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If gRU(W) is close to 1, it implies the induced distribution is uniform. In other words, 
nothing is interesting that stand out, hence all the features in W vector have close to 
similar values. On the other hand if gRU(W) is less than some threshold, say β, there 
are high chances of certain distinguishable features. We are interested in the latter case 
as they are signifcantly different from others. In order to cull such signifcant features, 
we use a second parameter α that acts as a “cut-off” threshold to decide if an element 
in W is signifcant. All elements that satisfy the α threshold are removed from W and 

Algorithm 1 Culling Signifcant Features 
1: Input: Sub-matrix mc of size nc × D of cluster c 
2: Parameters: α := α0; β := β0; S c := ∅ 
3: Initialization: S c := ∅; k := 0; 
4: Compute weight vector W; g5: Compute θ := RU(W); 
6: while θ ≤ β do 
7: α = α × 2−k; k + +; 
8: for each wi ∈ W do 
9: if wi ≥ α then 

10: S c := S c ∪ wi; W := W − wi; 
11: Update θ := RŨ(W) 
12: Output: S c 

put in S (i.e. signifcant feature set). We then perform the second iteration with the new 
W vector and make parameter α slightly relaxed. We keep repeating the process till 
the relative uncertainty exceeds β. Once the loop terminates, S contains the signifcant 
feature-set of cluster c. For the complete pseudo-code of our approach, see Algorithm 1. 
β parameter decides the threshold of relative uncertainty. Setting β to lower value 
would cause the signifcant sets to be larger compared to setting it to higher values. 
In general, value of β parameter for our case studies were set between 0.87 and 0.95. 
Initial value of α depends on the initial distribution of W. Based on our experience, a 
good starting point would be to set it to min[W]. Line 7 in Algorithm 1 indicates the 
decreasing factor (or relaxing factor) of α that one may have to tune for subsequent 
iterations. Value of α and the decreasing factor assert a trade-off between faster run 
time versus better results. Figures 10a and 10b illustrate the results of applying our 
algorithm over sub-matrices of cluster 8 and 18, respectively. The portion to the left of 
every vertical blue line indicates the number of features that were part of the signifcant 
set (for intermediate iterations). The red line however indicates the iteration when our 
algorithm terminated. It is also evident from our results that the right portion of red 
line (which were not part of the signifcant set) are close to being uniform with not 
just very low weights but are also nearly indistinguishable. Hence, such features are 
deemed unimportant. 

4 EPIC Framework Evaluation 

Before we apply EPIC framework to real-world geoMobile datasets, we frst briefy 
evaluate and compare the performance of our framework with other existing methods. 
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Since our framework consists of multiple components such as clustering and visualiza-
tion, we compare each of these components individually with state-of-the-art baselines. 
The evaluation is conducted from two perspectives: performance of i) LE+DBSCAN 
clustering performance in comparison with other major clustering algorithms, and 2) 
Lt-SNE visualization algorithm based on local space contraction property. 

4.1 Clustering Performance 

Table 1 shows the performance of clustering on case study 1’s data matrix with respect 
to different algorithms under three clustering evaluation criteria: CalinskiHarabasz, 
Silhouette, DaviesBouldin – ↑ indicates higher values show better performance, simi-
larly ↓ indicates otherwise. LE+DBSCAN’s clustering performance dominates on two 
evaluation criteria and is reasonably good on the other one, showing the efficacy of 
our clustering approach. Similar results are also hold for dataset 2. 

Table 1. Clustering Performance Evaluation on dataset 1 (see § 5.1). 

Algo./Eval. CalinskiHarabasz ↑ Silhouette ↑ DaviesBouldin ↓ 

Kmeans++ 31.4021 0.1494 1.2768 
Agglomerative 39.0319 0.3692 1.0714 
Bi-Clustering 29.6709 0.4036 3.9815 

LE+DBSCAN 274.132 0.7082 0.5998 
DE+DBSCAN 305.5648 0.6899 0.6111 
LLE+DBSCAN 25.4858 0.4413 1.0377 
ISOMAP+DBSCAN 144.9113 0.5642 0.7481 
LTSA+DBSCAN 116.2911 0.6081 0.9301 

4.2 Best Local Space Contraction Property 

Local Space Contraction Property: We provide justifcation for adopting LE ap-
proach in conjunction with t-SNE by analyzing the local space contraction effects 
in the (low dimensional) latent feature space. Building upon the work of [Rifai 
et al(2011)Rifai, Vincent, Muller, Glorot, and Bengio], we defne the contraction 
ratio as the ratio of distance between two points in the input space and the distance 
mapped in the low dimensional feature space. Contraction ratio helps illustrate the 
deformation of the latent feature space in local regions. To measure this isometric 
property, we compute the average distance ratio of a point x randomly generated on a 
sphere of radius r centered at a fxed point x0 in the input space over its corresponding 
distance in the feature space as a function of r. This function yields a curve called the 
contraction curve. 
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a. Contraction curves (WINE). b. Contraction curves (MNIST). 

Fig. 11. Contraction curve of Lt-SNE have highest contraction ratio on two benchmark datasets. 

Best Results: We compute the contraction curves on two benchmark datasets: WINE-
dataset2 and MNIST-dataset3 and compare them (see Figure 11) with other major 
dimension reduction techniques: Deep-Autoencoder (DE), Local Linear Embedding 
(LLE), Local Tangent Space Alignment (LTSA), ISOMAP, Hessian LLE (H-LLE). 
These results also holds for other contraction curves such as Maximum Variance 
Unfolding (MVU), Kernel PCA and Probabilistic PCA which we do not show here. 
The process for generating contraction curves is as follows: x0 is picked at centroid of 
a random cluster (using class label information) in the input space in order to study 
the propagation effects of contraction ratio from the center of a cluster. A random 
point x is generated at distance r on a sphere centered at x0 and is included in the 
dataset. On this appended dataset, we apply dimension reduction techniques. In this 
process, we frst reduce the input dimensions of the data (13 for WINE and 784 for 
MNIST datasets) to its intrinsic dimensions (3 and 12, respectively). Next, we apply 
t-SNE to embed the intrinsic data into a two dimensional space. An alternative and 
less expensive way to compute contraction curves is to implement “out of sample 
extension” methods [Bengio et al(2004)Bengio, Paiement, Vincent et al]. 

Figure 11 shows the contraction curves for major dimension reduction techniques. 
For both the datasets, Lt-SNE produces the highest contraction ratio, yielding low-
dimensional maps with tighter clusters. Further, the strength of contraction gradually 
decreases with radius – until the effect vanishes marking the end of cluster radius 
size. Intuitively, Lt-SNE encourages contraction of neighborhood data points in the 
map since LE places data points on mutually orthogonal axes which, upon further 
applying t-SNE, helps produce tight clusters. Thus, Lt-SNE is capable of creating more 
distinguishable gaps between the clusters and in visualization. The same effect can 
be observed in the case of Deep-Autoencoder (with a depth of four layers), but with 
less contraction strength than Lt-SNE. On the other hand, t-SNE in one-shot reduction 
(i.e. directly reducing from the input dimension to R2) can produce a slightly lower 
contraction ratio than DE. Interestingly, applying LE in conjunction with DE (LE+DE) 
signifcantly boosts up the contraction ratio of DE but still remains lower than the 
Lt-SNE. This further indicates that the amalgam of LE and t-SNE are well suited to 
achieve high contraction ratio. Lastly, LLE produces the smallest ratio, suggesting 
that the resulting mapping contains more loose clusters as compared to others. 

2 https://archive.ics.uci.edu/ml/datasets/Wine 
3 http://yann.lecun.com/exdb/mnist/ 

https://archive.ics.uci.edu/ml/datasets/Wine
http://yann.lecun.com/exdb/mnist/
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Hidden Physics Behind the Dimension Reduction: A close analogy can be made 
between the contraction ratio and the strength of an electric feld around a charged 
point. Just like the electric feld strength propagates inversely proportional to square 
of radius, in the vein the strength of contraction ratio decays non-linearly as an 
inverse function of the radius. However, unlike an electric feld where the strength 
is equal in all directions, in the case of contraction ratio, the strength varies along 
the tangent space directions of the manifold on which the data is embedded non-
linearly. For instance, Figure 9b depicts the contour lines corresponding to the same 
level of contraction ratios in the low dimensional feature space. As expected, the 
shape of contour lines are not necessarily spherical but elongated along the dense 
regions of data points and falls off along the orthogonal direction which corresponds 
to the drop in the density of data points. These contraction curves reveal the internal 
feature transformation made by dimension reduction techniques along with their feld 
strength (i.e., contraction ratio) & range (i.e., radius where contraction ratio becomes 
a constant). Such a comparison intuitively aids in the choice of the best dimension 
reduction technique in accordance with the application domain. 

5 Case Studies 

We primarily focus on analyzing two geoMobile datasets: i) a mobile call detail record 
(CDR) dataset collected from a nation-wide cellular network; and ii) a subway transit 
record dataset from a large city in China. The goal of this section is two-fold: 1) show 
the efficacy and generality of EPIC framework to wheel out interesting latent patterns 
from the datasets under multiple settings, 2) show tactical results and provide their 
interpretations. We share our experience in the form of three case studies. 
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Fig. 12. Results showing 21 clusters (or distinct communication patterns) obtained from Dataset 1 (best 
viewed in color). 

5.1 Case Study 1: Revealing Communication Patterns 

In this case study, we use dataset 1 to extract communication patterns (driven by 
user actions such as making a voice call) between different origin and destination 
towers. Earlier in § 2, we observed a locality effect prevailing in communication 
patterns between towers in this dataset, suggesting people tend to call others more 
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often who are geographically closer to them. In this case study, we try to fnd such 
communication patterns, and to do so, start by representing this geoMobile dataset 
in the so-called form of origin-destination (or data) matrix. Mobile voice (and SMS) 
calls between users data in the cellular network as captured at cell tower levels are 
represented as OD matrices where origins are the cell towers calls originating from, 
destinations are cell towers these calls terminating at, and the entries in the OD matrix 
represent the number of calls between an origin-destination pair during some fxed 
time interval (in our case, average hourly calls). We formulate our problem using an 
input OD matrix of size N × D, where the set of origins (or rows) and destinations (or 
columns) correspond to the set of unique towers, i.e. N = D. Each cell value xi j in the 
square-OD matrix correspond to the average number of hourly calls made from the 
origin tower i to the destination tower j. Cell value xi j will represent the number of 
local calls for tower i when i = j. In this data matrix, origins act as data points where as 
the destination towers act as the feature vector. Therefore, our clustering approach will 
group origin towers based on their call patters driven by human actions. In other words, 
two origin towers will be in the same cluster if both their outgoing call distributions to 
destinations towers are similar. It is important to note that the input data matrix has no 
information about the geographic coordinates or distances between towers. Results 
obtained by applying EPIC on this data matrix are shown in Figure 12a. There are a 
total of 21 well-separated clusters, representing 21 distinct communication patterns 
in the dataset. Using GPS coordinates, in Figure 12b we overlay the cellular-towers 
from these 21 clusters over a geographic map of the nation. Except for cluster 21, 
all other clusters represent regional communication patterns of varying localities and 
sizes. Since these communication patterns are driven by human behavior, these distinct 
patterns capture social interactions in this African nation. We look more closely at the 
regional patterns in the capital city of the nation (see Figure 12c) as it comprises of 
over 300 out of the 900 towers of the nation. It is interesting to observe that the city 
itself is divided into fve distinct communication “zones” driven by user interaction 
(in this case, call or message) and behavior: cluster 2 which is the largest in the city, 
cluster 8, cluster 17, cluster 18 and cluster 19. Finally, the towers in cluster 21 
are sparsely distributed across the nation, most of which have relatively low overall 
call volumes and many are located along major transportation networks. This suggests 
that cluster 21 represents call activities of users in transit across the nation. Although 
this approach is clustering origin towers, the same observations would hold true from 
the destination towers’ perspective – this is because we observed that our OD data 
matrix is approximately symmetric. 

In the context of this case study, each signifcant set of a cluster captures a particular 
kind of human behavior. In other words, each cluster’s signifcant set are a set of 
features (or destination towers) that were most critical to that cluster’s formation. 
Using the algorithm discussed earlier in § 3.3, we cull the signifcant sets for each of 
the 21 clusters, and visualize them in Figure 13 using a Venn diagram. Each circle 
(labeled using cluster number) in the Venn diagram represents a signifcant set of 
the corresponding cluster; size of the circle indicates the size of its signifcant set. 
Two circles intersect if their signifcant sets share common features (or destination 
towers). Metrics such as “jaccard similarity” can be used to quantify the similarity 
of human behavior among two intersecting signifcant sets. From Figure 13 and by 
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Labels indicate cluster numbers
Circle size proportional to set size

Fig. 13. Venn diagram of cluster-specifc signifcant sets 

further investigating the geographical features of the capital city, we fnd that cluster 2 
(the mainland part of the capital city) not only has the largest signifcant set, but also 
intersects with a diverse set of other clusters. This suggests that the capital city is likely 
a hodgepodge of residents and a mobile population that originally come from other 
parts of the nation who still maintain strong social, commercial or other interactions 
with the rest of the nation. A similar (but to a less degree) pattern holds for cluster 1 
which represents towers in a second-tier city in the nation. We see strongest similarities 
in communication patterns between clusters 18 and 19, as well as between clusters 2 
and 8, refecting their highly localized and close-knit communication patterns. Despite 
its towers distributed across the nation, cluster 21 intersects mostly with clusters 2, 
8 and 17 representing towers in either the capital city or its suburbs, implying its 
communication pattern is due to users from the capital city and its vicinities travel 
across the nation. 

5.2 Case Study 2: Temporal Communication Patterns 

In this case study, we use the same dataset as in the previous case study to investigate 
if different hours of the day across the week have any similarity in their call patterns. 
For instance, do calling behaviors differ between morning and evening hours? How 
about weekends? Obtaining such insights would assist cellular operators to profle 
different hours (and days) based on user demands and usage to deploy, manage energy 
requirement and provide other personalized and value-added services. 

Fig. 14. Temporal similarities in communication patterns (Dataset 1) 
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To extract such latent patterns, we treat every data point to represent a day of 
the week and an hour. Therefore, we have 168 data points xi for i = 1, 2, .., 168 (7 
days of a week × 24 hours in a day). Every data point is represented by a N-feature 
vector f j for j = 1, 2, .., N, where N is the number of towers. Each feature in the 
vector represents a tower and the value represents the non-local calls recorded by that 
tower, aggregated for the entire data set. In other words, given a data point xd=MON,h=08 
(i.e. day=Monday and hour=08:00 to 09:00 hours), each feature of the data point 
xd=MON,h=08 would represent the average number of non-local calls recorded by that 
tower every Monday from 08:00 to 09:00 hours over a period of around 3 months. We 
now represent our data points and feature vectors as a data matrix X of size 168 × N 
such that rows represent the data points and columns represent the N towers. Figure 14 
shows the results by applying EPIC framework over X. In the R2 map (see Figure 14a), 
we clearly see two well-separated regions, one that captures data points representing 
usual sleeping hours (22:00 to 06:00) while the other represents non-sleeping hours. 
Looking more closely at the non-sleeping region, we observe some interesting patterns. 
The right half of this region seems to capture data points representing working hours, 
whereas the left half captures hours when people are at home. A complete list of the 
intuitively inferred “latent” patterns are listed in Figure 14b. We also see some outliers 
(anomalies) in the results indicating certain hours in the week have unique patterns. 
Although we considered hourly intervals for illustrating temporal communication 
similarities, one could also opt for intervals with smaller/higher temporal granularity. 
Intuitively, the extracted patterns suggest that the underlying reasoning behind the 
formation of clusters are related to human behavior, community interactions, social 
features, geographic features, etc. All in all, we show that EPIC framework is able to 
fnd some very interesting patterns in this case study. 

5.3 Case Study 3: Temporal Variations in Human Mobility 

In the third case study, we use Shenzhen Subway System’s dataset (dataset 2) to gain 
insights about temporal variations in human mobility. As discussed earlier, we prepro-
cessed the data to extract trip information. We also categorized users (as regular/adhoc) 
and their trips (as morning/evening/midday). 

In order to investigate “if” and “how” EPIC is able to extract temporal variations 
in human mobility, we apply our framework to multiple data matrices, where each 
data matrix represents a particular time of the day (morning/evening/midday). We 
aggregated our processed dataset to obtain the number of trips between every pair of 
origin-destination subway station. We then build an OD matrix of size N × D, such 
that every cell in the matrix represents the number of trips from the origin subway 
station to some destination subway station. As there are 118 unique subway stations 
in Shenzhen Metro, we have a matrix of size 118 × 118, i.e. N = D = 118. Labeling 
the records and users enable us to generate a number of OD matrices. For example, 
an OD matrix could represent trips made by regular users during morning hours. 
Note, rather than just looking at similarities between individual origin-destination 
pairs, our approach groups together origin data points based on the similarity in the 
distribution of the number of trips with all other destinations. Shenzhen Metro has 5 
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In construction
for 2020 plan

Fig. 15. Shenzhen Metro Subway Station and Line Map 

subway lines (see Figure 15). If we assume that each subway line is independent of 
each other without the possibility for commuters to transfer from one line to another; 
applying our framework to such a dataset should ideally extract at least 5 clusters, 
where each cluster represents a particular subway line. This is because all possible 
pairs of origin-destination stations (representing a trip) are limited by the set of stations 
that are part of a particular subway line, owing to our assumption that people cannot 
transfer to other subway lines. Therefore, the probability of a commuter entering 
subway line A and exiting at subway line B is 0. Likewise, if the user enters and 
exits on subway stations that are part of the same subway line A, it is very likely that 
the probability of such trips will be greater than 0. However this assumption does 
not hold true for Shenzhen metro, as there are multiple subway stations that act as 
transfer points between different subway lines. But it is fair to assume that in the 
interest of reducing travel times, transit operators would design the subway lines so as 
to minimize transfers. 
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Fig. 16. Output for four OD matrices (obtained from Dataset 2) categorized using temporal 
(morning/evening/mid-day) and user (regular/adhoc) labels. Numbers besides data points represent cluster 
dentifers. Gray data points indicate outliers. 

We construct four different OD matrices – Ma, Mb, Mc, and Md. For instance, OD 
matrix Ma is built using trip information of regular users observed during the morning 
rush hours (construction details of other OD matrices is depicted in Table 2). 

Figure 16 shows the results rendered by our framework in low-dimensional space, 
which are then further overlaid over Shenzhen’s geographic map (see Figure 17). The 
frst clear pattern we see is that certain clusters correspond to a particular subway line. 



23 Mining Latent Patterns in geoMobile Data via EPIC 

a. Ma: Regular user; b. Mb: Regular user; c. Mc: Regular users; d. Md: Adhoc users; 
Morning; Evening; Mid-day; Mid-day; 

Fig. 17. Results from Figure 16 mapped over Shenzhen’s geographic map (obtained from Dataset 2). 
OD Ma OD Mb OD Mc OD Md 

User label 
Time interval 
# of clusters 
# of outliers 

Regular Regular Regular Adhoc 
Morning Evening Mid-day Mid-day 

6 5 4 8 
2 5 5 3 

Pattern 1 
Pattern 2 
Pattern 3 
Pattern 4 
Pattern 5 
Pattern 6 
Pattern 7 
Pattern 8 
Pattern 9 

X X X 
X X X X 
X X X 
X X X X 
X X 
X X 

X X X 
X 
X 

Table 2. Comparison of Results 

For example, all the red-colored clusters represent Subway Line 4 suggesting users 
traveling on this line have more localized traveling patterns who reach their destination 
with minimal transfers. Since this line also did not break into multiple clusters, it 
suggests that the trip volume distribution between any two subway stations are close to 
similar. A similar observation is observed with the dark blue clusters, which represents 
Subway Line 5. Therefore, by quick visual inspection of Figures 16 and 17, we are 
able to fnd probable patterns, which we list in Table 2. We consider a “pattern” to 
be a set of clusters, one from every OD-matrix if present. For example, we refer to 
one of our earlier observation regarding red clusters as “Pattern 4”. Table 2 shows 
Pattern 4 is observed in all the OD matrices Ma, Mb, Mc, and Md. From our earlier 
discussion regarding trip volumes, we observed large number of morning rush hour 
trips for regular users originate from suburban areas and end near Shenzhen’s central 
(or downtown) region. Pattern 1 represents such trips for regular commuters (i.e. home 
→ workplace trip). We also observe that the compactness of pattern 1 (green clusters) 
in Ma and Mb clearly differ. Note, this pattern represents majority of the trips during 
morning and evening rush hours. One plausible reason for this diversity in compactness 
could be that during the morning hours, all the trips end near the downtown area. On 
the other hand, evening trips appear to be dispersed. This could be due to the fact that 
while people travel back home, majority of the trips start from the downtown area but 
end at different regions around Shenzhen. Hence, we see an increased degree of spatial 
dispersity in the low-dimensional map for Mb in Figure 16b. Patterns seen during 
mid-day hours and evening hours for regular users seem to be almost the same. Even 
though the trip volumes during mid-day hours are signifcantly lesser than the rush 
hours, our approach is able to obtain the clusters. The interesting part in OD matrices 
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Mb and Mc is that the green cluster contains many subway stations from multiple 
Subway Lines L1, L2 and L5. This indicates all those subway stations have a higher 
degree of similarity in the travel patterns, thus suggesting dependency among each 
other. A possible side effect of such dependencies is increase in line transfers between 
subway lines. This may be the reason why one of the future plans of Shenzhen metro is 
to establish a new track connecting Lines L1 with L5 (see Figure 15) [Metro(2015)]. 
For OD Md representing adhoc users, we obtained relatively more number of clusters 
compared to regular users, where certain subway lines are partitioned. One probable 
reason could be that adhoc users (i.e. visitors, tourists, etc.) tend to take shorter trips 
within the central region of the city. 

EPIC framework yields very interesting results for all the three case studies. 
Visualizing clusters in a low-dimensional (R2) map and further relating raw features 
to the cluster’s formation adds different perspectives to interpret the clusters. 

6 Conclusion 

In this paper, we used the term geoMobile datasets to emphasize data that exhibit 
geo-spatial and human-behavioral features. To effectively handle high dimensional 
and skewed feature distributions inherent in geoMobile data, we developed EPIC 
framework to extract latent structures by combining and improving upon existing 
non-linear kernel clustering methods. We also uncover a theoretical reason for t-SNE’s 
success and enhance it further to develop a visualization technique called Lt-SNE. 
In conjunction, we provide justifcations on the effectiveness of our approach by 
studying & comparing contraction curves with other major dimension reductions 
techniques. Further, we developed a novel method to characterize the clusters based on 
raw features to aid in natural interpretation of the latent patterns. The tactical results 
obtained from our geoMobile datasets are very interesting. In this regards, our work 
yields an important tool in aiding data scientists to analyze diverse geoMobile datasets 
and uncover useful actionable knowledge embedded in them. 
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8 APPENDIX 

8.1 Proof of Proposition 1 

Proof: KDE is a non-parametric way to estimate probability density function; it lever-
ages the chosen kernel in the input space for smooth estimation. Given sub-manifold 
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density estimates p(yi) for data points yi ∈ Rd ∀i, we want to fnd a representation 
zi ∈ Rp ∀i, p < d, such that the new density estimates q(zi) agrees with the original 
density estimates. Here KH , KL denote the kernel in higher, lower dimensions, h is 
the kernel bandwidth and N is the number of data points. KDE’s in higher and lower 
dimensions (assuming bandwidth h remains the same) are given by: 

N ! N !X X1 1 ||(y − y j||d 1 1 ||z − z j||p
p(y) = KH , q(z) = KLN hd h N hp h

j=1 j=1 R 
such that K(u)du = 1. The objective function of KL divergence loss for KDE can be 
computed as follows: 

NX p(yi)L = min KL(p||q) = min p(yi) log 
z z q(zi)i=1 

N PX1 P j KH(yi, y j) 
= min KH(yi, y j) log P + c1 

z Nhd j j KL(zi, z j)i=1 

Using log-sum inequality, we can show that, 
N NXX1 KH(yi, y j)

≤ min KH(yi, y j) log +c1Nhd z KL(zi, z j)i=1 j=1| {z } 
J 

≤ c2 × J + c1 

J is the objective function of t-SNE (with specifc kernels) which upper bounds 
(with a multiplicative scale and an additive constant) the estimated kernel density 
estimation loss function. 

8.2 Proof of Proposition 2 

Schiebinger et.al. [Schiebinger et al(2015)Schiebinger, Wainwright, Yu et al] studied 
normalized Laplacian embedding for i.i.d. samples generated from a fnite mixture 
of nonparametric distribution. When the distribution overlap is small and samples 
are large, then with high probability they showed that the embedded samples forms a 
orthogonal cone data structure (OCS). Figure 18 shows that (1 − α) fraction of two 
clusters are accumulated in a cone form of θ angle around e1 and e2 orthogonal axis. 

Theorem 8.1 (Finite-sample angular structure) There are numbers b, b0, b1, b2, δ, t 
satisfying certain conditions such that the embedded data set {φ(Xi), Zi}

n has (α, θ) −i=1 
OCS with p

b0 ϕn(δ) b1
|cosθ| ≤ p , α ≤ ϕn(δ) + ψ(2t) (11)

3w ϕn(δ) wmin1.5 
mint − b0 

b2nδ4
and holds with probability at least 1 − 8K2 exp( ). 

δ2+S max(P)+B(P) 
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Fig. 18. Visualizing (α, θ)-OCS [Schiebinger et al(2015)Schiebinger, Wainwright, Yu et al]. 

Proof of Proposition 2: Our strategy is to exploit the OCS structure of the input data. 
Let X ∈ RN×D be the normalized data with unit norm, corresponding to pi j, qi j as 
higher, lower dimensional kernel densities and Z1, Z2 as normalization constant re-
spectively. Let X

0

∈ RN×d , d < D, be the normalized data obtained after LE dimension 
πreduction and have similar corresponding variables pi j 

0 
, qi j 

0 
, Z1 

0 
, Z2 

0 
. Let β ∈ (0, 2 ) and 

0 0 0 
β are angles between input feature vectors < xi, x j > and < xi , x j > respectively. Con-
stant are denoted by c1, c1 

0 
, c2, c3, a1, a2 ≥ 0. Also σ and σ 

0 
are the kernel bandwidth 

of the estimated kernel densities in the X and X0 input data respectively. Let ith cluster 
has Ni samples out of K clusters. For our analysis, we will focus on this ith cluster. 

Since t-SNE preserves kernel density in lower dimensions, we will have pi j = qi j 

and p 
0 
= qi j 

0 
. Some t-SNE related expressions that we will use for the proof are asi j 

follows, � �
kxi−x jk

2 

exp − 2σ2 (1 + kyi − y jk
2)−1 

pi j = P � � ; qi j = P 
k,l exp − kxk−xlk

2 
k,l(1 + kyk − ylk

2)−1 
2σ2 X � � Xkxk − xlk

2 
Z1 = exp − 

2σ2 ; Z2 = (1 + kyk − ylk
2)−1 

k,l k,l 

Similar expressions can be obtained for p 
0 

i j, q 
0 

i j, Z1 
0 

and Z2 
0 
. From these equations, 

we can show that, 

(1 − cos β) � 1 � 1 
= log − 2 � �P

σ2 pi j −
kxk−xlk

2 (12)
i log exp 2σ2 

k,l;k,l,i, j � 1 � 1 
kyi − y jk

2 = − 2 P − 1 
qi j (1 + kyk − ylk

2)−1 (13) 
k,l;k,l,i, j 

Let, c1 = 
P 

(1 + kyk − ylk
2)−1. Now according to Theorem 7.1, β0 is bounded 

k,l;k,l,i, j 

in ( π − 2θ, π 
2 + 2θ) with high probability, if (i, j) belongs to different class labels. In 2 
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general for small θ, we can assume that the different clusters form a separation angle 
(with respect to origin) such that π − 2θ > β i.e β 

0

≥ β for all pairs of (i, j). Then2 
according to Eq. 12, pi j ≥ pi j 

0 
and therefore qi j ≥ qi j 

0 
, if (i, j) belongs to different class 

labels. Eq. 13 further yields, 
0 0 0 

c1(1 + kyi − y jk
2) + 2 qi j pi j log = log = log ≥ 0 

c1(1 + kyi − y jk
2) + 2 q 0 p 0 i j i j 

This shows that Lt-SNE always provide better mapping than t-SNE for c1 
0

≤ c1 which 
is generally the case. For small θ, we expect pkl > p 

0 0 
) for (k, l) belonging kl (⇒ qkl > qkl 

to different class and pkl ≈ p 
0 0 

) for (k, l) belonging to the same class.kl (⇒ qkl ≈ qkl 
This leads to c 

0

≤ c1 since qkl ∝ (1 + kyk − ylk
2)−1. Next, we establish an lower bound1 

on this mapping ratio using this expression, 

0 0 0 
0c1(1 + kyi − y jk

2) + 2 1 − cos β Z
0 

cos β − 1
log = + log 1 

+ (14) 
c1(1 + kyi − y jk

2) + 2 σ
02 Z1 σ2 

For fxed β, ( cos β−1 
− log Z1) term is constant. Now normalization constant Z

0 
is

σ2 1 
the sum of kernel densities between samples within cluster itself and across other 
clusters. From Theorem 7.1, we know that (1 − α) fraction of a cluster belongs to 

πa orthogonal cone structure with θ ∈ (0, 4 ) angle with high probability. Ignoring α 
samples (which add positive values to Z

0 
), we can provide a lower bound on Z

0 
with1 1 

the same probability bound as given in Theorem 7.1 for θ, α. 

KX 
− (1−cos 2θ) X 

− (1+sin 2θ) 
σ
02 σ

02Z1 
0

≥ (1 − α)2NK(Nk − 1)e + (1 − α)2NkNle 
k=1 k,l| {z } | {z } 

sum of densities within clusters sum of densities across clusters �XK X √ 
0 (1 − α)2 

− 2 cos( π −2θ) 
� 

4 
(1−cos 2θ) 

e σ
02 k=1 k,l 

Z1 ≥ NK(Nk − 1) + (1 − α)2NkNle 

πFinally, we can plug Z1 
0 

in Eq. 14 and putting β 
0 
= 2 − θ for getting lower bound, 

we obtain our fnal expressions. 

�XK X √cos β − 1 2�−c2 = − log Z1 + log NK(Nk − 1) + (1 − α)2NkNle 
σ2 

k=1 k,l 

0 0 0 √ 
c (1 + kyi − y jk

2) + 2 2 sin( π − 2θ)4log 1 
≥ + 2 log(1 − α) + c2 c1(1 + kyi − y jk

2) + 2 σ2 
0 

=⇒ ky 
0 

i − y 
0 

jk
2 ≥ a1kyi − y jk

2 + a2 
√ 

02 sin( π −2θ) c3+c3c1−c −1Here, c3 = exp( 4 + 2 log(1 − α) + c2) ≥ 1, a2 = 1 ≥ 0 and0
σ2 
0 c1 c3c1 0a1 = ≥ 1, if c1 ≥ c which is the case for small θ. This completes the full proof.0 c1
1 
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