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Abstract 

For the purpose of learning on graphs, we hunt for a graph feature representation 
that exhibit certain uniqueness, stability and sparsity properties while also being 
amenable to fast computation. This leads to the discovery of family of graph 
spectral distances (denoted as FGSD) and their based graph feature representations, 
which we prove to possess most of these desired properties. To both evaluate 
the quality of graph features produced by FGSD and demonstrate their utility, we 
apply them to the graph classifcation problem. Through extensive experiments, we 
show that a simple SVM based classifcation algorithm, driven with our powerful 
FGSD based graph features, signifcantly outperforms all the more sophisticated 
state-of-art algorithms on the unlabeled node datasets in terms of both accuracy 
and speed; it also yields very competitive results on the labeled datasets – despite 
the fact it does not utilize any node label information. 

1 Introduction 
In the past decade, there has been tremendous interests in learning on collection of graphs for 
various purposes, in particular for solving graph classifcation problem. Several applications of graph 
classifcation can be found in the domain of bioinformatics, or chemoinformatics, or social networks. 
A fundamental question inherent in graph classifcation is determining whether two graph structures 
are identical, i.e., the graph isomorphism problem, which was not known to belong either P or NP 
until recently. In the seminal paper [2], Babai shows that the graph isomorphism can be solved in 
quasipolynomial time; while of enormous theoretical signfcance, the implication of this result in 
developing practical algorithms is still unclear. Fortunately, in graph classifcation problems one 
is more interested in whether two graphs have “similar” (as opposed to identical) structures. This 
allows for potentially much faster (yet not fully explored) algorithms to be successfully applied to the 
graph classifcation while also accounting for graph isomorphism. One approach to get around both 
these intimately tied problems together is to learn an explicit graph representation that is invariant 
under graph isomorphism1 but also useful for extracting graph features. 

More specifcally, given a graph G, we are interested in learning a graph representation (or spectrum), 
R : G → (g1, g2, ..., gr), that captures certain inherent “atomic” (unique) sub-structures of the graph 
and is invariant under graph isomorphism (i.e., two isomorphic graphs yield the same representation). 
Subsequently, we want to learn a feature function F : R → (f1, f2, ..., fd) from R such that the 
graph features {fi}di=1 can be employed for solving the graph classifcation problem. However, in 
machine learning, not much attention has been given towards learning R and most of the previous 
studies have focused on designing graph kernels and thus bypasses computing any explicit graph 
representation. The series of papers (19, 20, 22) by Kondor et al. are some of the frst (and few) that 
are concerned with constructing explicit graph features – using a group theoretic approach – that are 
invariant to graph isomorphism and can be successfully applied to the graph classifcation problem. 

1That is, invariant under permutation of graph vertex labels. 
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Figure 1: Graph Generation Model: Graph 
spectrum is assumed to be encoded in pairwise 
node distances which are generated from some 
distribution. Nodes connect together to form 

Pairs of graph nodes 
are generated from an 
unknown distribution 

Nodes connect together 
to form a graph such that 
the pairwise distances are 

preserved 

a graph in such a way that pairwise node dis-
tances are preserved (eg. ( – ) node-pair with 
distance 0.75 is preserved even though they are 
not directly connected). 

Inspired by such an approach, we also explicitly deal with learning a graph representation R and 
show how to derive graph features F from R. 

Our approach is quite novel and builds upon the following assumption: Graph atomic structure (or 
spectrum) is encoded in the multiset2 of all node pairwise distances. Figure 1 shows the complete 
graph generation model based on this premise. The origin of our assumption can be traced back to 
the study of homometric structure, i.e, structures with the same multiset of interatomic distances [28]. 
On graphs, two vertex sets are called non-homometric if the multisets of distances determined by 
them are different. (It is an unexplored problem whether there exists any distance metric on the graph 
for which two vertex sets of non-isomorphic graphs are always non-homometric; but the converse 
is not true, an example is the shortest path distance.) This argument provides the validity of our 
assumption that the graph atomic structure is being encoded in pairwise distances. Further, we have 
empirically found that the biharmonic distance [23] multisets are unique for at-least upto 10-vertex 
size simple connected graphs (∼ 11 million graphs) and it remains as an open problem to show a 
contradictory example. Moreover, we show that for a certain distance function Sf on the graph, one 
can uniquely recover all the graph intrinsic properties while also being able to capture both local & 
global information about the graph. Thus, we defne R as the multiset of node pairwise distances 
based on some distance function Sf , which will be the main focus of this paper. 

We hunt for such a family of distances on graphs and its core members for which most of the properties 
of an ideal graph spectrum (see Section 3) hold, including invariance under graph isomorphism and 
the uniqueness property. This hunt leads us to the discovery of a family of graph spectral distance 
(FGSD) and one would fnd harmonic (effective resistance) and biharmonic distance on graphs as the 
suitable members of this family for graph representation R. Finally, for solving graph classifcation 
(where graphs can be of different nodes sizes), we simply construct F feature vector from the 
histogram of R (a multiset) and feed it to a standard classifcation algorithm. 

Our current work focuses only on unlabeled graphs but can be extended to labeled graphs using the 
same strategy as in shortest path kernel [4]. Nevertheless, our comprehensive results show that FGSD 
graph features are powerful enough to signifcantly outperform the current state-of-art algorithms on 
unlabeled datasets and are very competitive on labeled datasets – despite the fact that they do not 
utilize any node label information. In summary, the major contributions of our paper are: 

• Introducing a novel & conceptually simple yet powerful graph feature representation (or spectrum) 
based on the multiset of node pairwise distances. 

• Discovering FGSD as a well-suited candidate for our proposed graph spectrum. 
• Proving that FGSD based graph features exhibit certain uniqueness, stability, sparsity properties 

and can be computationally fast with O(N2) complexity, where N is the number of graph nodes 
in a graph. 

• Showing the superior performance of FGSD based graph features on graph classifcation tasks. 

2 Related Work 

Previous studies on graph classifcation can be grouped into three main categories. The frst category 
is concerned with constructing explicit graph features such as the skew spectrum 20 and its successor, 
graphlet spectrum [22] based on group-theoretic approaches. Both are computational expensive. The 
second and more popular category deals with designing graph kernels, among which, strong ones 
are graphlets [30], random walks or shortest paths [4], neighborhood subgraph pairwise distance 

2A set in which an element can occur multiple of times. 
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kernel [9], Weisfeiler-Lehman kernel [31], deep graph kernels [34], graph invariant kernels [27] and 
multiscale Laplacian graph kernel [21]. A tangential work [24] related to constructing features based 
on atoms 3D space coordinates rather than operating on a graph structure, can be also considered in 
this category. Our effort on learning R from FGSD can be seen as a part of frst category, since we 
explicitly investigate numerous properties of our proposed graph spectrum. While, extracting F from 
R is more inspired from the work of graph kernels. 

The third category involves developing convolutional neural networks (CNNs) for graphs, where 
several models have been proposed to defne convolution networks on graphs. The most common 
model is based on generalizing convolutional networks through the graph Fourier transform via 
a graph Laplacian [7, 16]. Defferrard et al. [11] extend this model by constructing fast localized 
spectral flters for effcient graph coarsening as a pooling operation for CNNs on graphs. Some 
variants of these models were considered in [18, 1], where the output of each neural network layer is 
computed using a propagation rule that takes the graph adjacency matrix and node feature vectors into 
account while updating the network weights. In [12], the convolution operation is defned by hashing 
of local graph node features along with the local structure information. Likewise, in [26] local node 
sequences are “canonicalized” to create receptive felds and then fed into a 1D convolutional neural 
network for classifcation. Among the aforementioned graph CNNs models, only those in [26, 1, 12] 
are relevant to this work since they are designed to account for graphs of different sizes, while others 
assume a global structure where the one-to-one correspondence of input vertices are already known. 

3 Family of Graph Spectral Distances and Graph Spectrum 

Basic Setup and Notations: Consider a weighted, undirected (and connected) graph G = (V, E, W ) 
of size N = |V |, where V is the vertex set, E the edge set (with no self-loops) and W = [wxy] the 
nonnegative weighted adjacency matrix. The standard graph Laplacian is defned as L = D − W , 
where D is the degree matrix. It is semi-defnite and admits an eigen-decomposition of the form 
L = ΦΛΦT , where Λ = diag[λk] is the diagonal matrix formed by the eigenvalues λ0 = 0 < 
λ1 ≤ · · · ≤ λN−1, and Φ = [φ0, ..., φN−1] is an orthogonal matrix formed by the corresponding 
eigenvectors φk’s. For x ∈ V , we use φk(x) to denote the x-entry value of φk. Let f be an 
arbitrary nonnegative (real-analytical) function on R+ with f(0) = 0, 1 = [1, .., 1]T is the all-one 
vector and J = 11T . Then, using slight abuse of notion, we defne f(L) := Φf(Λ)ΦT and 
f(Λ) := diag[f(λk)]. Also, f(L)xy represent xy-entry value in f(L) matrix. Lastly, I is identity 
matrix and L+ is Moore-Penrose Pseudoinverse of L. 

FGSD Defnition: For x, y ∈ V , we defne the f -spectral distance between x and y on G as follows: 

N −1X 
Sf (x, y) = f(λk)(φk(x) − φk(y))

2 (1) 
k=0 

We will refer to {Sf (x, y)|f}, as the family of graph spectral distances. Without loss of generality, 
we assume that the derivative f 0(λ) 6= 0 for λ > 0, and then by Lagrange Inversion Theorem [33], f 
is invertible and thus bijective. For reasons that will be clear shortly, we are particularly interested in 
two sub-families of FGSD, where f is monotonic function (increasing or decreasing) of λ. Depending 
on the sub-family, the f -spectral distance can capture different type of information in a graph. 

FGSD Elements Encode Local Structure Information: For f(λ) = λp (p ≥ 1), one can show 
that Sf (x, y) = (Lp)xx + (L

p)yy − 2(Lp)xy . If the shortest path from x to y is larger than p, then 
(Lp)xy = 0. This is based on the fact (Lp)xy captures only p-hop local neighborhood information [32] 
on the graph. Hence, broadly for an increasing function of f (e.g., a polynomial function of degree 
atleast p ≥ 1), Sf (x, y) captures the local structure information. 

FGSD Elements Encode Global Structure Information: On the other hand, f as a decreasing 
function yields Sf (x, y) = ((L+)p)xx + (((L+)p)yy − 2((L+)p)xy. This captures the global 

J )−1 − Jinformation, since the xy-entry of L+ = (L + accounts for all paths from node x to yN N 
(and so does (L+)p). Several known globally aware graph distances can be derived from this FGSD 
sub-family. For f(λ) = 1/λ where λ > 0, Sf (x, y) is the harmonic (or effective resistance) distance. 
More generally, for f(λ) = 1/λp, p ≥ 1, Sf (x, y) is the polyharmonic distance (p = 2 is biharmonic 

−2tλkdistance). Lastly f(λk) = e yields Sf (x, y) that is equivalent to the heat diffusion distance. 
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FGSD Graph Signal Processing Point of View: From graph signal processing perspective, Sf (x, y) 
is a distance computed based on spectral flter properties [32], where f(λ) act as a band-pass flter. Or, 
it can be viewed in terms of spectral graph wavelets [15] as: Sf (x, y) = ψf,x(x)+ψf,y(y)−2ψf,x(y),PN−1where ψf,x(y) = f(λk)φk(x)φk(y) (and ψf,x(x), ψf,y(y) are similarly defned) is a spectral k=0 
graph wavelet of scale 1, centered at node x and f(λ) act as a graph wavelet kernel. 

FGSD Based Graph Spectrum: Using the FGSD based distance matrix Sf = [Sf (x, y)] directly, 
e.g., for graph classifcation, requires us being able to solve the graph isomorphism problem effciently. 
But no known polynomial time algorithm is available; the best algorithm today theoretically takes 
quasipolynomial time [2]. However, motivated from the study of homometric structure and the fact 
that each element of FGSD encodes some local or global sub-structure information of the graph, 
inspired us to defne the graph spectrum as R = {Sf (x, y)|∀(x, y) ∈ V }. Thus, comparing two 
R’s implicitly evaluates the sub-structural similarity between two graphs. For instance, R based on 
harmonic distance contains sub-structural properties related to the spanning trees of a graph [29]. 

Our main concern in this paper would be choosing an appropriate f(λ) function in order to generate 
R which can exhibit ideal graph spectrum properties as discuss below. Also, we want F to inherent 
these properties directly from R, which is made possible by defning F as the histogram of R. 
Finally, we lay down those important fundamental properties of an ideal graph spectrum that one 
would like R & F to obey on a graph G = (V, E, W ). 

1. R & F must be invariant under any permutation π of vertex labels. That is, R(G) = R(Gπ) or 
R(W ) = R(PWP T ) for any permutation matrix P . 

2. R & F must have a unique representation for non-isomorphic graphs. That is, R(G1) 6= R(G2) 
for any two non-isomorphic graphs G1 and G2. 

3. R & F must be stable under small perturbation. That is, if graph G2(W2) = G1(W1 + Δ), for a 
small perturbation norm matrix kΔk, then the norm of kF (G2) − F(G1)k should also be small 
or bounded in order to maintain the stability. 

4. F must be sparse (if high-dimensional) for all the sparsity reasons desirable in machine learning. 
5. R & F must be computationally fast for effciency and scalability purposes. 

4 Uniqueness of Family of Graph Spectral Distances and Graph Spectrum 
We frst start with exploring the graph invariance and uniqueness properties of R & F based on FGSD. 
Uniqueness is a very important (desirable) property, since it will determine whether the elements of 
R set are complete (i.e., how good they are), in the sense whether R is suffcient enough to recover 
all the intrinsic structural properties of a graph. We state the following important uniqueness theorem. 

Theorem 1 (Uniqueness of FGSD) 3 The f -spectral distance matrix Sf = [Sf (x, y)] uniquely 
determines the underlying graph (up to graph isomorphism), and each graph has a unique Sf (up to 
permutation). More precisely, two undirected, weighted (and connected) graphs G1 and G2 have the 
same FGSD based distance matrix up to permutation, i.e., SG1 = P SG2 P T for some permutation 
matrix P , if and only if the two graphs are isomorphic. 

Implications: Our proof is based on establishing the following key relationship: f(L) = 
− 1 1 1(I − J)Sf (I − J). Since f is bijective, one can uniquely recover Λ from f(Λ). One2 N N 
of the consequence of Theorem 1 is that the R based on multiset of FGSD is invariant under the 
permutation of graph vertex labels and thus, satisfes the graph invariance property. Also, F will 
inherent this property since R remains the same. Unfortunately, it is possible that the multiset of 
some FGSD members can be same for non-isomorphic graphs (otherwise, we would have a O(N2) 
polynomial time algorithm for solving graph isomorphism problem!). However, it is known that 
all non-isomorphic graphs with less than nine vertices have unique multisets of harmonic distance. 
While, for nine & ten vertex (simple) graphs, we have exactly 11 & 49 pairs of non-isomorphic 
graphs (out of total 274,668 & 12,005,168 graphs) with the same harmonic spectra. These examples 
show that there are signifcantly very low numbers of non-unique harmonic spectrums. Moreover, we 
empirically found that the biharmonic distance has all unique multisets for at-least upto ten vertices 
(∼ 11 million graphs) and we couldn’t fnd any non-isomorphic graphs with the same biharmonic 
multisets. Further, we have the following theorem regarding the uniqueness of R. 

3Variant of Theorem 1 also hold true for the normalized graph Laplacian Lnorm = D− 
2
1 
LD− 1

2 . 
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Theorem 2 (Uniqueness of Graph Harmonic Spectrum) Let G = (V, E, W ) be a graph of size 
|V | with an unweighted adjacency matrix W . Then, if two graphs G1 and G2 have the same number 
of nodes but different number of edges, i.e, |V1| = |V2| but |E1| 6= |E2|, then with respect to the 
harmonic distance multiset, R(G1) 6= R(G2). 

Implications: Our proof relies on the fact that the effective resistance distance is a monotone function 
with respect to adding or removing edges. It shows that R based on some FGSD members specially 
harmonic distance is atleast theoretically known to be unique to a certain degree. F also inherent this 
property, fully under the condition h → 0 (or for small enough h), where h is the histogram binwidth. 

Overall the certain uniqueness of R along with containing local or global structural properties in its 
each element dictate that the R is capable enough to serve as the complete powerful Graph Spectrum. 

4.1 Unifying Relationship Between FSGD and Graph Embedding and Dimension Reduction 

Before delving into other properties, we uncover an essential relationship between FGSD and Graphp
Embedding in Euclidean space and Dimension Reduction techniques. Let f(Λ) 

1 
2 = diag[ f(λk)] 

and defne Ψ = Φf(Λ) 
Ψ(y)||2 

2 
each node x is represented by the vector Ψ(x). Now for instance, if f(λ) = 1, then by taking the frst 

1 
2 . Then, the f -spectral distance can be expressed as Sf (x, y) = ||Ψ(x) − 

th, where Ψ(x) is the x row of Ψ. Thus, Ψ represents an Euclidean embedding of G where 

p columns of Ψ yields embedding exactly equal to Laplacian Eigenmap (LE) [3] based on random 
walk graph Laplacian (Lrw = D−1L). For f(λ) = λ2t and L = D−1W , we get the Diffusion 
Map [25]. Thus, f(λ) function has one-to-one correspondence relationship with spectral dimension 
reduction techniques. We have the following theorem concerning Graph Embedding based on FGSD. 

Theorem 3 (Uniqueness of FGSD Graph Embedding) Each graph G can be isometrically embed-
ded into a Euclidean space using FGSD as an isometric measure. This isometric embedding is unique, 
if all the eigenvalues of G Laplacian are distinct and there does not exist any other graph G 

0 
withq 

Laplacian eigenvectors φ 
0 
= f(λj )/f(λ

0 
)φk, ∀k ∈ [1, N − 1].k j 

Implications: The above theorem shows that FGSD provides a unique way to embed the graph 
vertices into Euclidean space possibly without loosing any structural information of the graph. This 
could potentially serve as a cogent tool to convert an unstructured data into a structure data (similar to 
structure2vec 10 or node2vec 14 tool) which can enable us to perform standard inference tasks 
in Euclidean space. Note that the uniqueness condition is quite strict and holds for co-spectral graphs. 
In short, we have following uniqueness relationship, where Ψ is the Euclidean embedding of G graph. 

5 Stability of Family of Graph Spectral Distances and Graph Spectrum 
Next, we hunt for the stable members of the FGSD that are robust against the perturbation or noise 
in the datasets. Specifcally, we will look at the stability of R and F based on FGSD from f(λ) 
perspective by frst analyzing its infuence on a single edge perturbation (or in other words analyzing 
rank one modifcation of Laplacian matrix). This will lead us to fnd the stable members and what 
restrictions we need to impose on f(λ) function for stability. We will further show that f -spectral 
distance function also satisfes the notion of uniform stability [6] in a certain sense. For our analysis, 
we will restrict f(λ) as a monotone function of λ, for λ > 0. Let 4w ≥ 0 be the change after 
modifying w weight on any single edge to w 

0 
on the graph, where 4w = w 

0 − w. 

Theorem 4 (Eigenfunction Stability of FGSD) Let 4Sxy be the change in Sf (x, y) distance with 
respect to 4w change in weight of any single edge on the graph. Then, 4Sxy for any vertex pair 
(x, y) is bounded with respect to the function of eigenvalue as follows, 

4Sxy ≤ 2 |f(λN−1 + 24w) − f(λ1)| 

Sf f(LG ) LG f(LG ) ΨG 

Implications: Since, R = {Sf (x, y)|∀(x, y) ∈ V }, then each element of R is itself bounded 
by 4Sxy. Now, recall that F is a histogram of R, then F won’t change, if binwdith is large 
enough to accommodate the perturbation i.e., h ≥ 24Sxy ∀(x, y) assuming all elements of R are 
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at the center of their respective histogram bins. Besides h, the other way to make R robust is by 
choosing a suitable f(λ) function. Lets consider the behavior 4Sxy on f(λ) = λp for p > 0. Then,� � 
4Sxy ≤ 2 (λN−1 + 24w)p − λp and as a result, 4Sxy is an increasing function with respect 1 
to p which implies that stability decreases with increase in p. For p = 0, stability does not change � � 

|p|with respect to λ. While, for p < 0, 4Sxy ≤ 2 1/λ − 1/(λN −1 + 24w)|p| . Here, 4Sxy is1 

a decreasing function with respect to |p|, which implies that stability increases with decrease in p. 
The results conforms with the reasoning that eigenvectors corresponding to smaller eigenvalues are 
smoother (i.e., oscillates slowly) than large eigenvectors (corresponding to large eigenvalues) and 
decreasing p will attenuate the contribution of large eigenvectors, making the f -spectral distance 
more stable and less susceptible towards perturbation or noise. However, decreasing p too much could 
result in lost of local information contained in eigenvectors with larger eigenvalues and therefore, a 
balance needs to be maintained. Overall, Theorem 4 shows that either through suitable h or decreasing 
f(λ) function, stability of R & F can be controlled to satisfy the Ideal Spectrum Property 3. 

Infact, we can further show that Sf (x, y) between any two vertex (x, y) on a graph, with 0 < α ≤ 
w ≤ β bounded weights, is tightly bounded to a certain expected value. 

Theorem 5 (Uniform Stability of FGSD) Let E[Sf (x, y)] be the expected value of Sf (x, y) be-
tween vertex pair (x, y), over all possible graphs with fxed ordering of N vertices. Then we have, 
with probability 1 − δ, where δ ∈ (0, 1) and θ depends upon α, β, N . r p 1 Sf (x, y) − E[Sf (x, y)] ≤ f(θ) N(N − 1) log 

δ 

Implications: The above theorem is based on the fact 4Sxy can itself be upper bounded over all 
possible graphs generated on a fxed ordering of N vertices. This is a very similar condition needed 
for a learning algorithm to satisfy the notion of uniform stability in order to give generalization 
guarantees. The f -spectral distance function can itself be thought of as a learning algorithm which 
admits uniform stability (precise defnition in supplementary) and indicates a strong stability behavior 
over all possible graphs and further act as a generalizable learning algorithm on the graph. Theorem 5 
also reveals that the deviation can be minimized by choosing decreasing f(λ) function and it would � p � 
be suitable, if f(λ) grow with O 1/ N(N − 1) rate in order to maintain stability for large graphs. 

So far, we have narrow down our interest to R & F based on the bijective and decreasing f(λ) func-
tion for achieving both uniqueness and stability. This eliminates all forms of increasing polynomial 
functions as a good choice of f(λ). As a result, we can focus on inverse (or rational) form of polyno-
mial functions such as polyharmonic distances. A by-product of our analysis results in revealing a 
new class of stable dimension reduction techniques, possible by scaling Laplacian eigenvectors with 
decreasing function of f(λ), although such connections have already been known before. 

6 Sparsity of Family of Graph Spectral Distances and Graph Spectrum 

Figure 2: Figure shows the number of unique 
elements present in R formed by different f -
spectral distance on all graphs (of |V | = 9, 
total 261, 080 graphs). Graph enumeration in-
dices are sorted according to R( 1 ) . We can λ G 

1observe that f(λ) = increases in form of aλ 
step function and lower bounds all other f(λ) 
with an addition constant. (Best viewed in color 
and when zoom-in.) 
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Sparsity is desirable for both computational and statistical effciency. In this section, we investigate 
the sparsity produced in F by choosing different f(λ) functions. Here, sparsity refers to its usual 
defnition of “how many zero features are present in F graph feature vector”. Since F is a histogram 
of R, number of non-zero elements in F will always be less than equal to number of unique (or 
distinct) elements in R. However, due to the lack of any theoretical support, we rely on empirical 
evidence and conjecture the following statement. 
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a. Harmonic distance based graph feature b. Biharmonic distance based graph feature 
matrix (matrix sparsity= 97.12%). Presence matrix (matrix sparsity= 94.28%). Presence 
of blue dot ( ) indicates feature value > 0. of blue dot ( ) indicates feature value > 0. 

c. Harmonic distance based feature matrix d. Biharmonic distance based feature matrix 
sparsity shown with respect to per class label. sparsity shown with respect to per class label. 

Figure 3: Feature space for MUTAG (composed of two class sizes 125 & 63): Both harmonic & 
biharmonic based graph spectrum encodes a sparse high dimensional feature representation F for 
graphs which can clearly distinguish the two classes as depicted in above sub-fgures. 

Conjecture (Sparsity of FGSD Graph Spectrum) For any graph G, let R(f(λ)) represents the 
G 

number of unique elements present in the multiset of R, computed on an unweighted graph G based 
on some monotonic decreasing f(λ) function. Then, the following holds,� �1 R(f(λ)) ≥ R + 2 

G λ G � � � � 
1The conjecture is based on the observation that, in the Figure 2, R + 2 lower bounds all λ 

given monotonic decreasing f(λ) along with an addition constant of 2. Same trends are observed 
for different graph sizes |V |. Interestingly, when graph enumeration indices are sorted according � � 

1 1to size R , we further observe that f(λ) = increases in the form of a step function. Fromλ λ 
1this conjecture, we can directly conclude that the F based on f(λ) = produce the most sparse λ 

features because number of unique elements in its R is always less than any other R. Figure 3, 
further supports this conjecture which shows the feature space computed for MUTAG dataset in 
case of harmonic and biharmonic spectrums. However, this raises a question of trade-off between 
maintaining uniqueness and sparsity, since biharmonic distance multisets are found to be unique 
for more number of graphs than harmonic distance. Nonetheless, some preliminary experiments 
measuring harmonic vs. biharmonic performance on graph classifcation (in supplementary), suggest 
that the sparsity is more favorable than uniqueness since it results in higher classifcation accuracy. 

Fast Computation of Family of Graph Spectral Distances and Spectrum 
Finally, we provide the general recipe of computing any member of FGSD in fast manner. In order to 
avoid direct eigenvalue decomposition, we can either perform approximation or leverage structural 
properties and sparsity of f(L) for effcient exact computation of Sf and thus, R. 

Approximation: Inspired from the spectral graph wavelet work [32], the recipe for approximating 
FGSD is to decompose f(λ) possibly into an approximate polynomial series (for example, chebyshev Prpolynomials) as follows: f(λ) = i=0 aiTi(λ) such that Ti(x) can be computed in recursive mannerPrfrom few lower order terms (Ti−1(x), Ti−2(x), ..., Ti−c(x)). Then it follows, f(L) = i=0 aiTi(L). 
In this case, the cost of computing will reduce to O(r|E|) for sparse L which is very less expensive, 
since O(r|E|) � O(N2). But, if f(λ) is an inverse polynomial form of function, then computing �P �−1 

r
f(L) = = f(L+), boils down to effciently computing (a single) Moorei=0 aiTi(L) r 

Penrose Pseudo inverse of a matrix. 

Effcient Exact Computation: By leveraging f(L) structural properties and its sparsity, we can 
effciently perform exact computation of f(L+) in much more better way than the eigenvalue 
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decomposition. We propose such a method 1 which is the generalization of [23] work. We can show 
Jthat, f(L)f(L+)−1 = I − . Therefore, f(L)l+ = Bk, where l+ and Bk are the kth column of N k k 

f(L+) and B = I − J matrices, respectively. So, frst we can fnd a particular solution of following N 

= x − 1
T x(sparse) linear system: f(L)x = Bk and then obtain l+ x. The particular solution x cank 1T 1 

be obtained by replacing any single row and corresponding column of f(L) by zeros, and setting 
diagonal entry at their intersection to one, and replacing corresponding row of B by zeros. This gives 
a (non-singular) sparse linear system which can be solved very effciently by performing cholesky 
factorization and back-substitution, resulting in overall O(N2) complexity as shown in [5]. Beside 
this, there are few other fast methods to compute Pseudo inverse, particularly given by [17]. 

Complexity SP [4] GK[34](k ∈ 
{3, 4, 5}) (d ≤ N) 

SGS[20] GS [22](k ∈ 
[2, 6]) 

DCNN[1] MLG[21] 
( eN < N ) 

FGSD 

Approximate — O(Ndk−1) — — — O( eN 3) O(r|E|) 

Worst-Case O(N3 ) O(Nk ) O(N 3) O(N2+k ) O(N 2) O(N 3) O(N2) 

Table 1: FGSD complexity comparison with few strong state-of-art algorithms (showing variables 
that are only dependent on N & |E|). It reveals that the FGSD complexity is better than the most. 

As a result, it leads to a very effcient Algorithm 1 Computing R and F based on FGSD. 
O(r|E|) complexity through approx- Input: Given graphs {Gi = (Vi, Ei,Wi)}M 
imation with the worst-case O(N2) i=1, f(λ), 

number of bins b, binwidth h.complexity in exact computation of R. Output: Ri and Fi ∀i ∈ [1,M ].Table 1, shows the complexity com- for i = 1 to M doparison with other state-of-art meth-
Compute f(Li) using approx. or exact method 1. ods. Since, number of elements in R 
Compute Si = diag(f(Li))J + Jdiag(f(Li)) −are O(N2), then F is also bounded 
2f(Li).by O(N2) and thus satisfes the ideal 
Set Ri = {Sxy|∀(x, y) ∈ |Vi|}.graph spectrum Property 5. Finally, 
Compute Fi = histogram(Ri, b, h).Algorithm 1 summarizes the complete end for procedure of computing R & F . 

8 Experiments and Results 
FGSD Graph Spectrum Settings: We chose harmonic distance as an ideal candidate for F . For fast 
computation, we adopted our proposed effcient exact computation method 1. And for computing 
histogram, we fx binwidth size and set the number of bins such that its range covers all {Ri}M 

1 
elements of M number of graphs. Therefore, we had only one parameter, binwidth size, chosen from 
the set {0.001, 0.0001, 0.00001}. This results in F feature vector dimension in range 100−1000, 000 
with feature matrix sparsity > 90% in all cases. Our FGSD code is available at github4. 

Datasets: We employed wide variety of datasets considered as benchmark [1, 34, 21, 26] in graph 
classifcation task to evaluate the quality of produce FGSD graph features. We adopted 7 bioinfor-
matics datasets: Mutag, PTC, Proteins, NCI1, NCI109, D&D, MAO and 5 social network datasets: 
Collab, REDDIT-Binary, REDDIT-Multi-5K, IMDB-Binary, IMDB-Multi. D&D dataset contains 
691 enzymes and 587 non-enzymes proteins structures. While, MAO dataset contains 38 molecules 
that are antidepressant drugs and 30 do not. For other datasets, details can be found in [34]. 

Experimental Set-up: All experiments were performed on a single Intel-Core i7-4790@3.60GHz 
and 64GB RAM machine. We compare our method with 6 state-of-art Graphs Kernels: Random 
Walk (RW) [13], Shortest Path Kernel (SP) [4], Graphlet Kernel (GK) [30], Weisfeiler-Lehman Kernel 
(WL) [31], Deep Graph Kernels (DGK) [34], Multiscale Laplacian Graph Kernels (MLK) [21]. And 
proposed, 2 recent state-of-art Graph Convolutional Networks: PATCHY-SAN (PSCN) [26], 
Diffusion CNNs (DCNN) [1]. And, 2 strong Graph Spectrums: the Skew Spectrum (SGS) [20], 
Graphlet Spectrum (GS) [22]. We adopt the same procedure from previous works [26, 34] to make a 
fair comparison and used 10-fold cross validation with LIBSVM [8] library to test the classifcation 
performance. Parameters of SVM are independently tuned using training folds data and best average 
classifcation accuracies is reported for each method. We provide node degree as the labeled data for 
algorithms that do not operate directly on unlabeled data. Further details about parameters selection 
for baseline methods are present in supplementary materials. 

4https://github.com/vermaMachineLearning/FGSD 
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Dataset (No. Graphs, 
Max. Nodes) 

RW 
[2003] 

SP 
[2005] 

GK 
[2009] 

WL 
[2011] 

DGK 
[2015] 

MLG (Wall-
Time) [2016] 

DCNN 
[2016] 

SGS 
[2008] 

FGSD 
(Wall-Time) 

MUTAG (188, 28) 83.50 87.23 84.04 87.28 86.17 87.23(5s) 66.51 88.61 92.12(0.3s) 

PTC (344, 109) 55.52 58.72 60.17 55.61 59.88 62.20(18s) 55.79 — 62.80(0.07s) 

PROTEINS (1113, 620) 68.46 72.14 71.78 70.06 71.69 71.35(277s) 65.22 — 73.42(5s) 

NCI1 (4110, 111) > D 68.15 62.07 77.23 64.40 77.57(620s) 63.10 62.72 79.80(31s) 

NCI109 (4127, 111) > D 68.30 62.04 78.43 67.14 75.91(600s) 60.67 62.62 78.84(35s) 

D & D (1178, 5748) > D > D 75.05 73.76 72.75 77.02(7.5hr) OMR — 77.10(25s) 

MAO (68, 27) 83.52 90.35 80.88 89.79 87.76 91.17(13s) 76.10 — 95.58(0.1s) 

Table 2: Classifcation accuracy on unlabeled bioinformatics datasets. Results in bold indicate all 
methods with accuracy within range 2.0 from the top result and blue color (for range > 2.0), indicates 
the new state-of-art result. Green color highlights the best time computation, if it’s 5×faster (among 
the mentioned). ‘OMR’ is out of memory error, ‘> D’ is computation exceed 24hrs. 

Dataset 
(Graphs) 

GK 
[2009] 

DGK 
[2015] 

PSCN 
[2016] FGSD 

COLLAB 
(5000) 

72.84 73.09 72.60 80.02 

REDDIT-B 
(2000) 

77.34 78.04 86.30 86.50 

REDDIT-M 
(5000) 

41.01 41.27 49.10 47.76 

IMDB-B 
(1000) 

65.87 66.96 71.00 73.62 

IMDB-M 
(1500) 

43.89 44.55 45.23 52.41 

Dataset MLG 
[2016] 

DCNN 
[2016] 

PSCN 
[2016] 

GS 
[2009] FGSD* 

MUTAG 87.94 
(4s) 66.98 

92.63 
(3s) 

88.11 
92.12 
(0.3s) 

PTC 63.26 
(21s) 56.60 

62.90 
(6s) 

— 62.80 
(0.07s) 

NCI1 81.75 
(621s) 

62.61 
78.59 
(76s) 65.0 

79.80 
(31s) 

D & D 78.18 
(7.5hr) 

OMR 
77.12 
(154s) 

— 77.10 
(25s) 

MAO 88.29 
(12s) 

75.14 — — 95.58 
(0.1s) 

Table 3: Classifcation accuracy on social Table 4: Classifcation accuracy on labeled bioin-
network datasets. FGSD signifcantly out- formatics datasets. * emphasize that FGSD did not 
performs other methods. utilize any node labels. 

. 

Classifcation Results: From Table 2, it is clear that FGSD consistently outperforms every other 
state-of-art algorithms on unlabeled bioinformatics datasets and that too signifcantly in many cases. 
FGSD even performs better for social network graphs as shown in Table 3 and achieves a very 
signifcant 7% − 8% more accuracy than the current state-of-art PSCNs on COLLAB and IMDB-M 
datasets. Also from run-time perspective (excluding any data loading or classifcation time for all 
algorithms), it is pretty fast (2x–1000x times faster) as compare to others. These appealing results 
further motivated us to compare FGSD on the labeled datasets (even though, it is not a complete 
fair comparison). Table 4 shows that FGSD is still very competitive with all other strong (recent) 
algorithms that utilize node labeled data. Infact on MAO dataset, FGSD sets a new state-of-art result 
and stays within 0% − 2% range of accuracy from the best on all labeled datasets. On few labeled 
datasets, we found MLG to have slightly better performance than the others, but it is 1000 times 
slower than FGSD when graph size jumps to few thousand nodes (see D&D Results). Altogether, 
FGSD shows very promising results in both accuracy & speed on all type of datasets and over all the 
more sophisticated algorithms. These results also point out the fact that there is untapped hidden 
potential in the graph structure which current algorithms are not harnessing despite having labeled 
data at their disposal. 

9 Conclusion 

We present a conceptually simple yet powerful and theoretically motivated graph representation. In 
particular, our graph representation based on the discovery of family of graph spectral distances can 
exhibits uniqueness, stability, sparsity and are computationally fast. Moreover, our hunt specifcally 
leads to the harmonic and next to it, biharmonic distances as an ideal members of this family for 
extracting graph features. Finally, our extensive results show that FGSD based graph features are 
powerful enough to dominate the unlabeled graph classifcation task over all the more sophisticated 
algorithms and competitive enough to yield high classifcation accuracy on labeled data even without 
utilizing any node labels. In our future work, we plan to generalize the FGSD for labeled dataset in 
order to utilize the useful node and edge label information in the graph representation. 
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