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Abstract We coin the term geoMobile data to emphasize datasets that exhibit geo-
spatial features refective of human behaviors. We propose and develop an EPIC 
framework to mine latent patterns from geoMobile data and provide meaningful 
interpretations: we frst ‘E’xtract latent features from high dimensional geoMobile 
datasets via Laplacian Eigenmaps and perform clustering in this latent feature space; 
we then use a state-of-the-art visualization technique to ‘P’roject these latent features 
into 2D space; and fnally we obtain meaningful ‘I’nterpretations by ‘C’ulling cluster-
specifc signifcant feature-set. We illustrate that the local space contraction property 
of our approach is most superior than other major dimension reduction techniques. 
Using diverse real-world geoMobile datasets, we show the efficacy of our framework 
via three case studies. 

Keywords geoMobile · data mining · latent patterns · epic · regional patterns · feature 
distributions 

1 Introduction 

The wide proliferation of various kinds of (physical or virtual) sensors in the physical 
and/or cyber worlds has enabled us to collect a whole gamut of (spatial-temporal) 
data, e.g., voice calls between users at various locations in a cellular network, human 
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commuting behaviors across different locations in a transport network such as buses, 
subways, taxicabs or car sharing services, check-ins and social interactions among 
users at diverse locations in a location-based online social network such as Foursquare. 
We use the term geoMobile to refer to such datasets collected from these networks, as 
they are characterized with two salient features: they are associated with geo-locations 
(e.g., gathered at cell towers or tagged with location information), and more often they 
capture user actions on-the-move. 

With abundance of diverse geoMobile datasets, mining them is an important 
activity that has wide applications, from cellular network traffic engineering to urban 
transportation management, smart city planning, social behavior analysis and cyber-
physical world security. For example, one can ask questions such as: can geo-locations 
and user actions (e.g., making phone calls) at these locations capture and refect 
certain underlying community structures? In other words, can one classify regions into 
various communities based on their associated human-actions at certain geo-locations? 
More broadly, how user mobility and behavior are associated with geo-locations? 
Unfortunately, gleaning meaningful and actionable knowledge from geoMobile data 
are non-trivial. We list several reasons why mining geoMobile datasets is a challenging 
task. First, there is huge heterogeneity in (user) activities associated with different 
geo-locations, which leads to very skewed data distributions. This is partly due to 
the fact that there are often very disparate factors driving user mobility and behavior 
at various geo-locations; geoMobile data is thus likely to more closely mirror user 
relations and interactions in the real “physical” world (than mere the “cyber” world). 
Second, depending upon the spatial and temporal resolutions, geoMobile datasets 
are often high-dimensional. Underlying patterns, if present, may either be a linear 
or a non-linear combination of a varying subset of features. Therefore, judicious 
feature engineering is paramount. However, without prior knowledge of the problem 
domain coupled with high pattern diversity in geoMobile datasets, feature selection or 
extraction from high-dimensional data becomes difficult. Third, even once we have 
appropriate representative (or latent) features and can obtain clusters, it is hard to 
make sense out of the clusters without the aid of a visualization technique. Lastly, 
the factors which cause the formation of (latent) clusters in the feature space are not 
always easily understood. It is important to relate and map a cluster back to its “raw” 
feature set (rather than the latent feature set) that are critical to its formation. Such 
information can help to naturally interpret the results. 

We combine some of the popular algorithms with state-of-the-art machine learning 
tools to develop a framework to extract, visualize and interpret latent patterns arising 
from geoMobile datasets. We address the challenges discussed earlier and summarize 
our central contributions as follows: 

1) Instead of directly working on observed features, we take into account the 
feature distribution of every data point and derive a new (symmetric) similarity matrix. 
This amounts to transforming the data points into a high-dimensional feature space. 
We apply the Laplacian Eigenmap (LE) method to extract latent features and “clusters” 
data points lying in certain lower-dimensional (non-linear) sub-manifolds (see § 3.1). 

2) We show that a state of the art visualization technique t-SNE [van der Maaten 
and Hinton(2008)] is a density preserving algorithm. This provides a theoretical 
justifcation for its success in practice. To get insights about the structure of geoMobile 
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data and visualize clusters in the feature space, we further project latent features 
into a 2-dimensional space using Lt-SNE – a proposed approach that uses t-SNE in 
conjunction with LE which is an improvement over standard t-SNE (see § 3.2). To show 
the effectiveness of Lt-SNE, we provide justifcation by studying and comparing its 
local space contraction property with other prominent dimension reduction techniques 
(see § 4.2). 

3) Taking cue from information theory, we supplement our framework by de-
signing an algorithm to further cull a set of raw (i.e., observable) features that are 
most signifcant in contributing to the cluster’s formation (see § 3.3) so as to obtain 
meaningful interpretations of extracted latent patterns. 

4) We evaluate our framework based on the performance of its individual com-
ponents specifcally clustering and visualization component (see § 4) and show its 
empirical superiority over other state-of-art baselines. 

5) Finally to demonstrate the efficacy and generality of our proposed framework in 
real world, we share our experience of analyzing geoMobile datasets under multiple 
settings using several case studies (see § 5). We employ two real-world geoMobile 
datasets: i) a mobile call detail record (CDR) dataset consisting of more than 500 
million voice calls and SMS messages between users collected at cell-tower levels 
spanning a couple of months from a nation-wide cellular service provider in Africa, 
and ii) a subway transit dataset collected over a week from Shenzhen, China with 
more than 2.7 million passengers. Despite very different nature of these two datasets, 
the results look promising. 

1.1 Related Work 

In literature, there exist multiple methods to extract latent patterns from geoMobile-
based datasets. One of the classical approach is principal component analysis (PCA). 
PCA-based methods have been successfully applied to traffic matrix estimation, net-
work tomography and anomaly detection [Wang et al(2012)Wang, Hu, Xu et al,Zhang 
et al(2005)Zhang, Ge, Greenberg, and Roughan,Lakhina et al(2004)Lakhina, Crovella, 
and Diot] using origin-destination (OD) matrices derived from Internet traffic. As dis-
cussed earlier, user actions and behavior are often driven by disparate factors leading to 
high diversity and skewed data distributions in geoMobile datasets rendering classical 
linear methods such as PCA and latent semantic indexing (LSI) ineffective. [Hristova 
et al(2016)Hristova, Williams, Musolesi et al] further provides a detailed analysis 
of measuring social diversities from mobility datasets and reveals the large diverse 
nature of such datasets. Another matrix factorization approach is non-negative matrix 
factorization NMF (e.g., [Zhang et al(2014)Zhang, Huang, Li et al]) developed to 
address the interpretability issue associated with the low-rank matrix approximations. 
A fundamental premise of NMF is that the entities lies in lower linear subspaces of the 
original higher-dimensional matrix which may not hold for geoMobile datasets. [Fan 
et al(2014)Fan, Song, and Shibasaki, Zhang et al(2013)Zhang, Wilkie, Zheng, and 
Xie] adopt tensor factorization, the generalization of NMF, to study city basic life 
pattern and analyze urban transportation. 



4 Arvind Narayanan* et al. 

Many other methods such as hidden Markov models (HMMs) and Gaussian 
mixtures models (GMMs) have also been developed to analyze and predict urban 
dynamics [Witayangkurn et al(2013)Witayangkurn, Horanont, Sekimoto et al, Ihler 
and Smyth(2006), Baratchi et al(2014)Baratchi, Meratnia, Havinga et al]. Unfortu-
nately, inference in HMMs and GMMs suffer severe performance degradation in the 
high-dimensional setting due to overftting and constraints (e.g. covariance matrices 
should have simple structure, say diagonal). These models have large number of free 
parameters that lead EM algorithm to converge to poor clustering results [Krishna-
murthy(2011), Städler and Mukherjee(2013)]. 

Latent Dirichlet Allocation (LDA) models are also employed for extracting la-
tent patterns for tasks such as identifying regions of different functions in urban 
areas and urban topic analysis [Yuan et al(2012)Yuan, Zheng, and Xie, Kling and 
Pozdnoukhov(2012)]. In general, LDA models have the capability to handle high 
dimensional data, however choice of hyper-parameters is not apparent [Wallach 
et al(2009)Wallach, Mimno, and McCallum] and relies upon approximate inference 
algorithms such as Gibbs sampling for efficiency. 

Deep learning frameworks such as discussed in [Lv et al(2015)Lv, Duan, Kang, 
Li, and Wang, Alsheikh et al(2016)Alsheikh, Niyato, Lin, p. Tan, and Han] have also 
been developed to extract latent features and can be seen as a complement to our work. 
But we go beyond to include visualization and interpretation as an important step 
for aiding and justifying the data analysis part and provide theoretical and empirical 
evaluations with respect to other popular techniques. 

2 geoMobile Datasets & its Characteristics 

In this paper, we primarily focus on two geoMobile datasets representing different 
application domains; 1) a mobile call detail record (CDR) dataset collected from a 
nationwide cellular network; and 2) a subway transit record dataset from a large city 
in China. We provide the description of the datasets and show the diversity in patterns 
inherent in them. Note, the nature and user population of both datasets are completely 
different from each other. 

2.1 Dataset 1: Mobile Call Detail Records 

Dataset 1 is a call detail record (CDR) dataset that comes from a national cellular 
service provider of a developing African nation. Every record of this dataset contains 
information such as <timestamp, source base station, destination base 
station> associated with a voice call or a SMS message (both of which we will 
refer to as calls in this paper). The dataset spans over a couple of months. This dataset 
consists of over 1,000 towers (or base stations) covering the entire country, with over 
500 million call records. 

We refer to a cellular base station as a tower. When Bob (caller), connected to 
tower A, makes a call to Alice (callee) who is connected to tower B, tower A is the 
origin tower, whereas tower B is the destination tower. In other words, this call will 
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be considered as an outgoing call for tower A, and an incoming call for tower B. 
However, if both Alice and Bob are connected to the same tower C, i.e., both the origin 
and destination towers are the same, then we refer to such a call as a “local1” call. 
Geographic coordinates of all the towers are known a priori. 
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Fig. 1. Distribution of ALL, IN, OUT, and SELF calls, 
with a fxed order of towers (x-axis) ranked by the 
ALL calls (i.e. total number of calls). 
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Fig. 2. IN, OUT, and SELF call ratio distributions 
with a fxed order of towers (x-axis) ranked by the 
ALL calls (same as in Figure 1). 

Terminologies: We use call direction to defne four aggregated metrics associated with 
every tower i, 1) SELF calls: the total number of local calls for tower i, 2) IN calls: the 
total number of incoming calls received by tower i excluding SELF calls, 3) OUT calls: the 
total number of outgoing calls made by tower i excluding SELF calls, and, 4) ALL calls: the 
total number of calls seen at tower i (IN + OUT + SELF). 
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Fig. 3. Plot similar to Figure 2, only difference being, the x-axis is now ranked by SELF over ALL ratio. 

Dataset Characteristics: In Figure 1, we fx the rank of the towers based on the 
average number of ALL calls seen per hour, and plot their distributions based on the 
total volume (ALL calls) as well as the call directions, IN, OUT, and SELF calls. We 
see that the distributions are highly skewed, with call volumes varying signifcantly 
among towers. Some cell towers experience signifcantlly more calls (either ALL, IN, 

1 Although calls involving two neighboring towers semantically qualify to be local, our reference of 
a call being local is solely from the tower’s perspective where both the caller and callee of a call are 
associated with the same tower. 
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OUT or SELF calls) than others. Due to their larger population size, we would expect 
that as a whole, towers in urban cities would have higher call volume than the towers 
located in rural areas. While the capital city of this nation captures more than 25% of 
the entire call volume, we observe that the towers with the highest ALL calls are not 
just from the capital city but also from some of the tier-2 cities of the nation. Moreover, 
we also observe certain towers in the city do not have high ALL call volumes at all. 
For each individual cell tower (especially those with high call volumes), we also see 
that there are high variances in terms of calls to or from other cell towers; there are no 
discernible patterns across cell towers, suggesting there is high diversity among cell 
towers. 

We now investigate the proportions of SELF, IN and OUT calls over ALL calls at 
the towers. In Figure 2, we fx the rank of towers the same as in Figure 1 and plot 
the distributions of call proportions – SELF over ALL (% of local calls), IN over ALL 
(% of incoming calls), and OUT over ALL (% of outgoing calls). We observe that in 
general SELF over ALL call ratios dominate compared to IN over ALL and OUT over 
ALL call ratios, implying people tend to make more SELF calls than IN or OUT calls. 
However, Figures 1 and 2 show no clear linear relationship between call volume 
distributions and call proportion distributions. To further investigate, we fx the rank 
of the towers based on SELF over ALL call ratio (decreasing order), and plot all the 
call ratio distributions (see Figure 3). We observe there is still high variance in the call 
proportions. For example, the SELF over ALL call proportions vary between 30% to 
55%. This implies certain towers tend to make more SELF calls than others. 
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Fig. 4. Relation between (geo-distance) and (call-distance) of towers. 

Diversity in Locality Effects: For every tower i in this dataset, we fnd its N geograph-
ically closest (or neighboring) set of towers Gi and compute tower i’s geo-distance.P
defned as: gdi = dist(i, j) |Gi|, where dist(i, j) is the geographic distance in j∈Gi 

kilometers (KM) between towers i and j. Similarly, we identify another N set of towers 
Ci with whom tower i communicates the most (or makes the most numbers of calls to)..P
We then compute tower i’s call-distance defned as: cdi = dist(i, j) |Ci|, where j∈Ci 

dist(i, j) has the same semantics as before. To compute geographic distance between 
towers using their geographic coordinates (which is known a priori), we use the Haver-
sine formula [Robusto(1957)]. In this paper, value of k is set to be 5. We compute both 
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gd and cd for all the towers, and show the results in Figure 4. We can clearly see that 
overall there is slight correlation between both gd and cd values of towers. In other 
words, majority of the localities (or towers) tend to make more calls to towers that are 
geographically closer to them, there by exhibiting certain “locality” effect. However, 
as seen in the plot, there is high diversity in such locality effects. While this maybe a 
side effect to choosing N=5, our objective was to show the diversity in these relations. 
All in all, this gives us an intuition of the existence of certain communities of people 
(i.e. collection of towers) that tend to talk with each other more than others. However, 
as evident from the plot, geographic distances between such towers vary signifcantly. 
Later, we describe an approach (see § 3) to identify such communities and show the 
results obtained in the form of a case study (see § 5.1). 
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Fig. 5. Results of PCA from Dataset 1 

All of these observations suggest that there are strong dependency relations be-
tween call volumes at tower levels, human activities of either “local” and “mobile” 
users around these towers. However, these relations are highly varied and non-linear, 
as evidenced by the eigenvalue plot of a call-volume based origin-destination (OD) 
matrix derived from the CDR dataset shown in Figure 5. We see that eigenvalues de-
crease slowly, requiring more than 100 eigenvalues to account for 90% of the variance 
in the OD matrix. This indicates that PCA is ill-suited for extracting patterns inherent 
in the OD matrix. 

2.2 Dataset 2: Subway Transit Data 

Our second dataset represents commute patterns in a subway transit system in Shen-
zhen, China. The dataset contains information such as – (timestamp, smart card 
ID, direction (entry/exit), station ID), collected for an entire week in March 
2014. More than 2.7 million users traveled over this period. Shenzhen Metro has 5 
subway lines (see Figure 15) comprising a total of 118 stations. 
Data Preprocessing & Categorization: We frst construct trips by using the direction 
feld of the record – ENTRY indicates a user entering the station while EXIT indicates 
leaving. We match an ENTRY record with an EXIT record for the same user if both the 
records satisfy the following three conditions, 1) both records should have occurred 
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on the same day, 2) ENTRY timestamp is earlier than EXIT timestamp, 3) if there are 
multiple EXIT records, then we consider the one with the earliest timestamp. Matching 
user-specifc ENTRY with EXIT records helped construct trip information. Next, we 
categorize users as regular or adhoc. A user is labeled as a regular user if they satisfy 
the following two conditions: 1) seen on all the working days of the week (Mon. to 
Fri.), 2) take at least 2 trips per day. We consider regular users to be of the working 
class population who use the subway system for their everyday commute between 
home and work. Finally, we consider users to be as adhoc if they are seen for not more 
than a day or if they just had a single trip for the entire week. We assume that the 
adhoc users are either visitors or users who take random trips. All remaining users 
were excluded from our study. More than 10% of the users were categorized as regular 
and ∼80% as adhoc users. For gaining insights into temporal patterns, we create three 
intervals of 2 hours representing different periods of the day: 1) Morning: 7-9am, 
2) Mid-day: 11am-12pm, 3) Evening: 3-5pm. We label records that fell in these 
intervals and excluded the rest from our analysis. 

Fig. 6. Effect of time-of-day over travel patterns. Bubble size is proportional to the volume of users entering 
(or exiting) a station. 

Dataset Characteristics: There is high diversity in the traveling patterns across 
stations; the distributions of number of passengers boarding and alighting from subway 
trains at each station are also skewed. We use the subway transit dataset to illustrate 
the temporal variations and latent patterns therein. Figure 6 is a bubble map showing 
volume of regular users entering and leaving the subway stations at different time 
intervals of the day. For example, during the morning rush hours, we see a large number 
of commuters entering at certain stations and exit in and around downtown area. This 
suggests, such stations with higher volume of entries correspond to residential areas, 
i.e. people board the train to go for work. An opposite pattern is seen during the evening 
rush hours. Volume of traffic during mid-day hours is drastically low compared to 
the rush hours. However, there are certain subway stations that have relatively higher 
volume of users entering and leaving. Thus, we observe diversity in the trip patterns 
seen over time between subway stations. 

In summary, we observe both datasets contain highly diverse and skewed data 
distributions, rendering classical linear dimension reduction or clustering techniques 
ineffective. As characteristics differ depending upon what dataset is being analyzed, it 
is nontrivial to come up with a formal defnition for diversity. Nonetheless, we assume 
there are latent factors driving human mobility and user behavior across various geo-
locations and over time, as suggested by certain “locality” and “time-of-day” effects. 
For instance, peak usage hours of public transit systems depend on the general working 
hours associated to that region. In a similar vein, humans are more likely to interact 
with others (e.g. by making a voice call) who reside within their local community. 
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Extracting meaningful (latent) patterns from such geoMobile datasets requires us
to go beyond classical linear methods to effectively account for the inherent high
variability and diversity (thus strong non-linearity). In the next section we present
such an approach.

3 EPIC Framework

geoMobile datasets (e.g. human mobility data) are rich in both spatial and temporal
aspects. The underlying structures of such datasets are complex but can be understood
better via deriving sets of latent features from observable features such as traffic vol-
ume density, peak traffic hours etc. However, it is quite likely that these sets of latent
features give rise to low-dimensional sub-manifolds forming various kinds of clusters
in the data. This results in having each cluster formed by few latent factors which
are a (nonlinear) function of the observable features. Based on this intuition, we are
interested in an approach that find clusters while accounting for possible latent features
in the data. For this purpose, we consider Laplacian Eigenmaps (LE) [Belkin and
Niyogi(2003)] – a theoretically sound non-linear dimension reduction technique and
provide justification about its suitability in our case. As mentioned earlier, standard
clustering techniques such as K-means and linear dimension reduction techniques such
as PCA or NMF are not appropriate, due to the curse of high dimensions and strong
non-linearity, respectively in geoMobile data. Although, other non-linear dimension
reduction techniques like Deep Autoencoders, Hessian Locally Linear Embedding,
Local Tangent Space Alignment or Kernel PCA can also be employed but we show
(theoretically as well empirically) that LE in conjunction with t-SNE technique pro-
duces superior visualization maps over these dimension reduction techniques based on
interesting local space contraction properties in latent feature space. Figure 7 depicts a
schematic overview of our framework.

LE

DBSCAN

t-SNE

Mapper

R2

Clustering Visualization

Data
Matrix

D � d � 2; N ! num. of data points; D ! num. of features (or dimensions)

Significant Feature-Set Extraction Algorithm

significant
features

Cluster-specific

Lt-SNE

Fig. 7. Overview of EPIC Framework

3.1 Extracting Latent Features from geoMobile Datasets

We propose a simple but effective enhancement of LE. This enhancement comes
from carefully accounting for skewed data density distribution while computing the
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similarity matrix. LE extracts the latent features associated with each data point 
x ∈ RD , where D is a feature dimension, by performing eigenvalue decomposition 
of graph Laplacian L. We execute the following carefully devised algorithm, so that 
standard clustering algorithms can be applied on the newly obtained features which 
are then free from curse of dimensionality and data density skewness. 
Handling the Skewness: The most crucial component for computing L is similarity 
matrix W. Since the set of features are large, we take the exponential of euclidean 
distance in feature space to counteract the curse of dimensionality. More precisely, we 
adopt the following form of Gaussian kernel: 

Wi j = exp (−kxi − x jk
2/2σ2 

i ) (1) 

which is suitable under this condition, though more theoretical motivation can be 
found in [Belkin and Niyogi(2003)]. Wi j can also be seen as a conditional probability 
p j|i of picking data point x j as the neighbor of xi. 

In particular, σ is kept same of each data point but we stress on computing specifc 
σi at each data point xi to handle the skewness in the data density. We choose σi based 
on our belief that the entropy of density distribution p(xi, σi) given as, X 

p(xi, σi) = − p j|i log p j|i (2) 
j 

remains constant at each data point and equal to log k. Here k is a user defned 
parameter which physically represents a smooth measure of effective number of 
neighbors. We fnally perform a binary search over the value of σi which gives log k 
entropy for each data point. Turns out that the similarity matrix is robust for different 
values of k and its typical value lies in the range of 5 − 50. 
Justifcation: We adopt LE for two main reasons. First, it can handle non-linearity 
in the data as shown in [Belkin and Niyogi(2003)] and ensures that the new reduced 
latent features obtained are similar if their respective feature distributions are also 
similar. This can be confrmed by looking at the LE objective function given as: XX 

min 
1 

Wi jkyi − y jk
2 (3) 

y 2 
i j 

subjected to scaling constraints, where yi ∈ Rd(d << D) is a new latent feature vector 
for xi data point. Secondly, it helps in producing superior visualization maps (see § 3.2, 
§ 4.2). LE enforces two similar data points xi and x j to have similar latent features 
according to the weight Wi j which itself depends upon the original feature distribution. 
For computing L, we adopt a symmetric normalized graph Laplacian proposed in [Ng 
et al(2002)Ng, Jordan, and Weiss]: 

L = D−1/2WD−1/2 (4) 

as it is less susceptible to bad clustering when different clusters are connected with 
varied degree. where D is the diagonal degree matrix whose elements are the sum of 
rows of the similarity matrix. From eigen decomposition of L, d largest eigenvectors 
are stacked as columns in a Y matrix which is renormalized to yield latent features 
of points projected on a hypersphere in Rd . Graph Laplacian implicitly provides a 
way to estimate d by examining drop in eigenvalues of L but more approaches can be 
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also found in [Manor and Perona(2005)]. For our datasets LE approach was sufficient 
enough to yield faithful results. We observed there is an eigenvalue drop (see Figure 8) 
with 15 components pointing to the existence of 15 intrinsic dimensions in OD matrix 
which earlier PCA could not estimate correctly (see Figure 5). We choose DBSCAN 
clustering algorithm to be applied on obtained latent features due to its robustness 
against outliers. Next, we present our powerful Lt-SNE visualization algorithm. 

Fig. 8. Laplacian Eigenvalue Decomposition 

3.2 Lt-SNE Visualization Algorithm 

Density Preserving Maps: According to Gauss Theorema Egregium [Pressley(2010)], 
manifolds with intrinsic curvature cannot be mapped to the R2 plane (as it has zero 
Gaussian curvature) without distorting distances. However, no such obstruction exists 
for density preserving maps (see Moser Theorem [Ozakin et al(2011)Ozakin, II, and 
Gray]). Hence, we seek a method that preserves (probability) density maps rather than 
distances below intrinsic dimensions for visualization purpose. 
Success of t-SNE: t-SNE [van der Maaten and Hinton(2008)] is a state-of-art tech-
nique for visualizing clusters inherent in the data by mapping latent features to R2 (or 
R3) space. But its theoretical justifcation remains somewhat a mystery. Here, we prove 
that the objective function of t-SNE upper bounds the loss function in kernel density 
estimation (KDE) (see Proposition 1). This makes t-SNE a density preserving mapping 
algorithm which provides a theoretical justifcation for its success as compared to 
other dimension reduction techniques which tend to preserve (geodesic) distances. 

Proposition 1 t-SNE is a density preserving algorithm which upper bounds the esti-
mated kernel density loss function. 

Proof: KDE is a non-parametric way to estimate probability density function; it lever-
ages the chosen kernel in the input space for smooth estimation. Given sub-manifold 
density estimates p(yi) for data points yi ∈ Rd ∀i, we want to fnd a representation 
zi ∈ Rp ∀i such that the new density estimates q(zi) agree with the original density 
estimates. Here KH , and KL denote the kernel in higher and lower dimension respec-
tively, where h is the kernel bandwidth, y ∈ Rd , z ∈ Rp, p < d, and N is the number 
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of data points. KDE in higher and lower dimensions (assuming bandwidth remains 
the same) are given by: 

N !X1 1 ||(y − y j||d 
p(y) = KHN hd h

j=1 
(5)

NX1 1 ||z − z j||p 
! Z 

q(z) = KL , s.t. K(u)du = 1
N hp h

j=1 

The KL divergence loss for KDE can be computed as follows: 
NX p(yi)L = min KL(p||q) = min p(yi) log 

z z q(zi)i=1 

N PX1 P j KH(yi, y j) 
= min jKH(yi, y j) log P + c1 

z Nhd 
j KL(zi, z j)i=1 (6)

N NXX1 KH(yi, y j)
≤ min KH(yi, y j) log +c1Nhd z KL(zi, z j)i=1 j=1| {z } 

J 

≤ c2 × J + c1 

J is the objective function of t-SNE (with specifc kernels) which upper bounds (with 
a multiplicative scale and an additive constant) the estimated kernel density estimation 
loss function. 

a. Using t-SNE b. Lt-SNE (also shows contraction ratio contour lines) 

Fig. 9. Lower dimension mapping results on WINE dataset. 

Superiority of Lt-SNE: Instead of directly applying t-SNE on raw features, we feed 
latent features obtained via LE to t-SNE. This results in more superior maps (see 
Proposition 2, Figure 9 and Section § 4.2 for justifcation) and called as “Lt-SNE". In 
Lt-SNE, we employ the same kernel functions as in t-SNE, i.e. normalized gaussian 
kernel in higher dimensions and heavy tailed kernel (a student t-distribution with one 
degree of freedom) in lower dimensions as follows. 
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exp 
� 
−

kyi−y jk
2 � 

2σ2 
iKH(yi, y j) = pi j = P � � and 

−
kyk−ylk

2 

k,l exp 2σ2 
k (7) 

(1 + kzi − z jk
2)−1 

KL(zi, z j) = qi j = P 
k,l(1 + kzk − zlk

2)−1 

such that KH(yi, y j) and KL(zi, z j) sum to 1. Hence, Lt-SNE has the same fnal objective 
function as t-SNE which matches the expressions given in Eq. (6): 

NX pi j J = min pi j log (8) 
z qi j i, j=1 

The above optimization problem is non-convex, but the gradient descent method 
yields reasonable results. Although it is possible to directly apply t-SNE on the original 
data matrix, we demonstrate that Lt-SNE produces much better visualization maps in 
R2 than t-SNE, theoretically in case of fnite mixture of nonparametric distributions 
(Proposition 2) and empirically in comparison with other major dimension reduction 
techniques (see § 4.2). 

Proposition 2 Assume that the data points are i.i.d. samples generated from a fnite 
mixture of nonparametric distributions. Let (i, j) be any pair of data points belonging 
to different distribution. Then the mapping of Lt-SNE yields a larger separation 
distance as compare to t-SNE in the lower dimensions (with high probability) i.e., 

kyi 
0

− y 
0 

jk
2 ≥ a1kyi − y jk

2 + a2, 

where yi 
0 
, y 0 j and yi, y j are lower dimension feature vectors of Lt-SNE and t-SNE 

respectively. a1, a2 are positive constants. 

Proof: The proof relies on the "Finite-Sample Angular Structure" theorem [Schiebinger 
et al(2015)Schiebinger, Wainwright, Yu et al] shown for kernelized spectral clustering. 
The above proposition shows that if a1 ≥ 1, which is generally the case, different 
clusters in Lt-SNE are mapped farther to each other as compared to t-SNE with high 
probability. 

3.3 Culling Cluster-Specifc Signifcant Feature-Set 

To help characterize and interpret the relations among different clusters, we defne the 
term signifcant feature-set of a cluster as a set of observable features that are most 
critical to the cluster’s formation (as opposed to latent features based on which inter-
pretation is difficult). We take cue from information theory and device an algorithm to 
ft in the framework of our analysis to cull cluster-specifc signifcant feature-sets for 
meaningful interpretations. 

After applying our extraction and projection steps, suppose we have obtained C 
clusters from some data matrix, say M, of size N × D. Note that every cell in the data 
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matrix M represents the relation between the data point and the observed feature. We 
slice the data matrix M horizontally into cluster-specifc sub-matrices {mc}c∈C , where 
rows represent only those data points that are part of cluster c, and columns represent 
the feature set D. We therefore obtain |C| sub-matrices, where every sub-matrix {mc}

is of size nc × D, where nc is the number of data points in cluster c ∈ C. Our goal is 
to inspect each of the sub-matrix mc individually, and cull a subset of features S c (or 
signifcant set) from the entire observable feature set D, such that the features selected 
are most critical to cluster c’s existence. We now explain our approach to cull this 
cluster-specifc signifcant feature set. For easier readability of equations, we refer 
sub-matrix mc as m and its associated notations nc, S c as n, S , respectively. N remains 
unchanged. From some cluster-specifc sub-matrix m, we frst build a weight vector W 
defned by: ( )�X .XX � 

W = xi = mi j mkl ∀ j, k, l (9) 
j k l i∈D 

Every ith element in W is an aggregated value that quantifes interactions between the 
ith observed feature and all the data points belonging to cluster c. Using W vector, we 
check if any of its values stand out and are signifcantly different from others. An easy 
way to verify this would be to sort vector W, say in decreasing order, and observe the 
fall in the distribution. 
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a. Cluster 8 b. Cluster 18 

Fig. 10. Step-by-step illustration of culling signifcant feature-set from Clusters 8 & 18 (also discussed in 
case study 1 § 5.1 - Dataset 1). |Cluster set x|: number of data points in cluster x; |S x |: number of features in 
signifcant set of cluster x; 

Black curves in Figures 10a and 10b show the values of weight vectors W for 
clusters 8 and 18, respectively. These clusters were obtained as part of a case study 
discussed later in § 5.1. We observe that cluster 8’s slope drops relatively slower 
than that of cluster 18. In other words, data points of cluster 8 collectively state that 
more number of features are vital to its formation than cluster 18. In order to account 
and quantify these differences, we introduce a notion of relative uncertainty gRU(W) 
defned as H̃(W)/log |W|, where H̃(W) is the “entropy-like” measure used to quantify 
the unpredictability of the values in vector W. |W| is the support (or size) of the 
vector W or the number of observed features. The degree of uniformity (or relative 
uncertainty) of W is given by: P 

− wi log wiH̃(W) iRU(W) = = (10)g 
log |W| log |W| 
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