectral clustering approach outperforms bi-
clustering algorithm in approximating the overall matrix. 

We provide Figure 3b to understand how MULTI-LOW-
RANK is doing with respect to optimal solution and in order to 
make much more fair comparison with Low-Rank SVD. For 
this case, we evaluate the performance of Low-Rank SVD for 
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Fig. 4: Variation of MULTI-LOW-RANK prediction error rate over different time domains on RD1 dataset. 

which we set the (global) rank equal to the sum of rank of 
sub-matrices (sub-matrices are obtained from multi-low-rank 
method) and varies the individual (same) rank of sub-matrices. 
Figures 3b shows that approximating matrix with multiple 
ranks closely follows the optimal solution obtained via SVD 
with single rank (which is equal to the sum of multiple ranks) 
as we increase the rank of each sub-matrices and also tend 
to preserve the local structure information (due to how it is 
design) which is in contrast with Low-Rank SVD. 

IX. MULTI-LOW RANK PREDICTION ON REAL DATASETS 

In this section, we investigate the matrix prediction over 
different time domains by frst evaluating the results over 
different days of a week. Here, we use the following matrix 
prediction error rate: kAi −Ab 

M k2 /(kAik2 
F +kAb 

M k2 ) whereF F 
Ai is the ith day matrix (eg., Tuesday) and predicting this ma-
trix using Monday AM matrix with different ranks. Figure 4a 
shows that the prediction error over a week with respect to 
different ranks on RD1 dataset. We can observe that rank in 
range 10−15 for each cluster is quite suffcient to approximate 
overall matrix for prediction purposes. Prediction error is also 
reasonable ranging around 0.25 which is close to the reference 
matrix. Similarly, this trend is consistent over different time 
periods as shown specifcally for morning time in Figure 4b. 
Infact, the same trend can be observed around the four weeks 
of a month as shown in Figure 4c. The ffth week (or the frst 
week of next month) is closest in approximation to the frst 
week of a previous month suggesting the existence of some 
repetitive pattern happening each month. 

We also compute the per cluster approximation error rate 
using the same metric (prediction error rate) as mentioned 
before on RD1 dataset. Figure 6a shows the error over 
different days. Few set of clusters such as 3, 5, 7 exhibits low 
approximation error for all days suggesting that their behavior 
does not change over time domains and may be the core 
of traffc matrix. While some clusters shows increment in 
approximation error suggesting that they are responsible for 
exhibiting certain pattern on that particular day. For instance, 
clusters 9, 10, 13 on Wednesday have relatively higher approx-
imation error compared to the other days. While on Friday 
most clusters have relatively low approximation error except 

12 which suggests an existence of a unique pattern (may be 
because Friday is the last working day of a week). Similar 
trends are also observed over weeks as shown in Figure 6b. 

To get a deeper understanding how the local structures 
of these multi-low-rank matrices change over time domain, 
we adopt a visualization technique called t-stochastic neigh-
bor embedding algorithm (t-SNE)[17], for projecting these 
data points into low-dimensional space (in R2 space). t-SNE 
projects the data in lower dimensional space by minimizing 
the KL-divergence between the distribution in higher dimen-
sions and lower dimensions. Once we have data points in 2-
dimensions space, we use cluster labels obtained from spectral 
clustering to label each points belonging to different clusters. 
Figure 5 shows the structure of clusters over different days 
for the same time period of the day. Comparing Figure 5a 
representing Monday with Figure 5b representing the next day, 
we can observe that most cluster structures remain intact (e.g,. 
cluster labels 1, 3, 4, 6, ... etc.) over all consider days. Only few 
clusters such as 9, 14 seems to merge into a single cluster, 
thereby, dissolving a certain hidden pattern on Monday and 
giving rise to a new one on Tuesday. Similarly, cluster 12 
seems to split into two parts where one part merges together 
with cluster 10 and other part remains separated. Based on 
Figures 5a & 5b , it is evident that the traffc matrix does not 
change much in the immediate future. Looking further into 
the time domain, specifcally 2 days ahead (i.e. on Thursday), 
again most of cluster (or part of the cluster) structures remain 
intact and are stable. However, parts of some clusters such 
as 2, 13 break down and form new smaller clusters; while 
few other clusters such as 9, 14 seems to merge together to 
form a single new cluster. However, the semantics behind the 
formation of these clusters is beyond the scope of this paper. 

The second real world dataset (RD2) consists of (sampled) 
netfow records collected by a tier-1 ISP at various PoP 
locations in the US and Europe. For every netfow record, 
we have information such as the IP address, port, autonomous 
system number (ASN) for both the source and destination ends 
associated with the fow. To extract a traffc matrix from this 
dataset, we consider only web traffc (i.e. either source port or 
destination port is equal to 80) and construct an ASN to ASN 
matrix, where every cell in the matrix represents the number 
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Fig. 5: Visualizing variation in local (and global) structure of traffc matrices over different time periods using t-SNE in 
conjunction with spectral clustering on RD1 dataset. 
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Dataset / Method LOW-RANK PMF MULTI-LOW-RANK PMF 

RD1 RMSE 1.53 1.49 

RD2 RMSE 2.34 2.11 

TABLE II: Prediction Error on RD1 & RD2 Datasets. 

Table II shows that MULTI-LOW-RANK PMF is slightly 
better than predicting missing entries of a matrix than Low 
Rank PMF. This is due to ability of MULTI-LOW-RANK PMF 
to preserve local structures and also ease of getting better local 
minima in optimization for smaller sub-matrices. 

X. ROBUSTNESS OF MULTI-LOW-RANK APPROXIMATION 

Finally, we evaluate the ability of MULTI-LOW-RANK to 
retrieve low rank matrices from the corrupted data with the 
help of proposed spectral clustering method. For this purpose, 
we generate a synthetic dataset as follows: Let Xi ∈ Rni×di 

be a low rank matrix of rank = ri and corrupted by a Gaussian 
noise N (0, σi) with zero mean and σi variance, then, Xfi = 
Xi + N (0, σi). Let D ∈ Rn×d be a block diagonal matrix 
obtained as D = diag(Xf 

1, ..., Xf 
2), so that each Xf 

i lies in 
separate linear subspaces of high dimensional space. Finally, 
we obtain our noisy data matrix as: De = P1DP2 + N (0, σD) 
where P1, P2 are random permutation matrices and σD is 
Gaussian noise variance added at the fnal stage of the data. 
We normalize each entry of Xi to [0, 1], so that the effects 
of noise variance is observable. Following parameters are set: 
n = 800, d = 400, c = 8, σd = 0.5, r = 160 (Low-Rank 
SVD) and ni = 100, di = 50, ri = 20, σi = 0.5 ∀i. 

Figure 8a shows the MULTI-LOW-RANK decomposition of 
the data where each cluster is obtained through proposed spec-
tral clustering. This approach correctly retrieves all the low 
rank sub-matrices with appropriate rank = 20 set in synthetic 
dataset. While, Figure 8b shows the effects of changing noise 
variance σ = σi in MULTI-LOW-RANK matrix approximation. 
It reveals that MULTI-LOW-RANK matrix approximation error 
rate linearly decline with increasing noise variance upto certain 
level and then vary slowly with σ (here after σ = 2). Low-
Rank SVD also follows the similar trend. But MULTI-LOW-
RANK approximation is much better in resisting noise than 
Low-Rank SVD for any noise level. 

Fig. 6: (a) Relative cluster approx. error rate over days. (b) 
Relative cluster approx. error rate over weeks on RD1 dataset. 

of netfow records. In other words, this matrix represents the 
traffc between different ASNs. 

To show the effcacy of MULTI-LOW-RANK approximation 
on RD2 dataset, we predict the traffc matrices of subsequent 
hour. For instance, we use an ASN-to-ASN traffc matrix from 
8PM to 9PM to predict that for 9PM to 10PM. Similarly, we 
use the ASN-to-ASN matrix capturing traffc between 9PM 
to 10PM to predict the same from 10PM to 11PM, and so 
on. Figure 7 shows the matrix approximation error for all the 
predictions are about 0.18 − 0.20 which is quite acceptable. 
Such a task is especially useful to actively process streaming 
traffc data and predict the subsequent hour’s requirement. 
Such a system could provide valuable insights to ISPs to 
dynamically provision resources according to the changing 
requirements as seen during different times of the day. 

A. Multi-low Rank PMF Prediction on Real Datasets 
In this subsection, we predict the missing entries of matrix 

through MULTI-LOW RANK PMF discussed in Section V 
and compare the performance with Low-Rank PMF on RD1 

and RD2 datasets. In our case, RD1 and RD2 contains total 
1, 473, 796 and 23, 668, 225 records (or entries) respectively. 
For evaluation, we use 90% of records as the training data and 
set aside 10% of records for testing purpose. Following stan-
dard root mean square error (RMSE) is used to measure theq PN1performance on testing data: (ai − bai)2 ∈ [0, ∞),N i=1 
where N is number of records, ai & bai is actual and predicted 
value of the record. For fair comparison, we set number of 
latent features of Low-Rank PMF as the sum of latent features 
of each sub-matrix in MULTI-LOW-RANK PMF. 
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Fig. 7: Prediction error for next-hour matrix on RD2 dataset. 
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XI. CONCLUSION 

In this paper, we have advanced a novel approach of 
approximating traffc matrices with multiple ranks as opposed 
to the popular single/global rank approximation approach. We 
established the theory behind the MULTI-LOW-RANK approx-
imation and identifed the conditions under which multi-low 
rank method is better than Low-Rank SVD in both matrix 
approximation and preserving the local (and global) structure 
of the traffc matrices. We developed an effective approach 
based on spectral clustering for MULTI-LOW-RANK matrix 
decomposition and approximation. Finally, with series of ex-
periments on synthetic and real datasets, we demonstrated that 
the MULTI-LOW-RANK approximation yields better results in 
traffc classifcation than Low-Rank SVD and can be used to 
predict the traffc matrices in the immediate future specially 
in case of streaming traffc data over different time domains 
and also show its robustness against noise. 
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